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Abstract This study introduces an innovative actor-critic 

deep reinforcement learning approach for optimizing 

resource allocation in energy-harvesting Wireless Body Area 

Networks (WBANs). Facing the challenge of limited sensor 

energy, our method efficiently manages key parameters like 

transmission mode, relay selection, and energy utilization, 

significantly enhancing WBAN's energy efficiency and 

delivery probability. Through simulations, we demonstrate 

our technique's superior performance over traditional models, 

showcasing its potential for future WBAN implementations. 

1. Introduction: 

Wireless Body Area Networks (WBANs), as highlighted by 

[1], have become pivotal in modern healthcare, providing a 

platform for continuous monitoring through sensors placed 

on or within the human body. sensors, crucial for transmitting 

vital health data, face the significant challenge of limited 

energy resources, as [2] and [11] emphasize, particularly in 

the context of energy harvesting from environmental and 

body-generated sources. The effective allocation of these 

limited resources, a topic explored by [4] and [10], is key to 

optimizing WBAN performance. The emerging field of 

artificial intelligence, particularly reinforcement learning 

(RL), has shown promise in improving performance in 

dynamic environments like WBANs, as identified in recent 

studies [17]. RL, framed as a Markov decision problem 

(MDP), involves an agent interacting with an environment, 

garnering rewards, and performing actions to maximize 

cumulative rewards. This concept has inspired the 

development of resource allocation techniques to boost 

energy efficiency in WBANs [16]. While there's limited 

integration of RL in energy-harvesting WBANs (EH-

WBANs), some recent advancements have modeled resource 

allocation in EH-WBANs as MDPs, applying Q-learning for 

optimal energy efficiency [16]. However, given the extensive 

traffic generated by WBANs, Q-learning's effectiveness 

diminishes due to its discrete state-space, highlighting the 

need for more sophisticated techniques to optimize resource 

allocation policies in EH-WBANs. Our study introduces a 

novel approach using actor-critic deep reinforcement 

learning to enhance resource allocation efficiency in energy-

harvesting WBANs. This method is particularly aligned with 

the QoS-aware strategies and energy-efficient designs 

proposed by [6] and [13]. Our approach promises to 

significantly improve the energy efficiency and operational 

reliability of WBANs, addressing the urgent need for 

sustainable and uninterrupted network functionality in 

critical healthcare applications. 

The following are the paper's primary contributions: 

• We formulate the energy efficiency as an actor-critic 

learning DRL framework to learn the resource 

allocation policy in EH-WBANs. 

• The simulation results show that the proposed AC 

approach can minimize the energy efficiency and 

speed of convergence and outperforms the 

traditional Q-learning by efficiently learning the 

optimal resource allocation policy in EH-WBANs. 

• efficiently learning the optimal resource allocation 

policy in EH-WBANs. 

2. SYSTEM MODEL 

In the proposed model, we have integrated an intricate actor-

critic deep reinforcement learning (DRL) framework within 

a Wireless Body Area Network (WBAN) system equipped 

with multiple energy-harvesting (EH) sensors. This network 

includes a variety of sensors such as EEG 

(electroencephalogram), ECG (electrocardiogram), motion 

detectors, glucose monitors, and EMG (electromyogram) 

sensors, all strategically embedded within the human body. 

These sensors are tasked with continuously monitoring a 

wide range of physiological parameters, capturing critical 

health data. 

The data gathered by these sensors is then relayed to a 

centralized medical server. This transmission occurs via a 

base station (BS) or a personal digital assistant (PDA), which 

functions as a crucial gateway in the system. The actor-critic 

DRL framework, which is meticulously implemented on this 

server, plays a pivotal role. It intelligently and autonomously 

learns to optimize resource allocation policies by processing 

and analyzing various network states. These states include 



 

diverse parameters such as the lengths of energy queues, data 

rates from the EH-WBAN sensors, and time slot allocations. 

In our proposed system, the actor module of the DRL 

framework is responsible for executing actions. These actions 

include dynamically adjusting the allocated time slots, 

judiciously choosing a relay node for data transmission, and 

selecting the most efficient transmission mode based on 

current network conditions. Parallel to this, the critic module 

undertakes the critical task of evaluating the effectiveness of 

the actions taken by the actor. This continuous feedback loop 

allows the actor module to refine and enhance its policy 

decisions progressively, with the overarching goal of 

maximizing the energy efficiency of the EH-WBAN system. 

