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Abstract

Synchrotron emissivities, absorptivities, and Faraday rotation and conversion coefficients are needed in modeling a
variety of astrophysical sources, including Event Horizon Telescope (EHT) sources. We develop a method for
estimating transfer coefficients that exploits their linear dependence on the electron distribution function,
decomposing the distribution function into a sum of parts each of whose emissivity can be calculated easily. We
refer to this procedure as stochastic averaging and apply it in two contexts. First, we use it to estimate the
emissivity of an isotropic x distribution function with a high-energy cutoff. The resulting coefficients can be
evaluated efficiently enough to be used directly in ray-tracing calculations, and we provide an example calculation.
Second, we use stochastic averaging to assess the effect of subgrid turbulence on the volume-averaged emissivity
and along the way provide a prescription for a turbulent emissivity. We find that for parameters appropriate to EHT
sources turbulence reduces the emissivity slightly. In the infrared, turbulence can dramatically increase the
emissivity.

Unified Astronomy Thesaurus concepts: Black holes (162); Magnetohydrodynamics (1964); Radiative processes

(2055); Radiative transfer (1335)

1. Introduction

Semianalytic and numerical models of black hole accretion
flows, including general relativistic magnetohydrodynamics
(MHD) simulations, are now routinely used for physical
interpretation of observational data (e.g., Event Horizon
Telescope Collaboration et al. 2019, 2022). In many cases
the dominant radiative process at the frequencies of interest is
synchrotron; scattering is typically negligible. Synchrotron
photons are emitted, absorbed, and their polarization is
modified by interaction with the plasma. In the radiative
transfer equation these interactions are encoded in the transfer
coefficients for emission, absorption, and Faraday rotation
(rotation of the polarization) and conversion (conversion of
circular to linear polarization and vice versa). The transfer
coefficients depend on the electron distribution function f.

Calculation of synchrotron transfer coefficients from f is
notoriously difficult (Schwinger 1949). Methods for numeri-
cally evaluating coefficients for isotropic distribution functions
now exist (Marszewski et al. 2021), or even some coefficients
for anisotropic distribution function (Verscharen et al. 2018;
Galishnikova et al. 2023). Although the direct numerical
evaluation of coefficients is possible, direct evaluation is not
practical in numerical radiative transfer calculations.

Instead simple, easy-to-evaluate analytic approximations are
typically used for a small set of common model distribution
functions. For example, useful expressions exist for the
relativistic isotropic thermal (Maxwell-Jiittner) and non-
thermal (power-law or k) electron distribution functions (e.g.,
Shcherbakov 2008; Huang & Shcherbakov 2011; Leung et al.
2011; Dexter 2016; Pandya et al. 2016, 2018; Marszewski et al.
2021). Nevertheless, one might want to evaluate a model for a
new or slightly modified distribution function—for example a
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power-law distribution with an imposed exponential cutoff. In
general this would require an expensive numerical re-evalua-
tion and re-fitting of the coefficients.

Here we propose a method for evaluating synchrotron
transfer coefficients semianalytically. Our method is based on
the observation that the coefficients depend linearly on the
distribution function f, so that, for example, the emissivity
Jfi ) =JjAf1) +jAf>). This observation has been made
before in the context of accreting black holes by Mao et al.
(2017). It implies that if we can write the distribution function
as a weighted sum of distribution functions for which accurate
but approximate analytic transfer coefficients are known, then
we can also evaluate the transfer coefficients as a weighted
sum. Here we apply this notion in two contexts.

First, we develop an accurate, efficient procedure for
estimating transfer coefficients for the « distribution function,
which has been used in studies of black hole accretion and jets
to model electron acceleration processes (e.g., Davelaar et al.
2018; Event Horizon Telescope Collaboration et al. 2019;
Davelaar et al. 2023). The x distribution smoothly connects a
quasi-thermal core at low momentum to a power-law tail at
high momentum. It is known to be a good fit to electron
populations in the solar wind (Vasyliunas 1968); for a recent
review see Pierrard et al. (2022). We also show how our
procedure makes it easy to incorporate a cutoff in the
distribution function.

