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Abstract This study introduces an innovative actor-critic
deep reinforcement learning approach for optimizing
resource allocation in energy-harvesting Wireless Body Area
Networks (WBANSs). Facing the challenge of limited sensor
energy, our method efficiently manages key parameters like
transmission mode, relay selection, and energy utilization,
significantly enhancing WBAN's energy efficiency and
delivery probability. Through simulations, we demonstrate
our technique's superior performance over traditional models,
showcasing its potential for future WBAN implementations.

1. Introduction:

Wireless Body Area Networks (WBANS), as highlighted by
[1], have become pivotal in modern healthcare, providing a
platform for continuous monitoring through sensors placed
on or within the human body. sensors, crucial for transmitting
vital health data, face the significant challenge of limited
energy resources, as [2] and [11] emphasize, particularly in
the context of energy harvesting from environmental and
body-generated sources. The effective allocation of these
limited resources, a topic explored by [4] and [10], is key to
optimizing WBAN performance. The emerging field of
artificial intelligence, particularly reinforcement learning
(RL), has shown promise in improving performance in
dynamic environments like WBANS, as identified in recent
studies [17]. RL, framed as a Markov decision problem
(MDP), involves an agent interacting with an environment,
garnering rewards, and performing actions to maximize
cumulative rewards. This concept has inspired the
development of resource allocation techniques to boost
energy efficiency in WBANs [16]. While there's limited
integration of RL in energy-harvesting WBANs (EH-
WBANS), some recent advancements have modeled resource
allocation in EH-WBANs as MDPs, applying Q-learning for
optimal energy efficiency [16]. However, given the extensive
traffic generated by WBANs, Q-learning's effectiveness
diminishes due to its discrete state-space, highlighting the
need for more sophisticated techniques to optimize resource
allocation policies in EH-WBANSs. Our study introduces a
novel approach using actor-critic deep reinforcement
learning to enhance resource allocation efficiency in energy-
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harvesting WBANS. This method is particularly aligned with
the QoS-aware strategies and energy-efficient designs
proposed by [6] and [13]. Our approach promises to
significantly improve the energy efficiency and operational
reliability of WBANSs, addressing the urgent need for
sustainable and uninterrupted network functionality in
critical healthcare applications.

The following are the paper's primary contributions:

o  We formulate the energy efficiency as an actor-critic
learning DRL framework to learn the resource
allocation policy in EH-WBANS.

e The simulation results show that the proposed AC
approach can minimize the energy efficiency and
speed of convergence and outperforms the
traditional Q-learning by efficiently learning the
optimal resource allocation policy in EH-WBANS.

o cfficiently learning the optimal resource allocation
policy in EH-WBANSs.

2. SYSTEM MODEL

In the proposed model, we have integrated an intricate actor-
critic deep reinforcement learning (DRL) framework within
a Wireless Body Area Network (WBAN) system equipped
with multiple energy-harvesting (EH) sensors. This network
includes a variety of sensors such as EEG
(electroencephalogram), ECG (electrocardiogram), motion
detectors, glucose monitors, and EMG (electromyogram)
sensors, all strategically embedded within the human body.
These sensors are tasked with continuously monitoring a
wide range of physiological parameters, capturing critical
health data.

The data gathered by these sensors is then relayed to a
centralized medical server. This transmission occurs via a
base station (BS) or a personal digital assistant (PDA), which
functions as a crucial gateway in the system. The actor-critic
DRL framework, which is meticulously implemented on this
server, plays a pivotal role. It intelligently and autonomously
learns to optimize resource allocation policies by processing
and analyzing various network states. These states include
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diverse parameters such as the lengths of energy queues, data
rates from the EH-WBAN sensors, and time slot allocations.

In our proposed system, the actor module of the DRL
framework is responsible for executing actions. These actions
include dynamically adjusting the allocated time slots,
judiciously choosing a relay node for data transmission, and
selecting the most efficient transmission mode based on
current network conditions. Parallel to this, the critic module
undertakes the critical task of evaluating the effectiveness of
the actions taken by the actor. This continuous feedback loop
allows the actor module to refine and enhance its policy
decisions progressively, with the overarching goal of
maximizing the energy efficiency of the EH-WBAN system.

