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Abstract—Today’s electrical grid is experiencing a fast tran-
sition toward a smart infrastructure. Modern smart grid is
expected to integrate Artificial Intelligence of Things (AIoT)-
empowered energy management systems (EMS) to sense, analyze,
and optimize the power consumption and QoS of diverse end
users. Non-Intrusive Load Monitoring (NILM) plays a key role
in this transition, particularly considering that many legacy
devices/appliances may not have built-in sensors. Yet most of
the NILM solutions rely on large (often impractical) datasets for
training. In this paper, we address this challenge through a meta
learning-inspired approach, which implements a hierarchical
architecture with a “meta-learner” to supervise the training of
each appliance. Current EMS also relies on a central controller
to access long-term information across all participants, which
mismatches their distributed nature, and so often with slow
responses. To this end, we develop a deep reinforcement learning
based controller to make dynamic decisions for each component
in the system. The experiment results based on real-world data
sets and simulation data show that applying the meta learning
approach can greatly improve the performance of NILM and the
QoS of the whole system.

I. INTRODUCTION

As the governments of many countries have made com-

mitments to limit the annual carbon emissions and urban

waste by 2050, the electrical grid has also started a transition

trend from the traditional fossil-based grid to a sustainable

and digitalized smart/green grid [1]. One core enabling tech-

nology towards this trend is Internet of Things (IoT) and

the further Artificial Intelligence of Things (AIoT), providing

the increasing availability of sensed data and allowing auto-

mated online temporal analyses and thus data-driven solutions

[2]. As such, AIoT-Based Smart Grid (SG) is proposed as

a significant enhancement of the traditional power grid to

better utilize recent advances on information technologies

and renewable power generations like wind and solar, with

the capabilities to establish bidirectional communications and

power flows among consumers and utilities, which can in

turn adopt corresponding strategies to maintain the Quality of

Service (QoS) for modern smart IoT-enabled energy systems,

such as improving transmission efficiency, reducing pollution

emissions, improving grid security, responding to disturbances

quickly and so many other benefits [3] [4].

Fig. 1: NILM for appliances in a house.

One critical functionality that lies in the center of SG

is the AIoT-empowered energy management system (EMS)

for a microgrid. With all the components in the system

connected by network and the data collected and analyzed by a

central controller, the system can provide more opportunities

to increase energy usage efficiency, save cost, improve the

security level and so on [5] [6] [7]. For example, an EMS in a

residential microgrid can involve renewable power generation

units, energy storage systems (ESS) and appliances in one

or more houses sharing a nearby neighborhood. A central

controller collected the data of all the components in the

system and schedule the operation of ESS and appliances to

minimize the operation cost while maximizing the comfort

level of customers.

One of the key tasks in such an EMS is predicting the

operation time of appliances from the historical data and using

this to maximize the comfort level of customers. Yet, although

more and more appliances in the smart home have equipped

with networking modules and can be controlled remotely

nowadays, the household penetration of smart appliances is

still at a low rate (5.5%) and will not grow to a substantial

portion (15%) in the near future [8]. More importantly, many

old houses only have one central power meter, and it is

not possible to post-install a smart meter for each of the

appliances. This makes the EMS can hardly optimize the grid979-8-3503-9973-8/23/$31.00 © 2023 IEEE
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without enough detailed information about such appliances.

Fortunately, Non-Intrusive Load Monitoring (NILM) [9], also

known as energy disaggregation, has shown its great potential

to be the data “sensor” for these appliances without physical

interaction and “connect” them into nowadays IoT-based smart

grid, where the operation information of each appliance can

be predicted from the central meter and then utilized by the

EMS for optimization.

As an example, Fig. 1 shows NILM in a house with several

appliances. Specifically, the input of NILM is the aggregated

sequence of power consumption which is recorded by a central

meter (e.g., a smart meter in a house). The objective of

NILM is to estimate the power consumption of each appliance

from the input of aggregated power consumption sequence.

Different roles in the smart grid can benefit from NILM. For

customers, the appliance-level power consumption feedback

can help them get more detailed information on power con-

sumption in their house, and it has been shown that providing

disaggregated power consumption of appliances can save up

to 20% of power per dwelling [10]. For utilities, NILM can be

guidelines for demand response [11]. In particular, utility com-

panies can shed specific loads that are less important during

peak hours with detailed information on power consumption to

relieve the burden of the grid [12]. On the other hand, although

recent years deep learning methods have been widely used

for NILM [13] [14] [15] [16] [17] [18], most of them still

need a large volume of data for training to acceptable results.

