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Abstract—Today’s electrical grid is experiencing a fast tran-
sition toward a smart infrastructure. Modern smart grid is
expected to integrate Artificial Intelligence of Things (AloT)-
empowered energy management systems (EMS) to sense, analyze,
and optimize the power consumption and QoS of diverse end
users. Non-Intrusive Load Monitoring (NILM) plays a key role
in this transition, particularly considering that many legacy
devices/appliances may not have built-in sensors. Yet most of
the NILM solutions rely on large (often impractical) datasets for
training. In this paper, we address this challenge through a meta
learning-inspired approach, which implements a hierarchical
architecture with a “meta-learner” to supervise the training of
each appliance. Current EMS also relies on a central controller
to access long-term information across all participants, which
mismatches their distributed nature, and so often with slow
responses. To this end, we develop a deep reinforcement learning
based controller to make dynamic decisions for each component
in the system. The experiment results based on real-world data
sets and simulation data show that applying the meta learning
approach can greatly improve the performance of NILM and the
QoS of the whole system.

I. INTRODUCTION

As the governments of many countries have made com-
mitments to limit the annual carbon emissions and urban
waste by 2050, the electrical grid has also started a transition
trend from the traditional fossil-based grid to a sustainable
and digitalized smart/green grid [1]. One core enabling tech-
nology towards this trend is Internet of Things (IoT) and
the further Artificial Intelligence of Things (AloT), providing
the increasing availability of sensed data and allowing auto-
mated online temporal analyses and thus data-driven solutions
[2]. As such, AloT-Based Smart Grid (SG) is proposed as
a significant enhancement of the traditional power grid to
better utilize recent advances on information technologies
and renewable power generations like wind and solar, with
the capabilities to establish bidirectional communications and
power flows among consumers and utilities, which can in
turn adopt corresponding strategies to maintain the Quality of
Service (QoS) for modern smart IoT-enabled energy systems,
such as improving transmission efficiency, reducing pollution
emissions, improving grid security, responding to disturbances
quickly and so many other benefits [3] [4].
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Fig. 1: NILM for appliances in a house.

One critical functionality that lies in the center of SG
is the AloT-empowered energy management system (EMS)
for a microgrid. With all the components in the system
connected by network and the data collected and analyzed by a
central controller, the system can provide more opportunities
to increase energy usage efficiency, save cost, improve the
security level and so on [5] [6] [7]. For example, an EMS in a
residential microgrid can involve renewable power generation
units, energy storage systems (ESS) and appliances in one
or more houses sharing a nearby neighborhood. A central
controller collected the data of all the components in the
system and schedule the operation of ESS and appliances to
minimize the operation cost while maximizing the comfort
level of customers.

One of the key tasks in such an EMS is predicting the
operation time of appliances from the historical data and using
this to maximize the comfort level of customers. Yet, although
more and more appliances in the smart home have equipped
with networking modules and can be controlled remotely
nowadays, the household penetration of smart appliances is
still at a low rate (5.5%) and will not grow to a substantial
portion (15%) in the near future [8]. More importantly, many
old houses only have one central power meter, and it is
not possible to post-install a smart meter for each of the
appliances. This makes the EMS can hardly optimize the grid
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without enough detailed information about such appliances.
Fortunately, Non-Intrusive Load Monitoring (NILM) [9], also
known as energy disaggregation, has shown its great potential
to be the data “sensor” for these appliances without physical
interaction and “connect” them into nowadays IoT-based smart
grid, where the operation information of each appliance can
be predicted from the central meter and then utilized by the
EMS for optimization.

As an example, Fig. 1 shows NILM in a house with several
appliances. Specifically, the input of NILM is the aggregated
sequence of power consumption which is recorded by a central
meter (e.g., a smart meter in a house). The objective of
NILM is to estimate the power consumption of each appliance
from the input of aggregated power consumption sequence.
Different roles in the smart grid can benefit from NILM. For
customers, the appliance-level power consumption feedback
can help them get more detailed information on power con-
sumption in their house, and it has been shown that providing
disaggregated power consumption of appliances can save up
to 20% of power per dwelling [10]. For utilities, NILM can be
guidelines for demand response [11]. In particular, utility com-
panies can shed specific loads that are less important during
peak hours with detailed information on power consumption to
relieve the burden of the grid [12]. On the other hand, although
recent years deep learning methods have been widely used
for NILM [13] [14] [15] [16] [17] [18], most of them still
need a large volume of data for training to acceptable results.
This is because different appliances have quite unique power
consumption patterns and even the same type of appliance can
vary depending on its brand. Moreover, in most of the current
deep learning based NILM, the model of each appliance is
trained independently, which further slows down the learning
process and makes it hard for practical deployment.

