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Abstract

The first very long baseline interferometry (VLBI) detections at 870 μm wavelength (345 GHz frequency) are
reported, achieving the highest diffraction-limited angular resolution yet obtained from the surface of the Earth and
the highest-frequency example of the VLBI technique to date. These include strong detections for multiple sources
observed on intercontinental baselines between telescopes in Chile, Hawaii, and Spain, obtained during
observations in 2018 October. The longest-baseline detections approach 11 Gλ, corresponding to an angular
resolution, or fringe spacing, of 19 μas. The Allan deviation of the visibility phase at 870 μm is comparable to that
at 1.3 mm on the relevant integration timescales between 2 and 100 s. The detections confirm that the sensitivity
and signal chain stability of stations in the Event Horizon Telescope (EHT) array are suitable for VLBI
observations at 870 μm. Operation at this short wavelength, combined with anticipated enhancements of the EHT,
will lead to a unique high angular resolution instrument for black hole studies, capable of resolving the event
horizons of supermassive black holes in both space and time.

Unified Astronomy Thesaurus concepts: Very long baseline interferometry (1769); Radio interferometry (1346);
Black holes (162); Supermassive black holes (1663); High angular resolution (2167); Astronomical techniques
(1684); Event horizons (479)

1. Introduction

The technique of very long baseline interferometry (VLBI)
involves a network of independently clocked telescopes
separated by large distances, which simultaneously observe a
common astronomical source (Thompson et al. 2017). The
angular resolution, or fringe spacing, in a VLBI observation
scales inversely with both the distance between stations (i.e.,
the length of the baseline) and the observing frequency. The
present article reports the first fringe detections made at 870 μm
wavelength (345 GHz nominal frequency), which constitutes
the shortest-wavelength VLBI observation to date. The
experiment we describe was intended as a first technical
demonstration of the 870 μm VLBI capability using facilities
that are part of the Event Horizon Telescope (EHT) array.
Figure 1 shows the stations that participated in the fringe test
along with the usual metric used to characterize millimeter-
wavelength observing conditions: the 225 GHz zenith opacity
(Thompson et al. 2017).

The VLBI observing wavelength has decreased over time.
The first 3 mm VLBI detections (at 86 GHz) were obtained
through observations performed in 1981 (Readhead et al.
1983), the first 3 mm intercontinental detections (100 GHz)
were obtained through observations performed in 1988 (Baath
et al. 1991, 1992), and the first successful 1.3 mm (230 GHz)
VLBI was carried out in 1989 (Padin et al. 1990). The
especially long time since the last significant decrease in VLBI
wavelength reflects the challenges of carrying out such
observations, which are detailed below. Even so, there have
been several milestones of note since the early 1990s on the
path toward developing short-wavelength VLBI as an

important technique for astrophysics. Increased sensitivity
through the use of larger telescopes and advanced receivers
led to 1.4 mm (215 GHz) detections on a ∼1100 km baseline of
multiple active galactic nuclei (AGN) and Sagittarius A*

(Sgr A*
), the Galactic center supermassive black hole (Greve

et al. 1995; Krichbaum et al. 1997, 1998). A return to the
longer-wavelength 2 mm spectral windows (147 GHz and
129 GHz) allowed extension of millimeter-wavelength VLBI
to intercontinental baselines (Doeleman et al. 2002; Greve et al.
2002; Krichbaum et al. 2002). Building on this work,
Doeleman et al. (2008, 2012) used purpose-built wideband
digital VLBI systems on 1.3 mm transoceanic baselines to
report the discovery of event-horizon-scale structures in Sgr A*

and the much more massive black hole, M87*. The EHT
collaboration has now imaged both of these sources with a
global 1.3 mm VLBI array (Event Horizon Telescope Colla-
boration et al. 2019a, 2022a, 2024).
The EHT is the highest-resolution ground-based VLBI

instrument to date (Event Horizon Telescope Collaboration
et al. 2019b). The EHT fringe spacing is approximately 25 μas
at 1.3 mm wavelength. The finite diameter of the Earth limits
ground-based 1.3 mm fringe spacing to 21 μas, corresponding
to a 9.8 Gλ baseline. In practice, modern imaging methods,
such as regularized maximum likelihood, achieve a slightly
higher angular resolution that exceeds the diffraction limit
(Event Horizon Telescope Collaboration et al. 2019c).
For future campaigns, the EHT has developed the capability

to observe at 870 μm, and enhancing the ability to observe at
this wavelength through new stations and wider bandwidth is
an important aspect of long-term enhancements envisaged by
the next-generation EHT (ngEHT) project (Doeleman et al.
2019, 2023; Raymond et al. 2021). For a given set of station
locations, observing at 870 μm improves angular resolution by
approximately 50% compared to observing at 1.3 mm, which
will provide a sharper view of the black hole shadow and
environment; the 870 μm fringe spacing limit set by the
diameter of the Earth is approximately 14 μas, corresponding to
a 14.7 Gλ baseline. Observations at 870 μm are also important
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for polarimetric measurements. Faraday rotation, which
scrambles the imaged electric field vector position angle
pattern, diminishes with the square of the frequency. Therefore,
870 μm observations may help distinguish Faraday rotation
from the intrinsic field pattern set by the horizon-scale
magnetic field and plasma properties (Event Horizon Telescope
Collaboration et al. 2021; Wielgus et al. 2024). For Sgr A*, the
angular size of the black hole shadow is larger than that of
M87* (Event Horizon Telescope Collaboration et al. 2022a),
but scattering in the ionized interstellar medium affects the
image angular resolution (see, e.g., Johnson et al. 2018). At
1.3 mm, the scatter broadening is comparable to the current
EHT resolution, but it decreases approximately as the
observing wavelength squared. Thus, at 870 μm, scattering