Data transmission within this system can occur through two 

distinct modes: cooperative and direct. In the cooperative 

mode, the data transmission involves two hops, effectively 

using intermediate nodes to relay data. In contrast, the direct 

mode limits the data transmission to a single hop, directly 

from the sensor to the gateway.  

The decision to select between these transmission modes is 

governed by a binary variable within the system. 

Additionally, the Medium Access Control (MAC) layer of 

our system employs the Time Division Multiple Access 

(TDMA) protocol. This protocol divides the communication 

channel into multiple time slots, allowing for efficient and 

orderly data transmission, minimizing interference and 

maximizing throughput in the network. This advanced, 

dynamic approach to managing and transmitting data in the 

WBAN ensures optimal utilization of resources, enhancing 

the overall performance and reliability of the network in 

monitoring and managing patient health data. In the case of 

direct transmission mode α 𝑅𝑛 = 1, Two constraints as in Eq. 

(1) and (2) are considered; Eq. (1) indicates that the sink can 

only receive data from one sensor at each time slot, Eq (2) 

indicates that each sensor assigned at most to a one-time slot 

to forward the traffic in each time frame, and is represented 

as [17], 

∑ 𝐷𝑅𝑁
𝑘 ≤  1, k ∈  ψ,𝑁

𝑛=1                              (1) 

∑ 𝐷𝑅𝑛
𝑘𝐾

𝑘=1 ≤  1, n ∈ (1, 2, … , N),                 (2) 

Where 𝐷𝑅𝑛
𝑘  represents the data of the nth WBAN sensor 

forwarded on kth time slot time using a binary variable. We 

assume that the WBAN can forward the traffic on a single 

relay, and each relay node can forward the traffic from a 

single source node at a time, and the constraints can be seen 

in Eq. (3) and (4) as, 

∑ 𝐶𝑅𝑛→𝑠𝑚
𝑘𝑁

𝑚=1,𝑚≠𝑛  ≤ 1, ∑ 𝛿𝑅𝑛→𝑠𝑚
𝑘𝑁

𝑛=1,   𝑛≠𝑚  ≤ 1,   (3)  

∑ 𝐶𝑅𝑛→𝐻 
𝑘𝑁

𝑛=1,𝑛≠𝑚 ≤ 1, ∑ 𝛿𝑅𝑛→𝐻 
𝑘𝑁

𝑚=1,   𝑚≠𝑛 ≤ 1      (4)  

Where 𝐶𝑅𝑛
𝑘  represents that the data of nth node can be 

forwarded on kth time slot of the channel. The transmission 

rate of the direct mode and cooperative mode, as in Eq. (5) 

and (6) are used for the transmission of the traffic that can be 

written according to Shannon’s theorem as follows [17], 

𝑇𝑛
𝑑 =  ∑ 𝐷𝑅𝑛

𝑘𝐾
𝑘=1 . 𝐵. 𝑙𝑜𝑔2(1 + 𝑆𝐼𝑁𝑅𝑛,𝑘

𝑑 )              (5) 

𝑇𝑛
𝑐,   𝑠 →𝑟 = ∑ ∑ 𝐶𝑅𝑛→𝑅𝑚 

𝑘𝐾
𝑘=1 .𝑁

𝑚= 1
𝑚 ≠𝑛

𝐵. 𝑙𝑜𝑔2 (1 + 𝑆𝐼𝑁𝑅𝑛,𝑚,𝑘
𝑠  → 𝑟)                                                            

(6) 

Where, 𝑇𝑛
𝑑 shows the data rate of nth sensor in direct 

transmission mode and 𝑇𝑛
𝑐 is the data rate of the nth body in 

cooperative transmission approach. The data is stored as 

packets in the device's buffer with an average rate of λd [18]. 