This is because different appliances have quite unique power

consumption patterns and even the same type of appliance can

vary depending on its brand. Moreover, in most of the current

deep learning based NILM, the model of each appliance is

trained independently, which further slows down the learning

process and makes it hard for practical deployment.

In this paper, we propose a hierarchical meta learning-

inspired approach for NILM to fast learn the patterns of appli-

ances with limited training data and leverage the correlation

of different appliances. The key idea is to utilize a tiered

architecture to train the models. Besides the prediction model

of each appliance which we call the “learner”, there is also a

model named “meta-learner” which supervises the training of

each appliance by generating the parameters of each “learner”

model. Different from the previous deep learning methods

that need to train a model for each appliance, our method

can train one model for the prediction of all the appliances.

Our approach can be easily applied to most of existing deep

learning based methods such as Seq2Seq and Seq2Point [14].

To maximize its benefits, we further adapt a new deep learning

model Conv-TasNet [19] into the NILM scenario and propose

a meta learning inspired TasNet NILM (MeTas-NILM) model

based on our approach.

In addition, most of the current EMS [6] [7] assume the

central controller can acquire all the information of the system

in a long period and use these for optimization. The real

situation is that the controller can only get limited information

and make decisions based on the current observation of the

system. To solve this dynamic decision problem, we propose

Fig. 2: Framework of NRLEMS

an EMS for an AIoT-empowered residential microgrid based

on NILM and deep reinforcement learning (DRL), which we

call NRLEMS. We use the Actor-Critic method based on

Proximal Policy Optimization (PPO) [20] algorithm to solve

this RL problem.

The results of our extensive experiments based on real-

world datasets and simulations on our own generated dataset

show that our hierarchical meta learning-inspired approach can

greatly improve the accuracy of NILM. And our MeTas-NILM

can also achieve fast learning objective by efficient parameter

sharing with even better results by appliance-specific parame-

terization. The performance evaluation shows the effectiveness

of the NRLEMS and further comparison shows that the better

prediction results of NILM improve the Quality of Service

(QoS) of the whole system.

II. NRLEMS DESIGN AND SYSTEM MODEL

In this paper, we consider an energy management system

in an AIoT-empowered residential microgrid that has some

renewable power generation units, an energy storage system

(ESS), and several appliances in one dwelling, as illustrated

in Fig. 2. For the power provider side, the power grid is

modeled as an infinite power source with real-time power price

changing over time. Two types of renewable power generators,

photovoltaic (PV) power plants and wind turbines (WT),

provide free power for the residential microgrid. Although the

current energy harvesting systems can support self-sustainable

or energy neutral operations [21], we still consider the power

grid for generality. A central controller schedules and operates

the appliances and the ESS unit, where the former serve as

the consumers in the microgrid, and the latter can be both

the providers and consumers. The preferred operation time

can be specified by customers manually or predicted by the

NILM tool using the historical data. Each component in the

system is connected to the network, so as to be controllable

by the central controller. The QoS of the system can be
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measured as minimizing the operation cost of the microgrid

while maximizing the comfort level of the customers, which

is determined by the preferred operation time and the true

operation time of appliances. The following of this section

will describe the mathematical model of each part and the

problem definition.

Previous works [6] [22] have shown that ESS can not only

serve as backup power during a blackout but also provide

opportunities for demand reshaping to save cost in both

industrial and residential scenarios. State of Charge (SoC)

measures the level of charge of the ESS relative to its capacity.

Let t denote the time index in a time period T , and the SoC

of ESS in time t+ 1 can be calculated as

SoC(t+ 1) = SoC(t) + SESS(t) · ηch(dch) ·Rch(dch) (1)

where ηch(dch)is charging (discharging) efficiency of ESS,

Rch(dch) is charging (discharging) rate of ESS, and SESS(t)
is the status of ESS. SESS(t) = 1 if ESS is charging,

SESS(t) = −1 if ESS is discharging, and SESS(t) = 0 if

ESS is not used. The SoC of ESS should also be limited in

a certain lower and upper bound to have a longer lifetime as

shown in Eq. 2. The operation cost of ESS at time t CESS(t)
can be represented as Eq. 3, where cESS is the operation cost

of ESS for one time unit.