Data transmission within this system can occur through two
distinct modes: cooperative and direct. In the cooperative
mode, the data transmission involves two hops, effectively
using intermediate nodes to relay data. In contrast, the direct
mode limits the data transmission to a single hop, directly
from the sensor to the gateway.

The decision to select between these transmission modes is
governed by a binary variable within the system.
Additionally, the Medium Access Control (MAC) layer of
our system employs the Time Division Multiple Access
(TDMA) protocol. This protocol divides the communication
channel into multiple time slots, allowing for efficient and
orderly data transmission, minimizing interference and
maximizing throughput in the network. This advanced,
dynamic approach to managing and transmitting data in the
WBAN ensures optimal utilization of resources, enhancing
the overall performance and reliability of the network in
monitoring and managing patient health data. In the case of
direct transmission mode oo Rn = 1, Two constraints as in Eq.
(1) and (2) are considered; Eq. (1) indicates that the sink can
only receive data from one sensor at each time slot, Eq (2)
indicates that each sensor assigned at most to a one-time slot
to forward the traffic in each time frame, and is represented
as [17],
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Where Df, represents the data of the n WBAN sensor
forwarded on & time slot time using a binary variable. We
assume that the WBAN can forward the traffic on a single
relay, and each relay node can forward the traffic from a
single source node at a time, and the constraints can be seen
in Eq. (3) and (4) as,
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Where C,’{n represents that the data of n” node can be

forwarded on k" time slot of the channel. The transmission
rate of the direct mode and cooperative mode, as in Eq. (5)
and (6) are used for the transmission of the traffic that can be
written according to Shannon’s theorem as follows [17],
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Where, T, shows the data rate of n” sensor in direct
transmission mode and T;¢ is the data rate of the n” body in
cooperative transmission approach. The data is stored as
packets in the device's buffer with an average rate of Ad [18].
We assume the buffer space is finite and follows a FIFO. In
timeslot k, IQ¥, represents the instantaneous queue length at
the n” sensor and IQF:®* denotes the maximum queue length

of the device that can be written as follows [18],
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In the above equation, traffic packet size is denoted by Sy4tq,
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transmission in the (k — )" timeslot of the n” sensor, and

AK-1 is the arriving traffic packet.

is the instantaneous service rate of

The proposed system model utilizes the EH model as in [19],
where the energy harvested in the k time slots by the n®
WBAN sensor is denoted by {EH,, 1, EH, 2, ..., EH, o, . . .,
EH, g} that shows the sequence of energy harvested in a
transmission frame. As a result, the instantaneous energy with
a queue length can be represented as,
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where 1QX, is represented as instantaneous energy sequence
length. IQT:&* is denoted for the max energy sequence length
of body sensors. PSgpergy is the energy packet size. B k — 1
denotes the transmission power of the body sensor in the k —
1th time slot. In, k — 1 shows the time sequence of energy
harvested in a transmission frame at the k-1 time slot.

The objective function (OF), which is the energy efficiency
of the n” WBAN in the k time slots for the proposed system,
can be mathematically represented as,
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We define average efficiency problem as,
1
OF = N k=1 LY OFskn (10)

Finally, the proposed energy-efficiency in EH-WBAN can
be formulated as,
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3. PROPOSED AC-DRL FRAMEWORK

In our reformulated RL problem for EH-WBAN, we frame it
as a Markov Decision Process (MDP) with four key
components: action a;, state-space s, reward r;, and transition
probability P,. Recognizing the limitations of traditional RL
methods like Q-learning in extensive state-space scenarios,
we've adopted an actor-critic (AC) deep reinforcement
learning (DRL) framework.

This framework divides into two parts: the actor, responsible
for actions to maximize cumulative rewards (policy
improvement), and the critic, which evaluates these actions
using a function approximator under policy m (policy
evaluation).

The critic's function approximator adaptively refines the
actor's policy for optimal resource allocation. We delve into
both components, highlighting how they process data from
WBAN sensors w,* € w such as data D,* and energy queue
length E,* and how the actor adjusts actions like relay node

selection, transmission mode, and time slots for maximum
efficiency rewards, subsequently evaluated and refined by the
critic.

