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ABSTRACT

Context. Many active galaxies harbor powerful relativistic jets, however, the detailed mechanisms of their formation and acceleration remain
poorly understood.
Aims. To investigate the area of jet acceleration and collimation with the highest available angular resolution, we study the innermost region of the
bipolar jet in the nearby low-ionization nuclear emission-line region (LINER) galaxy NGC 1052.
Methods. We combined observations of NGC 1052 taken with VLBA, GMVA, and EHT over one week in the spring of 2017. Our study is
focused on the size and continuum spectrum of the innermost region containing the central engine and the footpoints of both jets. We employed a
synchrotron-self absorption model to fit the continuum radio spectrum and we combined the size measurements from close to the central engine
out to ∼1 pc to study the jet collimation.
Results. For the first time, NGC 1052 was detected with the EHT, providing a size of the central region in-between both jet bases of 43 µas
perpendicular to the jet axes, corresponding to just around 250 RS (Schwarzschild radii). This size estimate supports previous studies of the jets
expansion profile which suggest two breaks of the profile at around 3× 103 RS and 1× 104 RS distances to the core. Furthermore, we estimated the
magnetic field to be 1.25 Gauss at a distance of 22 µas from the central engine by fitting a synchrotron-self absorption spectrum to the innermost
emission feature, which shows a spectral turn-over at ∼130 GHz. Assuming a purely poloidal magnetic field, this implies an upper limit on the
magnetic field strength at the event horizon of 2.6 × 104 Gauss, which is consistent with previous measurements.
Conclusions. The complex, low-brightness, double-sided jet structure in NGC 1052 makes it a challenge to detect the source at millimeter (mm)
wavelengths. However, our first EHT observations have demonstrated that detection is possible up to at least 230 GHz. This study offers a glimpse
through the dense surrounding torus and into the innermost central region, where the jets are formed. This has enabled us to finally resolve this
region and provide improved constraints on its expansion and magnetic field strength.

Key words. methods: observational – techniques: high angular resolution – techniques: interferometric – galaxies: active – galaxies: jets –
galaxies: Seyfert

1. Introduction

Bipolar extragalactic jets are the most striking features of radio
loud active galactic nuclei (AGNs). While propagating up to
kiloparsec scales with opening angles smaller than a degree, the
collimation and acceleration of the jets takes place within the
first parsecs to the central engine. A more accurate description
on the launching and collimation region through observations
is needed to properly understand the underlying physical pro-
cesses. This allows us to distinguish between different theoret-
ical models as described, for instance, by Blandford & Znajek
(1977) and Blandford & Payne (1982).

To constrain the mechanisms behind collimation at these
different scales, the region of acceleration and collimation
has to be investigated with the highest achievable resolution
through millimeter (mm) Very Long Baseline Interferometry
(VLBI). The first studies of the innermost jet region in AGNs
with the Event Horizon Telescope (EHT) are very promis-
ing. Sub-milliarcsecond jet structures resolved with the EHT

were already reported in 3C 279 (Kim et al. 2020), Centau-

rus A (Janssen et al. 2021), J1924-2914 (Issaoun et al. 2022),
NRAO 530 (Jorstad et al. 2023), and 3C 84 (Paraschos et al.

2024). In particular, a bipolar jet base structure of a radio galaxy
was revealed in the case of Centaurus A. Only bipolar jets offer
the opportunity to also study the symmetric evolution of AGN
jets as is assumed within the standard model for AGNs.

Most AGNs with bipolar jets are faint given the small impact
of relativistic effects on their brightness. The few cases stud-
ied deviate from the overall picture obtained from studies of

one-sided blazars, whose jets point towards the observer. Blazar
jets typically have a transition from a parabolic collimating

jet to a freely expanding conical jet at distances of ∼104
−106

Schwarzschild radii, RS, (e.g., Kovalev et al. 2020). On the other

hand, studies of the expansion profile for strongly misaligned
jets do not follow the general trend of Blazar jets. For exam-
ple NGC 315 shows a break at closer distances of ∼5 × 103RS

(Boccardi et al. 2021), or 3C 84 with a nearly cylindrical instead

A205, page 2 of 15



Baczko, A. K., et al.: A&A, 692, A205 (2024)

of a parabolic expansion (see, e.g., Giovannini et al. 2018;
Nagai et al. 2014).