SoCmin ≤ SoC(t) ≤ SoCmax (2)

CESS(t) = |SESS(t)| · cESS (3)

Another cost considered in our system is incurred by the

power demand from the power grid. Let Papp(t) denote the

power demand of all the appliances in the microgrid at time

t, the power demand from the power grid Pgrid(t) can be

calculated as Eq. 4, where PESS(t) = SESS(t) · ηch(dch) ·
Rch(dch) is the power consumed or provided by the ESS at

time t. PWT (t) and PPV (t) are the power provided by the

WT and PV, which are determined by the weather condition

at time t (wind speed and solar radiation).

Pgrid(t) = max{0, Papp(t) + PESS(t)− PWT (t)− PPV (t)}
(4)

The total operation cost OC can be calculated as the

summation of money paid for power from the power grid and

the cost of ESS. Our first objective is to minimize the total

cost of the microgrid, as shown in Eq. 5, where RTP (t) is

the real-time price of power at time t.

Min: OC =
∑

t∈T

[RTP (t) · Pgrid(t) + CESS(t)] (5)

Another objective is to maximize the comfort level of

customers, which is measured by the preferred operation time

of each appliance and the true operation time scheduled by

the system [6]. If the preferred operation time is not specified
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Fig. 3: The architecture of Meta-Seq2Seq and Meta-Seq2Point.

by the customer, we use the operation time predicted by the

NILM tool on historical data as the preferred operation time.

For a number of N appliances considered in the system, let

OTn and POTn denote the true operation time and preferred

operation time of the n-th appliance, the total comfort level

CL can be calculated as Eq. 6, where ξ is a penalty factor

and SDn is the satisfaction degree of the n-th appliance.

Max: CL =
∑

n∈N

(1− ξ · |OTn − POTn|) · SDn (6)

Based on the above modeling of each part in the system,

our objective to minimize the operation cost while maintaining

the maximum comfort level of customers (QoS of the whole

system) can be represented as Eq. 7, where w1 and w2 are

two coefficients to adjust the importance of each objective.

Max: Ψ = w1 · CL− w2 ·OC (7)

III. META LEANING-INSPIRED APPROACH FOR NILM

The NILM tool is a crucial component in NRLEMS and

its accuracy largely determine the QoS of the system. At first,

we will give the specific problem statement of NILM. Let xi
t

denotes the power consumption of i-th appliance at time step

t. The aggregated power consumption sequence at time t can

be represented as

yt =
∑

i∈N

xi
t + ϵt (8)

where N is the set of all appliances, and ϵt is the Gaus-

sian noise with zero mean and variance σ2
t at time t. Let

y = (y1, y2, ..., yT ) and xi = (xi
1, x

i
2, ..., x

i
T ) denote the

power consumption sequence of the aggregation and the i-th
appliance over a time period T . The objective of NILM is to

estimate each power consumption sequence xi from the input

of aggregation sequence y. In this section, we will first intro-

duce the baseline methods Seq2Seq and Seq2Point that we

will compare with our approaches in the experiments. Then we

will introduce our meta-learning inspired approaches Meta-

Seq2Seq and Meta-Seq2Point extended from the baselines.

At last, we will propose a more complicated approach MeTas-

NILM which leverages Conv-TasNet [19], a deep learning

approach for end-to-end time-domain speech separation.
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A. Meta-Seq2Seq and Meta-Seq2Point

In previous works [13] [14] [17], deep learning approaches

for NILM use sliding windows yt,w = (yt, ..., yt+w−1) as

inputs for practical reasons. In [14], instead of predicting the

corresponding sliding window xt,w = (xt, ..., xt+w−1) of the

target appliance, Zhang et al. propose a method that only

predict the midpoint element xt+⌊w/2⌋ of the target appliance

as the output. They have shown that sequence-to-point learning

outperforms previous sequence-to-sequence work for NILM

both in experiments and theoretical analysis. The inputs of

the models are the sliding window of the aggregated power

sequence and the outputs are the predicted power sequence

of a specific appliance. The only difference between these

models is that the Seq2Point only has the midpoint of the

sliding window as the output. However, these models have

several problems. At first, they need to train a model for

each appliance and it will be very time-consuming. Another

problem is that they do not leverage the correlation among

different appliances, which means each appliance is trained

independently and the model does not consider the similarities

and dissimilarities among different appliances.

To this end, we want to leverage the correlation among

different appliances and want to train the model quickly.