In this paper, we propose a hierarchical meta learning-
inspired approach for NILM to fast learn the patterns of appli-
ances with limited training data and leverage the correlation
of different appliances. The key idea is to utilize a tiered
architecture to train the models. Besides the prediction model
of each appliance which we call the “learner”, there is also a
model named “meta-learner” which supervises the training of
each appliance by generating the parameters of each “learner”
model. Different from the previous deep learning methods
that need to train a model for each appliance, our method
can train one model for the prediction of all the appliances.
Our approach can be easily applied to most of existing deep
learning based methods such as Seq2Seq and Seq2Point [14].
To maximize its benefits, we further adapt a new deep learning
model Conv-TasNet [19] into the NILM scenario and propose
a meta learning inspired TasNet NILM (MeTas-NILM) model
based on our approach.

In addition, most of the current EMS [6] [7] assume the
central controller can acquire all the information of the system
in a long period and use these for optimization. The real
situation is that the controller can only get limited information
and make decisions based on the current observation of the
system. To solve this dynamic decision problem, we propose
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Fig. 2: Framework of NRLEMS

an EMS for an AloT-empowered residential microgrid based
on NILM and deep reinforcement learning (DRL), which we
call NRLEMS. We use the Actor-Critic method based on
Proximal Policy Optimization (PPO) [20] algorithm to solve
this RL problem.

The results of our extensive experiments based on real-
world datasets and simulations on our own generated dataset
show that our hierarchical meta learning-inspired approach can
greatly improve the accuracy of NILM. And our MeTas-NILM
can also achieve fast learning objective by efficient parameter
sharing with even better results by appliance-specific parame-
terization. The performance evaluation shows the effectiveness
of the NRLEMS and further comparison shows that the better
prediction results of NILM improve the Quality of Service
(QoS) of the whole system.

II. NRLEMS DESIGN AND SYSTEM MODEL

In this paper, we consider an energy management system
in an AloT-empowered residential microgrid that has some
renewable power generation units, an energy storage system
(ESS), and several appliances in one dwelling, as illustrated
in Fig. 2. For the power provider side, the power grid is
modeled as an infinite power source with real-time power price
changing over time. Two types of renewable power generators,
photovoltaic (PV) power plants and wind turbines (WT),
provide free power for the residential microgrid. Although the
current energy harvesting systems can support self-sustainable
or energy neutral operations [21], we still consider the power
grid for generality. A central controller schedules and operates
the appliances and the ESS unit, where the former serve as
the consumers in the microgrid, and the latter can be both
the providers and consumers. The preferred operation time
can be specified by customers manually or predicted by the
NILM tool using the historical data. Each component in the
system is connected to the network, so as to be controllable
by the central controller. The QoS of the system can be
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measured as minimizing the operation cost of the microgrid
while maximizing the comfort level of the customers, which
is determined by the preferred operation time and the true
operation time of appliances. The following of this section
will describe the mathematical model of each part and the
problem definition.

Previous works [6] [22] have shown that ESS can not only
serve as backup power during a blackout but also provide
opportunities for demand reshaping to save cost in both
industrial and residential scenarios. State of Charge (SoC)
measures the level of charge of the ESS relative to its capacity.
Let ¢ denote the time index in a time period 7', and the SoC
of ESS in time ¢ 4+ 1 can be calculated as

SoC(t+1) = SoC(t) + Sess(t) - Nenden) - Renaeny (1)

where 7.5 (4ch)is charging (discharging) efficiency of ESS,
Rep(acn) is charging (discharging) rate of ESS, and Sgss(t)
is the status of ESS. Sgss(f) = 1 if ESS is charging,
Spss(t) = —1 if ESS is discharging, and Sgss(t) = 0 if
ESS is not used. The SoC of ESS should also be limited in
a certain lower and upper bound to have a longer lifetime as
shown in Eq. 2. The operation cost of ESS at time t Cgsg(?)
can be represented as Eq. 3, where cggg is the operation cost
of ESS for one time unit.

