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Abstract

The in-situ small-strain shear modulus of soil and rock materials is a parameter of paramount
importance in geotechnical modeling. It can be derived from non-invasive geophysical
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DAS ) surveys, which provide the possibility of testing the subsurface in its natural and undisturbed
?&Hllpmg condition by inferring the velocity of propagation of shear waves. In addition, for soil

dynamics and earthquake engineering applications, the small-strain damping ratio plays a
relevant role, yet its estimation is still challenging, lacking consolidated approaches for its
in-situ evaluation. Recent advancements in instrumentation, such as distributed acoustic
sensing (DAS), combined with advanced analysis methodologies for the interpretation
of seismic wave propagation (e.g., machine learning and full waveform inversion), open
new frontiers in site characterization. This paper presents and compares some advanced
applications of measuring 1D and 2D variations in shear wave velocity and attenuation

Machine learning

in-situ with reference to a specific case history.

1. Introduction

Non-invasive subsurface imaging techniques utilizing
seismic wave propagation have garnered escalating attention
in recent decades owing to their remarkable cost-effectiveness
compared to conventional invasive site characterization
methods and their potential to cover large areas. These
imaging techniques primarily focus on capturing two
crucial soil parameters of particular interest in geotechnical
engineering: the small-strain shear wave velocity (V) and the
small-strain damping ratio in shear (D). Vs directly related
to the small-strain shear modulus (G, or G, ), representing
the stiffness of the soil, while D quantifies the soil internal
energy dissipation at low strains. This paper provides a
review of some of the latest advancements in noninvasive
subsurface imaging techniques for the estimation of V' and
D and their practical application at a well-characterized case
history site called the Hornsby Bend site in Austin, Texas,
USA. The subsequent paragraphs highlight the importance
of V and D in geotechnical engineering applications and
discuss the challenges and advancements in the noninvasive
techniques developed for their estimation.

V. and D play a key role in evaluating the response
of soil deposits to both general dynamic loading and ground

motion amplification caused by earthquakes. In regard to
seismic loads, V', and D are especially important parameters
to quantify when the soil is subjected to low-intensity shaking
(e.g., Tao & Rathje, 2019; Rodriguez-Marek et al., 2021;
Fernandes et al., 2023). For instance, Rodriguez-Marek et al.
(2021) observed that D, is the most influential parameter at
high frequencies, with an impact even more relevant than V,
whereas the low-frequency soil response is mainly affected by
V', of shallow layers. According to Foti et al. (2021), D, has a
substantial influence on the seismic amplification in deformable
soil deposits. However, this influence is less pronounced under
conditions of strong shaking that strain the soil sufficiently to
induce nonlinear soil behavior. Additionally, in a site-specific
study, Foti et al. (2021) compared the amplification resulting
from the epistemic uncertainty in D¢ with that caused by V' and
the nonlinear soil behavior modeled using modulus reduction
and damping (MRD) curves. They found that a change in D
leads to a significant variation in amplification compared to
the overall variability of the results. This effect is particularly
relevant at high frequencies and near the resonance peak, even
under higher seismicity conditions.

Furthermore, studies such as Kouroussis et al. (2011),
Papadopoulos et al. (2019), and Santos et al. (2016) highlight
the importance of ¥ and D, in assessing vibrational impact.
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The small-strain and anelastic properties of the soil significantly
influence the energy transmission from the source, its
propagation, and the resulting motion at the receiver. These
properties directly impact the amplitude and frequency content
of the vibrations. For instance, Lombaert & Degrande (2003)
and Lombaert et al. (2006) observed that when dealing with
rail traffic as the noise source, uncertainties in defining the
spatial variation of dynamic soil characteristics lead to poor
agreement between simulated and experimental data. Rail
vehicles mainly generate high-frequency signals, reaching
up to 200 Hz (Pyl, 2004). Due to their short wavelengths,
these signals are highly sensitive to local heterogeneities in
the soil deposit. Moreover, Schevenels (2007) demonstrated
the impact of uncertainties in D, and V' on free-field wave
propagation, whose variability exponentially increases with
the frequency, especially at large distances from the source.

The small-strain dynamic soil properties also play an
important role in soil-structure interaction problems, where
the deformability of the supporting soil impacts both the
fundamental period and the energy dissipation of the system
(Veletsos & Meek, 1974). Among these properties, V' holds
particular significance as it directly governs soil deformability,
which is a key factor in this phenomenon (Veletsos & Meek,
1974). Energy dissipation, on the other hand, arises from
various sources, including inelastic phenomena within the
structure, hysteretic dissipation in the soil deposit, and radiation
damping. Radiation damping refers to the geometric effect of
waves radiating from the foundation-soil interface, carrying
energy away from the foundation system as they propagate
outward. It is commonly assumed that radiation damping
represents the primary mechanism for energy dissipation,
especially at small strains. However, Martakis et al. (2017)
observed through centrifuge tests that significant dissipation
also occurs due to hysteretic effects linked to the intrinsic
dissipation of the soil, even at small strains.

The preceding paragraphs underscore the importance
of accurately estimating V' and D for dynamic modeling of
seismic and general vibration problems. Traditionally, these
small-strain soil properties have been estimated through
laboratory testing or empirical relationships (e.g., Darendeli,
2001; Menq, 2003; Ciancimino et al., 2020). However, their
in-situ estimated values often deviate from those obtained
in the laboratory. This deviation can be attributed to the
disturbances that inevitably occur during the acquisition
of soil samples for laboratory testing, leading mostly to a
reduction in soil stiffness (e.g., Stokoe & Santamarina, 2000).
Additionally, at the site scale, complex wave propagation
phenomena (e.g., wave scattering) result in additional energy
dissipation beyond material dissipation, which cannot be
captured accurately through laboratory tests (e.g., Stewart et al.,
2014; Tao & Rathje, 2019). Geophysical field measurements
offer the advantage of estimating the ground response in its
natural state thus mitigating the uncertainties associated with
sample disturbance and scale effects often encountered when
working with rock-like materials. Overall, non-invasive