The nearby (19.23 ± 0.14 Mpc; Tully et al. 2013) low-
luminosity AGN (LLAGN) NGC 1052 serves as a bridge between
accretion dominated sources (e.g., Sgr A∗) and jet-dominated
sources (e.g., M 87, 3C84, or Cyg A). It is also often referred
to as the prototype low-ionization nuclear emission-line region
(LINER) galaxy. X-ray observations suggest that an advection
dominated accretion flow (ADAF) is embedded in a truncated
accretion disk (AD, see, e.g., Falocco et al. 2020; Reb et al.
2018). It hosts a supermassive black hole (SMBH) of '108.2 M�
(Woo & Urry 2002). It is one of the few AGNs revealing
two jets, one eastward and one westward, which are oriented
close to the plane of the sky. A dense torus blocks our view
onto the central region at centimeter (cm) wavelengths (e.g.,
Vermeulen et al. 2003; Kameno et al. 2003; Kadler et al. 2004b;
Brenneman et al. 2009). The H2O maser emission is associ-
ated with the torus (Claussen et al. 1998; Kameno et al. 2005;
Sawada-Satoh et al. 2008). Observations at millimeter (mm)
wavelengths peer through the absorbing structure and reveal
a central bright emission feature, which is isolated from the
jets at 86 GHz (Baczko et al. 2016a). This first detection of
the extended structure at 86 GHz with the Global millimeter
VLBI Array (GMVA) allowed for an estimation of the magnetic
field at 1 Schwarzschild radius, RS, setting it at a maximum of
104 Gauss. In contrast to most AGNs, the jets in NGC 1052 do
not show a parabolic expansion; however, they both evolve with
a close-to cylindrical profile, which changes to a close-to con-
ical collimation at ∼104RS (Baczko et al. 2022; Nakahara et al.
2020). A recent study suggests strong interaction between jet and
torus, which collimates the inner jet and heats the dusty torus
(Kameno et al. 2023). A kinematic study at 43 GHz found higher
velocities for the eastern (approaching) jet as compared to the
western (receding) jet, namely, βej = 0.529 ± 0.038 and βwj =

0.343 ± 0.037 in units of the light speed, c (Baczko et al. 2019).

To further investigate the acceleration and collimation zone
in NGC 1052 we observed the source at 230 GHz with the
EHT and at 86 GHz with the GMVA in 2017. We combined
these new observations with multi-frequency VLBA observa-
tions (Baczko et al. 2022) close to the EHT campaign in 2017 to
study the continuum spectral behavior of the innermost region
around the central engine. The GMVA and EHT observations
were performed close in time (within one week) to minimize
effects from flux density and structural variability.

The paper is organized as follows. In Sect. 2, we present the
observations and their data reduction. We describe our methods to
obtain size estimates of jet emission features and continuum spec-
tral fitting in Sect. 3. In Sect. 4, we discuss our results in a broader
context, giving estimates of the magnetic field close to the cen-
tral engine, and we compare our size estimates of the jet width
with the collimation profile analyzed in Baczko et al. (2022).
Finally, Sect. 5 summarizes our findings.

2. Observations and data reduction

2.1. EHT observation

The EHT observed NGC 1052 at 230 GHz on two consecu-
tive nights on April 6 and April 7, 2017, as a project to fur-
ther investigate the magnetic field in the innermost region in
NGC 1052 (ALMA proposal code 2016.1.01290.V). The source
was observed with a part of the EHT array, composed of the Ata-
cama Large Millimeter/submillimeter Array (ALMA, observing
as a phased array, Goddi et al. 2019); the IRAM 30 m telescope

Fig. 1. Visibility amplitude and (u, v) coverage (inlet) of EHT obser-
vation of NGC 1052 in 2017. The shown brightness temperature is the
observed one. The coverage combines detections obtained on April 6
(ALMA-SPT, red markers) and on April 7 (JCMT-SMA, black mark-
ers). Empty and filled markers indicate 227.1 and 229.1 GHz bands,
respectively.

(PV) in Spain; the James Clerk Maxwell Telescope (JCMT) and
the Submillimeter Array (SMA) in Hawai’i; and the South Pole
Telescope (SPT) in Antarctica. The total time on source was
24 min on Apr 6 (4 scans) and 30 min on Apr 7 (5 scans). Quasar
J0132-1654 and blazar J0006-0623 were used as calibrators. The
full EHT array setup is detailed in EHTC (2019a).