We also start from the Seq2Seq and Seq2Point baselines

models. But instead of directly training the model for each

appliance, we use a meta learning-inspired architecture as

shown in Fig. 3. We use another model which we call “meta-

learner” to generate some parameters of the previous Seq2Seq

and Seq2Point models. The inputs of the “meta-learner” are

the one-hot vectors of all the appliances, these vectors are

then projected into embedding of the appliances E where the

“meta-learner” can encode the attributes of the appliances in

multiple dimensions and use these as guidelines to generate

the parameters of the model for prediction (the “learner”). The

“meta-learner” generates the kernel parameters of convolution

layers in the “learner” as:

Θk := LkBkE (9)

where Bk ∈ R
M ′×M and Lk ∈ R

|Θk|×M ′

are learnable

linear functions that generate the kernel parameters of the k-

th convolution layer Θk. M is the dimension of the original

embedding E and M ′ is the bottleneck dimension which

is further constrained with M ′ < M so that the “meta-

learner” extracts the M ′ most relevant characteristics of the

appliances. The architecture of “learner” remains same for

all the appliances. In this way, we only need to train one

model for all the appliances while still enabling appliance-

specific parameterization. In the experiments, we found this

can help to save about half of the time. And the “meta-learner”

can also encode the attributes – similarities and dissimilarities

of different appliances, which are expected to improve the

prediction results of the appliances.
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Fig. 4: The architecture of MeTas-NILM.

B. MeTas-NILM

Another problem of the baseline models is that they have

relatively simple architecture and do not consider the data

sequence with different time range, only with several simple

convolution layers and linear layers. We also apply our ideas

to a more complicated model and want to see if this can

improve the performance. We propose another meta learning-

inspired approach based on Conv-TasNet [19] which we call

MeTas-NILM. The architecture of MeTas-NILM is shown in

Fig. 4. The “meta-learner” part is same as the Meta-Seq2Seq

and Meta-Seq2Point while the “learner” part is based on

Conv-TasNet [19]. The “learner” has three sub-components

to implement the tasks of NILM. At first, given a sliding

window of aggregated power consumption of all appliances

yt,w = (yt, ..., yt+w−1), the encoder encodes them into a

latent high-dimensional representation of power consumption

signals r = encoder(yt,w) ∈ R
l×w where l is the dimension

of the latent representation. Then this latent representation

will be the inputs of a masking model which calculates the

masks of each appliance mi = maski(r) ∈ [0, 1]l×w. The

separated representation of each appliance r̂i is obtained by

the element-wise product of each appliance’s masks and the

representation of the aggregation: r̂i = r ⊙ mi. In this way,

the model is expected to identify the targeted area of each

appliance in the representation domain. At last, a decoder

(with the same architecture as the encode) reconstructs the

separated power consumption sequence of each appliance

xit,w = (xi
t, ..., x

i
t+w−1) from the masked representation:

xit,w = decoder(r̂i) ∈ R
w.

For the encoder and decoder in the “learner”, we use a more

complicated architecture instead of a single 1-D convolutional

layer used in the original TasNet. The inputs of the aggregated

power signal are passed to n convolutional layers with a

different number of filters and different filter sizes. In specific,

the i−th convolutional layer has 1/4i×L filters and the size of

each filter is 2i×W , where L and W are the base number of
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filters and base size of each filter. Then the information of all

n convolutional layers is concatenated together and passed to

two additional 1-D convolutional layers to generate the latent

representation r ∈ R
l×w. In this way, our encoder is capable

of capturing the features from the aggregated inputs in the

different time ranges. The decoder uses a similar architecture

as the encoder to match the capacity of the encoder. The

masked representation of each appliance r̂i ∈ R
l×w is first

transformed by two Conv-ReLU layers. Then the outputs are

split and passed to n transposed 1-D convolutional layers with

the same number and size of filters as in the encoder. At last,

the outputs of all layers and summed together to construct

the estimated power consumption sequence of each appliance

xit,w = (xi
t, ..., x

i
t+w−1).

In the architecture of the “learner”, the masking model is

of most interest since it contains the appliance-specific in-

formation and the encoder and decoder are appliance-agnostic

and remain the same for the whole task. So the “meta-learner”

model in MeTas-NILM will generate the parameters of the k-

th convolutional layers in the masking model Φk in a similar

way to Meta-Seq2Seq and Meta-Seq2Point:

Φk := LkBkE (10)

We use the fully-convolutional separation model proposed

in [19] as the masking model in MeTas-NILM. This model is

based on the temporal convolutional network (TCN) [23] [24],

which is proposed as a replacement for RNNs in sequence

modeling tasks. As shown in Fig. 4, the masking model

consists of several layers of stacked 1-D dilated convolution

blocks. The dilation factors of each block increase exponen-

tially to get large temporal context information considering the

different range dependencies of the power signal, as denoted

with different colors in Fig. 4. In the masking model, X
convolution blocks with 1, 2, ..., 2X−1 dilation factors are

repeated H times. To ensure the output length is the same

as the input length, the input to each block is zero-padded

accordingly. Then the outputs of all the blocks are added

together and passed to a convolution block with kernel size

1 for mask estimation.