techniques investigate a large volume of the medium, whose
size depends on the array geometry (Comina et al., 2011;
Passeri, 2019), providing parameter estimates at a scale
compatible with those of geotechnical systems. Furthermore,
some design criteria in geoengineering directly rely on these
testing procedures. For instance, rail infrastructure design
requires the train speed to be smaller than a “critical” speed,
corresponding to the Rayleigh phase velocity, V,, of the
underlying medium (e.g., Connolly et al., 2015). Indeed,
at higher speeds, the amplitude of track vertical deflection
dramatically increases (Timoshenko, 1927; Krylov, 1995;
Madshus & Kaynia, 2000; Madshus et al., 2004). For this
reason, the rail operational speed is often determined through
adispersion diagram, which involves the experimental V, at
various frequencies as an input parameter, determined through
surface wave-based geophysical techniques (Thompson,
2009). Finally, the field-based small-strain estimates of
V and D, can be used in conjunction with laboratory tests to
map and un-normalize the nonlinear mechanical response of
soil, which is most easily characterized in the lab at strains
ranging from moderate to large. This approach enables the
development of advanced numerical models or simplified
procedures for evaluating the behavior of geotechnical
systems subjected to either static or dynamic loading (e.g.,
settlement of shallow foundations and seismic site response)
across a broad range of induced strains.

Given the importance of accurately estimating V' and
D, in situ, the field of geophysical imaging based on seismic
wave propagation is continuously advancing, introducing
new innovations aimed at increasing imaging resolution
and reducing uncertainty. These innovations encompass
improvements in both data acquisition systems (DAQ) and
imaging methodologies. A notable recent development in
data acquisition is the utilization of distributed acoustic
sensing (DAS) for seismic wave measurements. DAS offers
unprecedented spatial resolutions (on the order of meters) and
length scales (on the order of tens of kilometers), surpassing
conventional sensing technologies (Soga & Luo, 2018). Further
details on DAS technology, which is employed as the DAQ
for most of the 1D and 2D imaging techniques discussed in
this paper, are provided in a separate, dedicated section later
in this paper. This paper also highlights some of the significant
advancements in imaging techniques, encompassing both 1D
and 2D approaches. In the field of 1D imaging, two notable
developments have emerged. Firstly, the utilization of DAS
as the DAQ for 1D multichannel analysis of surface waves
(MASW). Secondly, the joint estimation of phase velocity
and phase attenuation data within a 1D MASW test setup,
achievable using either geophones or DAS as the DAQ. This
paper demonstrates the pioneering use of DAS for jointly
characterizing the stiffness and dissipative parameters of
a soil deposit. In the realm of 2D imaging, the presented
techniques comprise the application of 2D MASW using DAS
data, the utilization of machine learning for 2D imaging, and
the use of full waveform inversion (FWI) with DAS data.
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All of these 1D and 2D imaging techniques were successfully
applied at a well-characterized case history site called the
Hornsby Bend test site, providing a valuable opportunity to
compare and discuss their results.

The subsequent sections of the paper are organized as
follows. First, a brief overview of DAS technology is presented,
highlighting its key features and capabilities. Following that,
the testing conducted at the Hornsby Bend site is discussed.
The paper then delves into the advancements in 1D and 2D
imaging techniques in regard to measuring ¥ and D, at the
Hornsby Bend site. Then, a discussion about the advantages
and disadvantages of each technique is presented. Lastly, a
comprehensive subsurface imaging experiment conducted
at the Newberry site in Florida, USA utilizing some of the
latest sensing technologies is showcased.

2. The DAS technology

DAS is an innovative technique that transforms
fiber-optic cables into a distributed array of ground motion
sensors (Cox et al., 2012; Yu et al., 2019). This rapidly
evolving technology allows for the simultaneous collection
of high-resolution data with small channel separations
(e.g., 1-m) over long arrays spanning kilometers, making it
highly suitable for near-surface imaging applications. Unlike
traditional geophones that measure particle velocity (Ou/0r)
at discrete points along the acquisition array (Figure 1a),
DAS records the spatially-averaged axial strain e(7;¢) induced
on the fiber-optic cable by the passing wavefield. Here, “7”
represents the location coordinate and “#” represents the
time instant. When properly coupled with the ground, the
passage of mechanical waves generates an axial strain in the
fiber-optic cable that coincides with the horizontal, in-line
strain g(r,t) in the ground. An interrogator unit (IU) reads
the consequent shift in phase lag of a laser pulse traveling in
the cable, induced by the variation in the length of the cable.

a)
QUT: du/ot
+
v \v4 v \v4
b)
OUT: e
2g
JI > 4
- ————
NN —

Receiver spacing

Thus DAS measurements represent the variation in phase
difference over a reference length 2g, called gauge length,
around the investigated location, from which the average
strain e(r¢) is derived (Figure 1b; Grattan & Sun, 2000).
The resulting average strain at each measurement point
can be linked with the displacement u(7¢), as it equals the
difference of the radial displacement at two points separated
by a distance equal to the gauge length (Mateeva et al., 2014;
Bakku, 2015; Jousset et al., 2018; Vantassel et al., 2022b):

e(r,t) zzi[u(r+g,t)—u(r—g,t)]

g

)

It is noteworthy that the gauge length is not necessarily linked
with the channel separation (i.e., the distance between two
subsequent measurement points). The gauge length plays a
crucial role in the spatial sampling quality, as it limits the
range of investigable wavelengths. In the simple scenario of a
spatially harmonic radial displacement field, it is demonstrated
that the averaging procedure (i.e., the mapping from &(r,t) to
e(n,t)) is equivalent to applying a lowpass filter (such as a sinc
filter) in the wavenumber domain (e.g., Bakku, 2015). This
filtering tends to attenuate wave components with shorter
wavelengths A, particularly affecting the high-frequency
components of the Rayleigh wavefield (Figure 1c).
Increasing the gauge length results in a greater loss of
information for short-wavelength data, although it improves
the overall signal quality and signal-to-noise ratio (e.g.,
Bakulin et al., 2020). Therefore, selecting an optimal gauge
length is a critical task that should consider various factors
such as the acquisition setup, source quality, magnitude
of incoherent noise, and the desired range of investigated
wavelengths. A possible strategy to overcome the resolution
issues induced by spatial averaging is to conduct multiple
measurements where the gauge length is modified at each

0 0.5 1 1.5 2
2g/A (-)