The raw data were recorded at a rate of 32 Gbps in two
∼2 GHz bands centered at 227.1 and 229.1 GHz. Recorded signals
were correlated at the MIT Haystack Observatory and the Max-
Planck-Institut für Radioastronomie, Bonn. Subsequent data cal-
ibration procedures are described in EHTC (2019b, 2022) that
relied on a custom-built EHT-HOPS fringe-fitting and flux den-
sity calibration pipeline (Blackburn et al. 2019), as well as a par-
allel CASA-based pipeline used for an independent verification
(Janssen et al. 2019). Only a very limited number of significant
detections on JCMT-SMA (intra-site baseline of ∼0.1Mλ pro-
jected length detections at S/N∼ 20) and ALMA-SPT (long base-
line of ∼4.5Gλ projected length, detections at S/N ∼ 10) was
found through incoherent averaging of the visibility amplitudes
(Thompson et al. 2017). This is due to particularly low bright-
ness of the source at the time of the EHT observations (0.4 Jy
reported by the ALMA-array; Goddi et al. 2021), poor conditions
at ALMA observing in the late morning and at a low inclination
(Goddi et al. 2019) and poor performance of the individual EHT
stations. The poor observing conditions are also reflected in the
low quality of calibrators’ data, although a larger number of con-
fident detections was obtained given their higher observed flux
density. The final visibility amplitude and (u, v) coverage is shown
in Fig. 1, providing a total compact flux density of 0.35± 0.05 Jy.
The visibilities are consistent with a circular Gaussian model with
a full width at half maximum (FWHM) of 43 µas, resulting in a
brightness temperature estimate of Tb = (4.7±0.8)×109 K and a
circular Gaussian size estimate of (43±6) µas, where uncertainties
are dominated by the absolute flux density calibration uncertain-
ties (see EHTC 2019b).

2.2. GMVA observation

NGC 1052 was observed with the GMVA at 86 GHz on March
31, 2017 for a total time of 13 hours. The sources 3C 84 and
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0224+069 served as fringe finders. The array consisted of 8
VLBA antennas (NL, MK, LA, KP, FD, BR, PT, and OV), Green
Bank Telescope (GBT), Yebes, Pico Veleta, Onsala, Metsahovi,
and Effelsberg. As is typical in GMVA observations, the schedul-
ing switched between scans on targets and on calibrators, with an
average of 7 min on target sources. This allows for a delay and
rate transfer from the calibrator to the target source.

The GMVA observation was calibrated using a standard
approach in the NRAO Astronomical Imaging Processing System
(AIPS, e.g., Baczko et al. 2016b) with a few alterations for fringe
fitting. Because high-frequency GMVA observations are very sen-
sitive to the weather, special emphasis was placed on the ampli-
tude calibration, which included a correction for the opacity. The
fringe fitting stage revealed unusually noisy data for all sources;
specifically for NGC 1052, but also on longer baselines for the cal-
ibrators. NGC 1052 itself is relatively faint and has a very com-
plex structure which makes the fringe fitting stage challenging.
In addition, there are no bright calibration sources nearby with
0224+069 being the closest one, which is only slightly brighter
and more compact compared to NGC 1052. We used GBT as ref-
erence antenna for fringe fitting. After finding delays and rates
for all sources with the task FRING in AIPS, we interpolated
the solutions between sources using the options dobtween=1 and
doblank=1 in the AIPS task CLCAL to recover visibilities on
more baselines for the target source NGC 1052. This approach can
lead to corrupted data remaining after this calibration. Hence, we
applied a thorough data flagging in order to remove outliers iden-
tified in the radial and baseline visibility plots.

During the imaging using the CLEAN algorithm in Difmap
(Shepherd et al. 1994), we deviated slightly from the standard
procedure. Due to the small amount of finally calibrated data
self-flagging was turned off and spurious data, outliers in the
Visibility plot were flagged by hand after careful inspection. The
final image is shown in Fig. 2 and shows a core dominated mor-
phology with extended jet structure within the inner 1.5 mas. The
map is centered on the brightest pixel. The final image param-
eters are listed in Table 1. The best quality image that recov-
ered the most extended structure and the lowest noise level was
obtained using uniform weighting (uvw 2,-1) in Difmap. Lastly,
we modeled the source using circular Gaussian Modelfit com-
ponents in Difmap with six components. In the following, we
only use the modelfit of the central component. The exact prop-
erties of the modelfit components of the extended structure are
uncertain due to the insufficient data quality.