We assume the buffer space is finite and follows a FIFO. In 

timeslot k, 𝐼𝑄𝑅𝑛
𝑘   represents the instantaneous queue length at 

the nth  sensor and 𝐼𝑄𝑅𝑛
𝑚𝑎𝑥  denotes the maximum queue length 

of the device that can be written as follows [18], 

𝐼𝑄𝑆𝑛
𝑘 =

𝑚𝑖𝑛 {𝐼𝑄𝑇𝑛
𝑚𝑎𝑥 , 𝐼𝑄𝑇𝑛

𝑘−1𝑚𝑖𝑛 {⌊
𝐶𝑇𝑛.𝑇𝑛

𝑑+(1− 𝐶𝑇𝑛).𝑇𝑛
𝑐 

𝑆𝑑𝑎𝑡𝑎
 ⌋ , 𝐼𝑄𝑇𝑛

𝑘−1 } +

 𝐴𝑅𝑛
𝑘−1}                                                                    (7)  

 In the above equation, traffic packet size is denoted by  𝑆𝑑𝑎𝑡𝑎, 

and 
𝐶𝑇𝑛.𝑇𝑛

𝑑+(1− 𝐶𝑇𝑛).𝑇𝑛
𝑐 

𝑆𝑑𝑎𝑡𝑎
 is the instantaneous service rate of 

transmission in the (k – 1)th timeslot of the nth sensor, and 

𝐴Sn
𝑘−1 is the arriving traffic packet. 

The proposed system model utilizes the EH model as in [19], 

where the energy harvested in the k time slots by the nth 

WBAN sensor is denoted by {EHn, 1, EHn, 2, . . . , EHn, t, . . . , 

EHn, K} that shows the sequence of energy harvested in a 

transmission frame. As a result, the instantaneous energy with 

a queue length can be represented as, 

𝐼𝑄𝑇𝑛
𝑘 = min {𝐼𝑄𝑇𝑛

𝑚𝑎𝑥 , 𝑄𝑇𝑛
𝑘−1 − 𝑚𝑖𝑛 {⌊

𝑃𝑛.𝑘−1

𝑃𝑆𝑒𝑛𝑒𝑟𝑔𝑦
 ⌋ , 𝐼𝑄𝑇𝑛

𝑘−1 } +

 𝐼𝑛, 𝑘 − 1}                    (8)                                                 

where 𝐼𝑄𝑇𝑛
𝑘  is represented as instantaneous energy sequence 

length. 𝐼𝑄𝑇𝑛
𝑚𝑎𝑥   is denoted for the max energy sequence length 

of body sensors. 𝑃𝑆𝑒𝑛𝑒𝑟𝑔𝑦  is the energy packet size. 𝑃𝑛 . 𝑘 − 1 

denotes the transmission power of the body sensor in the k − 

1th time slot. I𝑛, 𝑘 − 1 shows the time sequence of energy 

harvested in a transmission frame at the k-1 time slot.  

The objective function (OF), which is the energy efficiency 

of the nth WBAN in the k time slots for the proposed system, 

can be mathematically represented as, 

𝑂𝐹𝑅𝑛
𝑘 =  

𝐶𝑆𝑛.𝑇𝑛
𝑑+(1− 𝐶𝑆𝑛).𝑇𝑛

𝑐

𝑃𝑛,𝑘
 ∀𝑛∈ (1,2, … , 𝑁), ∀𝑛∈  𝜑 (9) 

 

 



 

We define average efficiency problem as, 

                  𝑂𝐹 =  
1

𝑁
 . ∑ ∑ 𝑂𝐹Sn

𝑘𝐾𝑁
𝑁=1

𝐾
𝑘=1           (10) 

Finally, the proposed energy-efficiency in EH-WBAN can 

be formulated as, 

                              max   OF, 

subject to: 

∑ 𝐷𝑇𝑁
𝑘 ≤  1, k ∈  ψ,𝑁

𝑛=1                           (10 a) 

∑ 𝐷𝑇𝑛
𝑘

𝐾

𝑘=1

≤  1, n ∈ (1, 2, … , N), (10 b) 

𝑅n
𝑑 =  ∑ 𝐷𝑇𝑛

𝑘𝐾
𝑘=1 . 𝐵. 𝑙𝑜𝑔2(1 + 𝑆𝐼𝑁𝑅𝑛,𝑘

𝑑 ) (10 c) 

 