Figure 1. a) Schematic model of an acquisition system based on geophones, wherein the output (labeled as “OUT”) is the particle velocity
Ou/ot; b) Schematic model of the DAS system, where a source generates a laser pulse which is then interpreted by an interrogator unit
(labeled as 1.U.) and the output (labeled as “OUT”) is the average strain e [modified from Bakku (2015)]; ¢) Amplitude response in
terms of e/g ratio, as a function of the wavelength-normalized gauge length 2g/A.
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step (Bakku, 2015). It is worth noting that interpreting
DAS-recorded data, which provides a spatially averaged
measure of the strain field, is slightly more complex compared
to conventional acquisition devices. Nonetheless, DAS
is increasingly being used for invasive geophysical tests
(e.g., Mateeva et al., 2014; Kuvshinov, 2016), ambient noise
vibrations (e.g., Hornman et al., 2013; Freifeld et al., 2016;
Yavuz et al., 2016; Ajo-Franklin et al., 2017) and MASW
testing (Galan-Comas, 2015; Lancelle, 2016; Costley et al.,
2018; Song et al., 2018; Vantassel et al., 2022b).

3. Innovative processing techniques and DAS
3.1 Reference dataset: Hornsby Bend

The Hornsby Bend site (HB, 30°13.918'N, 97°38.631'W —
in the WGS84 Datum) is located on the outskirts of Austin,
Texas, USA. This site has been the subject of extensive
invasive and noninvasive site characterization studies in
recent years. The noninvasive testing conducted at the site
and utilized in this paper involved the deployment of two
parallel 200 meter-long fiber-optic cables (refer to Figure 2a),
one manufactured by NanZee and the other by AFL.
These cables were interconnected at the far end of the array
by splicing the NanZee and AFL cables together, enabling
simultaneous recording on both cables. On the near-side of the
array, the NanZee cable was connected to an OptaSense ODH4
IU, while the AFL fiber was properly terminated to minimize
end-reflections. The ODH4 U was configured with the gauge length

Depth (m)

and channel separation set to 2.04 m and 1.02 m, respectively.
These values represent the shortest gauge length and channel
separation allowed by the ODH4. Consequently, the DAS
recorded waveforms represent an average response over
the 2.04 m gauge length surrounding each channel location
(i.e., every 1.02 m). The IU sampling frequency, or ping
rate, was set at 100 kHz. After acquiring the data, the raw
measurements underwent down sampling to 1 kHz and
high-pass filtering above 3 Hz to remove low-frequency
artifacts linked with laser drift and static strains.

Two geophone arrays were also deployed in conjunction
with the fiber-optic cables: a vertical geophone array and a
horizontal geophone array oriented in line with the DAS fiber
optic cables. Each array comprised 48 geophones, uniformly
spaced at 2 m intervals, resulting in a total array length of 94
m as shown in Figure 2a. To capture the geophone signals, four
interconnected 24-channel Geometrics Geode seismographs
were utilized, enabling simultaneous recording from both
the vertical and horizontal geophone arrays. All signals were
acquired using a sampling rate of | kHz. The geophone array
and DAS fiber-optic cables were employed to simultaneously
record actively-generated surface waves from various sources.
These sources encompassed highly-controlled vibroseis
shaker trucks and more variable impact sources. The vibroseis
sources comprised the three-dimensional shaker, T-Rex, and
the highly-mobile one-dimensional shaker, Thumper, both
from the Natural Hazards Engineering Research Infrastructure
at the University of Texas at Austin (NHERI@UTexas)
experimental facility (Stokoe II et al., 2020). Additionally, an

50m 75m
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100m 125m 175m

Location Along Array (m)

CPT Soil Behavior Type: [llclay [MlsitMix [ ]sandMix [llsand [llGravel

e

Figure 2. a) Aerial view of the Hornsby Bend test site showing the locations of CPT tests and boreholes as well as the DAS fiber optic cable,
the geophone array, and the vibroseis shot locations; b) Geological cross section.
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instrumented 5.4 kg sledgehammer from PCB Piezotronics
was used as an impact source. T-Rex was utilized for shaking
in all three directions: vertically, horizontally in-line, and
horizontally cross-line. It generated a 12-second chirp signal
with frequencies linearly swept from 3 to 80 Hz, providing a
maximum force output of approximately 270 kN in the vertical
direction and 130 kN in the horizontal directions. Thumper
was used to produce a 12-second chirp signal in the vertical
direction with frequencies linearly swept from 5 to 200 Hz,
offering a maximum force output of approximately 27 kN in
the vertical direction. For the vibroseis sources, three sweeps
were conducted at each source location, whereas five impacts
were performed using the sledgehammer. These sources
were used at various locations around the site, however, for
the purposes of this paper, only the source locations along
the linear array alignment will be discussed. A significant
portion of the noninvasive dataset from testing conducted
at the Hornsby Bend site is accessible to the public through
DesignSafe-CI (Vantassel et al., 2022a).

In addition to the noninvasive testing, nine cone
penetration tests (CPT) soundings were carried out at 25 m
intervals along the fiber-optic cable, covering the range from
0 to 200 m, as indicated in Figure 2a. These CPT soundings
were performed on three different dates, spaced out over a
span of approximately eight months. Yust et al. (2022) utilized
the soil behavior type index value (Ic) method developed by
Robertson (2009) to analyze the collected CPT data. Based on
their analysis, they developed the subsurface cross section shown
in Figure 2b down to the depths of CPT refusal. According
to Yust et al. (2022), the site comprises three distinct layers
above the depth of CPT refusal. These layers include a shallow
granular layer (between depths of approximately 0 to 4 m)
consisting of sand and sand mix, an intermediate cohesive
layer (between depths of approximately 4 to 7 m) comprising
clay and silt, and a deeper granular layer (between depths of
approximately 7 to 10 m) composed of sand and sand mix. The
depth of CPT refusal along the cable varied between 7.96 and
10.56 m, with an average depth of 9.15 m. In this study, the
original cross-section developed by Yust et al. (2022) has been

Geophone
a) 0 ! !
R '““?‘:@;i*“'zz'"‘l
& B
E
a |
10 1
0 50 100
Position (m)

further extended from its original depth of approximately ten
meters down to 15 m, as shown in Figure 3b. This extension
enables the depiction of the shale layer depth, which was
determined using data acquired from two recently drilled
boreholes at the Hornsby Bend site. Both the first borehole
(B1) positioned 12.5 m from the starting point of the geophone
array, and the second borehole (B2), located 137.5 m away
(refer to Figure 2b), confirmed the existence of a shale layer
at an approximate depth of 13.5 m beneath the ground surface.
Furthermore, seismic downhole (DH) testing was conducted
in borehole B1, reaching a depth of 24 m with a receiver
interval of 1 m, which led to the identification of four distinct
velocity layers in the subsurface (discussed later in the paper).