effects would be significantly diminished and would not limit
the resolution of a VLBI array for studies of Sgr A*. In
particular, extension of the EHT to 870 μm wavelengths can
target photon ring substructure in Sgr A*, aiming to detect the
orbit of light that makes a full “u-turn” around the black hole
(Johnson et al. 2020; Palumbo et al. 2023). For these reasons,
870 μm VLBI opens important new directions for advanced
horizon-resolved studies of the two primary EHT sources. At
the same time, higher-frequency VLBI brings more sources
into range for horizon-resolved black hole studies (Pesce et al.
2021; Lo et al. 2023; Ramakrishnan et al. 2023), and the
increased resolution at 870 μm benefits nonhorizon VLBI
studies of AGN jets (e.g., Kim et al. 2020; Janssen et al. 2021;
Issaoun et al. 2022; Jorstad et al. 2023; Paraschos et al. 2024).
Additionally, due to reduced opacity, shorter wavelengths
probe more compact regions of jetted AGN sources (an
example being the core-shift effect; Lobanov 1998; Hada et al.
2011). Hence, 870 μm VLBI has the potential to image the jet
launching region closer to the central black hole, enabling
investigations of the physics behind jet formation, collimation,
and acceleration. In particular, the poorly understood limb
brightening in transversely resolved inner jets (e.g., Janssen
et al. 2021) can be studied in much greater detail.
Extension of observing to 870 μm similarly enhances the

capability of the EHT to capture dynamics near the event
horizon. In the case of Sgr A*, the dynamical timescale is
∼200 s (10GM/c3). Simultaneous 1.3 mm and 870 μm obser-
ving can sample sufficient Fourier spatial frequencies within
this integration time to allow snapshot imaging using the
technique of multifrequency synthesis (MFS; Chael et al.
2023). Combining such snapshots will enable recovery of
accretion and jet launching kinematics. For M87*, the
dynamical timescale is ∼3 days, and data obtained in both
1.3 mm and 870 μm on sequential days can be combined to
form high-fidelity MFS images for time-lapse movie recon-
struction of the event horizon environment. Realizing the full
scientific potential of 870 μm VLBI (Johnson et al. 2023) will
require the planned ngEHT upgrade (Doeleman et al. 2023).
While there are clearly many motivating reasons for 870 μm

VLBI observing, a number of factors make the measurements
difficult in this short-wavelength regime. The atmosphere is more
opaque at 870μm than at 1.3mm (see, for example, Liebe 1985;
Matsushita et al. 1999, 2016, 2022), which means that sources are
more attenuated and noise levels due to atmospheric emission are
elevated. Overall, the effective system temperatures of coherent
radio receivers are intrinsically greater at 870μm than at
1.3 mm.152 The aperture efficiency of the collecting optics
tends to diminish at high frequency, and the source flux density
tends to decrease. In addition, coherence losses due to the
VLBI frequency standards used at each site increase with
observing frequency (Doeleman et al. 2011). The EHT array,
conceived as a common, international effort of independent
observatories working in the short-millimeter range, has
directly addressed these challenges and provides key enabling
infrastructure for extension of VLBI to higher frequencies
(Event Horizon Telescope Collaboration et al. 2019b).
The telescopes comprising the EHT array are precision

structures sited at high-altitude, low-opacity locations (see, e.g.,
Levy et al. 1996; Mangum et al. 2006; Greve & Bremer 2010;
Chen et al. 2023 and references therein on the design and

Figure 1. (Top) Stations in the 870 μm fringe test. (Bottom) Zenith opacity at
225 GHz, which is the standard frequency used for monitoring millimeter-wave
conditions. The observing window on each day is indicated by the green
shading. Conditions at ALMA were very good during both days (τ225 ≈ 0.05).
The black lines indicate the opacity at each site calculated using inputs from
MERRA-2 reanalysis during the observing windows, which we use to estimate
870 μm (345 GHz) opacity. Opacities for APEX and NOEMA have been
estimated by converting precipitable water vapor column amounts.

152 See, for example, Janssen et al. (2019) or the ALMA Cycle 8 2021
Technical Handbook.
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qualification of such instruments). State-of-the-art instrumenta-
tion underpinning the operation of these telescopes, as single-
dish facilities and for VLBI, includes cryogenic receivers and
wideband digital backends—all refined over many years to
optimize performance at millimeter and submillimeter wave-
lengths. Steady improvements in superconductor–insulator–
superconductor junctions have formed the basis for increased
bandwidth and sensitivity of millimeter and submillimeter
receivers, leading to state-of-the-art systems in use at EHT sites
(see Maier et al. 2005, 2012; Tong et al. 2005, 2013; Chenu
et al. 2007, 2016; Carter et al. 2012; Mahieu et al. 2012; Kerr
et al. 2014; Klein et al. 2014; Belitsky et al. 2018; Han et al.
2018).

Following the successful 1.3 mm VLBI observations in
2017, test observations at 870 μm were conducted on the EHT
array in 2018 October. Conditions at the Atacama Large
Millimeter/submillimeter Array (ALMA) station during this
test, including characterization of the system used there to

phase the array for VLBI, are described in Crew et al. (2023).
The present paper describes the VLBI test observations

2. Methods

2.1. Schedule

The 870 μm fringe test observations consisted of two short
scheduling blocks designed for two different subarrays. An
eastern subarray, comprising ALMA, the Atacama Pathfinder
EXperiment (APEX), the Greenland Telescope (GLT), the
Institut de Radioastronomie Millimétrique 30 m telescope
(IRAM30m), and the Northern Extended Millimeter Array
(NOEMA), was scheduled to include blazar sources that were
visible in the nighttime hours at all sites: CTA 102, 3C 454.3,
and BL Lac. A western subarray, comprising ALMA, APEX,
GLT, and the Submillimeter Array (SMA), observed quasars
J0423−0120, J0510+1800, J0521+1638, and J0522−3627.
The eastern subarray scheduling block was followed by several
scans on BL Lac at 1.3 mm wavelength to aid diagnosis in the
event of a null result. Schedule blocks for both subarrays were
optimized for fringe detection at 870 μm VLBI, and they
spanned a duration of between 1 and 2 hr with at least two
scans on every source. Most scans lasted 5 minutes.
The observing window consisted of five nights, 2018

October 17–21, between approximately midnight and 2:00
Coordinated Universal Time (UTC) for the eastern subarray
scheduling block and between 9:00 and 11:00 UTC for the
western subarray scheduling block. Each scheduling block was
triggered twice within the observing window. We report herein
on successful observations with the eastern array on 2018
October 18–19 and with the western array on 2018 October 21.
Details of the scheduling blocks and sources observed are
shown in Figure 2.