The application to « distributions is inspired by work on
“stochastic averaging” by Schwadron et al. (2010), and we
adopt this term to describe our method of taking weighted
averages of emission coefficients.

Second, we use stochastic averaging to write down turbulent
transfer coefficients, which may be useful in estimating the
emergent radiation from numerical simulations. Large eddy
simulations of turbulence are common in astrophysics. Each
resolution element, or zone, represents a region with unre-
solved turbulent substructure. The effect of that substructure on
the radiation field can be modeled by replacing the emission
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associated with each zone’s temperature, density, velocity, and
magnetic field strength by a weighted average of emissivities
over a distribution of temperatures, densities, etc. We provide a
general expression for turbulent emissivity that depends on the
covariances of the emissivity parameters in a turbulent flow,
and estimate the magnitude of the change in emissivities for
models of Sgr A™.

This paper is organized as follows. Section 2 describes
various distribution functions and develops the necessary
notation. Section 3 applies stochastic averaging to the &
distribution function. Section 4 applies stochastic averaging to
turbulent transfer coefficients. Section 5 summarizes and
identifies directions for future research.

2. Preliminaries

The polarized radiative transfer equation for the intensities in
Stokes parameters I, Q, U, V along a coordinate s is

1, Ju1 Qyr  QpQ Qyu Qay v L
i O | _|Mo R Pvy  —PuullQ,
Qvu —Py Qwr Puo ||U, T

ds lj)/ jy’U
V., Wy Py TP Oul V,

jl/,V
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where we have neglected scattering. Here j designates an
emissivity, « an absorptivity, and p a rotativity, i.e., a Faraday
rotation or conversion coefficient. Altogether there are 11
transfer coefficients.

Following Leung et al. (2011) and Pandya et al. (2016), the
polarized synchrotron emissivity coefficients for an isotropic
distribution are

Ji

) J 2me*v’n, el

jos = | 2| = T2 [y 800K @)
Ju ¢ n=1
v

where p is the momentum and f(p) = (1/n,)dn,/dp is the
distribution function per particle rather than per unit volume;
similarly f(y) = (1/n,)dn./dy, where ~ is the electron
Lorentz factor. Here S=1, Q, U, V, § is the Dirac delta
function and Ky and y, functions are given in, e.g., Pandya et al.
(2016). Evidently the emissivities depend linearly on the
distribution function. We will work explicit examples for j,
later on, but the stochastic averaging procedure can be applied
to all transfer coefficients since all depend linearly on f, which
must in general be derived from kinetic theory.

One commonly used model for fis the thermal or Maxwell—
Jiittner distribution

2
WY=L e,

I =5 61700

; 3)

where O, = kgT,/ (m,c?) is the dimensionless plasma temper-
ature. Notice that if ©,> 1 then K,(1/6,) =~ 265. Accurate
approximate expressions for the thermal transfer coefficients
are available in Marszewski et al. (2021).
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A second commonly used model for fis the « distribution. A
relativistic < distribution proposed by Xiao (2006) reads

—(k+1)
mw=mmt40+” ) , )

where x and w are parameters, and N is the normalization
constant. For kw > 1, N(k, w) ~ (k — 2)(k — l)/2/<;2w3. Evi-
dently f,. smoothly connects a thermal core at low ~y to a power-
law tail at high v, which is more convenient than stitching a
power-law tail to a Maxwellian core (e.g., Ozel et al. 2000;
Zhao et al. 2023). In the limit k — oo, f, — f; with ©,=
kBTe/meczzw. Notice that N goes to zero as x — 2 from
above, i.e., the number of electrons in the unnormalized
distribution diverges. Notice also that the mean energy per
electron diverges for x < 3.