2.3. VLBA observations

On April 4, 2017, NGC 1052 was observed at six frequen-
cies from 1.4 GHz to 43 GHz with the VLBA for a total of 11
h. The observations were planned to maximize (u, v)-coverage

by switching between all 6 frequencies throughout the whole
observing run. The properties of the observations and the data
reduction procedures are presented in detail in Baczko et al.
(2022), while basic map parameters for the 22 and 43 GHz maps
used in this publication are listed in Table 1. The data were cal-
ibrated using the ParselTongue Python interface (Kettenis et al.
2006) to AIPS to apply exactly the same routines to all frequen-
cies. We used the map from an initial calibration round to enlarge
the fringe detection rate during a global fringe. For our study of
the innermost region, where both jets are formed, we focus only
on the higher-frequency observations by combining the EHT and
GMVA results with the 22 and 43 GHz VLBA observations. In
the case of very small errors for small component sizes, we set
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Fig. 2. Uniformly weighted clean image of NGC 1052 at 86 GHz,
observed with the GMVA on March 31, 2017. This image is centered
on the brightest spot of the map. The contours start at two times the
noise level of 2.05 mJy/beam, respectively and increase logarithmically
by factors of 2. The first negative contours at noise level are shown in
dashed lines. The dynamic range of the images is 450. The clean beam
is plotted in the lower left corner. The parameters of the final clean
image is listed in Table 1.

a lower boundary to the positional error equal to the beam size
divided by 10, following the approach from Lister et al. (2009).

To study the continuum spectrum from 22 to 230 GHz, we
modeled the VLBA maps with 2D-Gaussian functions (model
components) for all VLBA maps. Due to the high S/N of
the maps, uncertainty estimates for the model components
parameters following Fomalont (1999) resulted in unreasonable
small uncertainties. As a consequence, we assumed conserva-
tive uncertainties on the model component width equal to 1/5th
of the beam size and on component position equal to 1/10th
of the beam size, following the approach in Lister et al. (2009).
Figure 3 shows the model components plotted on top of the clean
contour maps for the 22, 43, and 86 GHz. The parameters of the
model components for all VLBA observations are available on
CDS and on Zenodo1.

3. Results

3.1. Aligning images from 1.5 to 86 GHz.

To study the innermost jet-forming region in NGC 1052 we
combined the 22 and 43 GHz VLBA observations with the
86 GHz GMVA and 230 GHz EHT observation. The VLBA
maps had been aligned using 2D-cross correlation according to
Baczko et al. (2022) to shift clean maps and model components of
the VLBA observations. While we used the same shift parameters
as obtained from Baczko et al. (2022), here we use the model com-
ponents to verify the plausability of the alignment. As can be seen
in Fig. 3 the assumed shifts are also well aligned with the model
components, allowing us to trace the same emission regions over
frequency. To further support our successful alignment, we also
applied fits to the continuum spectrum of the identified compo-
nents with a simple power-law and SSA spectrum, where appro-
priate. The successful fitting results support the assumed align-
ment (supporting figures are provided on Zenodo).

By comparing the 43 and 86 GHz clean images and model
fits, we identified the central 86 GHz component with compo-
nent A15, which is the first component of the western jet at

1 https://zenodo.org/records/13868054
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Table 1. Image parameters for all analyzed VLBA observations from April 4, 2017 with natural weighting and GMVA observation from March
31, 2017 with uniform weighting.

Array ν RMS (1a) RMS (1b) S peak
(2) S tot

(3) bmaj
(4) bmin

(5) PA (6) DR (7)

[GHz] [
mJy

beam
] [

mJy

beam
] [

mJy

beam
] [Jy] [mas] [mas] [◦]

GMVA 86.2 2.05 1.4 0.63 0.81 0.33 0.07 −6.7 450:1
VLBA 43.1 0.10 0.10 0.15 0.59 0.45 0.19 −4.4 1500:1
VLBA 22.2 0.08 0.09 0.18 0.80 0.86 0.34 −5.0 2000:1

Notes. (1)(a) Root-mean-square (rms) noise level of image, (b) rms inside a structure-free window far away from the source structure (2)Peak
brightness, (3)Total recovered flux density, (4), (5), (6)Major, minor axes and major axis position angle of the restoring beam, (7)Dynamic range: ratio
between the map peak and the rms inside a structure-free window far away from the source structure.

