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Abstract

We consider bilevel linear programs (BLPs) that model hierarchical decision-making settings with
two independent decision-makers (DMs), referred to as a leader (an upper-level DM) and a follower (a
lower-level DM). BLPs are strongly NP -hard. In general, the follower’s rational reaction (i.e., a set that
contains optimal solutions of the lower-level problem for a given leader’s decision) is not a singleton.
If we assume that, for a given leader’s decision, the follower always selects a solution from the rational
reaction set that is most (least) favorable to the leader, then we obtain the optimistic (pessimistic)
model. It is known that the optimistic (pessimistic) model remains NP -hard even if an optimal pes-
simistic (optimistic) solution of the same BLP is known. One interesting generalization of these two
approaches studied in the related literature is to consider the so-called α-strong-weak model, where
parameter α ∈ [0, 1] controls the leader’s level of conservatism. That is, α provides the probability of
the follower’s “cooperation” in a sense that, the lower-level’s rational decisions that are most and least
favorable to the leader are picked with probabilities α and 1 − α, respectively. In this note we show
that for any fixed α ∈ (0, 1) the problem of finding an optimal α-strong-weak solution remains strongly
NP -hard, even when both optimal optimistic and pessimistic solutions for the same BLP are known.

Keywords: bilevel linear programs, computational complexity, strong-weak approach, pessimistic
bilevel programs

1 Introduction

Bilevel programming problems (BPPs) model hierarchical decision-making settings with two indepen-
dent decision-makers (DMs), referred to as a leader and a follower, also known as an upper-level DM and
a lower-level DM, respectively [7]. The considered DMs make their decisions sequentially, and the leader,
whose perspective is modeled and optimized, acts first. Given the leader’s decision, the follower solves the
lower-level optimization problem that is parameterized by the leader’s variables. The leader’s objective
function and, possibly, constraints at the upper level involve both the leader’s and follower’s variables;
hence, the leader needs to take into account the follower’s rational response when making its decisions.
BPPs provide a flexible modeling framework for decentralized decision-making in multiple application
domains including network design [13], pricing [14], energy [15], and defense [5]; see surveys in [2, 12].

Formally, we consider bilevel linear programs (BLPs) of the form:

[BLP] : “min
x

” c¦x+ d¦1 y

*Corresponding author.
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subject to A1x ≤ b1,

x ≥ 0,

y ∈ argmax
y

d¦2 y

subject to A2x+By ≤ b2,

y ≥ 0,

where A1 ∈ R
m1×n1 , A2 ∈ R

m2×n1 , B ∈ R
m2×n2 , c ∈ R

n1 , d1 ∈ R
n2 , d2 ∈ R

n2 , b1 ∈ R
m1 and b2 ∈ R

m2 .
The leader’s and the follower’s decision variables are denoted by x and y, respectively. Finally, we note
that we consider BLPs without coupling constraints, i.e., the follower’s variables do not appear in the
upper-level constraints.

We use “min” (with quotes) in the leader’s objective function of BLP to reflect some uncertainty with
respect to how the follower’s select the lower-level decisions in BLP. Specifically, define set:

R(x) := argmin{d¦2 y | A2x+By ≤ b, y ≥ 0}, (1)

which is referred to as the follower’s (lower-level) rational reaction set for a leader’s decision x ∈ X, where

X := {x | A1x ≤ b1, x ≥ 0}.

There may exist multiple optimal solutions to the follower’s problem for a given leader’s decision, i.e.,
R(x) is not necessarily a singleton. If we assume that the follower selects a solution from the rational
reaction set that is the most favorable for the leader, then we obtain the optimistic formulation of BLP:

[BLPopt] : f∗ := min
x∈X, y∈R(x)

{c¦x+ d¦1 y},

which is the most typical approach in the related bilevel optimization literature. This approach assumes
that the follower is, in a sense, collaborative with the leader. Alternatively, one can say that the upper-level
decision-maker is optimistic with respect to the follower’s reaction; hence, the moniker optimistic is used.

On the other hand, the pessimistic formulation of BLP assumes that the follower selects the least
favorable solution for the leader that is:

[BLPpes] : f⋆
p := min

x∈X
{c¦x+ max

y∈R(x)
d¦1 y},

where the leader acts in a conservative manner by taking into account the worst possible (for the leader)
rational reaction by the follower. Note that BLPpes can be viewed as the three-level optimization problem.
Naturally, whenever d1 = d2 we obtain the case of max-min (or min-max) problems (sometime referred to
as the “symmetric” case of BLP) for which the outlined optimistic and pessimistic approaches coincide.