Now consider a distribution function with a continuous
parameter P, f(y;P) with a known emissivity j(P). For
example, f might be the thermal distribution with P=0,.
Suppose that we want the emissivity associated with a new
distribution that can be written as a stochastic average over f:

-1
KW

fue@) = [P F®) [ P) 5)

where JdPF(P) =1, so that F is a probability distribution over
P. Then evidently

Jrae = [ AP FP)j,P). (©)

This defines the stochastic averaging procedure. The averaging
procedure can be applied to the emissivities because they are
linear in f (Equation (2)). The remaining transfer coefficients—
absorptivities and rotativities—for a general distribution
function can be obtained from a linear transformation of the
susceptibility tensor, and the susceptibility tensor can be
written as an integral over df(7)/dy (see, e.g., Pandya et al.
2018). The absorptivities and rotativities are therefore also
linear in f and can be stochastically averaged.

3. Synchrotron Emission for x Distributions

The synchrotron transfer coefficients for the x function
cannot, to our knowledge, be calculated analytically. Numerical
results can be fit with complicated analytic functions that are
restricted, due to computational cost, to specific ranges or
values of the x parameter. Here we develop an efficient method
for calculating & transfer coefficients from a stochastic average
of thermal distribution functions.

3.1. x Distribution from Stochastic Averaging

Following Schwadron et al. (2010), consider a stochastic
average over thermal distributions with

1 e*/\//\o(&){ @)

FO=6)= ——
Aol'(1 — ¢q) A
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where g < 1 is a parameter, ), is a normalizing constant, and
A=1/0,. Then

: [Tew AO(ﬁ)w T Loay,
0
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assuming ©,>> 1 so that K>(1/6,) ~ 202
Factoring out the constants,
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Next, with the following change of variables: A = A(y + /\i)
0

(and dN =d\(y + %)) and taking ¢=3-—k and
0
Ao =(kw) ",

Javg (V) =
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Notice that f,, differs from f,. because the term in parentheses
is v/(kw) rather than (y—1)/(kw). The difference is
negligible, however, if xw > 1. This shows that f, can be
approximated with a stochastic average over fy,.

So far all we have done is reproduce f;, in approximate form.

Now suppose that we introduce a cutoff in energy by setting
F=0 for A\ < A\pjn. Then

q
F(\) = ! - e*)\//\o(&) , (12)
Aol'(1 = g, Niin) A

where now I' denotes the upper incomplete I" function and
)\/min = )\minWIi. Then

Ia + x, )\/min(l + 'Y('%W)_l))
233 T(k — 2, N min)
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and this immediately yields an approximate expression for the
distribution function (which can be expanded in the limit of
small \;) as well as a method for obtaining consistent,
efficient-to-evaluate transfer coefficients.

f(‘zvg (’Y) =

3.2. Synchrotron Emissivities, Absorptivities, and Rotativities
Using Stochastic Averaging

Combining Equations (2) with (8) gives an expression for
synchrotron emissivity of the approximate r distribution

function:
1 oo Ao ).
e o3 van

W ) A

JV,S,an

(14)
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where g=3 — K, A\p = ﬁ and \ = @L and j, is the emissivity
of the thermal distribution function.
Similarly for the absorptivities,

O41/,5,41\)3; (W, K’)

v T AR A‘J(ﬁ)qoaysm(»dx (15)
Mol(1 — ¢) 70 A .

and the rotativities

pl/,S,an (W’ li)
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i.e., Faraday rotation (py) and conversion (pg, py) coefficients.

Leung et al. (2011), Dexter (2016), Pandya et al. (2016) and
Marszewski et al. (2021) evaluated j,, s and a5 or p, gy for f
thermal, power-law, and  functions. Given accurate analytic
thermal coefficients j, 5, o, 5, and p,, oy, numerical integration
of Equations (14), (15), and (16) is computationally cheap and
in practice requires a sum over no more than 50 thermal
components.