𝑇n
𝑐,   𝑠 →𝑟 = ∑ ∑ 𝐶𝑇𝑛→𝑇𝑚 

𝑘𝐾
𝑘=1 .𝑁

𝑚= 1
𝑚 ≠𝑛

𝐵. 𝑙𝑜𝑔2 (1 +

𝑆𝐼𝑁𝑅𝑛,𝑚,𝑘
𝑠  → 𝑟)                                                    (10 d) 

 

∑ 𝐶𝑠𝑛→𝑠𝑚
𝑘𝐾

𝑘=1  ∑ 𝐶𝑠𝑛→𝐻 
𝑘𝐾

𝑘=1 ≤ 1 𝑛 ≠ 𝑚        (10 e) 

 

∑ 𝐶𝑠𝑛→𝑠𝑚
𝑘𝐾

𝑘=1  ∑ 𝐶𝑠𝑛→𝐻 
𝑘𝐾

𝑘=1 ≤ 1 𝑛 ≠ 𝑚      (10 f) 

∑ 𝐶Sn→Sm
k𝑥

𝑘=1  −  ∑ 𝐶 Sm→H 
𝑘𝐾

𝑘=𝑥+1 ≥  0        (10 g) 

 

∑ 𝐼𝑄Sn
𝑘𝐾

𝑘=1 − ∑ ⌈
𝑃𝑛,𝑘−1

𝑃𝑆𝑒𝑛𝑒𝑟𝑔𝑦
⌉𝐾

𝑘=1  ≤  𝐼𝑄Sn
𝑚𝑎𝑥      (10 h) 

 

3. PROPOSED AC-DRL FRAMEWORK 

In our reformulated RL problem for EH-WBAN, we frame it 

as a Markov Decision Process (MDP) with four key 

components: action at, state-space st, reward rt, and transition 

probability Pt. Recognizing the limitations of traditional RL 

methods like Q-learning in extensive state-space scenarios, 

we've adopted an actor-critic (AC) deep reinforcement 

learning (DRL) framework.  

This framework divides into two parts: the actor, responsible 

for actions to maximize cumulative rewards (policy 

improvement), and the critic, which evaluates these actions 

using a function approximator under policy π (policy 

evaluation).  

The critic's function approximator adaptively refines the 

actor's policy for optimal resource allocation. We delve into 

both components, highlighting how they process data from 

WBAN sensors wn
k ∈ w such as data Dn

k and energy queue 

length En
k, and how the actor adjusts actions like relay node 

selection, transmission mode, and time slots for maximum 

efficiency rewards, subsequently evaluated and refined by the 

critic. 

A. Actor part 

The objective of the actor part is to search for the best 𝜃 under 

a given policy π 𝜃 to maximize the expected reward J(π 𝜃). 

The policy gradient technique is used to update the policy of 

actor with respect to varying 𝜃 as, 

             𝜃𝑡+1 =  𝜃𝑡 + 𝑎 ∇𝜃𝑡  𝑙𝑜𝑔𝜋𝜃𝑡  (𝑠𝑡 , 𝑎𝑡)𝛿𝑡 .          (11) 

The expected total reward while following a policy π can be 

mathematically written as, 

     ∇𝜃𝐽 (𝜃) =  𝐸𝜋𝜃[∇𝜃 log 𝜋𝜃  (𝑠, 𝑎) 𝛿𝑡]                 (12) 

B. Critic part 

The function of the critic component is to approximate the 

actions taken by the actor part and update the policy π. The 

state-action value function used for function approximation 

can be written as, 

                     𝑄𝜋(s,a)∑ 𝜃𝑖 𝛼𝑖(𝑠, 𝑎)                         𝑛
𝑖=1 (13) 

The approximation function used by the critic follows a 

temporal difference (TD) that is used for updating the value 

of   𝑄𝜋(s,a)  and is written as, 

       𝛿𝑡 =  𝑅𝑡 + 𝛾𝑉 (𝑉𝑡+1) − (𝑉𝑡)           (14)                   

The problem of EH-WBAN is formulated as an MDP, and its 

details can be seen as follows: 

States: The states from the WBAN sensors  Dn
k  and En

k 

which show the data and energy queue length of the sensors 

in the nth body sensor, are generated from the EH-WBAN 

environment. The states are forwarded from the WBAN 

environment to the actor-critic framework.  