S0Cin < SOC(t) < S0Chmaq (2)

3)

Another cost considered in our system is incurred by the
power demand from the power grid. Let P,,,(t) denote the
power demand of all the appliances in the microgrid at time
t, the power demand from the power grid Py,;q(t) can be
calculated as Eq. 4, where Prss(t) = Sess(t) - Nen(den) -
Reh(dcny is the power consumed or provided by the ESS at
time ¢. Py (t) and Ppy (t) are the power provided by the
WT and PV, which are determined by the weather condition
at time ¢ (wind speed and solar radiation).

Cgss(t) =|Sess(t)| - css

Pgrid(t) = maa:{O, Papp(t) + PESS(t) — PWT(t) — va(t)}

“4)

The total operation cost OC can be calculated as the

summation of money paid for power from the power grid and

the cost of ESS. Our first objective is to minimize the total

cost of the microgrid, as shown in Eq. 5, where RT P(t) is
the real-time price of power at time t.

Min: OC =Y " [RTP(t) - Pyria(t) + Crss(t)]
teT

®)

Another objective is to maximize the comfort level of
customers, which is measured by the preferred operation time
of each appliance and the true operation time scheduled by
the system [6]. If the preferred operation time is not specified
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Fig. 3: The architecture of Meta-Seq2Seq and Meta-Seq2Point.

by the customer, we use the operation time predicted by the
NILM tool on historical data as the preferred operation time.
For a number of N appliances considered in the system, let
OT,, and POT,, denote the true operation time and preferred
operation time of the n-th appliance, the total comfort level
CL can be calculated as Eq. 6, where ¢ is a penalty factor
and SD,, is the satisfaction degree of the n-th appliance.

neN

(6)

Based on the above modeling of each part in the system,
our objective to minimize the operation cost while maintaining
the maximum comfort level of customers (QoS of the whole
system) can be represented as Eq. 7, where w; and ws are
two coefficients to adjust the importance of each objective.

)

III. META LEANING-INSPIRED APPROACH FOR NILM

The NILM tool is a crucial component in NRLEMS and
its accuracy largely determine the QoS of the system. At first,
we will give the specific problem statement of NILM. Let z?
denotes the power consumption of i-th appliance at time step
t. The aggregated power consumption sequence at time ¢ can
be represented as

Max: ¥V = w; - CL —wy - OC

yt:Z‘Ti'FGt

iEN

®)

where N is the set of all appliances, and ¢; is the Gaus-
sian noise with zero mean and variance o7 at time t. Let
y = (y1,y2,...yr) and x' = (2%, 2%,...,2%) denote the
power consumption sequence of the aggregation and the i-th
appliance over a time period T'. The objective of NILM is to
estimate each power consumption sequence x’ from the input
of aggregation sequence y. In this section, we will first intro-
duce the baseline methods Seq2Seq and Seq2Point that we
will compare with our approaches in the experiments. Then we
will introduce our meta-learning inspired approaches Meta-
Seq2Seq and Meta-Seq2Point extended from the baselines.
At last, we will propose a more complicated approach MeTas-
NILM which leverages Conv-TasNet [19], a deep learning
approach for end-to-end time-domain speech separation.
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A. Meta-Seq2Seq and Meta-Seq2Point

In previous works [13] [14] [17], deep learning approaches
for NILM use sliding windows y, ,, = (¥¢, ..., Yt4w—1) as
inputs for practical reasons. In [14], instead of predicting the
corresponding sliding window X, ., = (¢, ..., Ty4—1) Of the
target appliance, Zhang et al. propose a method that only
predict the midpoint element x;|,,/2| of the target appliance
as the output. They have shown that sequence-to-point learning
outperforms previous sequence-to-sequence work for NILM
both in experiments and theoretical analysis. The inputs of
the models are the sliding window of the aggregated power
sequence and the outputs are the predicted power sequence
of a specific appliance. The only difference between these
models is that the Seq2Point only has the midpoint of the
sliding window as the output. However, these models have
several problems. At first, they need to train a model for
each appliance and it will be very time-consuming. Another
problem is that they do not leverage the correlation among
different appliances, which means each appliance is trained
independently and the model does not consider the similarities
and dissimilarities among different appliances.