Standard (single-level) LPs are known to be solvable in polynomial time [11]. In contrast, BLPs are
computationally difficult. Ben-Ayed and Blair [3] show that BLPs are NP -hard, while Hansen et al. [9]
strengthen this result by showing that BLPs are strongly NP -hard even for the min-max case. Finally,
one should also refer to Jeroslow [10] who establishes a complexity hierarchy for general multilevel LPs.

This study is motivated by a relatively recent study in [16], where it is shown that BLPopt remains
NP -hard, even if an optimal solution of BLPpes is known, and vice versa, i.e., BLPpes is NP -hard, even
if an optimal solution of BLPopt is known. Simply speaking, if the decision-maker knows an optimal opti-
mistic (or pessimistic) solution to a BLP, then the problem of finding an optimal pessimistic (or optimistic,
respectively) solution to the same BLP remains a computationally difficult problem in the worst case.
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The outlined two approaches (namely, the optimistic and pessimistic models), can be generalized to
consider the so-called strong-weak (or, α-strong-weak) model (see, e.g., [6]):

[α-BLP] : f⋆
³ := min

x∈X
{c¦x+ α · min

y∈R(x)
d¦1 y + (1− α) · max

y∈R(x)
d¦1 y},

where by using the parameter α ∈ [0, 1] the decision-maker controls the leader’s level of conservatism.
Furthermore, the value of α can be interpreted as the probability of the follower’s cooperation by selecting
a rational reaction most favorable to the leader.

Naturally, if α = 1, then α-BLP reduces to BLPopt, and if α = 0, then α-BLP reduces to BLPpes. That
is, both BLPopt and BLPpes can be viewed as two extreme special cases of α-BLP. We also refer the reader
to a recent survey in [2] that overviews BPPs under uncertainty in a more general context, including the
bilevel problems that involve uncertainty with respect to the follower’s decision-making approach.

Our main result is given as follows:

Theorem 1. For any fixed α ∈ (0, 1), α-BLP is strongly NP -hard even if optimal optimistic and optimal
pessimistic solutions of the same BLP are known to the decision-maker.

Loosely speaking, our result can be viewed as a generalization of the observation in [16], where the
theoretical computational complexity of BLPopt and BLPpes is considered whenever an optimal solution
of one of these two models is known; recall our brief discussion above. Here, we show that for a given
fixed value of α ∈ (0, 1) solving α-BLP, i.e., finding an optimal α-strong-weak solution, remains a difficult
problem even when the decision-maker is aware of optimal solutions for both BLPopt and BLPpes.

The remainder of this note is organized as follows. In Section 2 we provide the proof of the main
result. Then in Section 3 we provide some additional comments and conclude the note.

Finally, with respect to the notation, in our derivations we use f(x), fp(x) and f³(x) to denote the
leader’s objective function values given the leader’s decision x ∈ X whenever the follower reacts in the
optimistic, pessimistic and α-strong-weak manners, respectively. Hence, we have f∗ := minx∈X f(x),
f⋆
p := minx∈X fp(x) and f⋆

³ := minx∈X f³(x).

2 Main result: proof of Theorem 1

The proof relies on the 3-SATISFIABILITY (3SAT) problem that is defined as follows: Given
a collection C = {c1, c2 . . . , cm} of clauses on a finite set U = {u1, u2, . . . , un} of variables such that
|cj | = 3 for all j ∈ {1, 2, . . . ,m}, does there exist a truth assignment for U that satisfies all the clauses
in C? The 3SAT problem is NP -complete [8]. It is well known that 3SAT can be represented as a
linear mixed-integer feasibility problem. Next, for the completeness of our discussion we outline one such
approach, which is commonly in the related literature; see, e.g., [10].