2.2. Instrumentation and Array

Several important technologies developed for 1.3 mm VLBI
are leveraged to address the challenges of 870 μm observing,
many of which are outlined in Event Horizon Telescope
Collaboration et al. (2019b). The VLBI backends, used to
condition and digitize signals from the telescope receivers,
have a cumulative data rate of 64 Gbps (Vertatschitsch et al.
2015; Tuccari et al. 2017) across four 2 GHz wide bands and
two polarizations. Each station is outfitted with a hydrogen
maser time standard, which had previously been found to be
sufficiently stable for timekeeping in a 1.3 mm VLBI
experiment and was expected to be sufficiently stable for
870 μm.
Phased array beamforming capability is implemented at both

the SMA (Young et al. 2016) and ALMA (Matthews et al.
2018) array stations. For both these stations, beamformer
phasing efficiency at 870 μm, which directly scales the
visibility amplitudes measured on baselines to the station,
varied from just below 50% to as high as about 80%. These
efficiencies are less than what is typical for 1.3 mm (Event
Horizon Telescope Collaboration et al. 2019b). Section 3.4 has
a discussion relevant to ALMA, SMA, and NOEMA153 of
phasing efficiency challenges and planned improvements to
mitigate these.

Figure 2. 870 μm observations that yielded detections were made during two
separate scheduling blocks: 2018 October 18/19 and 2018 October 21. The
observations on the first night were done with an eastern array comprising
ALMA, APEX, GLT, IRAM30m, and NOEMA. Observations on the second
night were made with a western array: ALMA, APEX, GLT, and SMA. The
scheduling blocks for both nights are shown along with the one-letter station
codes, which are listed in parentheses. All detections are on baselines involving
ALMA. The scans that yielded detections on baselines defined by a given
station are indicated by the white horizontal ticks centered in each time block:
from the top, ticks correspond to XL, XR, YL, and YR mixed polarizations per
the legend at upper right. The absence of a tick indicates a nondetection. Three
scans at 230 GHz (1.3 mm) were performed at the end of the eastern subarray
scheduling block using just the IRAM30m and ALMA facilities.

153 NOEMA is also equipped with the phased array, though it was not
commissioned at the time of this observation.
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The frequency setup for the 870 μm fringe test is similar to
that described in Table 4 of Event Horizon Telescope
Collaboration et al. (2019b). Most stations in the array
observed a single 2048MHz band at a 4–6 GHz intermediate
frequency (IF) using a 342.6 GHz sky local oscillator (LO).154

That frequency setup corresponds to a sky frequency range of
346.552–348.6 GHz. Each station observed both circular
polarizations, with the exceptions of APEX (right-circular
polarization only) and ALMA (dual linear, X and Y). The
recorded station data were correlated using DiFX software
(Deller et al. 2011) at the MIT Haystack Observatory. Visibility
data on baselines to ALMA remained on a mixed-polarization
basis (i.e., {X, Y}× {L, R}) because the observing schedules
were not long enough to track polarization calibrators over a
wide range of parallactic angles, which is necessary for
converting the ALMA data from a linear to a circular
basis (Martí-Vidal et al. 2016; Matthews et al. 2018; Goddi
et al. 2019). Subsequent fringe fitting was done using the
Haystack Observatory Postprocessing System (HOPS155;
Whitney et al. 2004; see also Blackburn et al. 2019).

2.2.1. ALMA

ALMA observed in dual linear polarization with IRAM-
designed 870 μm (i.e., Band 7) cartridges (Mahieu et al. 2012).
The ALMA Phasing System (APS; Matthews et al. 2018) was
used to aggregate the collecting area of the active dishes in the
ALMA array. The APS capability had been used previously for
VLBI science at 3 mm (Issaoun et al. 2019; Okino et al. 2022;
Zhao et al. 2022) and 1.3 mm (Event Horizon Telescope
Collaboration et al. 2019a, 2019b) but not at shorter

wavelengths, albeit the setup for 870 μm observations is
similar to the longer-wavelength bands. In the 870 μm
experiment, the four recorded 2.048 GHz subbands were tuned
to center frequencies of 335.6, 337.541406, 347.6, and
349.6 GHz. The choice of the 337.541406 GHz frequency
results from ALMA-specific tuning restrictions.
The ALMA phased array included 25 12 m antennas during

the eastern track and 29 12 m antennas during the western track
with a maximum antenna spacing of 600 m in both cases. Wind
speeds were greater than 10 m s−1 at the ALMA site. During
the eastern track, the phasing efficiency was below 50% for
most of the time and at best was about 80%. During the
October 21 track (western) in better weather, the phasing
efficiency was more stable and greater than approximately
90% (Crew et al. 2023).

2.2.2. APEX

The APEX and ALMA stations are colocated, and conditions
were similar at the two telescopes. APEX observed using the
345 GHz FLASH+ linear receiver (Klein et al. 2014). That
receiver may not have been functioning optimally during the
experiment and has since been replaced by the Swedish-ESO
PI Instrument for APEX (Belitsky et al. 2018; Meledin et al.
2022). A quarter wave plate was used to achieve circular
polarization. Two backends, a ROACH2 Digital Backend
(R2DBE; Vertatschitsch et al. 2015) and a Digital BaseBand
Converter 3 (Tuccari et al. 2017), were operated in parallel.

2.2.3. GLT

The GLT station participated in the observation but at the
time was still commissioning specific subsystems. The GLT
antenna has operated at Pituffik Space Base, formerly the Thule
Airbase site, in Greenland since 2017 August (Inoue et al.
2014; Raffin et al. 2016; Matsushita et al. 2018; Koay et al.
2020; Chen et al. 2023). The GLT observed in dual linear
polarization with the IRAM-made 870 μm (i.e., Band 7)
cartridges (Mahieu et al. 2012). The 345 GHz receiver on the
GLT saw first light in continuum and spectral-line modes in

Figure 3. Scan-averaged and noise-debiased 870 μm fringe amplitude (open
blue circles, left axes) and S/N (filled red squares, right axes). Amplitudes and
S/N are computed by first dividing each observing scan into short coherently
integrated segments, which are then combined incoherently following the
procedure in Rogers et al. (1995). Segment length is shown on the horizontal
axis. Each subplot shows a different polarization on the ALMA–SMA baseline
for a single scan on J0423−0120 (October 21, 09:38 UTC). Other detections
listed in Table 1 have a similar dependence on segment duration but generally
lower S/N. The noise-debiased amplitude and coherence time were derived
using HOPS and are indicated by the horizontal blue dashed line and the
vertical solid black line, respectively.