To this end, we want to leverage the correlation among
different appliances and want to train the model quickly.
We also start from the Seq2Seq and Seq2Point baselines
models. But instead of directly training the model for each
appliance, we use a meta learning-inspired architecture as
shown in Fig. 3. We use another model which we call “meta-
learner” to generate some parameters of the previous Seq2Seq
and Seq2Point models. The inputs of the “meta-learner” are
the one-hot vectors of all the appliances, these vectors are
then projected into embedding of the appliances E where the
“meta-learner” can encode the attributes of the appliances in
multiple dimensions and use these as guidelines to generate
the parameters of the model for prediction (the “learner”). The
“meta-learner” generates the kernel parameters of convolution
layers in the “learner” as:

®k = LkBkE (9)

where By, € RM'XM and [, € RIO*M" are learnable
linear functions that generate the kernel parameters of the k-
th convolution layer ©. M is the dimension of the original
embedding £ and M’ is the bottleneck dimension which
is further constrained with M’ < M so that the “meta-
learner” extracts the M’ most relevant characteristics of the
appliances. The architecture of “learner” remains same for
all the appliances. In this way, we only need to train one
model for all the appliances while still enabling appliance-
specific parameterization. In the experiments, we found this
can help to save about half of the time. And the “meta-learner”
can also encode the attributes — similarities and dissimilarities
of different appliances, which are expected to improve the
prediction results of the appliances.
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B. MeTas-NILM

Another problem of the baseline models is that they have
relatively simple architecture and do not consider the data
sequence with different time range, only with several simple
convolution layers and linear layers. We also apply our ideas
to a more complicated model and want to see if this can
improve the performance. We propose another meta learning-
inspired approach based on Conv-TasNet [19] which we call
MeTas-NILM. The architecture of MeTas-NILM is shown in
Fig. 4. The “meta-learner” part is same as the Meta-Seq2Seq
and Meta-Seq2Point while the “learner” part is based on
Conv-TasNet [19]. The “learner” has three sub-components
to implement the tasks of NILM. At first, given a sliding
window of aggregated power consumption of all appliances
Yiw (Yt, -, Yt+w—1), the encoder encodes them into a
latent high-dimensional representation of power consumption
signals r = encoder(y, ,,) € R™™ where [ is the dimension
of the latent representation. Then this latent representation
will be the inputs of a masking model which calculates the
masks of each appliance m; = mask;(r) € [0,1]"*™. The
separated representation of each appliance r; is obtained by
the element-wise product of each appliance’s masks and the
representation of the aggregation: 7; = r ® m;. In this way,
the model is expected to identify the targeted area of each
appliance in the representation domain. At last, a decoder
(with the same architecture as the encode) reconstructs the
separated power consumption sequence of each appliance
X;, = («},..,2},, ) from the masked representation:
X; ., = decoder(r;) € R,

For the encoder and decoder in the “learner”, we use a more
complicated architecture instead of a single 1-D convolutional
layer used in the original TasNet. The inputs of the aggregated
power signal are passed to m convolutional layers with a
different number of filters and different filter sizes. In specific,
the i—th convolutional layer has 1/4% x L filters and the size of
each filter is 2¢ x W, where L and W are the base number of
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filters and base size of each filter. Then the information of all
n convolutional layers is concatenated together and passed to
two additional 1-D convolutional layers to generate the latent
representation 7 € R/™, In this way, our encoder is capable
of capturing the features from the aggregated inputs in the
different time ranges. The decoder uses a similar architecture
as the encoder to match the capacity of the encoder. The
masked representation of each appliance 7; € R!*™ is first
transformed by two Conv-ReLU layers. Then the outputs are
split and passed to n transposed 1-D convolutional layers with
the same number and size of filters as in the encoder. At last,
the outputs of all layers and summed together to construct
the estimated power consumption sequence of each appliance
Xi,w = (3, -y ‘T%-&-w—l)-

In the architecture of the “learner”, the masking model is
of most interest since it contains the appliance-specific in-
formation and the encoder and decoder are appliance-agnostic
and remain the same for the whole task. So the “meta-learner”
model in MeTas-NILM will generate the parameters of the k-
th convolutional layers in the masking model ®;, in a similar
way to Meta-Seq2Seq and Meta-Seq2Point:

q.)k = LkBkE (10)

We use the fully-convolutional separation model proposed
in [19] as the masking model in MeTas-NILM. This model is
based on the temporal convolutional network (TCN) [23] [24],
which is proposed as a replacement for RNNs in sequence
modeling tasks. As shown in Fig. 4, the masking model
consists of several layers of stacked 1-D dilated convolution
blocks. The dilation factors of each block increase exponen-
tially to get large temporal context information considering the
different range dependencies of the power signal, as denoted
with different colors in Fig. 4. In the masking model, X
convolution blocks with 1,2,...,2X~1 dilation factors are
repeated H times. To ensure the output length is the same
as the input length, the input to each block is zero-padded
accordingly. Then the outputs of all the blocks are added
together and passed to a convolution block with kernel size
1 for mask estimation.