Formally, for every clause cj ∈ C we define variable yj , and for every ui ∈ U we define variable
xi, where j ∈ {1, 2, . . . ,m} and i ∈ {1, 2, . . . , n}, respectively. For any clause cj ∈ C of the form, say,
cj = ui1 ∨ ui2 ∨ ui3 , we introduce the following set of linear constraints:

yj ≥ xi1 , (2a)

yj ≥ xi2 , (2b)

yj ≥ xi3 , (2c)

yj ≤ xi1 + xi2 + xi3 , (2d)

0 ≤ yj ≤ 1, (2e)
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and whenever the negation, say ūi, appears in a clause, then we replace the respective variable xi by 1−xi
in (2). For example, any clause cj ∈ C of the form, say, cj = ūi1 ∨ ūi2 ∨ ui3 , corresponds to the following
set of linear constraints:

yj ≥ 1− xi1 , (3a)

yj ≥ 1− xi2 , (3b)

yj ≥ xi3 , (3c)

yj ≤ (1− xi1) + (1− xi2) + xi3 , (3d)

0 ≤ yj ≤ 1, (3e)

and we observe from the outlined construction that if xi ∈ {0, 1} for all i ∈ {1, 2, . . . , n}, then yj ∈ {0, 1}
for all j ∈ {1, 2, . . . ,m}. Clearly, setting variable ui to either “true” or “false” corresponds to xi = 1 or
xi = 0, respectively. Then variable yj is equal to 1 if and only if clause cj is satisfied.

Denote by Y (x) the feasible set of y defined by the constructed set of linear constraints of the form as
outlined in two examples given by (2) and (3). The answer to 3SAT is “yes” if and only if there exists
x ∈ {0, 1}n such that the corresponding set Y (x) = {(1, 1, . . . , 1)¦}, i.e., all variables yj , j ∈ {1, 2, . . . ,m},
are forced to be 1 by the respective linear constraints. Moreover, we observe that for any 0–1 vector x, set
Y (x) is a singleton, which is also a 0–1 vector. Hence, for simplicity, below we use y := Y (x), to denote
the corresponding 0–1 vector y, whenever x is also binary.

Next, consider some fixed α ∈ (0, 1). Then we construct the following BLP instance, where variables
(x, y, z) are controlled by the leader and variables (v, u, w) are controlled by the follower:

“min
x,y,z

”

m∑

j=1

zj +mzm+1 + (m+M)zm+2 +
1− 1

2α

(1− α)n
M

n∑

i=1

(vi + ui) +Mw1 (4a)

s.t.
m∑

j=1

zj +mzn+1 +mzm+2 ≥ m, (4b)

0 ≤ zj ≤ yj , ∀j ∈ {1, 2 . . . ,m}, (4c)

zm+1 + zm+2 ≤ 1, zm+1 ≥ 0, zm+2 ≥ 0, (4d)

0 ≤ xi ≤ 1, ∀i ∈ {1, 2, . . . , n}, (4e)

y ∈ Y (x), (4f)

(u, v, w) ∈ argmax
v,u,w

n∑

i=1

(ui − vi) + (w1 − w2) (4g)

s.t. ui − vi ≤ 1− xi, ∀i ∈ {1, 2, . . . , n}, (4h)

ui − vi ≤ xi, ∀i ∈ {1, 2, . . . , n}, (4i)

vi ≤ 1−
1

2
zm+2, ∀i ∈ {1, 2, . . . , n}, (4j)

w1 ≤ zm+1, (4k)

w1 − w2 ≤ 1− zm+1, (4l)

w1 − w2 ≤ zm+1, (4m)

ui ≥ 0, vi ≥ 0, ∀i ∈ {1, 2, . . . , n}, (4n)

w1 ≥ 0, w2 ≥ 0, (4o)

where M is a sufficiently large strictly positive constant parameter. For our discussion below, we can
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simply set M = 1. However, having general parameter M allows us to provide some additional interesting
insights; see Section 3.

Our proof of Theorem 1 is based on the combination of the ideas from [1,16] and relies on the following
three lemmas about the structure of the BLP model given by (4). More specifically, we prove Theorem 1
in three steps. First, in Lemma 1, we show the optimal solution for the optimistic version of (4) is readily
available and computable in polynomial time. The second step, provided by Lemma 2, is similar and
provides the same result for the pessimistic version of (4). Finally, in Lemma 3, we show that the answer
to the corresponding instance of the 3SAT problem is “yes” if and only if the optimal objective function
value for the strong-weak version of (4) is equal to some particular pre-defined value.