Figure 4. 870 μm contours of incoherently averaged fringe power in 5%
increments vs. delay and rate for a single scan on J0423−0120 for the ALMA–
SMA baseline (October 21, 09:38 UTC). Other detections reported in Table 1
also exhibit clear peaks vs. delay/rate.

154 ALMA and SMA used slightly different frequency setups to match the sky
frequency of the other stations; see Sections 2.2.1 and 2.2.6.
155 https://www.haystack.mit.edu/tech/vlbi/hops.html
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Table 1

870 μm Detections on the Indicated Baselines, Sources, and Polarizations

Baselinea Pol. Dayb Time (hh:ss) El. 1 (deg) El. 2 (deg) | ˜ ˜|u v (Gλ) τc (s) Delay (ns) Rate (fs s−1
) Amp. (×10−4

) S/N

3C 454.3

AX XR 292 00:07 44.9 45.0 0.0026 8 4.4 −1 0.50 43.7
AX YR 292 00:07 44.9 45.0 0.0026 8 5.2 −1 0.47 41.4

BL Lac

AP XL 292 00:38 24.6 42.6 9.7913 31 −4.6 4 0.15 12.2
AP YR 292 00:38 24.6 42.6 9.7913 46 −8.5 0 0.13 10.8

CTA 102

AP YL 291 23:52 49.7 43.5 9.9581 21 0.9 −38 0.18 13.6
AX XR 291 23:44 48.6 48.7 0.0027 24 5.6 −38 0.23 19.2
AX XR 291 23:52 49.7 49.7 0.0027 10 5.2 −85 0.23 20.8
AX YR 291 23:44 48.6 48.7 0.0027 22 6.3 −51 0.21 17.6
AX YR 291 23:52 49.7 49.7 0.0027 11 6.0 −84 0.22 18.0

J0423−0120

AS XL 294 09:22 48.5 35.5 10.8547 14 −7.6 6 0.54 47.8
AS XL 294 09:30 46.8 37.3 10.8874 14 −8.0 0 0.70 62.4
AS XL 294 09:38 45.1 39.1 10.9100 13 −7.7 −2 0.82 73.1
AS XR 294 09:22 48.5 35.5 10.8547 9 −7.5 19 0.60 53.4
AS XR 294 09:30 46.8 37.3 10.8874 34 −7.9 −0 0.64 56.6
AS XR 294 09:38 45.1 39.1 10.9100 9 −7.5 −2 0.79 70.8
AS YL 294 09:22 48.5 35.5 10.8547 13 0.8 19 0.34 29.6
AS YL 294 09:30 46.8 37.3 10.8874 17 0.4 0 0.47 41.3
AS YL 294 09:38 45.1 39.1 10.9100 15 0.7 −2 0.51 45.2
AS YR 294 09:22 48.5 35.5 10.8547 10 −5.9 19 0.46 40.7
AS YR 294 09:30 46.8 37.3 10.8874 14 −6.3 0 0.50 44.2
AS YR 294 09:38 45.1 39.1 10.9100 10 −5.9 −3 0.62 54.9
AX XR 294 09:22 48.5 48.5 0.0028 27 −1.0 −8 0.14 12.6
AX XR 294 09:30 46.8 46.8 0.0028 39 −0.9 −9 0.16 13.0
AX XR 294 09:38 45.1 45.1 0.0028 32 −0.9 −11 0.15 12.9
AX YR 294 09:22 48.5 48.5 0.0028 30 0.6 −7 0.14 10.9
AX YR 294 09:30 46.8 46.8 0.0028 29 0.7 −9 0.14 10.8

J0510+1800

AS XL 294 10:01 37.0 39.6 10.9218 30 −8.0 −12 0.10 8.5
AS XR 294 10:01 37.0 39.6 10.9218 28 −8.0 −12 0.25 22.3
AS XR 294 10:17 34.5 43.4 10.8891 8 −8.1 −0 0.27 22.4
AS XR 294 10:22 33.5 44.8 10.8682 22 2.2 20 0.20 16.6
AS YL 294 10:01 37.0 39.6 10.9218 10 0.3 −12 0.20 18.1
AS YL 294 10:17 34.5 43.4 10.8891 23 0.2 11 0.25 21.3
AS YL 294 10:22 33.5 44.8 10.8682 29 −6.6 2 0.17 14.2
AS YR 294 10:01 37.0 39.6 10.9218 28 −6.3 −14 0.12 10.1
AS YR 294 10:17 34.5 43.4 10.8891 6c −6.5 0 0.14 11.5
AS YR 294 10:22 33.5 44.8 10.8682 10c 3.8 81 0.11 9.7

J0522−3627

AS XR 294 10:37 53.0 18.0 10.3188 12c −4.7 38 0.12 10.1
AS XR 294 10:45 51.4 19.2 10.4084 24 −4.9 8 0.20 12.1
AS YL 294 10:37 53.0 18.0 10.3188 29 3.5 −4 0.12 10.3
AS YL 294 10:45 51.4 19.2 10.4084 22 3.4 −4 0.16 14.1
AX XR 294 10:37 53.0 52.9 0.0030 31 0.8 −1 0.31 26.9
AX XR 294 10:45 51.4 51.4 0.0030 39 0.8 25 0.25 15.3
AX YR 294 10:37 53.0 52.9 0.0030 31 2.3 1 0.31 27.0
AX YR 294 10:45 51.4 51.4 0.0030 31 2.4 25 0.29 24.6

Notes.
a Baselines: AX (ALMA–APEX), AP (ALMA–IRAM30m), AS (ALMA–SMA).
b Day of year in 2018.
c The S/N was insufficient to fit the coherence time. The reported value is the segmentation time that achieves the greatest S/N for the scan.
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2018 August. Pointing and focus calibration at 345 GHz were
still in the commissioning phase during the 870 μm observation
reported here. The GLT pointing system has since been fully
commissioned for recent and future VLBI observing. Similarly,
final adjustments to the dish surface had yet to be made, and the
surface accuracy was estimated to be 170 μm rms during the
observations reported here. Subsequent improvements have led
to rms surface accuracy in the 17–40 μm range (see Table 7 in
Chen et al. 2023).