The results can be compared to transfer coefficients
evaluated numerically by the above authors assuming the
electron distribution function. Figure 1 shows examples of
thermal, original x and our averaged distribution functions
together with their synchrotron emissivities, absorptivities
(Stokes I is shown as an example) and rotativities (Stokes Q
is shown as an example). The figure shows stochastically
averaged emissivities, absorptivities, and rotativities in com-
parison to ~ fit functions from Pandya et al. (2016) and
Marszewski et al. (2021). There is a good agreement between
these two. For emissivities/absorptivities the difference is at
most 6% /7%. Given that we use here only fit functions and our
averaged electron distribution function (DF) is not exactly the s
function, this agreement is remarkable. There is also good
agreement between the pg coefficient obtained from stochastic
averaging of thermal coefficient from Dexter (2016) and p,, for
k distribution function from Marszewski et al. (2021).

While we find a very good agreement between transfer
coefficients for x DF and for thermal DF averaged without the
cutoff, calculating transfer coefficients with a cutoff
(Amin = 0.001) shows that applying a cutoff to the DF is not
equivalent to multiplying the transfer coefficients by the same
exponential (or other) frequency cutoff factor (e.g., Davelaar
et al. 2019), which may dominate the errors if the cutoffs are
known precisely. The method presented above offers a
convenient solution to this limitation.

3.3. Emission from Accelerated Electrons near Black Hole
Event Horizon

The main application of the presented scheme for computing
transfer coefficients is modeling emission (images as well as
broadband spectral energy distributions) from nonthermal
electrons in relativistic accretion flows and jets from black
holes. Given the general transfer coefficients, which are no
longer limited to certain values or ranges of the x parameter,
we can introduce more realistic (smooth) model for electron
acceleration. In this exercise, the underlying model for plasma
density, velocity, and magnetic fields is provided by a 3D
general relativistic magnetohydrodynamics (GRMHD) simula-
tion of magnetically arrested disk (MAD) accretion around
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Figure 1. Top left panel: electron distribution functions (DFs). Top right and bottom panels: synchrotron emissivities, absorptivities, and rotativities for thermal and ~
distribution functions using fit functions from Leung et al. (2011), Dexter (2016), Pandya et al. (2016), and Marszewski et al. (2021) in comparison to emissivities,
absorptivities, and rotativities formulas calculated using stochastic averaging. Purely thermal emissivities are shown for reference. Comparison is shown for the
following parameters: x =3.5, w=30, § =60°, and B=30 G (for which v, =eB/(2mm.) = 0.84 X 10® Hz). Model with cutoff assumes Amin = 0.001

corresponding to averaging end at ©, n.x = 1000.

non-rotating black hole evolved for 30,000 GM 3 using
GRMHD code ebhlight (Ryan et al. 2015). The details of
the model setup are comparable to simulations presented in
Event Horizon Telescope Collaboration et al. (2022).

The simulations are ray-traced with polarized relativistic
radiative transfer code ipole (MoScibrodzka & Gammie
2018), where the scheme for averaging emissivities, absorptiv-
ities and rotativities is implemented. When ray-tracing, the
GRMHD simulations are scaled to Galactic center super-
massive black hole system, Sgr A*. It has been long thought
that flaring behavior of this accreting black hole is a
manifestation of electron acceleration (e.g., Ozel et al. 2000).
Here we present example ipole images of Sgr A* at single
frequency of 230 GHz, which roughly corresponds to the peak
of the synchrotron emission and the observing frequency of
Event Horizon Telescope (EHT). The purpose of this
calculation is to illustrate the flexibility and performance of a
ray-tracing scheme equipped with stochastically averaged
transfer coefficients.