Lemma 1. Let α ∈ (0, 1). Setting x∗ = (0, 0, . . . , 0)¦, y∗ = Y (x∗), z∗ = (0, 0, . . . , 0, 1, 0)¦, u∗ =
(0, 0, . . . , 0)¦, v∗ = (0, 0, . . . , 0)¦, and w∗

1 = w∗
2 = 0 forms an optimal optimistic solution for model (4),

and f∗ = m.

Proof. First, consider the leader’s decision (x∗, y∗, z∗) given by x∗1 = . . . = x∗n = 0, y∗ = Y (x∗),
z∗1 = . . . = z∗m = 0, z∗m+1 = 1 and z∗m+2 = 0. We can verify that the upper-level constraints (4b)-(4f)
hold for these settings of the leader’s variables. Moreover, due to (4i) and (4l), we observe that the
corresponding follower’s optimal objective function value in (4g) is equal to zero.

Next, given the leader’s decision (x∗, y∗, z∗) consider the corresponding follower’s solution (v∗, u∗, w∗)
defined as u∗1 = . . . = u∗n = 0, v∗1 = . . . = v∗n = 0 and w∗

1 = w∗
2 = 0. Clearly, in view of the above obser-

vations, these variables’ settings are optimal for the follower. At the same time, (v∗, u∗, w∗) provides the
follower’s response that is most favorable to the leader given the last two terms in the leader’s objective
function in (4a).

Finally, note that f∗ ≥ m due to (4b). Hence, we conclude that the constructed leader’s, (x∗, y∗, z∗),
and the follower’s, (v∗, u∗, w∗), decisions form an optimal optimistic solution for model (4).

Lemma 2. Let α ∈ (0, 1). Setting x⋆ = (0, 0, . . . , 0)¦, y⋆ = Y (x⋆), z⋆ = (0, 0, . . . , 0, 0, 1)¦, u⋆ =
(1/2, . . . , 1/2)¦, v⋆ = (1/2, . . . , 1/2)¦, and w⋆

1 = w⋆
2 = 0 forms an optimal pessimistic solution for

model (4), and f⋆
p = m+ (1 +

1− 1

2
³

1−³
)M .

Proof. Recall that we use fp(·) to denote the leader’s objective function value given that the follower’s
is pessimistic. It is sufficient to consider two cases for variable zm+2, namely, either (i) zm+2 = 1 or (ii)
zm+2 = β, where 0 ≤ β < 1.

Case (i): Let (x̄, ȳ, z̄) be a feasible solution of the leader with z̄m+2 = 1. Then, we observe that
(4b) holds regardless of the other variables’ settings. Therefore, in view of the first two terms in the
upper-level objective function (4a), it is most favorable for the leader to set z̄1 = . . . = z̄m+1 = 0; then,
due to (4k)-(4m) and (4o) we have w̄1 = w̄2 = 0.

Assume that the leader implements a solution with all variables x to be binary, i.e., x̄ ∈ {0, 1}n. Then,
let ȳ = Y (x̄), where both (4c) and (4d) hold. Given constraints (4h) and (4i) as well as the aforementioned
values of w̄1 and w̄2, the follower’s optimal objective function is equal to zero. Therefore, due to (4j) and
the fourth term in the upper-level objective function (4a) that involves variables u and v, the pessimistic
follower sets v̄ = (1/2, . . . , 1/2)¦ and ū = (1/2, . . . , 1/2)¦. We can verify that for these settings of the
follower’s variables, constraints (4h)-(4j) hold.

Thus, we have

fp(x̄, ȳ, z̄) = m+

(
1 +

1− 1
2α

1− α

)
M. (5)
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Next, assume that the leader implements a solution (x̃, ỹ, z̃), where x̃ is not a 0–1 vector. That is,
there exists i ∈ {1, 2, . . . , n} such that x̃i = γ ∈ (0, 1). Then in contrast to the previous discussion, the
follower’s optimal objective function is not necessarily zero; see (4h) and (4i) as well as the corresponding
terms in the follower’s objective function in (4g). Moreover, in the pessimistic case the follower sets ṽi =

1
2

and ũi =
1
2 +min{γ, 1− γ}, while having (4h)-(4j) satisfied. Therefore, ũi + ṽi > 1, and

fp(x̃, ỹ, z̃) > m+

(
1 +

1− 1
2α

1− α

)
M,

which, in view of (5), implies that the case of not-binary setting for x can be disregarded.
Case (ii): Let (x̃, ỹ, z̃) be a feasible solution of the leader with z̃m+2 = β, where 0 ≤ β < 1. Consider

any i ∈ {1, 2, . . . , n}. Similar to the above discussion of case (i), we consider the binary and non-binary
settings for the leader’s variable xi as well as the contributions of the corresponding follower’s variables
ui and vi to the leader’s objective function; see the fourth term in (4a). Note that the arguments below
mirror those used in the above discussion of case (i) and, hence, most of them are omitted for brevity.