3.1.1 1D MASW processing for the joint estimation of S-wave
velocity and damping ratio

A promising technique for obtaining in-situ estimates
of ¥, and D, relies on MASW (Nolet & Panza, 1976;
McMechan & Yedlin, 1981; Gabriels et al., 1987; Park et al.,
1999; Foti, 2000). This technique relies on the measurement
of propagation characteristics of surface waves (typically,
Rayleigh waves) and the testing procedure can be divided
into three main steps:

+ Data acquisition: a waveform generated by an
artificial source is recorded along a linear array of
sensors (typically, geophones) on the ground surface.

* Data processing: based on variations of phase lag
and amplitude of surface waves along the array, the
corresponding propagation speed (i.e., the phase velocity
V) and spatial attenuation of the amplitude (i.e., the
phase attenuation o) are derived, as a function of the
frequency. The frequency-dependence of V, and o,
is a combined effect of geometric dispersion, which
results from the variation of mechanical properties
with depth, and intrinsic dispersion, due to the
constitutive behavior of linear viscoelastic media.

* Inversion: the V, and the D, profile with depth are
obtained through an inversion scheme, where a

10
0 50

Position (m)

Figure 3. Recorded data at the Hornsby Bend site: a) Time histories of particle velocity recorded by the geophone array; b) Time histories
of average radial strain recorded by DAS. Data refer to the wavefield generated from the active source located at an offset equal to 10 m.
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theoretical soil model is calibrated to match the
experimental V, and a.,.

In MASW testing, the main advantage of the DAS
technology with respect to conventional acquisition devices is
the enhanced spatial resolution using low-cost instrumentation.
Indeed, DAS allows for dense spatial sampling of the wavefield,
potentially along a broad array extent. Conversely, achieving
the same spatial resolution with ordinary receiver arrays would
require a large number of sensors, entailing severe economic
and logistic issues. Furthermore, high quality measurements
can be even obtained from conventional fiber-optic cables,
that are not specifically designed for seismic investigation and
already deployed in the ground (e.g., the telecommunication
infrastructure; Jousset et al., 2018). Therefore, the per-channel
cost is moderately low. Applications of this technology to MASW
surveys demonstrated that the dispersion estimates well match
those obtained from geophone measurements (Galan-Comas,
2015; Vantassel et al., 2022b). Furthermore, the DAS acquisition
tends to better identify higher propagation modes (Galan-Comas,
2015). However, fiber-optic systems are uniaxial devices, recording
only perturbations acting in the longitudinal direction, and the
correct location of measurement points may be uncertain in
some cases (e.g., in the case of fiber overstuffing; Bakku, 2015).
Also, the signal-to-noise ratio of measured data is lower
compared to geophones. The lower quality in recorded traces
limits the repeatability of the survey (Costley et al., 2018) and
the reliability of the estimated wave parameters in the presence
of weak signals (Mestayer et al., 2012). Finally, as explained
above, the measurement technique involved in this technology
partially limits the minimum investigable wavelengths at
greater values than the one defined by the Nyquist-Shannon
theorem (Lancelle, 2016; Bakulin et al., 2020). Therefore,
the characterization of high-frequency R-wave data might be
challenging.

Different acquisition layouts were investigated at the
Hornsby Bend site to assess the influence of the DAQ type
on the estimated dispersion and attenuation data, through the
canonical 1D processing procedure. The first 94 m section of
the fiber-optic cable, which is adjacent to the geophone array,
is selected in this study to ensure a consistent comparison
between results, as they sample a comparable volume of the
soil deposit. This study refers to waveforms generated at
shot points located at 5 m, 10 m, 20 m, and 40 m offset from
the closest measurement point (i.e., 0 m; refer to Figure 3a).
Additionally, it only utilizes waveforms created by the Thumper
truck, which generated a 12-s long chirp signal, with frequency
shifting from 5 Hz to 200 Hz. As an example, Figure 3a-3b
reports the time histories of recorded data in the Hornsby Bend
site using the geophone and the DAS arrays, with the active
source located at an offset equal to 10 m.

As noted above, Vantassel et al. (2022b) showed that
it is possible to extract equivalent surface wave dispersion
data from seismic measurements made using a traditional
geophone array and DAS. Moreover, they demonstrated that
frequency-dependent normalization of the dispersion image

removes the effect of scaling, integration, and differentiation
on the acquired waveforms, thereby mitigating the need to
convert the measurements into consistent engineering units
prior to comparing dispersion data. Thus, Vantassel et al.
(2022b) rigorously demonstrated the potential for extracting
high-resolution, multi-mode surface wave dispersion data
using DAS measurements and MASW-type processing.

Aimar et al. (2023) showcased the potential of exploiting
DAS data for the joint estimation of the phase velocity and
phase attenuation data. These quantities were obtained
from the vertical geophone waveforms through application
of the recently developed Cylindrical Frequency-Domain
BeamForming — Attenuation algorithm with Modal Filtering
(CFDBFaMF; Aimar et al. (2024a)). The extraction of the
R-wave parameters from DAS data adopts a modified version
of the CFDBFaMF, which implements an average strain-based
beamforming [further details are available in Aimar et al.
(2024a)]. In this way, the procedure properly models the spatial
variation of the amplitude and phase of the average radial
strain. Figure 4 compares the estimated modal dispersion and
attenuation data for the first two propagation modes (labeled
as RO and R1, respectively), obtained from the interpretation
of the DAS and the geophone array data. In this case, the data
distribution is represented by the interval around the median value,
the width of which equals one logarithmic standard deviation.
Data statistics are obtained by combining results from different
source offsets, in consistency with the multi-offset approach
(Cox & Wood, 2011).