Actions: The action at  ∈ A taken by the agent is to vary the 

resource allocation variables, αRn is the transmission mode, 

δkRn shows the relay selection, pn,k is the power allocation and 

βkRn is the allocation of time slot.  The actor component can 

take the actions to maximize the energy efficiency of the 

network. 

Rewards:  The objective of the proposed AC is to maximize 

the energy efficiency as shown in Eq. (10) of the network. 

 

Algorithm 1 

1. Initialize the parameters of the AC framework 

𝜃, 𝛾, 𝑎𝑛𝑑 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒𝑠 

2. for t=1.. T :  do  

3.         Generate action according to π 𝜃(𝑎|s) 

4.         Observe the reward rt and next state st+1 

5.         Store the observations in tuple (at, st, rt, Pt) 



 

6.         Select mini-batch from samples 

7.         Update parameters of critic 

                𝛿𝑡 =  𝑅𝑡 +  𝛾𝑉 (𝑉𝑡+1) − (𝑉𝑡) 

8.          Update parameters of actor 

                                 ∇𝜃𝐽 (𝜃) =  𝐸𝜋𝜃[∇𝜃 log 𝜋𝜃  (𝑠, 𝑎) 𝛿𝑡] 

9.   end for 

  

Algorithm 1 shows the proposed AC framework for resource 

allocation in EH-WBANs. Initially, the agent in the actor part 

explores the environment and performs actions randomly, 

such as relay node, transmission mode, time slot, and 

transmission power without, considering the queue and data 

state of WBANs. The learning rate α, weights 𝜃, and discount 

factor γ of the AC framework are initialized (line 1).  

The agent initially takes random action following a policy 

π 𝜃(𝑎|s) (line 3),  and receives a reward value EE in our 

framework and next-state (line 4),.  

The agent's experience with the EH-WBAN framework is 

stored in a tuple form as in (line 5). After sufficient samples 

are collected, the AC framework takes a mini-batch of the 

samples for the training.  The critic uses a function 

approximator and, based on reward, minimizes the error by 

using the TD as in (line 7).  

The critic forwards the updated weights to the actor as in (line 

8), and the agent tunes its weight. After training, the agent 

will try to take those actions ( relay node, transmission mode, 

time slot, and transmission power) that can maximize the EE 

considering the data and queue state of the sensor in the EH-

WBAN. 

 

4. SIMULATION RESULTS 

The simulation setup for our actor-critic (AC) framework in 

training the EH-WBAN is detailed in Table 1. We 

benchmarked our AC framework against a standard model 

[17] that utilizes Q-learning RL for resource allocation in EH-

powered WBANs.  

For evaluating the effectiveness of our proposed scheme 

against this benchmark, we used two key metrics: energy 

efficiency and average delivery probability. This comparative 

analysis aims to demonstrate the enhanced performance of 

our AC framework in resource allocation efficiency within 

EH-WBANs. 

 

Parameters Actor  Critic 

Hidden layers 2 2 

Nodes 32 32 

Activation function 

(hidden layer) 

ReLU ReLU 

Activation function 

(output layer) 

Sigmoid Linear 

Learning rate 0.9 0.9 

Batch size 64 64 

Discount factor 0.5 0.5 

Number of episodes 200 200 

Simulator Python 3.6 

Library Keras 

 

Table 1 

 

a) Energy efficiency per episode 

Figure 1 illustrates the enhanced performance of our 

proposed actor-critic (AC) framework compared to 

benchmark schemes in energy efficiency, particularly as the 

number of episodes increases. This figure clearly 

demonstrates that our AC technique effectively explores the 

WBAN environment and learns the optimal resource 

allocation policy. It notably achieves a 24% improvement in 

energy efficiency over the benchmark model. Additionally, 

the scalability of our AC technique is evaluated by expanding 

the WBAN network size, reflecting its potential in large-scale 

intelligent healthcare networks, particularly in the context of 

IoT-generated healthcare traffic. 

 

 

Fig. 1 Energy efficiency comparison with increasing number of 

episodes. 