43 GHz. This interpretation is in alignment with a multi-year
43 GHz study of NGC 1052, whereby the central, brightest fea-
ture in the 43 GHz maps coincides with the kinematic center
of the source (Baczko et al. 2019). This is further supported
by the previous identification of the central features in quasi-
simultaneous GMVA observations at 43 and 86 GHz in 2004
(Baczko et al. 2016a). Based on this assumption, we derived the
shift of (0.098 and 0.176) mas in DEC and RA between com-
ponent A15 at 43 GHz and 86 GHz. Component A15 is slightly
offset from the map peak at 86 GHz, which is most likely a result
of the region being unresolved at 86 GHz. This additional shift
was then applied to all VLBA images. The clean maps and com-
ponents including the shifts from 22 to 86 GHz are shown in
Fig. 3. Based on this alignment, we identified the model com-
ponents between the VLBA observations and the GMVA. The
new GMVA image is core-dominated, as is the first 3 mm image
of NGC 1052 (Baczko et al. 2016a), with about 80% of the total
flux density inside the innermost unresolved feature, correspond-
ing to 664 mJy. In agreement with previous interpretations, we
assume this central feature to be located at the central engine.
Furthermore, we assume that the effect of free-free absorption
(FFA) from the surrounding torus is negligible above 43 GHz.
Thus, we conclude that the compact emission observed with the
EHT (from visibility analysis only; see Sect. 2) also corresponds
to the central engine location, namely, A15.

3.2. Continuum spectrum of A15

After identifying component A15 from 43 to 230 GHz, we stud-
ied the spectral shape of this component, as illustrated in Fig. 4.
It hints towards a spectral turnover between 86 and 230 GHz.
To improve the spectral fitting we added another measurement
of the flux density at 22 GHz. Indeed, the component at 22 GHz
lies in between components A15 and B6 at 43 GHz. Assuming
this component at 22 GHz is a blend of A15 and B6 at 43 GHz
we can estimate the flux density of component A15 to be equal
to 50% of this components flux density. This provides us with
a fourth point for the spectral fitting of 17.5 mJy for component
A15 at 22 GHz. As many assumptions have gone into this esti-
mate, we have assumed a large uncertainty on this data point of
50%. For 43, 86, and 230 GHz, we adopted a typical, conser-
vative flux density uncertainty of 15%. This is slightly higher
as the 10% flux density uncertainty typical for the VLBA , as
estimated as most conservative for 15 and 22 GHz VLBA obser-
vations of MOJAVE sources (Homan et al. 2002). In a detailed
study of 29 epochs of 43 GHz VLBA observations of NGC 1052
we found a typical uncertainty of 14% by means of gscale statis-
tics in difmap (Baczko et al. 2019).

For the fit, we employed a basic synchrotron self-absorption
(SSA) spectrum following Eq. (1) (Türler et al. 1999), but leav-

ing the optically thin and optically thick spectral indices as
well as the peak frequency and brightness as free parameters,
as follows:

S ν = S Pm

(

ν

νm

)αthick 1 − exp(−τm

(

ν
νm

)αthin−αthick

)

1 − exp(−τm)
(1)

where τm is the optical depth defined as:

τm =
3

2

√

1 −

(

8αthin

3αthick

)

− 1 (2)

This results in a peak frequency at 126 GHz with 1.75 Jy
peak brightness, a thin spectral index of αthin = −3.7, and a
thick spectral index αthick = 3.3, which exceeds the limit of
2.5 for SSA2. Free-free absorption is known to have a signif-
icant impact on the detected jet emission at frequencies below
43 GHz in NGC 1052 (Vermeulen et al. 2003; Kameno et al.
2003; Kadler et al. 2004b) and is a likely explanation of the steep
optically thick spectral index. If our assumption of the flux den-
sity at 22 GHz is wrong and the flux density for A15 is higher,
then the best fit remains about the same, with νm ' 130 GHz;
it is only if the flux density is much lower (around 5 mJy) that
spectral peak goes towards lower frequencies νm ' 100 GHz
(further αthick ' 4, αthin ' −1, and S m ' 0.7). Based on the
spectral index between 22 and 43 GHz derived from the clean
images (compare figures on Zenodo), the flux density of A15 at
22 GHz is most likely not as low as 5 mJy; rather, it is closer
to the assumed 17.5 mJy. This results in an apparent flattening
of the spectrum below 43 GHz, which deviates from our simple
assumption of the spectral slope.