In general, dispersion and attenuation data well match
with each other, particularly for the RO mode. For the R1 mode,
the DAS data does not allow phase velocity and attenuation
estimates to be made over as broad a frequency range, being
more limited at lower frequencies. This partially limits
the capability of the DAS system in characterizing deeper
layers. However, the corresponding degree of variability in
the phase velocity and attenuation data derived from DAS
is generally less than or equal to the variability affecting the
geophone-based parameters. This result is quite surprising,
as the signal-to-noise ratio of DAS records has been reported
in other studies to be slightly lower than geophone records,
hence, higher variability in the DAS-derived attenuation was
expected. A possible reason behind the low data scatter can
be the remarkably larger number of measurement points that
the DAS system includes, that provides a more exhaustive
dataset of wavefield values to better constrain the velocity
and the attenuation estimates.

Finally, experimental Rayleigh-wave data were mapped
into profiles of ¥ and D versus depth, by means of the inversion
procedure developed by Aimar et al. (2024b). This operation was
carried out through an improved Monte Carlo scheme, which
implements a smart sampling technique of the model parameter
space, by exploiting the scaling properties of the Rayleigh wave
parameters in linear viscoelastic media. These properties allow
asignificant saving in computation time, preserving the quality
of the resulting ground models at the same time. For simplicity,
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Figure 4. Comparison between the estimated dispersion and attenuation curves from the DAS and the geophone data at the Hornsby Bend
site: a-b) Resulting dispersion (a) and attenuation (b) curves for the fundamental mode, RO; c-d) Resulting dispersion (c) and attenuation
(d) curves for the first higher mode, R1. Estimated data are represented in terms of intervals given by one logarithmic standard deviation

around the median value; after Aimar et al. (2023).

the model identification adopts a three-layer ground model,
consistently with the stratigraphy inferred by cone penetration
soundings carried out close to the DAS array (refer to Figure 2b).
For each layer, an adequate range of layer thicknesses, S-wave
velocities and damping ratios were investigated, whereas the
mass density and Poisson’s ratios were fixed at realistic values.
The inversion was run using 10,000 trial earth models. Forward
dispersion and attenuation modeling was carried out through
the EDT toolbox (Schevenels et al., 2009). Model selection was
based on a proper misfit function, wherein fitting errors between
theoretical curves and experimental data were weighted as a
function of the uncertainties affecting V(o) and o, (o).
Figure 5 shows results for the best fitting 30 models.
Inverted S-wave velocity and damping ratio profiles are
relatively well constrained, and the velocity and dissipation
structures are clearly identifiable in the near-surface layers.
Specifically, the resulting V', model exhibits a gradual
increase in stiffness with depth. The depths of the identified
layers interfaces are about 4 m and 12-13 m. This result is
consistent with the main geological interfaces inferred at the
site and with information from past geophysical surveys.
The estimated D, profiles are affected by greater variability,
which increases with depth. Specifically, D, is about 5% in
the near-surface layer, and increases to around 8% in the layer
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below. As for the half-space, the variability in both V' and D
dramatically increases with respect to shallow layers. Indeed,
the few amounts of experimental data at long wavelengths
does not allow an effective constraints of estimated profiles
at greater depths. Thus, the V oscillates between 330 m/s
and 400 m/s, whereas D, spans over a much broader range,
mostly between 0.5% and 5% (that is, the variation is about
one order of magnitude). This is the combined effect of
the large variability in low-frequency attenuation data, the
relevant influence of V' on phase velocity and attenuation
data, and the moderately low sensitivity of theoretical
attenuation curves to D, at great depths (e.g., Verachtert,
2018), that does not allow a constraint on D, as effective as
in the stiffness modeling. On the other hand, it should be
noted that, particularly in the near-surface layers, both the
velocity and dissipation structures show well defined trends.

In summary, the DAS technology can be successfully
used to jointly estimate the phase dispersion and attenuation
data, obtaining the same level of reliability of the canonical
geophone array. Furthermore, the potentially stronger
influence of incoherent noise on DAS data is balanced by the
significant increase in the number of measurement points,
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thus resulting in a reduction in data variability, entailing an
improvement in the accuracy of this system.

3.1.2 2D MASW using DAS

Two-dimensional (2D) MASW (e.g., Park, 2005) is a
technique used to produce a pseudo-2D V cross-section of
the subsurface by expanding upon the 1D MASW approach.
This technique relies on spatially interpolating numerous 1D
MASW V profiles obtained from overlapping sub-arrays
along a linear testing alignment. One of the main challenges
when performing 2D MASW using conventional equipment,
such as geophones and 24-channel seismographs, is that
the geophone spacing, the length of the sub-arrays, the
spatial interval between sub-arrays, and the positions of
shots relative to the sub-arrays must be determined prior
to/during data acquisition, making it difficult to adjust
them during data processing (i.c., after data acquisition).
This poses a challenge because the geophone spacing and
sub-array length can have a significant impact on the lateral
resolution, maximum characterization depth, and anomaly
detection capabilities (Yust et al., 2022). Therefore, the
ability to modify parameters such as the sub-array length
after initial processing results have been investigated can
be highly advantageous. According to a study by Yust et al.
(2022), the use of DAS rather than traditional 2D MASW

equipment can be highly advantageous in addressing these
challenges.

In their recent study, Yust et al. (2022) investigated the
effects of 2D MASW sub-array length using the DAS data
collected at the Hornsby-Bend site. Three sets of sub-arrays
with varying lengths were used to develop pseudo-2D
V cross-sections along a 200 m long DAS line (refer to
Figure 2a). The sub-arrays investigated by Yust et al. (2022)
consisted of: (a) 12-channel sub-arrays approximately 11 m
long, (b) 24-channel sub-arrays approximately 23 m long,
and (c) 48-channel sub-arrays approximately 47 m long.
They used an equivalent sub-array spatial interval of four
channels (approximately 4 m) for all sub-arrays and performed
129 individual MASW analyses in total. The pseudo-2D V
cross-sections obtained using the 12-, 24-, and 48-channel
sub-arrays had lateral extents of 187.68 m, 175.44 m, and
150.96 m, respectively, while maintaining a consistent
depth of 15 m, as shown in Figure 6a, 6b, and 6c, respectively.
These cross-sections are quite similar over the top 7-8 m, but
show noticeable differences at greater depths, highlighting the
sensitivity of 2D MASW results to the choice of sub-array
length. Nonetheless, each cross-section obtained from the
different sub-array lengths was found to correlate better
with a different key feature of the subsurface, as verified by
comparisons with invasive data collected along the array
alignment. For instance, Yust et al. (2022) found that, for the
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Hornsby-Bend site, the most prominent impedance contrast
in the ¥ cross-section obtained using 12-channel sub-arrays
corresponded to the depth of CPT refusal (see Figure 6a),
while the V; cross-section obtained using longer, 48-channel
sub-arrays corresponded to the deeper shale impedance
contrast, as indicated by the boring lithology log superimposed
on the V cross-section (see Figure 6¢). It is worth noting
that Yust et al. (2022) were able to investigate these different
sub-array lengths post data acquisition, owing to the flexibility
allowed by DAS technology. Unlike traditional seismic
equipment, DAS records the wavefield generated at each
of the considered shot locations simultaneously along the
entire length of the array at a constant channel separation,
eliminating the need to pre-determine sub-array length and
spatial sampling interval during data acquisition. This feature
enables the investigation of multiple sub-array geometries
during the processing stage of the analysis, thereby providing
greater flexibility and control over acquisition parameters.