Compared with Meta-Seq2Seq and Meta-Seq2Point,
MeTas-NILM is more complicated and have more parameters.
It takes a long time to train, but we expect it to have
better performance. We will validate this hypothesis in the
performance evaluation.

IV. DRL-DRIVEN CENTRAL CONTROLLER

The central controller in our system needs to dynamically
schedule the operation of each appliance and the ESS unit
given the input of real-time price of power, weather condition,
and the customer pattern predicted by the NILM tool. As deep
reinforcement learning (DRL) has been shown to achieve great
success in solving similar sequential decision problems with
dynamic environments in other research areas, we propose a
DRL-driven central controller design in this section to further
improve the overall performance of our system. To this end, we
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first convert the central controller scheduling problem into an
RL task and then use a policy gradient algorithm named Actor-
Critic method with Proximal Policy Optimization (PPO) [20]
algorithm to solve it. Since the state space in our problem is
high-dimensional, we use Neural Networks (NNs) to represent
both the actor and critic components.

At first, we define the state of the environment at each
time step t. According to the modeling of the environment
in Section II, the state s; can be represented as

sy = (RTP,weather, POT, flag, SoC) (11)

where RTP and weather are vectors to represent the real-
time price of power and weather conditions in a time period.
POT is a vector to represent the preferred operation time of
each appliance, either specified by the customer or predicted
by the NILM tool. flag is a vector to show if each appliance
has already been operated recently. At last, the scalar SoC' is
the current State of Charge of ESS. Given the state and action
of each time step, the environment gives back the reward r;
which is calculated as Eq. 7.

The network architecture of the actor and critic is shown in
Fig. 5. For time-series input like RTP and weather conditions,
we use 1D convolution layers. For all the other scalar input we
use fully connected layers. Then all the results are flattened
and concatenated to a new layer, which is then fed to both
the actor and critic network. For each input state s;, the actor
component needs to output an action a; which determines the
schedule of each appliance and the ESS. There are three status
for the ESS, charge, discharge or not use. So we use two
bits to represent the operation of the ESS. Similarly, for each
appliance, there are two status, close or open. So we use one
bit to represent the operation of each appliance. To represent
all the operation combinations, we need a binary with 2 + NV
bits to represent the action. Fig. 6 shows an example action
representation with 4 appliances. The first two bits are “10”
to represent that the ESS is charging at time ¢. The latter four
bits show the status of each appliance. In this example, “0010”
means that only the second appliance is open at time t.
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Unfortunately, the standard policy gradient algorithm can
have great turbulence while training, which means the network
may fall into a dead end and can never recover. To this end, we
utilize the Proximal Policy Optimization (PPO) [20] algorithm
to clip the size of each training step. Instead of the traditional
objective L (0) = F,[log ma(a|s:) As], PPO uses the clipped
surrogate objective as

LEP(0) = g [min(re(0) Ay, clip(r4(0),1 — e, 14+ €)A;] (12)
where

mo(at|st)
Weozd(at|3t)

ri(0) = (13)

r4(6) is the probability ratio of the new and old policy. A,
is the estimate of the advantage function and e controls the
clip bounds. At last, the total loss function is the summation
of this clipped PPO objective and two additional terms:

Lot (9) = [, [LSP(0)— ey MSE(V(s))+c2S[m](s1)] (14)

where ¢; and ¢y are coefficients of the two terms. The first
term is the mean square error of the value function V(s),
which is used to update the baseline network. The second
term is the entropy of the policy, which is used to ensure
enough exploration during training. Since we use two distinct
networks for actor and critic components, we do not need this
second term in our problem.

Let « denote the learning rate, and the policy parameter 6
can be updated as the gradient ascent of the total loss:

0« 0+ad VoL 0) (15)
t

V. PERFORMANCE EVALUATION

In this section, we first introduce the real-world data sets, the
simulation data sets generated by ourselves, and the evaluation
metrics. We then present the evaluation results of different
NILM models. At last, we will evaluate the QoS of the whole
NRLEMS. All of the models are trained on NVIDIA RTX
A5000 and implemented in Python using PyTorch.