2.2.4. IRAM30m

The IRAM30m telescope used the heterodyne Eight MIxer
Receiver (Carter et al. 2012) in the 870 μm band also known as
E330. The setup and preobserving checks were analogous to a
regular Global Millimeter VLBI Array or EHT session. The
opacity at 870 μm during the scheduled VLBI observations was
high and would not typically have triggered single-dish science
operation at this wavelength.

2.2.5. NOEMA

Portions of the NOEMA station were still being commis-
sioned during the 870 μm experiment. NOEMA observed in
dual polarization as a single-antenna station, not as a phased
array. The NOEMA receiver was a dual-polarization single-
sideband unit (Chenu et al. 2016) with a 4 GHz bandpass.
Recording was with a 16 Gbps R2DBE. The NOEMA phased
array has since been commissioned for VLBI observing.

2.2.6. SMA

The SMA station observed with seven antennas arranged in
the compact configuration with a maximum baseline of 69.1 m.
The SMA Wideband Astronomical ROACH2 Machine
(SWARM; Primiani et al. 2016; Young et al. 2016) was run
with the VLBI beamformer mode activated, producing a
coherent phased array sum of the seven antennas formatted for
VLBI recording. As expected, the phasing efficiency was lower

than for 1.3 mm operations. The sky LO was set to 341.6 GHz,
not 342.6 GHz, to match the SWARM sky coverage with the
other stations, compensating for a different IF to baseband LO
because SWARM uses its own block downconverter rather
than the standard EHT single-dish equipment. The data were
recorded in the frequency domain at the standard SMA clock
rate (4.576 Gsps), which differs from the standard EHT single-
dish sample rate of 4.096 Gsps (Vertatschitsch et al. 2015).
Adaptive Phased Array Interpolating Downsampler for
SWARM (APHIDS) postprocessing was completed to inter-
polate and invert (from frequency domain to time domain) the
SWARM data sets in preparation for VLBI correlation. After
APHIDS processing, the SMA EHT data product matches that
produced by the standard SMA single-dish station in sample
rate and is also a time series matching the standard EHT single-
dish data product.

3. Results and Discussion

Figure 1 shows that the conditions during the experiment
were mixed across the array. While the observatories do not
measure 870 μm (345 GHz) opacity directly, we use MERRA-
2 reanalysis and radiative transfer (Paine 2022) that is validated
by measurements at 225 GHz (Figure 1, black lines) to estimate
τ345. For the eastern subarray on October 18/19, τ345 was 0.2
at the ALMA and APEX sites and 0.8 at IRAM30m. For the
western subarray on October 21, τ345 was approximately 0.17
at the ALMA and APEX sites and 0.7 at SMA. During the
experiment, the opacities at GLT and NOEMA were unfavor-
able, and detections on baselines to those stations were not
achieved; however, both stations have weather that is
compatible with 870 μm observing and will likely yield high-
frequency detections in the future (see, e.g., Raymond et al.
2021; Matsushita et al. 2022). Atmospheric conditions can
change rapidly: τ225 at the SMA decreased by nearly a factor of
4 in the hours following the experiment.

Figure 5. Detections on various targets at 345 GHz (see Table 1). The u–v

locations of 230 GHz detections on M87* during the EHT 2017 April
campaign are shown in gray including low-S/N scans at (25 μas)−1.

Figure 6. 1.3 mm amplitude (open blue circles, left axes) and S/N (filled red
squares, right axes) vs. the duration of coherently integrated segments, which
are incoherently averaged. Each subplot shows a different polarization on the
baseline between ALMA and IRAM30m for a single scan on BL Lac on
October 19, 01:13 UTC. Other BL Lac detections listed in Table 2 have a
similar dependence on segment duration. The noise-debiased amplitude and
coherence time were derived using HOPS and are indicated by the horizontal
blue dashed line and the vertical solid black line, respectively. These data were
calibrated in the same manner as the 870 μm detections.
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3.1. 870 μm (345 GHz) Fringes

In VLBI, recorded data from all sites are brought to a central
processing facility where data streams from each pair of sites
are cross-correlated. The resulting complex correlation quan-
tities provide a dimensionless measure of the electric field
coherence between the two sites, which is proportional to a
Fourier component of the brightness distribution of the target
source. The correlation processor uses an a priori model to
align the site data streams, recreating the exact geometry of the
physical baseline connecting the two sites at the time of
observation. Because the a priori model is imperfect, after
processing, the cross-correlation phase typically varies as a
function of time and frequency due to residual delay and delay
rate, respectively. To average the correlation signal over
frequency and time, the correlator output is thus searched over
a range of delay and delay rate to find a peak in correlator
power—a process also known as “fringe fitting” (Thompson
et al. 2017). In this experiment, the correlator output was
searched by dividing each scan into short segments and
incoherently averaging them. The incoherent averaging
technique (Rogers et al. 1995) estimates noise-debiased VLBI
quantities, and it is well suited to processing low signal-to-
noise ratio (S/N) VLBI data on sparse arrays as it allows
integration beyond the nominal atmospheric coherence time.
Figure 3 shows the dependence of amplitude in units of 104 and
S/N on the duration of the segments for a sample scan on
source J0423−0120 for the baseline comprising the ALMA
and SMA stations. All four cross-hand polarizations are
plotted. The scan identifier 294–0938 in Figure 3 corresponds
to the day UTC for the beginning of the scan, where the day is
the number of days since 2018 January 1 (294 is October 21)
and UTC is the scan start time. The noise-debiased amplitude
(Rogers et al. 1995) in Figure 3 is indicated by the horizontal
blue dashed line. As the segment duration decreases, the effect
of decoherence is reduced, so the S/N increases.

Compared to a single coherent integration over a full scan
(approximately 300 s in most of the measurements),

incoherently averaging the parts of a segmented scan increases
the S/N by up to a factor of 2 on many of the measurements,
yielding higher confidence in the detections. For most of the
measurements, S/N values asymptote at the shortest segment

Figure 7. 1.3 mm contours of incoherently averaged fringe power in 5%
increments vs. delay and rate for the baseline between ALMA and IRAM30m.
This example is for a single scan on BL Lac taken on October 19, 01:13 UTC.
Other detections reported in Table 2 also exhibit clear peaks vs. in delay-delay
rate search space.