Compared with Meta-Seq2Seq and Meta-Seq2Point,

MeTas-NILM is more complicated and have more parameters.

It takes a long time to train, but we expect it to have

better performance. We will validate this hypothesis in the

performance evaluation.

IV. DRL-DRIVEN CENTRAL CONTROLLER

The central controller in our system needs to dynamically

schedule the operation of each appliance and the ESS unit

given the input of real-time price of power, weather condition,

and the customer pattern predicted by the NILM tool. As deep

reinforcement learning (DRL) has been shown to achieve great

success in solving similar sequential decision problems with

dynamic environments in other research areas, we propose a

DRL-driven central controller design in this section to further

improve the overall performance of our system. To this end, we

RTP
1D Conv

Weather

1D Conv

POT

flag

SoC

Flatten

Flatten

Actor

Critic

Fully Connected

FC Layer FC Layer
Concatenated

State Softmax

FC

Fig. 5: Network architecture

first convert the central controller scheduling problem into an

RL task and then use a policy gradient algorithm named Actor-

Critic method with Proximal Policy Optimization (PPO) [20]

algorithm to solve it. Since the state space in our problem is

high-dimensional, we use Neural Networks (NNs) to represent

both the actor and critic components.

At first, we define the state of the environment at each

time step t. According to the modeling of the environment

in Section II, the state st can be represented as

st = (
−−−→
RTP,

−−−−−→
weather,

−−−→
POT ,

−−→
flag, SoC) (11)

where
−−−→
RTP and

−−−−−→
weather are vectors to represent the real-

time price of power and weather conditions in a time period.
−−−→
POT is a vector to represent the preferred operation time of

each appliance, either specified by the customer or predicted

by the NILM tool.
−−→
flag is a vector to show if each appliance

has already been operated recently. At last, the scalar SoC is

the current State of Charge of ESS. Given the state and action

of each time step, the environment gives back the reward rt
which is calculated as Eq. 7.

The network architecture of the actor and critic is shown in

Fig. 5. For time-series input like RTP and weather conditions,

we use 1D convolution layers. For all the other scalar input we

use fully connected layers. Then all the results are flattened

and concatenated to a new layer, which is then fed to both

the actor and critic network. For each input state st, the actor

component needs to output an action at which determines the

schedule of each appliance and the ESS. There are three status

for the ESS, charge, discharge or not use. So we use two

bits to represent the operation of the ESS. Similarly, for each

appliance, there are two status, close or open. So we use one

bit to represent the operation of each appliance. To represent

all the operation combinations, we need a binary with 2 +N
bits to represent the action. Fig. 6 shows an example action

representation with 4 appliances. The first two bits are “10”
to represent that the ESS is charging at time t. The latter four

bits show the status of each appliance. In this example, “0010”
means that only the second appliance is open at time t.
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1 0 0 0 1 0

Status of each appliance

Status of ESS

0 - Close 1-Open

00- Not use 01-Charge 10-Discharge

ESS A4 A3 A2 A1

Fig. 6: Example of action representation

Unfortunately, the standard policy gradient algorithm can

have great turbulence while training, which means the network

may fall into a dead end and can never recover. To this end, we

utilize the Proximal Policy Optimization (PPO) [20] algorithm

to clip the size of each training step. Instead of the traditional

objective LP
t (θ) = Êt[log πθ(at|st)Ât], PPO uses the clipped

surrogate objective as

Lclip
t (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1+ ϵ)Ât] (12)

where

rt(θ) =
πθ(at|st)

πθold(at|st)
(13)

rt(θ) is the probability ratio of the new and old policy. Ât

is the estimate of the advantage function and ϵ controls the

clip bounds. At last, the total loss function is the summation

of this clipped PPO objective and two additional terms:

Ltotal
t (θ) = Êt[L

clip
t (θ)−c1MSE(V (s))+c2S[πθ](st)] (14)

where c1 and c2 are coefficients of the two terms. The first

term is the mean square error of the value function V (s),
which is used to update the baseline network. The second

term is the entropy of the policy, which is used to ensure

enough exploration during training. Since we use two distinct

networks for actor and critic components, we do not need this

second term in our problem.