A. Actor part

The objective of the actor part is to search for the best 6 under
a given policy m 8 to maximize the expected reward J(z 9).
The policy gradient technique is used to update the policy of
actor with respect to varying 6 as,

Or41 = 0; +a Vg, logmg, (s¢, ar)y. (11)

The expected total reward while following a policy © can be
mathematically written as,

Vo] (6) = Eng[Vglogmy (s,a) 6] (12)
B.  Critic part

The function of the critic component is to approximate the
actions taken by the actor part and update the policy m. The
state-action value function used for function approximation
can be written as,

Q™ (s,a)X i, 0i ai(s,a) (13)

The approximation function used by the critic follows a
temporal difference (TD) that is used for updating the value
of Q™(s,a) and is written as,

6= R+ yY Vi) — (V) (14)

The problem of EH-WBAN is formulated as an MDP, and its
details can be seen as follows:

States: The states from the WBAN sensors D,f and E.*
which show the data and energy queue length of the sensors
in the n” body sensor, are generated from the EH-WBAN
environment. The states are forwarded from the WBAN
environment to the actor-critic framework.

Actions: The action a; € 4 taken by the agent is to vary the
resource allocation variables, aR, is the transmission mode,
OkR, shows the relay selection, p,  is the power allocation and
PkR, is the allocation of time slot. The actor component can
take the actions to maximize the energy efficiency of the
network.

Rewards: The objective of the proposed AC is to maximize
the energy efficiency as shown in Eq. (10) of the network.

Algorithm 1

1. Initialize the parameters of the AC framework
0,y,and learning rates
fort=1..T: do
Generate action according to = 6(a|s)
Observe the reward r; and next state s,+;
Store the observations in tuple (a, s;, ri, Py)
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6. Select mini-batch from samples

7. Update parameters of critic
8= Re+ vV (Vey) = (V)
8. Update parameters of actor

Vo] (8) = Epg[Vglogmy (s,a) 6]
9. end for

Algorithm 1 shows the proposed AC framework for resource
allocation in EH-WBANS. Initially, the agent in the actor part
explores the environment and performs actions randomly,
such as relay node, transmission mode, time slot, and
transmission power without, considering the queue and data
state of WBANSs. The learning rate o, weights 6, and discount
factor y of the AC framework are initialized (line 1).

The agent initially takes random action following a policy
w0 (als) (line 3), and receives a reward value EE in our
framework and next-state (line 4),.

The agent's experience with the EH-WBAN framework is
stored in a tuple form as in (line 5). After sufficient samples
are collected, the AC framework takes a mini-batch of the
samples for the training. The critic uses a function
approximator and, based on reward, minimizes the error by
using the TD as in (line 7).

The critic forwards the updated weights to the actor as in (line
8), and the agent tunes its weight. After training, the agent
will try to take those actions ( relay node, transmission mode,
time slot, and transmission power) that can maximize the EE
considering the data and queue state of the sensor in the EH-
WBAN.

4. SIMULATION RESULTS

The simulation setup for our actor-critic (AC) framework in
training the EH-WBAN is detailed in Table 1. We
benchmarked our AC framework against a standard model
[17] that utilizes Q-learning RL for resource allocation in EH-
powered WBANS.

For evaluating the effectiveness of our proposed scheme
against this benchmark, we used two key metrics: energy
efficiency and average delivery probability. This comparative
analysis aims to demonstrate the enhanced performance of
our AC framework in resource allocation efficiency within
EH-WBAN:S.

Parameters Actor Critic

Hidden layers 2 2

Nodes 32 32

Activation function | ReLU ReLU
(hidden layer)
Activation function | Sigmoid Linear
(output layer)
Learning rate 0.9 0.9
Batch size 64 64
Discount factor 0.5 0.5
Number of episodes 200 200
Simulator Python 3.6
Library Keras

Table 1

a) Energy efficiency per episode

Figure 1 illustrates the enhanced performance of our
proposed actor-critic (AC) framework compared to
benchmark schemes in energy efficiency, particularly as the
number of episodes increases. This figure clearly
demonstrates that our AC technique effectively explores the
WBAN environment and learns the optimal resource
allocation policy. It notably achieves a 24% improvement in
energy efficiency over the benchmark model. Additionally,
the scalability of our AC technique is evaluated by expanding
the WBAN network size, reflecting its potential in large-scale
intelligent healthcare networks, particularly in the context of
IoT-generated healthcare traffic.
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Fig. 1 Energy efficiency comparison with increasing number of
episodes.
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Fig. 2 Energy efficiency comparison with increasing number of
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b) Energy efficiency with varying sensors