 



 

 

Fig. 2 Energy efficiency comparison with increasing number of 

WBAN sensors 

 

b) Energy efficiency with varying sensors 

Figure 2 demonstrates that our AC framework boosts energy 

efficiency by 15% compared to the benchmark, especially as 

the number of nodes rises. The improvement is particularly 

notable with 11 sensors, illustrating AC's ability to optimize 

resource allocation in larger networks. This contrasts with the 

benchmark's Q-learning algorithm, which underperforms in 

expanded networks. 

 

Fig. 3 Energy efficiency comparison with varying energy 

harvesting rate 

 

c) Energy efficiency with varying harvesting rate 

Figure 3 reveals that the proposed AC technique significantly 

surpasses the traditional Q-learning in energy efficiency, 

especially when the energy harvesting rate exceeds eight 

packets per second, achieving a 20% improvement. The AC's 

strength lies in its ability to discern the interplay between 

transmission mode, power allocation, and energy harvesting, 

unlike Q-learning, which struggles with extensive EH-

WBAN networks due to its inability to evaluate actions 

effectively in large state-spaces. 

 

 

Fig. 5 Average delivery probability  

 

d) Average delivery probability 

Figure 4 indicates that the AC technique outperforms Q-

learning in delivery probability, especially important given 

WBANs' diverse quality of service requirements. The AC 

method not only meets these requirements but also shows 

superior learning and exploration capabilities for resource 

allocation, resulting in higher delivery probabilities. While 

Q-learning initially performs well, it struggles and its 

effectiveness drops significantly as the network size 

increases, showcasing the scalability and higher performance 

of the proposed AC approach. 

 

5.  RELATED WORK 

Wireless Body Area Networks (WBANs) serve as a key 

technology in healthcare, utilizing sensors implanted in the 

human body for continuous monitoring of physiological data. 

However, a major challenge in WBANs is maintaining 

consistent network functionality due to energy limitations. To 

overcome this, Energy Harvesting (EH) techniques have been 

proposed to extend the network's lifespan by harnessing 

energy from environmental sources, thus improving the 

network's sustainability and reliability in healthcare 

applications. In the field of WBAN, optimization techniques 

like Particle Swarm Optimization (PSO) have been employed 

for resource allocation in Energy Harvesting (EH)-based 

networks, as cited in references [12-15]. However, due to the 

complex and mobile nature of EH-WBAN systems, these 

conventional optimization methods struggle in accurately 

formulating the network's mathematical representation. This 

limitation points to the need for model-free approaches to 

effectively tackle resource allocation challenges in EH-based 

WBANs. Reinforcement Learning (RL) is a model-free 

approach in which an agent learns an optimal policy through 

interaction with an environment, receiving rewards for 

actions taken. In the context of EH-WBAN, researchers have 

explored RL, specifically Q-learning techniques, to devise 

resource allocation policies, as noted in reference [17]. This 



 

approach allows for adaptive learning in complex and 

dynamic network environments. However, the Q-learning 

technique fails to perform well when the number of state-

space such as deployed sensors increases in EH-WBAN. This 

highlights a notable gap in current literature, underscoring the 

need for advanced RL methods capable of efficiently 

managing resource allocation in large and continuously 

expanding WBAN networks. 

6. CONCLUSION 

In this study, we have innovatively applied an actor-critic-

based Deep Reinforcement Learning (DRL) technique to 

optimize resource allocation in Energy Harvesting-powered 

Wireless Body Area Networks (EH-WBAN). Our algorithm 

stands out for its adaptive learning from the network's 

dynamic, varied parameters, demonstrating superior energy 

efficiency optimization over traditional benchmark models. 

Notably, it excels in handling expanded network state-spaces, 

showcasing its practical applicability in real-world EH-

WBAN scenarios. 

Future research directions include exploring federated 

learning. This approach aims to further improve the 

generalization capability of our DRL model within EH-

WBANs, potentially enhancing its performance across a 

broader range of network environments. The integration of 

federated learning is expected to enrich the model's learning 

process, drawing from diverse data sources while maintaining 

essential privacy and security in healthcare data handling. 

Overall, our study lays a foundational step towards more 

intelligent, efficient, and scalable wireless healthcare 

monitoring systems. 
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