Table 2

1.3 mm Detections on the ALMA–IRAM30m Baseline toward BL Lac for
Indicated Polarizations

Elevation Baseline τc Delay Rate Amp. S/N
(ALMA/
IRAM30m) Length
(deg) (Gλ) (s) (ns) (fs s−1

) (×10−4
)

XL

24.5/38.3 6.4327 5 −5.3 −98 1.66 134.0
24.4/37.3 6.4422 7 −5.3 −66 1.49 120.0
24.3/36.6 6.4476 32 −5.3 −14 1.47 187.3

YR

24.5/38.3 6.4327 6 −0.8 −99 1.77 143.0
24.4/37.3 6.4422 7 −0.8 −66 1.52 122.4
24.3/36.6 6.4476 32 −0.8 −14 1.49 189.8

XR

24.5/38.3 6.4327 6 −0.7 −98 1.56 125.4
24.4/37.3 6.4422 7 −0.7 −66 1.37 110.4
24.3/36.6 6.4476 32 −0.7 −13 1.38 176.1

YL

24.5/38.3 6.4327 6 −5.4 −98 1.42 114.4
24.4/37.3 6.4422 7 −5.4 −66 1.24 100.1
24.3/36.6 6.4476 32 −5.4 −14 1.21 153.5

Note. Scans listed top to bottom on October 19 begin at 01:03, 01:09, and
01:13 UTC.

Figure 8. Allan deviation for 870 μm (345 GHz) scans observed on the
ALMA–SMA baseline (blue lines). For comparison, red lines show the Allan
deviation for high-S/N scans (nominally 5 minutes long) during the 1.3 mm
(230 GHz) 2017 EHT campaign (Event Horizon Telescope Collaboration
et al. 2019b). Weather variability during the 2017 campaign is responsible for
the spread in those scans. The means of the individual Allan deviation traces
are shown in bold for the two frequencies. The 870 μm and 1.3 mm mean
traces approach the nominal Allan deviation for a pair of T4 Science brand
iMaser 3000 model masers (Thompson et al. 2017) at short timescales. At
intermediate timescales, atmospheric turbulence can become important. The
Allan deviation associated with Kolmogorov turbulence is plotted for a set of
nominal parameters (Treuhaft & Lanyi 1987).
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durations. Ordinarily, we would expect the S/N values to
decrease as the segments are shortened below the coherence
time. The behavior we observe could be indicative of a
changing coherence during the scan consistent with the windy
conditions at ALMA (Crew et al. 2023).

Contours of fringe power versus multiband delay and rate
are plotted in Figure 4 for a single scan of J0423−0120 on the
ALMA–SMA baseline. The measurement exhibits a definitive
peak in fringe power for each of the cross-hand polarizations.
The rates are all centered near 0. Multiband delays fall within
an ambiguity search window of (−8.53 ns, 8.53 ns) as they are
derived from measurements spaced at ALMA’s channel
separation of 58.592375MHz (Matthews et al. 2018; Event
Horizon Telescope Collaboration et al. 2019d).

The fringe detection threshold was conservatively set at S/
N> 7 to prevent false detections, and all resulting detections
are summarized in Table 1 ordered by target source. The
maximum spatial frequencies sampled are greater than 10.9 Gλ
between ALMA and the SMA, which significantly exceeds the
largest spatial frequencies sampled by the EHT for M87* at
1.3 mm on the longest baseline between Hawaii and Europe
(approximately 8 Gλ). The highest-S/N detections exceed 70.
Simultaneous detections in all four polarization products were
achieved on the ALMA–SMA baseline for J0423−0120. The
zero-baseline flux densities at 870 μm were obtained from the
ALMA local interferometry (Crew et al. 2023). The flux
densities were 1.4, 1.0, 2.4, 1.2, and 4.9 Jy on CTA 102,
BL Lac, J0423−0120, J0510+1800, and J0522−3627, respec-
tively. The source structure of the targets in this work is not
known a priori, so it is not possible to say with precision how
the correlated amplitudes should vary as a function of baseline
length. Furthermore, these observations were designed to be a
detection experiment and not carried out with all procedures
that would allow robust VLBI flux density calibration.
Nevertheless, the S/N on the ALMA–APEX baselines appears
to be anomalously low given the short baseline length, which
would ordinarily be sensitive to both small-scale structure
(10–100 μas) and larger-scale structure (10–100 mas). This is
likely attributable to phase instabilities suspected in the APEX
receiver (see Section 2.2.2), which has since been retired.
Follow-on experiments, already scheduled, will focus on
calibration and robust flux density measurements versus
baseline length.

HOPS reports two coherence times: one corresponding to the
point below which there is only a small amount of coherence
loss within the uncertainty of amplitudes and another
corresponding to the maximum S/N. For most of the scans in
Table 1, we report the former. In a few low-S/N cases where
the routine was unable to fit the coherence, the coherence time
based on S/N is reported instead. The coherence times across
baselines range from approximately 10 to 30 s for most cases.
For BL Lac, the longer coherence times may be an artifact of
the moderate S/N.

3.2. 1.3 mm (230 GHz) Comparison

Presently, the EHT observes at 1.3 mm (Event Horizon
Telescope Collaboration et al. 2019b). Figure 5 compares the
Fourier components of the 870 μm detections on various
sources to the 1.3 mm coverage of the 2017 EHT array on
M87* (Event Horizon Telescope Collaboration et al. 2019d).
The 870 μm detections on ALMA–IRAM30m and ALMA–
SMA baselines have a higher nominal angular resolution