A. Data Sets and Evaluation Metrics

To evaluate the performance of MeTas-NILM, we use both
experiments and simulations. There are several real-world
data sets such as REDD [25], UK-DALE [26] and REFIT
[27]. We use UK-DALE for experiments. In UK-DALE, both

the aggregated and individual appliance power consumption
were recorded every 6 seconds. The data set contains the
information of 5 UK houses from November 2012 to April
2017. We normalize the data using the same way as the
previous work [14].

In the evaluation, we use two metrics to compare different
methods. The first one is the normalized signal aggregate
error (SAE). This metric is useful when we are interested
in the total error of power consumption over a period. Let
2; and x; denote the ground truth and the prediction of an
appliance power consumption at time ¢. The metric SAE can
be represented as

SAE: |Zt§jt _Etxt|
Zt Ty
The second metric is the mean absolute error (MAE). This
metric is useful when we are interested in the average error
of power consumption over a period 7'. The metric MAE can
be represented as

(16)

T
1 .
MAE = ;:1 |2 — @ (17)

B. Results of MeTas-NILM

We first compared Meta-Seq2Seq, Meta-Seq2Point and
MeTas-NILM with Seq2Seq and Seq2Point using the data
of House3 in UK-DALE data set. House3 has 4 types of
appliances: kettle, heater, laptop, and projector. There are
about 510,000 rows of data in total (about 36 days of data
in 6 seconds intervals). We use 80% of the data for training
and use the remaining 20% for testing.

Fig. 7 shows the plots of the prediction results of different
approaches. We can see that meta learning-based approaches
can predict the results better. Our MeTas-NILM can have
better prediction results in most of the cases but still miss some
representational patterns of certain appliances. For example,
as shown in Fig. 7-(e), MeTas-NILM does not predict the
pattern of the Projector appliance well. Table. I shows the
comparison of SAE and MAE metrics on different appliances
in House3. The results show that although the improvement
for the SAE metric is not very significant since the baselines
already get small SAE values, our meta-learning approaches
can remarkably improve the prediction results compared to the
baselines for the MAE metrics. In particular, Meta-Seq2Seq
decreases the value from 17.90 to 17.22 compared to Seq2Seq
and Meta-Seq2Point decreases the value from 19.44 to 18.04
compared to Seq2Point. Our MeTas-NILM approach can
reduce the mean error by 39% compared to Seq2Seq.

As the time interval of the real world data set is long (from
3 seconds to 8 seconds), we also collected some data from
different appliances in one second time interval. The types of
appliances we have are air conditioner, refrigerator, hairdryer,
rice cooker, television, drum washing machine, oven, air
heater, kettle, hot-water heater, microwave, turbo washing
machine, vacuum cleaner, and range hoods. For appliances
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Fig. 7: Prediction results of different appliances in UK-DALE House3 from different methods

TABLE I: Comparison of normalized signal aggregate error (SAE) and mean absolute error (MAE) on different appliances in

UK-DALE House3

Error measures appliances Seq2Seq Seq2Point Meta-Seq2Seq Meta-Seq2Point Meta-NILM
Kettle 0.11 0.14 0.15 0.15 0.08
Heater 0.11 0.02 0.17 0.14 0.02
SAE Laptop 0.77 2.17 0.74 0.88 0.70
Projector 0.14 0.20 0.09 0.09 0.17

Overall 0.28+0.28 0.63+0.89 0.89+0.26 0.3240.33 0.2440.26
Kettle 5.47 14.56 13.58 13.58 4.94
Heater 23.82 13.91 18.66 15.02 7.36
MAE Laptop 40.35 44.16 34.90 41.16 24.82
Projector 2.60 5.11 2.18 243 6.80

Overall 17.90£15.17 19.44+£14.75 17.22+11.77 18.04+14.21 10.98-£8.04

that have different working modes (such as hairdryers and
air heaters), we also collected data of the appliance in the
different working states. As our data set only records the
data in a short time period, we generate large-scale data with
data augmentation. For the appliances that only have one
working mode (e.g., kettle), we generate the simulated data
with random time intervals among each operating period of
the appliance. For the appliances that have several working
modes, we generate the simulated data by randomly selecting
one working mode, and then adding random time intervals
among each operating period of the appliance. The aggregation
power consumption sequence is generated by adding the power
consumption data of all the appliances. In this way, our
simulation data set can include the combination of different
appliances in a random pattern. We call the generated data set
as Simulation in the rest of the paper.