Figure 2 demonstrates that our AC framework boosts energy
efficiency by 15% compared to the benchmark, especially as
the number of nodes rises. The improvement is particularly
notable with 11 sensors, illustrating AC's ability to optimize
resource allocation in larger networks. This contrasts with the
benchmark's Q-learning algorithm, which underperforms in
expanded networks.
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Fig. 3 Energy efficiency comparison with varying energy
harvesting rate

¢) Energy efficiency with varying harvesting rate

Figure 3 reveals that the proposed AC technique significantly
surpasses the traditional Q-learning in energy efficiency,
especially when the energy harvesting rate exceeds eight
packets per second, achieving a 20% improvement. The AC's
strength lies in its ability to discern the interplay between
transmission mode, power allocation, and energy harvesting,
unlike Q-learning, which struggles with extensive EH-
WBAN networks due to its inability to evaluate actions
effectively in large state-spaces.
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Fig. 5 Average delivery probability

d) Average delivery probability

Figure 4 indicates that the AC technique outperforms Q-
learning in delivery probability, especially important given
WBANSs' diverse quality of service requirements. The AC
method not only meets these requirements but also shows
superior learning and exploration capabilities for resource
allocation, resulting in higher delivery probabilities. While
Q-learning initially performs well, it struggles and its
effectiveness drops significantly as the network size
increases, showcasing the scalability and higher performance
of the proposed AC approach.

5. RELATED WORK

Wireless Body Area Networks (WBANSs) serve as a key
technology in healthcare, utilizing sensors implanted in the
human body for continuous monitoring of physiological data.
However, a major challenge in WBANs is maintaining
consistent network functionality due to energy limitations. To
overcome this, Energy Harvesting (EH) techniques have been
proposed to extend the network's lifespan by harnessing
energy from environmental sources, thus improving the
network's sustainability and reliability in healthcare
applications. In the field of WBAN, optimization techniques
like Particle Swarm Optimization (PSO) have been employed
for resource allocation in Energy Harvesting (EH)-based
networks, as cited in references [12-15]. However, due to the
complex and mobile nature of EH-WBAN systems, these
conventional optimization methods struggle in accurately
formulating the network's mathematical representation. This
limitation points to the need for model-free approaches to
effectively tackle resource allocation challenges in EH-based
WBANSs. Reinforcement Learning (RL) is a model-free
approach in which an agent learns an optimal policy through
interaction with an environment, receiving rewards for
actions taken. In the context of EH-WBAN, researchers have
explored RL, specifically Q-learning techniques, to devise
resource allocation policies, as noted in reference [17]. This



approach allows for adaptive learning in complex and
dynamic network environments. However, the Q-learning
technique fails to perform well when the number of state-
space such as deployed sensors increases in EH-WBAN. This
highlights a notable gap in current literature, underscoring the
need for advanced RL methods capable of efficiently
managing resource allocation in large and continuously
expanding WBAN networks.

6. CONCLUSION

In this study, we have innovatively applied an actor-critic-
based Deep Reinforcement Learning (DRL) technique to
optimize resource allocation in Energy Harvesting-powered
Wireless Body Area Networks (EH-WBAN). Our algorithm
stands out for its adaptive learning from the network's
dynamic, varied parameters, demonstrating superior energy
efficiency optimization over traditional benchmark models.
Notably, it excels in handling expanded network state-spaces,
showcasing its practical applicability in real-world EH-
WBAN scenarios.

Future research directions include exploring federated
learning. This approach aims to further improve the
generalization capability of our DRL model within EH-
WBANSs, potentially enhancing its performance across a
broader range of network environments. The integration of
federated learning is expected to enrich the model's learning
process, drawing from diverse data sources while maintaining
essential privacy and security in healthcare data handling.
Overall, our study lays a foundational step towards more
intelligent, efficient, and scalable wireless healthcare
monitoring systems.

References:

1. M. Salayma, A. Al-Dubai, I. Romdhani, and Y. Nasser,
“Wireless body area network (WBAN): A survey on
reliability, fault tolerance, and technologies coexistence,”
ACM Comput. Surv., vol. 50, no. 1, 2017, Art. no. 3

2. C.Dagdeviren, Z. Li, and Z. L. Wang, “Energy harvesting
from the animal/human body for self-powered
electronics,” Annu. Rev. Biomed. Eng., vol. 19, no. 1, pp.
85-108, 2017.