(19 μas) than the highest-resolution M87* detections (nomin-
ally 25 μas).
For a source-specific comparison of the 1.3 mm and 870 μm

bands, ALMA and IRAM30m observed BL Lac at 1.3 mm
during three scans at the end of the eastern subarray scheduling
block of the 2018 October session. Those data were searched
using the same HOPS incoherent averaging method as was
used for the 870 μm observations and provide an independent
application of the approach. The 1.3 mm scans provide a check
of the 870 μm processing and a point of comparison for the
870 μm detections.
The amplitude and S/N values for one of the 1.3 mm scans

are plotted in Figure 6 versus the duration of incoherently
averaged segments. The S/N values are approximately tenfold
greater at 1.3 mm than at 870 μm (see Figure 3), which likely
results from a combination of factors that boost sensitivity at
the longer wavelength: lower opacity, lower receiver noise,
greater aperture efficiency, a wider beam, greater coherence,
and greater source flux density. The coherence time determined
using HOPS was comparable for the three scans to what was
found at 870 μm: on the order of 6–30 s. As with the 870 μm
measurements, the S/N values asymptote as the segment
duration decreases below the coherence time. The consistency
of the S/N trends in the 870 μm and 1.3 mm scans suggests
that the behavior is a real feature of the data and not an artifact
of the analysis.
Comparison of the 1.3 mm and 870 μm wavelengths

observing BL Lac also shows that the latter is a much more
difficult regime in which to operate. The atmospheric
conditions at the IRAM30m site (see Figure 1; τ345∼ 0.8)
were not ideal for 870 μm observing during the test. At
1.3 mm, strong detections were obtained on all polarizations for
each of the three attempted scans. At 870 μm, detections were
made on just two of four polarizations for a single ALMA–
IRAM30m scan, and none were made on other BL Lac
baselines. The tenfold greater S/N values at 1.3 mm are
consistent with the system equivalent flux density (SEFD). The
SEFDs on BL Lac scans at ALMA were approximately 150 Jy
at 1.3 mm versus 580 Jy at 870 μm (a factor of 3.9 change). At
IRAM30m, SEFDs during the BL Lac scans were 3800 Jy at
1.3 mm versus 105 Jy at 870 μm (a factor of approximately 25
change). The S/N is inversely proportional to the root product
of the SEFDs, or 3.9 25 10, which explains the
behavior across observing wavelengths. The significantly
greater noise at 870 μm as well as the other losses associated
with narrower beamwidth or coherence is the likely reason for
nondetections to some stations and on certain scans.
Fringe power contours at 1.3 mm are plotted as a function of

multiband delay and rate in Figure 7, exhibiting obvious peaks.
The delays for each of the four polarization cross products is
consistent across scans, and the 1.3 mm fringes are summarized
in Table 2. All four polarization cross-hands are detected in
each of the three 1.3 mm scans. The 6.4 Gλ spatial frequencies
are 50% smaller than the 870 μm scans on the AP baseline,
which corresponds to the frequency scaling between the two
bands. The 1.3 mm zero-baseline flux density of BL Lac
deduced from the ALMA local interferometry (Crew et al.
2023) was 1.2 Jy.

3.3. Coherence and Allan Deviation

It is convenient to characterize the phase noise of an
interferometer by its Allan deviation, which is a measure of
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fractional stability for an oscillator, time standard, or any time-
variable process. When computing the Allan deviation of an
observed VLBI interferometer phase, one normalizes by the
frequency of observation to produce a dimensionless quantity.
The relationships of Allan deviation to the statistical variance,
coherence, and phase power spectrum can be found in
Thompson et al. (2017). Examples of the Allan deviation of
VLBI systems referenced to hydrogen maser time standards
and operating at 1.3 cm and 3 mm wavelengths can be found in
Rogers & Moran (1981) and Rogers et al. (1984), respectively,
and show that at short wavelengths, decoherence is a potential
concern. Alternatives to hydrogen masers for short-wavelength
VLBI work have been explored (e.g., Doeleman et al. 2011). In
this section, we compare the observed Allan deviation of the
VLBI interferometric phase to limiting factors including the
stability of time and frequency standards used in the

experiment as well as instabilities due to atmospheric
turbulence.
Figure 8 shows the Allan deviation for 870 μm scans on the

ALMA–SMA baseline. Over most integration times, the
870 μm Allan deviation is comparable to but greater than the
maser–maser reference. The 870 μm traces exhibit relatively
small scan-to-scan variation during the course of the brief
fringe test when conditions were relatively stable. For
comparison, Figure 8 also shows the Allan deviations for a
large number of high-S/N 1.3 mm scans from the 2017 EHT
campaign (Event Horizon Telescope Collaboration et al.
2019d). At times of less than about 5 s, the red 1.3 mm traces
all approach the limit set by the maser references. At times
longer than 5 s, the red traces are noticeably scattered. The
scatter exists because of the variability of atmospheric
conditions during the course of an observing campaign.

Figure 9. Left: visibility amplitudes for simulated observations of M87* (top) and Sgr A*
(bottom) at observing wavelengths of 1.3 mm (gray) and 0.87 mm (red). The

synthetic data have been generated using the ngehtsim package assuming array specifications appropriate for the phase 2 ngEHT array from Doeleman et al. (2023),
including simultaneous dual-band observations, the use of the FPT calibration technique, and 16 GHz of bandwidth at both frequencies. Data points are colored by
their S/N on an integration time of 5 minutes, and data points with S/N < 3 have been flagged. Right: images produced from GRMHD simulations of the M87* (top
two panels; Event Horizon Telescope Collaboration et al. 2019e) and Sgr A*

(bottom two panels; Event Horizon Telescope Collaboration et al. 2022b) accretion flows,
used to generate the synthetic data shown in the left panels. Both simulations have been ray-traced at observing wavelengths of 1.3 mm (gray) and 0.87 mm (red), and
the frequency-dependent effects of interstellar scattering have been applied to the Sgr A* images (Johnson 2016; Johnson et al. 2018).
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The tropospheric delay is essentially independent of
wavelength for wavelengths longer than about 600 μm as
described by the Smith–Weintraub equation (see Thompson
et al. 2017, Chapter 13). Thus, the Allan deviation is expected
to be independent of wavelength for our observations. When
the atmospheric conditions are stable, the 1.3 mm Allan
deviation for individual scans approaches the maser–maser
limit across all integration times. The mean of the 1.3 mm scans
is within a factor of approximately 2 of the mean of the 870 μm
traces. The 870 μm mean Allan deviation on the plot happens
to be lower than the 1.3 mm mean for most integration times.
However, we do not consider this difference to be significant
given the extremely small 870 μm data set. Further, the
observations in 2017 April and 2018 October were of course
made in differing weather conditions.