We generate 1,000,000 rows of data (about 12 days of
data in one-second intervals) for evaluation. We use 800,000
rows of data for training and 200,000 rows of data for
testing. Fig. 8 shows the plots of the prediction results for
different appliances from different approaches. To save space
we choose three appliances to display: drum washing machine,
hot-water heater, and range hoods. The results show that our
Meta-NILM can have better prediction results in most of
the cases. We also compare the MAE and SAE metrics on
different appliances in Simulation data set. The results show
that our meta-learning approaches can improve the prediction

results compared to the original approaches. For the MAE
metrics, Meta-Seq2Seq decreases the value from 15.38 to
10.23 compared to Seq2Seq and Meta-Seq2Point decreases
the value from 20.36 to 11.34 compared to Seq2Point. Our
MeTas-NILM approach can achieve the best performance
with about 50% improvements of MAE value and about 34%
improvements of SAE value compared to Seq2Seq.

The evaluation results of both experiments on real-world
data sets and simulation show that meta learning-inspired
approaches can achieve better performance compared to the
baselines for the NILM problem. Then to evaluate if meta
learning-inspired approaches can train the model faster com-
pared to the baselines that train each appliance independently,
we also compare the training time of different approaches on
each data set. The results show that the original Seq2Seq and
Seq2Point models need about 1 hour to train one model for
each appliance and the total time to train all the appliances is
about 4 hours. But for the meta learning-based models. We can
train all the four appliances in about 2 hours, which can save
about half of the time. MeTas-NILM needs a much longer
time to train because of its complicated architecture. But the
training time of MeTas-NILM is still less than training all the
appliances using baseline approaches.

The experiment and simulation results we get show that
our meta-learning inspired approaches can train the model
faster and better with a relatively small data set. With such
a hierarchical architecture inspired by meta learning, our
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Fig. 8: Prediction results of different appliances in Simulation data set from different approaches
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Fig. 9: Data example of one day

approach can have more parameter sharing in the “learner”
part which can facilitate the training process. On the other
hand, the “meta-learner” part encodes the correlation among
different appliances and use this information to generate some
of the parameters in the “learner”. This can help the models
maintain appliance-specific information in the training process
and leverage the commonalities of different appliances, which
improves the prediction results of each appliance.

C. Performance Evaluation of NRLEMS

At last, we evaluate the performance of the proposed
NRLEMS on the Simulation data set. The RTP information
is from ENGIE Resources [28], and the weather conditions
(wind speed and solar radiation) are from NSRDB: National
Solar Radiation Database [29]. Fig. 9 shows the RTP and
PV, WT generation information in one day. According to the
weather condition, PV and WT generation can have drastic
turbulence. The RTP in one day can also vary as shown
by the green line in Fig. 9. All of these factors make the
scheduling of the appliances and ESS unit a big challenge. To
this end, we utilize DRL to train our central controller. We

—— NRLEMS with Seq2Point
—— NRLEMS with MeTas-NILM

10 15

Day

Fig. 10: Results of NRLEMS

20 25 30

denote 30 days as one episode in our environment. We train
our system for 5000 episodes and test it for 1000 episodes.
The results of our NRLMES with Seq2Point and MeTas-
NILM are shown in Fig. 10. Our MeTas-NILM method can
improve the performance of NRLEMS for about 9% compared
to Seq2Point.

VI. RELATED WORK
A. Applications of NILM in Smart Grid

NILM technology enables getting the appliance-level be-
havior of the customers using only the aggregation data
(which is usually recorded by one smart meter). It helps
to mitigate the requirements such as high-cost sensors on
each appliance, which is not realistic in most cases. NILM
provides a cost-efficient solution to get detailed power con-
sumption information of appliances and can be applied in
different situations. For residential microgrids, NILM can
get the information of user behavior and be guidelines for
appliances operation schedules. For example, Cimen et al. [6]
propose an efficient NILM-based energy management system
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(EMS) for residential microgrids. The detailed results of
different appliances obtained by NILM can be integrated and
analyzed in an EMS to create an efficient and user-centered
microgrid operation schedule. The simulation results show
that the proposed NILM-based EMS can save the overall cost
while improving the customer satisfaction ratio compared to a
traditional EMS. For industrial users who are the main load for
the grid, it is not possible for centralized monitoring of power
consumption due to the wide geography distribution like data
centers. NILM can be integrated into the distributed system
of each data center and analyze the relationship between
the workload and the power consumption. For example, Lee
et al. [30] propose a power measurement platform for data
centers based on NILM. The experiment results show that
this platform can recognize the peak power of each node
and provide opportunities for informed peak power reduction.
Yu et al. [31] adopt NILM on the collaborative computing
of the edge devices and edge data centers. By performing
the computing tasks on the computing resources close to the
data source of industrial users, the pressure of centralized data
center, the transmission bandwidth, and security privacy risk
are all improved.