The study by Yust et al. (2022) shed light on the
advantages of utilizing DAS in 2D MASW, and emphasized
the significance of incorporating a priori information,
such as invasive testing data, to fine-tune the 2D MASW
analysis and achieve project-specific objectives, whenever
feasible. In cases where there is insufficient conclusive
information to constrain subsurface layering, Yust et al.

(2022) recommended examining multiple 2D MASW sub-
array configurations to gain a comprehensive understanding
of the subsurface conditions and accurately assess the
uncertainty of the results.

3.1.3 Machine learning

In recent years, there has been a growing interest
in utilizing deep learning/machine learning/artificial
intelligence (DL/ML/AI) techniques for non-invasive
subsurface imaging (Adler et al., 2021). For example,
with a fully trained and adaptable neural network it would
theoretically be possible to swiftly generate subsurface
images directly from wavefield measurements without
the need to perform costly and complicated inversions.
Furthermore, this type of imaging could be performed
by an analyst without any significant understanding of
machine learning. This would enable the reuse of fully
trained neural networks to rapidly produce site-specific
results, eliminating the need for specialized expertise,
which is often required by conventional inversion methods.
To train a neural network for subsurface imaging, a large
dataset consisting of numerous input-output image pairs is
required. The input can be a representation of the raw data
acquired from the field, or some post-processed version
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Figure 6. Pseudo-2D V' cross-sections after Yust et al. (2022) from the: (a) 47, 12-channel MASW sub-arrays, (b) 44, 24-channel MASW
sub-arrays, and (c) 38, 48-channel MASW sub-arrays inverted using a 15-layer inversion parameterization. The depths of refusal for
9 CPT soundings along the array are shown on all plots with a solid black line.
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of it, while the output can be a subsurface image of the
parameter of interest, such as a V¢ cross-section. Due to
the considerable number of image pairs needed to train a
neural network, all research studies thus far have relied
on numerically-developed image pairs, as in the case of
the convolutional neural network (CNN) developed by
Vantassel et al. (2022c¢), which takes a seismic wavefield
input image and outputs a 2D V image. A significant
challenge that has impeded the use of machine learning as
an end-to-end imaging technique for real-field applications
is the lack of generalizability (Li et al., 2020; Feng et al.,
2022). In other words, these neural networks often
struggle when presented with real-field data, particularly
if the data was acquired using a different acquisition
configuration than the one used during network training
(e.g., Vantassel et al., 2022c).

Abbas et al. (2023b) have recently introduced a CNN
that shows promise for rapidly generating 2D V' images
of near-surface soil-over-bedrock geology using real-field
data. To train and test their CNN, they utilized 100,000
synthetic near-surface models with varying soil-over-bedrock
conditions. Their CNN takes a frequency-dependent
normalized dispersion image as input (rather than a seismic
wavefield image) and produces a 2D V image as output,
as illustrated schematically in Figure 7. Abbas et al.
(2023b) demonstrated that while using different testing
configurations in terms of source type, source offset, number
of receivers, and receiver spacings leads to significantly
different measured wavefields for the same subsurface
structure, the normalized dispersion images processed from
these different wavefields are quite similar, although not
identical. Abbas et al. (2023b) leveraged this feature and
demonstrated that a CNN trained on normalized dispersion
images processed from wavefields acquired using a specific
testing configuration can still perform well when presented
with dispersion images processed from wavefields acquired
using different testing configurations. This acquisition
flexibility significantly improves the CNN’s generalization
capability, enabling it to be utilized as an end-to-end
imaging method or as a tool to create rapid starting models
for full-waveform inversion (FWI).

Abbas et al. (2023b) demonstrated the practical
capability of their CNN by applying it to experimental field
data collected at the Hornsby Bend site. Their CNN generated
a high-resolution 48 m wide by 24 m deep V' subsurface
image, which agrees well with the actual subsurface structure
determined through invasive tests conducted at the site, as
shown in Figure 8, thereby establishing the CNN’s promise
in handling real-field data. While Abbas et al. (2023b) used
geophone-derived dispersion images in their study, their
approach is equally applicable to DAS-derived dispersion
images, as geophone and DAS-derived dispersion images
are shown to be equivalent by Vantassel et al. (2022b).