The radiative transfer calculation makes the following
assumptions about the electron distribution functions, which
are not followed by the GRMHD simulation. The basic
model assumes thermal electrons where electron temperatures
O, are given by the R — § formula from Moscibrodzka et al.
(2016), where 3= Pg,s/Ppmag is provided by the underlying

GRMHD simulation. The electron temperatures are derived
from formula:

32 1
—— + Row——
/62+1 lo /82+1

where Rpior, = 160 and Ry, = 1 and proton temperatures, T},
are followed in the GRMHD simulation. Each nonthermal DF
is centered around w = O, where ©, is given by the thermal
model but we allow nonthermal electron distribution function
only above some threshold temperature ©, > 5. Apart from this
floor for the electron acceleration we also set a ceiling for
acceleration energies by setting A, = 0.001, corresponding to
a maximum Lorentz factor of electrons v~ 10*. Finally, we
assume that the s parameter is variable and, similarly to ©, and
w parameters, is a smooth function of g:

R = = Rhign (17)

Ty
L

K(B) = Khnigh i + K :
igl 52 1 ow 52 +1
where Kiow and Kpign are the model free parameters. We set
Fhigh = 30 and k0w = 3.5 for which there is a smooth transition
between nearly thermal electrons in the high-( regions (usually
closer to the disk equatorial plane) and nonthermal electrons in
the low-( regions (usually in the jet regions). Together these

: (18)
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Figure 2. 230 GHz polarimetric images of the magnetically arrested accretion flow around nonspinning supermassive black holes produced by ray-tracing simulations.
Purely thermal and thermal+nonthermal models are shown in the top and bottom panels, respectively. In the bottom panels, the emission regions are slightly more

extended.

conditions guarantee that xw>>1 everywhere where a
nonthermal DF is allowed. Notice that Equation (18) would
be difficult to implement with existing fits to the « distribution,
which extend only to xk =7.

Figure 2 shows images of the GRMHD simulations
assuming: purely thermal electrons (top panels) and nonthermal
electrons (bottom panels). Notice that the thermal and
nonthermal models have been scaled with slightly different
mass scaling unit M = 8 x 10!7 (nonthermal) and M = 10 x
10'7 (thermal) so that in both cases the flux density is ~2 Jy,
characteristic for Sgr A®. The differences between purely
thermal and nonthermal images at the chosen frequency are
only subtle at this observing frequency.> In particular
nonthermal Stokes I images are slightly more extended in size
compared to the thermal ones. This is consistent with findings
of Mao et al. (2017). Interestingly, the polarimetric (Stokes Q,
U, V) images are also slightly more extended. With more
extended images the ratio of direct emission and lensed (into a
photon ring) emission fluxes changes; this may have an impact
on the variability of the light curves synthesized from the
images.

The integration of the image with stochastically averaged
transfer coefficients took only approximately 1.5 times longer
compared to the purely thermal image. It is therefore feasible to
carry out more extensive parameter surveys of the nonthermal
models, including models with different assumptions than
those presented here.

4. Application to Coarse Graining of Turbulent Emission

The finite resolution of GRMHD models inevitably cuts off
turbulent structures close to and below the grid scale 1. The
unresolved structures contain a distribution of temperatures,
densities, field strengths, frequency of emission, and field

3 We have checked that images at this frequency are insensitive to the cutoff,

Amin, Which makes a negligible change to the distribution function normal-
ization and removes electrons at > 10* that do not contribute to emission in
the millimeter for parameters appropriate to Sgr A*.

orientations (collectively, the parameter vector P) that may
cause the radiative transfer coefficients averaged over a region
the size of a cell to differ from the coefficients associated with
the average state, since the transfer coefficients are nonlinear
functions of P. Here we apply the notion of stochastic
averaging to explore the implications of turbulent substructure
for the total intensity emissivity alone; similar considerations
apply to the other transfer coefficients.

Using stochastic averaging, we define the turbulent emissivity

Jus = [d"P F @), P, (19)

where F is the distribution of the n parameters.