B. Traditional Method Based on FHMM

Since Hart first proposed the problem of NILM [9], the
factorial hidden Markov model (FHMM) has been the most
popular method for a long time. Hidden Markov Models have
been shown well in speech recognition and other sequential
models. Several works applied FHMM and its variants to
tackle NILM problem [32] [33] [34]. The biggest problem
of these methods based on FHMM is their high computation
complexity, which will increase exponentially with the number
of appliances. On the other hand, some of these methods need
other information besides the aggregated sequence and each
appliance needs to be modeled in detail. All of these factors
limit the NILM method based on FHMM, especially for more
complex tasks. To this end, most of the recent works turn
to deep neural networks (DNN). DNN has shown remarkable
results in sequential models, such as speech recognition and
translation. Kelly et al. [13] show that applying DNN for
NILM achieves better performance than traditional methods
based on FHMM.

C. Deep Learning-Based NILM

DNN has been applied in the NILM field since Kelly et al.
[13] applied 3 different DNN models on NILM and showed
its dominance compared to previous methods. In the following
years, various models have been applied to the NILM problem.
For example, Zhang et al. [14] propose a sequence-to-point
learning method and Shin et al. [17] propose a subtask gated
network for NILM. Harell et al. [15] also apply a modified
WaveNet model for NILM. These methods however have
significant limits in that they need to train a model for each of
the appliances. That means we need to collect large volume
data of each appliance for training. This has become more and
more unrealistic since the types of appliances are increasing

rapidly nowadays. There are also some works that only need
one model to disaggregate the power consumption jointly.
Bejarano et al. [35] propose deep latent generative model.
This model can get the appliance-level power consumption
with one single model based on variational recurrent neural
networks (VRNNSs). We only need to train one model but we
have to retrain the model every time when new appliances
are added to get the new patterns. Extra information such as
the consumers’ location has also been exploited to get better
results [16]. These extra data on the other hand make the
training phase more and more complex and unrealistic, which
makes the method further and further from quick adaptation
to new appliances.

Meta-learning, also known as “learning to learn” [36], aims
to design models that can adapt to new tasks rapidly with a few
training examples. Prior meta-learning works mainly focus on
few-shot classification problem [37] [38], where a model must
adapt to new classes not seen in the training phase with limited
examples of each new class. Meta-learning can also be applied
to different tasks, such as supervised learning, reinforcement
learning and other more specific problems. There are also
some works that applied meta-learning to source separation
problems. Samuel et al. [39] propose a hierarchical model
based on meta-learning for music source separation. The
experiment results showed that their model contains fewer
parameters and runs faster than baselines.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed an energy management system
NRLEMS in AloT-empowered smart grid, which utilizes the
NILM tool as a data sensor in the system and connects legacy
appliances with IoT networks. To improve the performance
of NILM, we further proposed meta learning-inspired ap-
proaches. We started from two baseline models and extended
them to meta learning-inspired approaches. Then we proposed
another more complicated meta learning approach MeTas-
NILM based on TasNet. According to the problem of current
EMS, we utilize DRL for the central controller in the AloT-
empowered microgrid to make dynamic decisions. We also
collected data from different appliances and generated our
own simulation data set by data augmentation. The experiment
and simulation results showed that applying the meta learning
approach for NILM can improve the performance with a
shorter training time. We also evaluated our NRLEMS on
the simulation data set, and the results show that the improved
NILM tool can help to get better QoS of the whole system. Our
system is only based on a AloT-empowerd residential micro-
grid now. In our future work, we will leverage our approaches
on more different scenarios like industrial scenarios. We will
also combine more approaches such as federated learning and
meta reinforcement learning to improve the performance of
NRLEMS in the future.
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