3.1.4 Full wave form inversion using DAS
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Figure 7. Illustrates the Frequency-velocity CNN framework
introduced by Abbas et al. (2023b) for 2D ¥ imaging of near-surface
soil-over-bedrock geology. Panel (a) showcases a soil-over-rock
2D model featuring a 47-meter array of receivers and a single
source located off the array’s end. In panel (b), an example seismic
wavefield recorded by the 48 receivers shown in panel (a) from a
Ricker source is depicted. Panel (c) displays the associated dispersion
image, serving as the input to the Frequency-velocity CNN. Finally,
in panel (d), the Frequency-velocity CNN’s predictions of the true
synthetic 2D ¥ images presented in panel (a) are showcased.
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Figure 8. The frequency-velocity CNN output 2D V' image for the
Hornsby Bend site after Abbas et al. (2023b). For comparison with
actual field conditions, a borehole log (i.e., B1) is superimposed
on the predicted V' image at 12.5 m, which is the location where
the boring was conducted.
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Full-waveform inversion (FWI) is a robust imaging
technique that produces 2D/3D images of the subsurface
by matching a synthetic seismic wavefield, generated by
numerically solving the wave equation, to an experimental
seismic wavefield acquired in the field. The process involves
an iterative data-fitting procedure that requires modifying
an initial model through which the synthetic waveforms
propagate until the synthetic and experimental wavefields
match, based on a selected inversion objective function. This is
achieved by adjusting the material properties of the synthetic
subsurface model, thereby reducing the misfit between the
synthetic and recorded data. Unlike 2D MASW, which can
only produce pseudo-2D images, FWI generates true 2D
and 3D images by leveraging all available information in the
seismic wavefield, including phase and amplitude. This sets
FWTI apart from other approaches, such as seismic refraction
that relies only on wavefield first arrivals or surface wave
testing that uses only Rayleigh dispersion. In addition to
providing insights into material parameters like ¥, and
compression wave velocity (V,), which are of high interest to
engineers, FWI can also be used to assess any other material
properties that impact seismic wave propagation, such as
density and damping ratio.

Despite its numerous advantages, FWI also encounters
significant challenges. The computational costs associated
with FWI are considerable, and the accuracy of its results can
be heavily influenced by the initial model (Vantassel et al.,
2022¢; Yust et al., 2023), particularly in near-surface
applications such as imaging the top 30 m. In the near surface,
material properties tend to exhibit rapid variations over short
distances, leading to a complex mixture of different wavefield
components. This amalgamation includes compression,
shear, and surface waves, which have not yet propagated
far enough to separate from each other.

40 80 120 160
Location Along Array (m)

200 0

Traditionally, FWI analysis has utilized data acquired
through geophones, which capture particle velocity wavefields.
However, the high spatial resolution provided by DAS has
garnered interest for use in FWI studies. Nonetheless, there
is a dearth of literature on the use of FWI with DAS data
for near-surface characterization, particularly in regards to
directly inverting DAS strain data without first converting
it to particle displacement or velocity.

In arecent study conducted by Yust et al. (2023), a direct
inversion of strain measurements obtained from DAS was
performed at the Hornsby Bend site. The study aimed to image
a cross-section measuring 200 m wide and 30 m deep. Four
distinct 1D and 2D starting models specifically tailored to the
site were utilized. The first model was based on a 1D V profile
obtained through traditional MASW testing. The second starting
model utilized a 1D V' profile derived from seismic down-hole
invasive testing. The third starting model relied on the CNN
2DV subsurface model developed by Abbas et al. (2023b) and
depicted in Figure 8. Lastly, the fourth model was constructed
using the 2D MASW analysis with the 48-channel subarrays
developed by Yust et al. (2022) and discussed in the 2D MASW
section (refer to Figure 6). The four FWI starting models used
by Yustetal. (2023) are visually depicted in Figure 9. Yust et al.
(2023) inverted for V, V',, and density, p, while assuming constant
quality factors to characterize the attenuation of compression
and shear waves in the model. Nonetheless, they noted that the
attenuation parameters significantly impact the FWI results
and noted that additional studies are required to help constrain
these values. Yust et al. (2023) observed enhancements in
each of the initial models through the implementation of FWI.
This improvement was evident when comparing the misfit
between synthetic and recorded waveforms for both the initial
and updated models. For example, Figure 10 illustrates the
misfit between the synthetic and experimental waveforms of
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Figure 9. The four smoothed 2D Vs starting models used by Yust et al. (2023) for FWI based on: (a) 1D MASW, (b) downhole testing

(DH), (c) CNN machine learning, and (d) pseudo-2D MASW.
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the initial models, while Figure 11 displays the misfit for the
FWI updated models following the first stage of a four-stage
FWI. By comparing the waveform misfit values in Figure 10
and Figure 11, which are based on a graph space optimal
transport distance (GSOTD) algorithm, one can clearly see that
the FWTl iterations in the first stage resulted in better waveform
matches (i.e., lower misfit values) for all four starting models.
This reduction in misfit values continued through each stage
of the FWI process, ultimately resulting GSOTD misfit
values for the four final models that were very similar to
one another and only varied between 1.91 to 1.46. Despite
the similarities in the final waveform misfit values, the final
subsurface models did not vary significantly from their
respective starting models and exhibited noticeable visual
differences from one another, as depicted in Figure 12. Within
the upper 7 m, the final V'  images are quite similar. Yet, below
this depth there are evident disparities in the magnitudes
and rates at which V' increase. This finding highlights the
intrinsic non-uniqueness associated with the FWI process,
underscoring the importance of incorporating multiple starting
models. Assessing the sensitivity of results to the choice
of starting model and attaining consistent outcomes across
different models engenders confidence in the subsurface
regions where the models yield congruent results.

3.2 Discussion

In the preceding sections, various subsurface imaging
techniques have been reviewed. This section aims to

provide an analysis of the advantages and disadvantages
associated with each technique. The first method reviewed
was 1D MASW, which is a well-established technique for V
imaging using geophones. Extensive research supports this
method, offering best practices and recommended workflows
(Foti et al., 2018; Vantassel & Cox, 2022). However, this
study presents two advancements to the conventional 1D
MASW workflow. The first involves using DAS instead
of geophones for data acquisition, while the second is the
joint inversion for damping and V. The utilization of DAS
significantly enhances measurement scales and spatial
resolution beyond the capabilities of traditional measurement
technologies. Moreover, when appropriate precautions are
taken, the measurements obtained through DAS exhibit good
agreement with those acquired using traditional methods
like geophones (Daley et al., 2016; Hubbard et al., 2022;
Vantassel et al., 2022b). It should be noted, though, that
DAS provides deformation measurements only along the
fiber optic cable direction, while geophones can capture
particle motion point measurements in all three directions
individually or simultaneously.