If the variations in emissivity parameters within a zone are
small, and we do not need to capture the instantaneous
distribution within each zone but only the ensemble-averaged
distribution, then we may not do too badly with the ansatz that
the parameters P are distributed like a multivariate Gaussian,
ie.,

F(P) = (@m)"|S)/2 exp(—%APi =" AP/’)’ (20)

where ;= Cjo,0; is the covariance matrix, C; is the
dimensionless correlation matrix, and AP; = P; — (P,).

Expanding to second order in AP,

U PR Wi
Jurb = Jy ) jl, 8P, a})j

Cl‘ja'ia'j), 21
where j, and its derivatives are evaluated at (P), and repeated
indices i, j are summed over. The first-order term vanishes
because (AP;)=0 by definition. Notice, however, that
variation of emissivity with n, enters the turbulent emissivity
if density varies in a correlated way with other parameters, as
might be the case if density and temperature vary but pressure
is approximately constant.
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To go further, we need (1) the standard deviation o; for each
emissivity parameter P; (2) the correlation matrix Cy; and (3)
the Hessian of the emissivity with respect to its parameters.

We start by estimating the standard deviation op for
each parameter P; inside a zone of size /. This is related
to the structure function of the turbulence at scale [, i.e.,
(P — (P))*)!/2. For a passive scalar P; in turbulence obeying
Kolmogorov statistics with outer scale L and variance at the
outer scale op(L),

ap(l) ~ ap(L)(I/L)'/3. (22)

For a thermal distribution the emissivity parameters are
electron density n,; electron temperature O,.; magnetic field
strength B; the angle between the line of sight and the magnetic
field @ (the observer angle); and the frequency on emission v,
which is Doppler shifted to the mean frequency of emission in
a zone.

For each parameter we assume the outer scale L ~ H, where
H is the disk scale height, and that the resolution is N ~ 10?
zones per H, so that (l/L)l/3 ~ N 3~0.2. For n,, assuming
on, (L) ~ ne, 0,,(I) ~0.2n, For O, og,(L) ~ 6, og(l)~
0.20,. For B, op(L)~B, op(1)~0.2B. For 60, oy¢(L)~1,
og() ~0.2rad. For frequency v, we assume the velocity
structure function o,(L)~c, and thus o,(1)~0.2¢, so the
frequency of emission, in the plasma frame, fluctuates by
a()/v ~ (0.2/3)¢/c =~ 0.12¢,/c, where the factor of /3
makes the velocity dispersion 1D.

Next consider the correlation matrix C;; = X;;/(0,0)). This is
a property of turbulence and thus of the flow. It will vary with
the global flow structure and also with length scale.

For definiteness we evaluate two examples using a set of
GRMHD simulations of aligned accretion around a black hole
with spin a=0.75. The simulations have adiabatic index
v =5/3 and resolution 384 x 192 x 192. We compute the
covariance in a narrow annulus within 0.17 rad of the
midplane, with 3.8 < rc? /(GM) < 4.2. For simplicity we ignore
the velocity (frequency) variations and the variations in field
direction, and consider only the gas temperature © = P/ (pc?)
rather than using a model for the electron temperature, which—
because electron temperature assignment models commonly
depend on plasma (—can alter the correlations. Thus we
consider correlations between p, ©, and B, averaged over
azimuth and time.

The diagonal elements of the correlation matrix are 1 and it
is symmetric, so there are three nontrivial entries. For a SANE
model these are C,o =-0.12, C,p=-0.38, and Ceop=-0.20.
For a MAD model these are C,o = —0.08, C,z=-0.48, and
Cop=-0.09. Interestingly these variations show that MAD
and SANE model correlations differ. Both show strong
anticorrelation between p and B.