Let α denote the learning rate, and the policy parameter θ
can be updated as the gradient ascent of the total loss:

θ ←− θ + α
∑

t

∇θL
total
t (θ) (15)

V. PERFORMANCE EVALUATION

In this section, we first introduce the real-world data sets, the

simulation data sets generated by ourselves, and the evaluation

metrics. We then present the evaluation results of different

NILM models. At last, we will evaluate the QoS of the whole

NRLEMS. All of the models are trained on NVIDIA RTX

A5000 and implemented in Python using PyTorch.

A. Data Sets and Evaluation Metrics

To evaluate the performance of MeTas-NILM, we use both

experiments and simulations. There are several real-world

data sets such as REDD [25], UK-DALE [26] and REFIT

[27]. We use UK-DALE for experiments. In UK-DALE, both

the aggregated and individual appliance power consumption

were recorded every 6 seconds. The data set contains the

information of 5 UK houses from November 2012 to April

2017. We normalize the data using the same way as the

previous work [14].

In the evaluation, we use two metrics to compare different

methods. The first one is the normalized signal aggregate

error (SAE). This metric is useful when we are interested

in the total error of power consumption over a period. Let

x̂t and xt denote the ground truth and the prediction of an

appliance power consumption at time t. The metric SAE can

be represented as

SAE =
|
∑

t x̂t −
∑

t xt|∑
t x̂t

(16)

The second metric is the mean absolute error (MAE). This

metric is useful when we are interested in the average error

of power consumption over a period T . The metric MAE can

be represented as

MAE =
1

T

T∑

t=1

|x̂t − xt| (17)

B. Results of MeTas-NILM

We first compared Meta-Seq2Seq, Meta-Seq2Point and

MeTas-NILM with Seq2Seq and Seq2Point using the data

of House3 in UK-DALE data set. House3 has 4 types of

appliances: kettle, heater, laptop, and projector. There are

about 510,000 rows of data in total (about 36 days of data

in 6 seconds intervals). We use 80% of the data for training

and use the remaining 20% for testing.

Fig. 7 shows the plots of the prediction results of different

approaches. We can see that meta learning-based approaches

can predict the results better. Our MeTas-NILM can have

better prediction results in most of the cases but still miss some

representational patterns of certain appliances. For example,

as shown in Fig. 7-(e), MeTas-NILM does not predict the

pattern of the Projector appliance well. Table. I shows the

comparison of SAE and MAE metrics on different appliances

in House3. The results show that although the improvement

for the SAE metric is not very significant since the baselines

already get small SAE values, our meta-learning approaches

can remarkably improve the prediction results compared to the

baselines for the MAE metrics. In particular, Meta-Seq2Seq

decreases the value from 17.90 to 17.22 compared to Seq2Seq

and Meta-Seq2Point decreases the value from 19.44 to 18.04

compared to Seq2Point. Our MeTas-NILM approach can

reduce the mean error by 39% compared to Seq2Seq.

As the time interval of the real world data set is long (from

3 seconds to 8 seconds), we also collected some data from

different appliances in one second time interval. The types of

appliances we have are air conditioner, refrigerator, hairdryer,

rice cooker, television, drum washing machine, oven, air

heater, kettle, hot-water heater, microwave, turbo washing

machine, vacuum cleaner, and range hoods. For appliances
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Fig. 7: Prediction results of different appliances in UK-DALE House3 from different methods

TABLE I: Comparison of normalized signal aggregate error (SAE) and mean absolute error (MAE) on different appliances in

UK-DALE House3

Error measures appliances Seq2Seq Seq2Point Meta-Seq2Seq Meta-Seq2Point Meta-NILM

SAE

Kettle 0.11 0.14 0.15 0.15 0.08

Heater 0.11 0.02 0.17 0.14 0.02

Laptop 0.77 2.17 0.74 0.88 0.70

Projector 0.14 0.20 0.09 0.09 0.17
Overall 0.28±0.28 0.63±0.89 0.89±0.26 0.32±0.33 0.24±0.26

MAE

Kettle 5.47 14.56 13.58 13.58 4.94

Heater 23.82 13.91 18.66 15.02 7.36

Laptop 40.35 44.16 34.90 41.16 24.82

Projector 2.60 5.11 2.18 2.43 6.80
Overall 17.90±15.17 19.44±14.75 17.22±11.77 18.04±14.21 10.98±8.04

that have different working modes (such as hairdryers and

air heaters), we also collected data of the appliance in the

different working states. As our data set only records the

data in a short time period, we generate large-scale data with

data augmentation. For the appliances that only have one

working mode (e.g., kettle), we generate the simulated data

with random time intervals among each operating period of

the appliance. For the appliances that have several working

modes, we generate the simulated data by randomly selecting

one working mode, and then adding random time intervals

among each operating period of the appliance. The aggregation

power consumption sequence is generated by adding the power

consumption data of all the appliances. In this way, our

simulation data set can include the combination of different

appliances in a random pattern. We call the generated data set

as Simulation in the rest of the paper.