Specifically, if x̃i ∈ {0, 1}, then in the pessimistic case the follower sets ũi = ṽi = 1 − 1
2β, while

having (4h)-(4j) satisfied. If x̃i = γ ∈ (0, 1), then in the pessimistic case the follower sets ṽi = 1 − 1
2β

and ũi = 1 − 1
2β + min{γ, 1 − γ}, while having (4h)-(4j) satisfied. For both of these cases we have that

ũi + ṽi ≥ 2(1− 1
2β) for all i ∈ {1, 2, . . . , n}.

Therefore, we obtain that:

fp(x̃, ỹ, z̃) ≥ m+Mβ +
1− 1

2α

(1− α)n
M · 2(1−

1

2
β)n = m+

β − βα+ 2− β − α+ 1
2αβ

1− α
·M

= m+
1− α+ 1− 1

2αβ

1− α
·M = m+

(
1 +

1− 1
2αβ

1− α

)
·M > fp(x̄, ȳ, z̄, ),

where the last inequality holds because β ∈ [0, 1), and the required result is established.

Lemma 3. Consider a fixed α ∈ (0, 1). Then for model (4) the optimal objective function value for its
α-strong-weak version is given by

f⋆
³ = m+ (2− α)M (6)

if and only if the answer to the corresponding instance of the 3SAT problem is “yes.”

Proof. Denote the part of the leader’s objective function that contains the follower’s variables by:

g(u, v, w) =
1− 1

2α

(1− α)n
M

n∑

i=1

(vi + ui) +Mw1,

and, as in (1), we denote the follower’s reaction set in (4) by R(x, y, z). Hence, we need to consider the
following model:

f∗
³ = min

x,y,z

{ m∑

j=1

zj +mzm+1 + (m+M)zm+2 (7a)

+ α min
(u,v,w)∈R(x,y,z)

g(u, v, w) + (1− α) max
(u,v,w)∈R(x,y,z)

g(u, v, w)

}
(7b)
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s.t.

m∑

j=1

zj +mzm+1 +mzm+2 ≥ m, (7c)

0 ≤ zj ≤ yj , ∀j ∈ {1, 2, . . . ,m}, (7d)

zm+1 + zm+2 ≤ 1, zm+1 ≥ 0, zm+2 ≥ 0, (7e)

0 ≤ xi ≤ 1, ∀i ∈ {1, 2, . . . , n}, (7f)

y ∈ Y (x), (7g)

which is the strong-weak version of (4) for any α ∈ (0, 1).
⇐= Suppose the answer to the 3SAT problem is “yes.” In our discussion below, we first construct

a feasible leader’s solution (x̄, ȳ, z̄) that satisfies the upper-level constraints and show that its α-strong-
weak objective function value is given by (6). Then we show that this solution is also an optimal leader’s
decision for the BLP model given by (7).

Specifically, consider the leader’s solution, where x̄i = 1 or x̄i = 0 whenever the respective variable
ui is set to “true” or false, respectively. As all clauses in C are satisfied, we can set ȳj = 1 for all
j ∈ {1, 2, . . . ,m}. Finally, we set z̄m+1 = z̄m+2 = 0 and z̄j = 1 for all j ∈ {1, 2, . . . ,m}, and we observe
that the leader’s constraints (7c)-(7g) are satisfied.