Finally consider the Hessian of j,; with respect to its
parameters. To make an estimate of the importance of
turbulence in changing the emissivity, we must choose an
emissivity and therefore a distribution function. We use a
thermal distribution. Defining

A= n,e’B sinf ¥ = 9mm,cv 23)
C27V2mec?’ "~ ©?eBsinb’
and working in the limit X > 1,
j, ~AXexp X", (24)
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The general expression for the Hessian is readily evaluated but
not very interesting. Again in the interests of getting to an
estimate we adopt values for the parameters appropriate to the
EHT source Sgr A,

B=30G, 6, =10,
v = 230GHz, (25)

n, = 10 cm—3,
0=m/3,

and consider only variations in the parameters n,, ©,, and B,
assuming that ©, varies like ©. Notice that for these parameters
X ~ 10?, justifying our use of Equation (24). Then at last we
find for the MAD models
2.
ll Ol Cjoio; ~ —0.06. (26)
2 Ju (9P,' 8P]

That is, turbulence reduces the volume-averaged emissivity by
6%. The largest contribution to the sum in Equation (26) is
from the (i, j)=(6,, O,) term, and is negative because the
emissivity is concave with respect to ©,. The second-largest
term is from the (n., B) terms, and arises only because these
quantities are anticorrelated. To sum up, for the EHT-relevant
parameters considered here the emissivity correction due to
turbulence is small and negative.

Small negative corrections due to turbulence will alter the
Sgr A* model normalization: a higher accretion rate, and
therefore stronger magnetic fields, are needed to achieve the
same millimeter flux density. This may be a point of concern
for EHT modelers in both Sgr A* and M87", since it will shift
the accretion rate and jet power up, and potentially change the
polarization properties.

Finally, notice that there are circumstances in which the
turbulent correction is large. Consider the correction in the
near-infrared where the emissivity is dropping exponentially
with increasing frequency. Then the dominant term in
Equation (26) is the (©,, ©,) term, which is ~14. The second
largest is the (B,B) term, which is ~4. Evidently if the Hessian
is large then the emergent radiation can be very sensitive to
turbulent corrections.

5. Concluding Remarks

We have developed a notion of stochastic averaging of
radiative transfer coefficients. This procedure, which is just a
weighted sum of transfer coefficients over a distribution of
parameters, can provide a quick, practical method for
evaluating transfer coefficients.

In particular, we have shown that one can apply stochastic
averaging to construct radiative transfer coefficients for the x
distribution function from those for a thermal distribution. The
calculation presented here is inaccurate for mildly relativistic
plasmas, though mildly relativistic regions may not contribute
significant emission anyway.

Stochastic averaging of transfer coefficients is valid for a
nonrelativistic electron distribution function, as shown by
Schwadron et al. (2010); the nonrelativistic electrons distrib-
uted into & function will not emit synchrotron photons but can
still contribute to Faraday rotation.

We have also applied stochastic averaging to estimate
corrections to the emitted radiation from subgrid scale
turbulence. We find that for parameters appropriate to Sgr A*
in the millimeter, the turbulent corrections are small and
negative. In the near-infrared the turbulent corrections are large
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(an order of magnitude) and positive. The turbulent emissivity
calculation is valid for relativistic, mildly relativistic, and
subrelativistic plasmas.

The applications presented in this work stochastically
average over a thermal distribution, and are therefore trivially
applicable only to isotropic distributions. It would be
interesting to generalize to anisotropic distributions (e.g.,
Galishnikova et al. 2023).

As a next step, one might also incorporate the stochastic
averaging scheme into Compton scattering kernels to predict
high-energy emission from scattering of synchrotron photons
on nonthermal electrons or scattering on turbulent substruc-
tures, which are unresolved in the GRMHD models. Scattering
off turbulent Compton kernel can be thought of as a parametric
variability model, which can be then tested observationally,
e.g., by X-ray observations.

Finally, we emphasize that the covariance between emissiv-
ity parameters needed in calculating the turbulent emissivity is
a comparatively unstudied characteristic of turbulence (as of
this writing we are not aware of other calculations of the
covariance for MHD turbulence). It would be interesting to
understand how this covariance depends on length scale and on
flow parameters.
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