To assess the impact of atmospheric turbulence at longer
times, the Allan deviation associated with atmospheric
Kolmogorov turbulence is plotted for a set of nominal
conditions following the approach outlined by Treuhaft &
Lanyi (1987): 10 m s−1 wind speed, 2 km troposphere scale
height, 1.99× 10−7 m−1/3 Kolmogorov coefficient, and
independent distant sites. The nominal Kolmogorov trace
exceeds the maser–maser Allan deviation at longer times,
where we expect atmospheric effects to dominate. Beyond 10 s,
the nominal Kolmogorov trace matches the shape of the
1.3 mm mean. Although the 870 μm mean falls somewhere
between the maser–maser and nominal Kolmogorov limits, the
atmospheric contribution may become more apparent in the
future with scans spanning more variable weather conditions.

3.4. Phasing Efficiency

An important figure of merit when used to monitor the
performance of phased array beamformers is phasing effi-
ciency. This is a measure of how effectively outputs of the
dishes in the local array are coherently summed to synthesize a
single IF output from the array’s aggregated collecting area.
For each array site, periodic estimates of phasing efficiency
over time are stored with other essential metadata for use in
calibration.

The ALMA and SMA phased arrays experienced lower and
more variable phasing efficiency during the 870 μm test than is
typical for 1.3 mm observing in similar conditions. At 870 μm,
atmospheric opacity is between 3 and 3.5 times that for 1.3 mm
given the same precipitable water vapor. Further source fluxes
decline with increasing frequency or shorter wavelength. Both
of these factors result in a lower local array fringe S/N. There
is thus greater error in the fits of the antenna phase corrections.
Tuning within the band avoids the deep absorption lines due to
atmospheric water resonances at 325 and 385 GHz, which
would reduce the S/N still further. Also, the atmospheric phase
fluctuations tracked by the adaptive phased array system have a
greater amplitude for observations in the higher-frequency
band. Crew et al. (2023) note that that moist, windy conditions
tend to diminish phasing efficiency, and the winds were quite
high at ALMA during the test. At dry, less windy times,
ALMA obtained higher phasing efficiencies approaching
100%. While NOEMA participated in this test with a single
dish, not as a phased array, all of these factors are expected to
apply as well to NOEMA, which is now equipped with a
phased array backend capable of beamforming in both the
1.3 mm and 870 μm bands.

Water vapor radiometer (WVR) based phasing corrections
were not in use during the 2018 test. Independent testing at
ALMA shows that fast WVR corrections are effective at
improving the efficiency when phase fluctuations are primarily
due to water vapor. Phasing control loop algorithms are
constantly being improved and in future will be better tuned to
the 870 μm wave band. These improvements will expand the
opportunities for 870 μm observing in a wider range of weather
conditions and on weaker sources. Despite these challenges,
VLBI detections at 870 μm can be readily achieved even when
phasing efficiencies are relatively low and in nonideal weather
conditions.

4. Future Directions

Achieving 870 μm VLBI fringes has strong implications for
science directions that future global arrays operating at this
wavelength can explore. As angular resolution scales with
wavelength, we anticipate improving resolution from ∼23 to
∼15 μas on the longest EHT baselines (Figure 5). Plasma
propagation processes typically scale as wavelength squared,
so at 870 μm, scatter broadening of Sgr A* reduces to ∼5 μas,
further sharpening resolution and increasing signal-to-noise on
the longest VLBI baselines. Similarly, Faraday rotation
measured across the bandpass of EHT receivers at 870 μm
can be used to improve estimates of accretion plasma densities
and magnetic field geometries close to EHT targets. For both
Sgr A* and M87*, the images at 870 μm and 1.3 mm are
determined predominantly by the achromatic gravitational
lensing and hence should exhibit similar characteristics,
implying that the aggregate Fourier coverage of VLBI
observations at different frequencies can be used to improve
modeling of the gravitationally lensed emission and the
imaging fidelity generally (Chael et al. 2023). Figure 9 shows
Fourier amplitudes as a function of radius for GRMHD156

models of M87* and Sgr A*. Inclusion of 345 GHz observa-
tions adds coverage in the visibility plane regions not sampled
at 230 GHz, and it extends baseline lengths for higher angular
resolution as well as enhanced overall sampling of Fourier
spatial frequencies to allow dynamical reconstructions of
accretion and jet launch close to the event horizon.
There are several developments that will increase the

sensitivity and flexibility of 870 μm VLBI in the near future.
Next-generation VLBI backends (Doeleman et al. 2023) will
allow an increase in data capture rates from 64 to 128 Gb s−1

(per observing frequency band), lowering detection thresholds
by 2 . Additional use of the frequency phase transfer (FPT)
technique (Rioja et al. 2023) through simultaneous observa-
tions at 86, 230, and 345 GHz will extend coherent integration
times at higher frequencies, further increasing sensitivity. In
optimal cases, this increase will be the square root of the ratio
of coherence times at 86 GHz and 345 GHz ( ( ) ( )86 345c c ).
And the participation of more telescopes at high-altitude sites
will make the EHT array more robust against adverse weather
conditions, increasing the opportunities for staging 870 μm
VLBI observations (Raymond et al. 2021; Doeleman et al.
2023). Anticipated upgrades to ALMA will be exceptionally
useful to advance 870 μm VLBI and are planned on a similar
timeline (∼2030) as the ngEHT upgrade (Carpenter et al.
2023). In particular, the projected doubling of the continuum
bandwidth of ALMA will match the ngEHT specifications, and

156 General relativistic magnetohydrodynamic.
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a subarray capability at ALMA will enable simultaneous
multiband observations that benefit from FPT as noted above.
In sum, the prospects for routine 870 μm VLBI in the near
future are excellent.

5. Conclusions

VLBI fringe detections on baselines between ALMA–
APEX, ALMA–IRAM30m, and ALMA–SMA have been
achieved at 870 μm for multiple AGN sources. S/Ns were
between approximately 10 and 70. Despite marginal weather
conditions across the array, detections to multiple stations and
sources were obtained. This work demonstrates that the EHT
instrumentation is viable at 870 μm (345 GHz) and will provide
a critical advance in array capability. EHT-wide observations at
870 μm would yield a fringe spacing of about 15 μas and, with
a full track of coverage, would significantly enhance the fine
details of the EHT images of AGN and horizon-scale targets
(Doeleman et al. 2019, 2023; Johnson et al. 2023).
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