The second advancement focuses on the joint inversion
for damping and V' using data acquired througha 1D MASW
setup, which represents a significant breakthrough, particularly
due to the crucial role of damping in various domains, including
site response. Aimar et al. (2023) showed that their approach
is applicable on both geophone and DAS acquired data.
Furthermore, this paper illustrates the innovative application
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Figure 12. Borehole logs, downhole ¥V results, and the depth to CPT refusal overlaid on the final, updated 2D V' images at the end of FWI
Stage 4 (10 to 30 Hz) for the: (a) MASW, (b) downhole testing (DH), (¢) CNN, and (d) 2D MASW starting models after Yust et al. (2023).

of DAS in jointly characterizing the stiffness and dissipative
parameters of a soil deposit based on a fiber-optic array.
Figure 4 illustrates the favorable agreement between
attenuation estimates obtained using both DAS and geophones
for the Hornsby Bend site, with DAS-based measurements
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exhibiting lower uncertainty compared to geophone-based
measurements. However, the uncertainty in attenuation
estimates generally tends to be higher than that observed
for dispersion estimates, as detailed by Aimar (2022). In
addition, the results presented were obtained from a portion
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of alarge experimental dataset. Future studies will thoroughly
investigate these data to obtain a more comprehensive view
of DAS performance compared to geophones and to seek
for improved estimates of the phase attenuation, especially
at low frequencies. It is worth noting that the 1D MASW
technique generates a 1D subsurface profile by averaging the
soil properties beneath the instrumentation array. To obtain a
2D representation of the subsurface, the 2D MASW technique
was utilized. However, 2D MASW generates a pseudo 2D
image rather than a true one, as it involves interpolating
between multiple 1D MASW-derived soil profiles. Yust et al.
(2022) demonstrated that this method produced V' images
that aligned with significant features at the Hornsby-bend
site. Nevertheless, it was also observed that the resulting V'
image is reliant on the specific parameters chosen for data
acquisition.

Another approach presented in this paper for 2D V
imaging is the machine learning CNN proposed by Abbas et al.
(2023b). This approach holds great promise as it can generate
true 2D images of the subsurface, in contrast to the pseudo
2D images obtained through 2D MASW. Additionally, the
machine learning approach is notable for its remarkable
speed, as a trained neural network can deliver imaging results
within seconds. However, this technique is still in its early
stages of development and requires extensive research and
testing before it can be reliably employed for subsurface
imaging purposes.

The final imaging approach explored in this paper is
2D FWI. What sets FWI apart from the previously discussed
methods is its utilization of the entire measured wavefield to
generate true 2D and 3D subsurface images. Moreover, FWI
differs from the machine learning approach by not operating
as a black box method. As FWI continues to undergo further
development, it is anticipated to become the preferred imaging
technique. However, FWI currently faces several challenges,
including notable computational costs and time-consuming
complexity of the analysis process. Furthermore, studies
by Yust et al. (2023) and Vantassel et al. (2022c) have
demonstrated that the imaging results obtained through
FWI are significantly influenced by the starting model used.

4. Reference dataset: Newberry site, Florida

The preceding paragraphs have showcased the
latest developments in seismic wave-based noninvasive
subsurface imaging, with a practical demonstration of
their potential at the Hornsby Bend site. However, it
should be noted that the Hornsby Bend site is a relatively
simple site with no documented underground anomalies.
Furthermore, the seismic data from the Hornsby Bend site was
collected using relatively short and linear DAS and geophone
arrays. To provide researchers with a more comprehensive
dataset at a more challenging site, Abbas et al. (2024)
conducted a field test in Newberry, Florida, at a site known
for its spatial variability, karstic voids, and underground

anomalies. The experiment utilized cutting-edge sensing
technologies, including a two-kilometer DAS fiber optic
cable, forming a dense 2D array of 1920 channels, and a
2D array of 144 SmartSolo three-component nodal stations
to sense active-source and passive-wavefields, as illustrated
schematically in Figure 13. The active-source data was
generated using a powerful three-dimensional vibroseis
shaker truck and impact sources, and it was simultaneously
sensed by both the DAS and nodal stations. The vibroseis
truck was used to vibrate the ground in the three directions
(two horizontal and one vertical) at 260 locations inside and
outside the instrumented array, while the impact sources were
used at 268 locations within the array (refer to Figure 13).
The passive wavefield data, recorded using the nodal stations,
consisted of 48 hours of ambient noise collected over four
days in four twelve-hour time blocks. The active-source and
passive-wavefield DAS and nodal station data have been
preprocessed and organized in an easy-to-navigate folder
structure. The raw and processed data, along with detailed
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Figure 13. Newberry site testing configuration after Abbas et al.
(2024).
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documentation of the experiment and Python tools to aid in
visualizing the DAS dataset have been archived and made
publicly available on DesignSafe (Abbas et al., 2023a).
The Newberry dataset (Abbas et al., 2024; Abbas et al.,
2023a), featuring a powerful, triaxial vibroseis shaker and
3C sensors, in conjunction with the dense DAS array, offers a
valuable resource for researchers exploring novel noninvasive
subsurface imaging approaches that utilize seismic waves.

5. Conclusion

The paper covers advancements in noninvasive subsurface
imaging technologies that utilize seismic waves for site
characterization. These advancements span both innovative
sensing technologies and advanced 1D and 2D imaging
techniques for retrieving the small-strain shear modulus and
damping ratio. Regarding sensing innovations, a particular
focus is placed on the use of DAS as the data acquisition
system for seismic wave sensing in near-surface imaging
applications. In terms of imaging techniques, the joint inversion
of attenuation and dispersion data is presented, utilizing 1D
MASW in conjunction with either DAS or traditional sensing
techniques such as geophones. With this approach, 1D shear
wave velocity and damping profiles can be obtained. The
presented 2D imaging techniques comprise 2D MASW
using DAS, machine learning for 2D subsurface imaging,
and 2D FWI using DAS data. All of these advancements,
whether in sensing technologies or analysis methods, were
implemented at the well-characterized Hornsby Bend site
in Austin, Texas, enabling a discussion of the advantages
and disadvantages associated with each method. Finally, a
comprehensive and open-access subsurface imaging experiment
conducted in Newberry, Florida, has been presented, where
state-of-the-art technologies for sensing seismic waves and
generating wavefields have been implemented.
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List of symbols and abbreviations

2g gauge length
e average strain, computed over the gauge length
along the fiber-optic cable direction

r spatial coordinate

t time

u ground displacement

Dy shear wave damping ratio

v, compressional wave velocity
Ve Rayleigh wave phase velocity
Vs shear wave velocity

0, Rayleigh wave phase attenuation
A wavelength

p density (mass per unit volume)
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