Next, given the outlined leader’s decision (x̄, ȳ, z̄), we need to compute the resulting optimistic and
pessimistic responses by the follower. Given the follower’s constraints in (4h)-(4o), for both responses
we observe that the follower’s optimal objective function (4g) is equal to zero. More specifically, similar
to the proofs in Lemmas 1 and 2, we observe that û1 = . . . = ûn = v̂1 = . . . = v̂n = ŵ1 = ŵ2 = 0 is
the respective optimistic solution of the follower with g(û, v̂, ŵ) = 0, as it is the most favorable outcome
for the leader. Similarly, we observe that ŭ1 = . . . = ŭn = v̆1 = . . . = v̆n = 1 and w̆1 = w̆2 = 0 is the
respective pessimistic solution of the follower with g(ŭ, v̆, w̆) = 2−³

1−³
M , as it is the least favorable outcome

for the leader. Therefore, we have that

f³(x̄, ȳ, z̄) = m+ (2− α)M,

where one should recall that we use f³(·) to denote the leader’s objective function given that the follower
“cooperates” with probability α, i.e., the most and least favorable decisions to the leader are picked by
the follower (from the reaction set) with probabilities α and 1− α, respectively.

Next, we need to establish that the constructed leader’s feasible decision (x̄, ȳ, z̄) forms an optimal
solution for (7). Specifically, it is sufficient to consider the following four cases for other possible feasible
leader’s decisions (x̃, ỹ, z̃): (i) z̃m+2 = β ∈ (0, 1], (ii) z̃m+1 = β ∈ (0, 1] and z̃m+2 = 0, (iii) z̃m+1 =
z̃m+2 = 0, but there exists k ∈ {1, 2, . . . , n} such that x̃k = β ∈ (0, 1), and (iv) z̃m+1 = z̃m+2 = 0 and
x̃ ∈ {0, 1}n, where x̃ does not correspond to a truth assignment of U . Note that these four cases are
mutually exclusive and cover all possible situations.

Case (i): Consider a leader’s feasible solution (x̃, ỹ, z̃) such that z̃m+2 = β ∈ (0, 1]. Then in view
of constraint (7c), the value of the terms of the leader’s objective function in (7a) is at least m + Mβ.
Furthermore, recall from the case (ii) in the proof of Lemma 2 that regardless whether x is a binary
vector, if z̃m+2 = β ∈ (0, 1], then for the pessimistic response we have that ũi + ṽi ≥ 2(1 − 1

2β) for all
i ∈ {1, 2, . . . , n}. This fact can be used to estimate the leader’s objective function terms appearing in
(7b). Combining the above two observations, we obtain that:

f³(x̃, ỹ, z̃) ≥ m+Mβ + (1− α)
1− 1

2α

1− α
· 2(1−

1

2
β)M = m+Mβ +M(2− α)(1−

1

2
β)

= m+

(
β + 2− β − α+

1

2
αβ

)
·M = m+

(
2− α+

1

2
αβ

)
·M > f³(x̄, ȳ, z̄),

7



where the last inequality holds as α ∈ (0, 1) and β ∈ (0, 1].
Case (ii): Consider a leader’s feasible solution (x̃, ỹ, z̃) such that z̃m+1 = β ∈ (0, 1] and z̃m+2 = 0.

Then the first condition and (4k)-(4m) imply that the pessimistic follower should set w̃1 = β and w̃2 =
β − min{β, 1 − β}; the second condition imply that the pessimistic follower should set ũi = ṽi = 1 for
all i ∈ {1, 2, . . . , n}, where one should recall the discussion from the case (ii) in the proof of Lemma 2.
Finally, (7c) implies that the value of the first three terms of the leader’s objective function in (7a) is at
least m. Combining the above three observations, we obtain that:

f³(x̃, ỹ, z̃) ≥ m+ (1− α)

(
1− 1

2α

1− α
· 2M +Mβ

)
= m+ (2− α+ (1− α)β) ·M > f³(x̄, ȳ, z̄),

where the last inequality holds as α ∈ (0, 1) and β ∈ (0, 1].
Case (iii): Consider a leader’s feasible solution (x̃, ỹ, z̃) such that z̃m+1 = z̃m+2 = 0, but there exists

k ∈ {1, . . . , n} with x̃k = β ∈ (0, 1). Let γ = min{β, 1 − β} ∈ (0, 1). Then in view of (4h)-(4j) the
optimistic follower should set ũk = γ and ṽk = 0, which can be used to provide a lower bound for the first
term in (7b). Also, given z̃m+2 = 0, the pessimistic follower should set ũi = ṽi = 1 for all i ∈ {1, 2, . . . , n}
as in the case (ii) above, which can be used to provide a lower bound for the second term in (7b). Then
combining these observations and (7c), we have that:

f³(x̃, ỹ, z̃) ≥m+ α

(
1− 1

2α

1− α
·
γ

n
M

)
+ (1− α)