4. Discussion

4.1. The spectral shape of A15

The spectral fit to component A15 suggests a turnover at
'130 GHz, with a steep, optically thin spectral index of around
−3.7. This is larger than the negative spectral index of ∼ − 1 at
220 GHz reported by Goddi et al. (2021), but close to the free-
free absorbed synchrotron spectra of the jet with an index of −3
indicated by the Band 3 and Band 4 ALMA continuum spec-
trum (80–142 GHz) (Kameno et al. 2023). Previous multi-epoch
observations suggested that the impact of free-free absorption
at frequencies above 43 GHz is small and negligible at 86 GHz
(Baczko et al. 2019); hence, the spectral shape between 86 GHz

2 Given the limited number of data points, equal to the number of free
parameters in the SSA model, the fit does not provide robust estimates
of the uncertainties of the fitted parameters.
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Fig. 3. Contour maps of NGC 1052 at 22, 43, and 86 GHz with Gaus-
sian model components plotted on top, the contours start at 3 times the
noise level. The DEC scale is equal to the RA scale. The map origin is
located at the map peak of the 86 GHz image. VLBA maps were shifted
with respect to the 86 GHz image based on the alignment described in
Baczko et al. (2022) and by identifying the 86 GHz central component
with A15. The dashed lines correspond to the component positions at
43 GHz. The components have names assigned as A for the eastern jet
and B for the western jet.

and 230 GHz is unlikely to be affected by strong absorption in
the torus. However, it results in a larger uncertainty of the flux
density of the innermost component at 22 GHz and in a very
steep slope between 22 and 86 GHz, exceeding the limit for syn-
chrotron self-absorption (SSA).

The broad-band spectral energy distribution from 108 Hz
up to 1015 Hz, including high-angular-resolution data, displays
a broken power law in the radio-to-UV range with a steep
power-law index of −2.6 of the IR-to-UV core continuum
(Fernández-Ontiveros et al. 2019). Together with a “harder when
brighter” behaviour of the X-ray spectrum (Connolly et al.
2016), suggesting synchrotron self-Compton radiation, and a
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Fig. 4. Continuum spectrum of the innermost component A15 (red dots)
and SSA spectral fit with optically thin and thick spectral indices as well
as peak frequency and brightness as free parameters (black line). The
innermost component A15 has a inverted spectrum below 86 GHz and
reveals a turn-over around 130 GHz.

mild optical extinction – this favours non-thermal emission from
a compact jet.

Assuming that the spectral shape around the peak results
indeed from SSA, we can estimate the magnetic field at the loca-
tion of A15, assuming equipartition between the magnetic field
and the non-thermal electrons (as is shown, e.g., in Baczko et al.
2016a; Kadler et al. 2004a). Assuming a turn-over at 130 GHz,
a peak brightness of 1.75 Jy, and a size equivalent to the EHT
size of 43 µas, we obtained TB = 6.9 × 1010 K. On this basis, we
deduced a magnetic field of ∼1.25 G within these inner 43 µas.
Given the close distance of the source and the large inclination
angle of the jets, we did not correct for the source cosmological
redshift and Doppler factor as they are negligible in comparison
to the uncertainties of our measurements.

Baczko et al. (2016a) derived a lower limit for the mag-
netic field based on synchrotron cooling of 6.7 G at a distance
of 15 µas (1.5 mpc) from the central engine. Both measure-
ments provide comparable values for the magnetic field strength
assuming a toroidal magnetic field between 15 µas and 21.5 µas.
Assuming a purely poloidal magnetic field with B ∝ d−2, with d
being the distance to the center, we obtained an upper limit on
the magnetic field at the event horizon ( 1 RS distance to the cen-
tral engine) of BSSA = 2.6 × 104 G. Meanwhile, a change from
a toroidal B-field distribution (B ∝ d−1) to a poloidal at a dis-
tance of 2 RS to the central engine results in a lower estimate of
BSSA = 392 G at 1 RS. We refer to Baczko et al. (2016b) for a
detailed description of the calculations.

The spectral shape might also be explained including non-
thermal emission from an ADAF, which has been considered
for other LLAGNs. A spectral model combining an ADAF with
and without non-thermal electrons and a jet component has been
compared to several LLAGNs, such as M 87, M 84, and Cen A,
by Bandyopadhyay et al. (2019). This suggests that some source
spectra require non-thermal electrons to be considered in the
ADAF contribution. Similar studies by Nemmen et al. (2014)
had been focused on LINER sources. A visual comparison of
the obtained models from these studies with our high-resolution
radio data of NGC 1052 suggests that the spectral shape could be
explained by a combination of jet and ADAF emission. This is
a likely scenario, as previous observations of NGC 1052 already
hint towards an ADAF embedded in a truncated accretion disk
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Fig. 5. Jet width of stacked 15, 22, and 43 GHz VLBA images reported in Baczko et al. (2022) and 230 GHz (EHT 2017). The black, dotted line
denotes a fitted broken power-law to the VLBA images with the power-law indices for the Eastern jet of ku = 0.22 ± 0.06 and kd = 0.80 ± 0.01 for
upstream and downstream of the break point, respectively, and for the Western jet of ku = 0.26 ± 0.06 and kd = 1.22 ± 0.05. Red triangle shows
the size of the EHT component at an upper limit on the distance to the center. Orange, yellow, and red lines correspond to (not fitted) power laws
with power-law indices of k = 0, k = 0.5, and k = 1, as suggested by the high-frequency data.