We generate 1,000,000 rows of data (about 12 days of

data in one-second intervals) for evaluation. We use 800,000

rows of data for training and 200,000 rows of data for

testing. Fig. 8 shows the plots of the prediction results for

different appliances from different approaches. To save space

we choose three appliances to display: drum washing machine,

hot-water heater, and range hoods. The results show that our

Meta-NILM can have better prediction results in most of

the cases. We also compare the MAE and SAE metrics on

different appliances in Simulation data set. The results show

that our meta-learning approaches can improve the prediction

results compared to the original approaches. For the MAE

metrics, Meta-Seq2Seq decreases the value from 15.38 to

10.23 compared to Seq2Seq and Meta-Seq2Point decreases

the value from 20.36 to 11.34 compared to Seq2Point. Our

MeTas-NILM approach can achieve the best performance

with about 50% improvements of MAE value and about 34%

improvements of SAE value compared to Seq2Seq.

The evaluation results of both experiments on real-world

data sets and simulation show that meta learning-inspired

approaches can achieve better performance compared to the

baselines for the NILM problem. Then to evaluate if meta

learning-inspired approaches can train the model faster com-

pared to the baselines that train each appliance independently,

we also compare the training time of different approaches on

each data set. The results show that the original Seq2Seq and

Seq2Point models need about 1 hour to train one model for

each appliance and the total time to train all the appliances is

about 4 hours. But for the meta learning-based models. We can

train all the four appliances in about 2 hours, which can save

about half of the time. MeTas-NILM needs a much longer

time to train because of its complicated architecture. But the

training time of MeTas-NILM is still less than training all the

appliances using baseline approaches.

The experiment and simulation results we get show that

our meta-learning inspired approaches can train the model

faster and better with a relatively small data set. With such

a hierarchical architecture inspired by meta learning, our
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Fig. 8: Prediction results of different appliances in Simulation data set from different approaches

Fig. 9: Data example of one day

approach can have more parameter sharing in the “learner”

part which can facilitate the training process. On the other

hand, the “meta-learner” part encodes the correlation among

different appliances and use this information to generate some

of the parameters in the “learner”. This can help the models

maintain appliance-specific information in the training process

and leverage the commonalities of different appliances, which

improves the prediction results of each appliance.

C. Performance Evaluation of NRLEMS

At last, we evaluate the performance of the proposed

NRLEMS on the Simulation data set. The RTP information

is from ENGIE Resources [28], and the weather conditions

(wind speed and solar radiation) are from NSRDB: National

Solar Radiation Database [29]. Fig. 9 shows the RTP and

PV, WT generation information in one day. According to the

weather condition, PV and WT generation can have drastic

turbulence. The RTP in one day can also vary as shown

by the green line in Fig. 9. All of these factors make the

scheduling of the appliances and ESS unit a big challenge. To

this end, we utilize DRL to train our central controller. We

Fig. 10: Results of NRLEMS

denote 30 days as one episode in our environment. We train

our system for 5000 episodes and test it for 1000 episodes.

The results of our NRLMES with Seq2Point and MeTas-

NILM are shown in Fig. 10. Our MeTas-NILM method can

improve the performance of NRLEMS for about 9% compared

to Seq2Point.

VI. RELATED WORK

A. Applications of NILM in Smart Grid

NILM technology enables getting the appliance-level be-

havior of the customers using only the aggregation data

(which is usually recorded by one smart meter). It helps

to mitigate the requirements such as high-cost sensors on

each appliance, which is not realistic in most cases. NILM

provides a cost-efficient solution to get detailed power con-

sumption information of appliances and can be applied in

different situations. For residential microgrids, NILM can

get the information of user behavior and be guidelines for

appliances operation schedules. For example, Çimen et al. [6]

propose an efficient NILM-based energy management system
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(EMS) for residential microgrids. The detailed results of

different appliances obtained by NILM can be integrated and

analyzed in an EMS to create an efficient and user-centered

microgrid operation schedule. The simulation results show

that the proposed NILM-based EMS can save the overall cost

while improving the customer satisfaction ratio compared to a

traditional EMS. For industrial users who are the main load for

the grid, it is not possible for centralized monitoring of power

consumption due to the wide geography distribution like data

centers. NILM can be integrated into the distributed system

of each data center and analyze the relationship between

the workload and the power consumption. For example, Lee

et al. [30] propose a power measurement platform for data

centers based on NILM. The experiment results show that

this platform can recognize the peak power of each node

and provide opportunities for informed peak power reduction.