(
1− 1

2α

1− α
· 2M

)

=m+ α

(
1− 1

2α

1− α
·
γ

n
M

)
+ (2− α)M > f³(x̄, ȳ, z̄),

where the last inequality holds as α ∈ (0, 1) and γ ∈ (0, 1).
Case (iv): Consider a leader’s feasible solution (x̃, ỹ, z̃) such that z̃m+1 = z̃m+2 = 0 and x̃ ∈ {0, 1}n,

where x̃ does not correspond to a truth assignment of U . Recall that for binary x̃ set Y (x̃) is a singleton;
let ỹ denote the corresponding 0–1 vector. As x̃ does not correspond to a truth assignment, then there
exists k such that ỹk = 0. Then (7d) forces z̃k = 0, which implies that (7c) cannot hold, i.e., (x̃, ỹ, z̃) is
not feasible, which is a contradiction.

=⇒ Suppose that f⋆
³ = m + (2 − α)M . Denote the corresponding leader’s optimal α-strong-weak

solution by (x∗, y∗, z∗). We need to demonstrate that the answer to the 3SAT problem is “yes.” From the
above discussion, namely, cases (i)-(ii) we observe that whenever z∗m+1+z∗m+2 > 0, then the corresponding
leader’s solution cannot be optimal for the strong-weak case as the respective objective function value is
strictly greater than m + (2 − α)M . Similarly, from the discussion in (iii) we conclude that whenever
z∗m+1 = z∗m+2 = 0 but x∗ is not a 0–1 vector, then the respective objective function value is also strictly
greater than m+ (2− α)M . Hence, we need to focus on the case of z∗m+1 = z∗m+2 = 0 and x∗ ∈ {0, 1}n.

From (7c), we observe that z∗1 = z∗2 = . . . = z∗m = 1. Then constraints (7d) enforce y∗1 = y∗2 = . . . =
y∗m = 1, which implies, by our construction of Y (x∗), that the corresponding values of x∗ result in a truth
assignment of U for C and the answer to the 3SAT problem is “yes.”

In view of our Lemmas 1-3, we can provide the main result of this note:

Proof of Theorem 1. Given fixed α ∈ (0, 1) we construct a BLP of the form (4). By Lemmas 1 and 2
we observe that its optimal optimistic and pessimistic solutions are known. Then applying Lemma 3 we
obtain the necessary result by observing that the BLP of the form as in (4), is of polynomial size with
respect to the size of the corresponding 3SAT instance.
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3 Concluding remarks

Let s = (x, y, z) be the leader’s feasible decisions in BLP given by (4). Denote by s∗OPT and s⋆PES

the optimal leader’s decisions in the optimistic and pessimistic cases, respectively, that are provided by
Lemmas 1 and 2, respectively. Also, denote by s⋆³ the optimal leader’s decision for the α-strong-weak model
when assuming that the answer to the corresponding instance of the 3SAT problem is “yes”; see Lemma 3.

Then it is relatively easy to verify that

f⋆
p (s

∗
OPT ) = f⋆

p +
1− 1

2α

1− α
M and f⋆

³(s
∗
OPT ) = f⋆

³ + (1− α)M,

while
f∗(s⋆PES) = f∗ +M and f⋆

³(s
⋆
PES) = f⋆

³ +
α

2
M,

which implies that whenever the upper-level decision-maker (i.e., the leader) makes an incorrect assump-
tion on the mode of the follower’s response, then the difference of the resulting leader’s objective function
value from the optimal one, can be arbitrarily large in the worst-case scenario; recall that in our deriva-
tions in Section 2 we simply assume M ≥ 1. Therefore, one may conclude that the obtained theoretical
computational complexity results are relatively intuitive. Moreover, from a somewhat more practical (i.e.,
real-life applications’ driven) perspective, we can argue that under the general “asymmetric” setting the
decision-makers should be careful when introducing assumptions on the follower’s response in their math-
ematical optimization models (see, e.g., [17] for an additional discussion on this issue). These observations
echo the findings of [16], albeit in a more general setting that captures the strong-weak modeling approach.

Finally, for future research it is of interest to consider similar complexity issues whenever the global
optimality of the lower-level solution is not required. We refer the reader to a related study in [4] and the
aforementioned survey in [2].
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