(Falocco et al. 2020; Reb et al. 2018). Further high-resolution,
high-sensitivity data in the mm to sub-mm range are required
to better model the broad-band spectrum from the radio to IR
and to verify the ADAF contribution. When combined with
high-resolution IR to UV data (e.g., Fernández-Ontiveros et al.
2019), a spectral model including ADAF emission ought to be
considered to fully describe the core emission.

The sparse frequency coverage limits the conclusions which
can be drawn from the available data sets. Future observations
with better sensitivity and further improved uv-coverage at 3 mm

and 1.3 mm should make it possible to obtain high-fidelity maps
of the source structure at mm wavelengths. The first time detec-
tion of NGC 1052 with the EHT at 1.3 mm paves the way for
imaging at the highest possible angular (and spatial) resolu-
tion. In a future work, we will focus on the combination of our
high-resolution VLBI data with previously mentioned archival
and possible new millimeter to submillimeter (mm to submm)
observations at the highest possible angular resolutions. This
will allow us to compare the continuum spectrum with more
advanced and complete models, also taking into account con-
tributions from an ADAF.

4.2. Unambiguous identification of component A15

Throughout our analysis, we identified the central component

at 86 GHz and the EHT detection with component A15. This
is the most likely identification given the typical symmetry and
core dominance of the source structure at 43 GHz, as revealed
by multi-year observations (cf. Baczko et al. 2019). However, a

second possible identification is with component B6. In this sce-
nario, the turn-over around 100 GHz persists; however, the over-
all spectrum could be fitted successfully with either a power-law
or a SSA-spectrum (compare the figures on Zenodo). The spec-
trum shows a very clear flattening below 43 GHz, as compared
to the identification with A15, even when considering the large
uncertainty of the 22 GHz measurement.

4.3. Combined size of the central region

Neither the GMVA observation from 2004 (Baczko et al. 2016a)
nor the new observation resolved the innermost feature. The
Gaussian modelfit to the GMVA images yields a circular com-
ponent with a major axis of 20 µas and a brightness temperature
of 2.95×1011 K. This size corresponds to bmin/3.5 and bmaj/16.5
for the uniform weighted map. When remaining conservative
and assuming a resolution limit of half the beam size, this com-
ponent is still not resolved in any direction at 86 GHz. How-
ever, in accordance with Baczko et al. (2016a), we can assume
the resolution limit to give an upper size estimate of the central
region along the jet axis as 35 µas. Combining this with the EHT
size estimate perpendicular to the jet axis allows us to estimate
the size of the central region to (43 × 35) µas, corresponding to
∼(280 × 230) RS, transversally and parallel to the jet axis.

4.4. Collimation profile at the jet base

Based on multi-frequency VLBA observations, the collimation
profile in NGC 1052 was found to change from nearly cylindri-
cal to conical expansion at a distance of 104 RS (Baczko et al.
2022). Due to the limited resolution of the highest frequency
observation of this study (43 GHz VLBA), it was not possible
to infer the jet expansion profile at distances <103 RS. In Fig. 5
we compare our results from the 230 GHz EHT size estimate
(red arrows) with the results from Baczko et al. (2022) by plot-
ting the EHT width onto the results obtained from the stacked
VLBA images at 15, 22, and 43 GHz. We did not compare with
the GMVA modelfit sizes from this study. The innermost jet
region is unresolved and would only provide an upper limit, as
the outer jet region the dynamic range of our images is worse
compared to the measurements from 43 GHz at the same region.
For the innermost component A15, we assumed an upper limit
on the distance corresponding to half the angular EHT reso-
lution of 50 µas. The EHT size measurement supports a sce-
nario where we would expect a second break in the collimation
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Fig. 6. Summary sketch of the inner region in NGC 1052. (a) 2017 22GHz VLBA map with (b) 2017 86 GHz GMVA map zoom in below and (c)
EHT visibility plot to the right. Background: Sketch of AGN model, the observer is to the top, the western (right) jet is receding. (d) Jet width at
stacked VLBA 22 and 43 GHz, and at 230 GHz and (magenta) power-laws for parabolic, cylindrical, and conical profiles. (e) Sketch visualizing
the optically thin and thick regions in the jets. (f) Peak frequency of the SSA-fit moves towards higher frequencies closer to the central engine.