Yu et al. [31] adopt NILM on the collaborative computing

of the edge devices and edge data centers. By performing

the computing tasks on the computing resources close to the

data source of industrial users, the pressure of centralized data

center, the transmission bandwidth, and security privacy risk

are all improved.

B. Traditional Method Based on FHMM

Since Hart first proposed the problem of NILM [9], the

factorial hidden Markov model (FHMM) has been the most

popular method for a long time. Hidden Markov Models have

been shown well in speech recognition and other sequential

models. Several works applied FHMM and its variants to

tackle NILM problem [32] [33] [34]. The biggest problem

of these methods based on FHMM is their high computation

complexity, which will increase exponentially with the number

of appliances. On the other hand, some of these methods need

other information besides the aggregated sequence and each

appliance needs to be modeled in detail. All of these factors

limit the NILM method based on FHMM, especially for more

complex tasks. To this end, most of the recent works turn

to deep neural networks (DNN). DNN has shown remarkable

results in sequential models, such as speech recognition and

translation. Kelly et al. [13] show that applying DNN for

NILM achieves better performance than traditional methods

based on FHMM.

C. Deep Learning-Based NILM

DNN has been applied in the NILM field since Kelly et al.

[13] applied 3 different DNN models on NILM and showed

its dominance compared to previous methods. In the following

years, various models have been applied to the NILM problem.

For example, Zhang et al. [14] propose a sequence-to-point

learning method and Shin et al. [17] propose a subtask gated

network for NILM. Harell et al. [15] also apply a modified

WaveNet model for NILM. These methods however have

significant limits in that they need to train a model for each of

the appliances. That means we need to collect large volume

data of each appliance for training. This has become more and

more unrealistic since the types of appliances are increasing

rapidly nowadays. There are also some works that only need

one model to disaggregate the power consumption jointly.

Bejarano et al. [35] propose deep latent generative model.

This model can get the appliance-level power consumption

with one single model based on variational recurrent neural

networks (VRNNs). We only need to train one model but we

have to retrain the model every time when new appliances

are added to get the new patterns. Extra information such as

the consumers’ location has also been exploited to get better

results [16]. These extra data on the other hand make the

training phase more and more complex and unrealistic, which

makes the method further and further from quick adaptation

to new appliances.

Meta-learning, also known as “learning to learn” [36], aims

to design models that can adapt to new tasks rapidly with a few

training examples. Prior meta-learning works mainly focus on

few-shot classification problem [37] [38], where a model must

adapt to new classes not seen in the training phase with limited

examples of each new class. Meta-learning can also be applied

to different tasks, such as supervised learning, reinforcement

learning and other more specific problems. There are also

some works that applied meta-learning to source separation

problems. Samuel et al. [39] propose a hierarchical model

based on meta-learning for music source separation. The

experiment results showed that their model contains fewer

parameters and runs faster than baselines.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed an energy management system

NRLEMS in AIoT-empowered smart grid, which utilizes the

NILM tool as a data sensor in the system and connects legacy

appliances with IoT networks. To improve the performance

of NILM, we further proposed meta learning-inspired ap-

proaches. We started from two baseline models and extended

them to meta learning-inspired approaches. Then we proposed

another more complicated meta learning approach MeTas-

NILM based on TasNet. According to the problem of current

EMS, we utilize DRL for the central controller in the AIoT-

empowered microgrid to make dynamic decisions. We also

collected data from different appliances and generated our

own simulation data set by data augmentation. The experiment

and simulation results showed that applying the meta learning

approach for NILM can improve the performance with a

shorter training time. We also evaluated our NRLEMS on

the simulation data set, and the results show that the improved

NILM tool can help to get better QoS of the whole system. Our

system is only based on a AIoT-empowerd residential micro-

grid now. In our future work, we will leverage our approaches

on more different scenarios like industrial scenarios. We will

also combine more approaches such as federated learning and

meta reinforcement learning to improve the performance of

NRLEMS in the future.
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