3. R.Zhang, H. Moungla, J. Yu, and A. Mehaoua, “Medium
access for concurrent traffic in wireless body area
networks: Protocol design and analysis,” IEEE Trans.
Veh. Technol., vol. 66, no. 3, pp. 2586-2599, Mar. 2017.

4. M. Razzaque, M. T. Hira, and M. Dira, “QoS in body area
networks: A survey,” ACM Trans. Sensor Netw., vol. 13,
no. 3, 2017, Art. no. 25.

5. Liu, Z., Liu, B., & Chen, C. W. (2017). Transmission-rate-
adaption assisted energy-efficient resource allocation with
QoS support in WBANS. /EEE Sensors Journal, 17(17),
5767-5780.

6. Ramis-Bibiloni, J., & Carrasco-Martorell, L. (2020).
Energy-Efficient and QoS-Aware Link Adaptation With
Resource Allocation for Periodical Monitoring Traffic in
SmartBANSs. /[EEE Access, 8, 13476-13488.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Askari, Z., Abouei, J., Jaseemuddin, M., & Anpalagan, A.
(2021).  Energy-Efficient and Real-Time NOMA
Scheduling in IoMT-Based Three-Tier WBANSs. /[EEE
Internet of Things Journal, 8(18), 13975-13990.

Z. Liu, B. Liu, C. Chen, and C. W. Chen, ‘‘Energy-
efficient resource allocation with QoS support in wireless
body area networks,”” in Proc. IEEE Global Commun.
Conf. (GLOBECOM), San Diego, CA, USA, Dec. 2015,
pp. 1-6.

B. Liu, Z. Yan, and C. W. Chen, ‘“Medium access control
for wireless body area networks with QoS provisioning
and energy efficient design,”” IEEE Trans. Mobile
Comput., vol. 16, no. 2, pp. 422-434, Feb. 2017.

Liu, Z., Liu, B., & Chen, C. W. (2018). Joint power-rate-
slot resource allocation in energy harvesting-powered
wireless body area networks. [EEE Transactions on
Vehicular Technology, 67(12), 12152-12164.

Akhtar, F., & Rehmani, M. H. (2017). Energy harvesting
for self-sustainable wireless body area networks. /T
Professional, 19(2), 32-40.

Huang, C., Zhang, R., & Cui, S. (2014). Optimal power
allocation for outage probability minimization in fading
channels with energy harvesting constraints. /[EEE
Transactions on Wireless Communications, 13(2), 1074-
1087.

Goyal, R., Patel, R. B., Bhaduria, H. S., & Prasad, D.
(2021). An energy efficient QoS supported optimized
transmission rate technique in WBANSs. Wireless
Personal Communications, 117(1), 235-260.

Panhwar, M. A., Zhong Liang, D., Memon, K. A.,
Khuhro, S. A., Abbasi, M. A. K., & Ali, Z. (2021).
Energy-efficient routing optimization algorithm in
WBANSs for patient monitoring. Journal of Ambient
Intelligence and Humanized Computing, 12(7), 8069-
8081.

S. Leng and A. Yener, “Resource allocation in body area
networks for energy harvesting healthcare monitoring,” in
Handbook of Large-Scale Distributed Computing in
Smart Healthcare, Berlin, Germany: Springer, 2017, pp.
553-587

Chen, G., Zhan, Y., Sheng, G., Xiao, L., & Wang, Y.
(2018). Reinforcement learning-based sensor access
control for WBANS. IEEE Access, 7, 8483-8494.

Xu, Y. H, Xie,J. W., Zhang, Y. G., Hua, M., & Zhou, W.
(2020). Reinforcement learning (RL)-based energy
efficient resource allocation for energy harvesting-
powered wireless body area network. Sensors, 20(1), 44.

Mitran, P. On optimal online policies in energy harvesting
systems for compound poisson energy arrivals. In
Proceedings of the IEEE International Symposium on
Information Theory, Cambridge, MA, USA, 1-6 July
2012



	1. Introduction:
	2. SYSTEM MODEL