profile at around 3×103 RS, with a steeper power-law index. This
was already hinted at when considering the width measurements
from the 43 GHz stacked VLBA image in Baczko et al. (2022).
Strong heating of the gas around the nucleus in NGC 1052 (as
found in ALMA observations) suggests interactions between the
jet and the torus (Kameno et al. 2023). In this scenario, the torus
could be responsible for a stronger collimation of the jet within
the inner 104 RS. Furthermore, the different width upwards of the

second break as observed at 15 GHz and 22 GHz compared to
43 GHz and 230 GHz suggest a stratified jet in which we observe
an outer layer at frequencies of 22 GHz and below. To make
these different collimation profiles more visible we add (colored)
lines corresponding to power-law indices of k = 0 (cylindrical),
k = 0.5 (parabolic), and k = 1 (conical) onto the jet width mea-
surements in Fig. 5, we used the same parameters for the east-
ern and western jet. The location of the transition point from
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cylindrical to conical jet collimation profile and the width of the
conical region are based on the fitting results from the western
jet. The parabolic line is drawn such that it intersects with the fit-
ted broken power law at the point where the 43 GHz width starts
to deviate from the fit.

Our observations showed that NGC 1052 can be detected at
230 GHz. Furthermore, the EHT is capable of resolving the cen-
tral region in NGC 1052 transversally to the jet axes, assum-
ing that the emission detected at 230 GHz corresponds to the
innermost component A15. The AGN in NGC 1052 is special
as it is one of the very few AGNs revealing a double-sided
jet at mm wavelengths. The dense molecular surroundings of
this source, including the occurrence of water maser emission
(Claussen et al. 1998; Kameno et al. 2005; Sawada-Satoh et al.
2008), makes it an extremely interesting target to study in more
detail the connection between the host galaxy and the formation
and collimation of jets. Stacked multi-frequency VLBA images
combined with our results from the EHT suggests a complex
transversal structure within the innermost 104 RS. Future full-
track EHT observations in combination with higher-resolution
GMVA+ALMA observations will have the potential to shed
light onto this innermost jet forming region and uncover the true
expansion profile. Furthermore, the combination of these high-
resolution observations of the area around the central engine
with numerical simulation of the same region, also taking into
account emission and absorption from both the jets and accre-
tion disk, will allow us to gain a deeper understanding of the
formation of AGN jets.

5. Summary and conclusions

We present the results from our radio campaign observing
NGC 1052 from 1.5 GHz to 230 GHz within a single week
time interval. For the first time, it was possible to resolve the
innermost central feature in between both jet bases through the
230 GHz EHT observation. Up to 86 GHz, this feature is unre-
solved. Below and in Fig. 6, we present a summary of our
findings.

– For the first time, NGC 1052 was detected at 230 GHz with
the EHT on the two baselines ALMA-SPT and JCMT-SMA.
From this observation, we infer a size of the emission of the
central feature perpendicular to the jet axis of 43 µas, result-
ing in TB = 4.7 × 109 K.

– Our new GMVA observation confirms previous results,
whereby the central feature constitutes with 0.664 Jy about
80% of the total flux density at 86 GHz.

– Combining the inferred size from the EHT observation and
the resolution limit of the GMVA observation provides a
size of the central region of (43 × 35) µas, corresponding to
∼(280 × 230) RS, transverse and parallel to the jet axis.

– By combining these new GMVA and EHT observations
with previously published multi-frequency VLBA obser-
vations from Baczko et al. (2022), we have traced the
innermost emission feature A15 over four frequencies. An
SSA-fit to the continuum spectrum of A15 yields a spectral
turnover at ∼130 GHz and an upper limit on the magnetic
field of 1.25 G. This is consistent with previous measure-
ments and provides an upper limit on the magnetic field at the
event horizon (1 RS distance to the black hole) of 2.6 × 104

G, assuming a purely poloidal magnetic field distribution.
Our new observations demonstrate that NGC 1052 can be
observed at frequencies up to 230 GHz. We also see that the high-
est frequencies are required to shed light onto the formation and
collimation process of this uncommon double-sided jet system.

Data availability

The final self-calibrated clean image at 86 GHz and the
tables for model fit components are available at the CDS via
anonymous ftp to cdsarc.cds.unistra.fr (130.79.128.5)
or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/
A+A/692/A205

Appendix B, with additional figures and tables used for this
publication, is available on Zenodo at https://zenodo.org/
records/13868054
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