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Abstract

As global temperatures rise due to climate change, the frequency and intensity of
heatwaves are increasing, posing significant threats to human health, productivity, and
well-being. Thermoregulation models are important tools for quantifying the risk of extreme
heat, providing insights into physiological strain indicators such as core and skin
temperatures, sweat rates, and thermal comfort levels. This study evaluated four
thermoregulation models of varying complexity, differentiated by the geometry and
underlying thermoregulatory mechanisms. The models assessed include the Gagge two-
node model, the Stolwijk-1971 model, the JOS3 model, and the UTCI-Fiala model.
Additionally, we introduce the Stolwijk-2024 model, a modified version of the original
Stolwijk model, which incorporates updated empirical coefficients derived from recent
studies while retaining the original framework. The models were tested against human trial
data across a wide range of extreme heat exposures, including transient extreme heat,
humid heat, various physical activity levels, and clothing insulation scenarios. Our findings
demonstrate that multi-node and multi-segment models, such as JOS3, UTCI-Fiala, and
Stolwijk-2024, reliably predict core (average RMSD: <0.3°C) and skin (average root-
mean-square deviation, RMSD: <0.6°C) temperatures, making them suitable for
assessing heat strain and thermal comfort in moderate to extreme environmental
conditions. In contrast, simpler models like the single-segment, two-node Gagge’s model
performed poorly in predicting core temperature under conditions involving high metabolic
rates (>3.75 met) in moderate to hot environments (>35°C), with an average RMSD of
1.2°C. Similarly, the Stolwijk-1971 model showed a systematic bias (~0.45°C),
underpredicting core temperatures during high metabolic rates. This study underscores
the robustness and applicability of open-source models like JOS3 and Stolwijk-2024 in
public health, urban design, and climate impact research, highlighting their potential to
improve our understanding of heat strain and thermal comfort in the context of a warming
climate.

Highlights

e Comprehensive validation of thermoregulation models under extreme climate
¢ Updated Stolwijk model has enhanced accuracy in predicting core and skin temperatures
¢ Two-node or overly simplified models can underperform in analyzing heat exposures

Keywords: Thermoregulation model, Model evaluation, Comparative analysis, Extreme
heat exposure, Heat strain assessment
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1.Introduction

As global temperatures rise due to climate change, humans are experiencing more
frequent, prolonged, and intense heatwaves (Intergovernmental Panel on Climate Change
(IPCC), 2019; Perkins-Kirkpatrick and Gibson, 2017). These extreme heat events pose
significant challenges to human health, livability, productivity, and overall well-being (Ebi
et al., 2021, 2020; Vanos et al., 2023). Vulnerable populations, such as the elderly, those
with pre-existing medical conditions, and individuals living in poverty, are at heightened
risk (Jay et al., 2021; Trenberth et al., 2003). Understanding the degree of heat strain
associated with extreme heat across various demographics and activities is important for
informing behavioral, policy, and infrastructure decisions aimed at mitigating these
dangers (Cissé et al., 2022; Joshi et al., 2023a; Karanja et al., 2024; Vanos et al., 2024).

Heat strain assessment involves consideration of the energy balance of the human
body and thermoregulatory processes. The energy balance includes heat generated
internally (from metabolism and physical activity), heat and mass transfer pathways
between the body and the environment (i.e., convection, radiation, and evaporation), and
factors that affect these pathways. In particular, the degree of heat strain on human body
is impacted by air temperature, ambient vapor pressure, air speed, long- and short-wave
radiation (or mean radiant temperature), internal heat generation and redistribution within
the body, and the thermal properties of clothing. Many human energy balance models and
heat indices provide simplified representations of environmental stress, for example, only
considering air temperature and humidity. In contrast, more advanced models incorporate
complete treatment of environmental exposure with thermoregulatory controls driven by
thermoreceptors, which sense the current thermal state of the body, either in the brain or
in both the brain and skin(Stolwijk, 1971; J. A. J. Stolwijk and Hardy, 1966). Based on
feedback from thermoreceptors, the hypothalamus activates thermoregulatory responses
(such as vasomotion, sweating, and shivering) that aim to maintain the body's core
temperature at healthy levels.

Advanced thermoregulatory models output comprehensive information about heat
strain, such as core temperature, skin temperature, sweat rate, skin wettedness, cardiac
output, and thermal comfort levels. Furthermore, advanced models can be extended to
account for the effect of age, body mass index (BMI), gender, and other conditions that
impact thermoregulatory functions to assess the heat strain at an individual level (Davoodi
et al., 2018; Havenith, 2001, 1997; Takada et al., 2009; Takahashi et al., 2021; Van Marken
Lichtenbelt et al., 2007; Zhang et al., 2001). Such tailoring can enable a nuanced
understanding of how diverse populations are affected by complex environmental
conditions, offering valuable insights for improving health and safety in extremely hot
conditions (Deng et al., 2018; Karanja et al., 2024; Ou et al., 2023; Vanos et al., 2024;
Zhao et al., 2020). However, uncertainty regarding the reliability and validation of models
for heat exposure as well as availability (open source vs. commercial software that might
be out of the financial reach of many researchers) are significant obstacles in analyzing
the health risks posed by current and future heatwaves.

This study evaluated five thermoregulation models representing a wide range of
complexity regarding thermoregulatory mechanisms, body segments, and tissue types
(see Figure 1). The selected models include the two-node (single segment: core and skin)
model by Gagge, two versions of the 25-node (six body segments) model by Stolwijk, 85-
node JOS3 model (17 segments), and 187-node UTCI-Fiala multi-node model (12
segments) (Fiala et al., 2012; Gagge, 1971; Stolwijk, 1971; Takahashi et al., 2021). In
addition, we introduce Stolwijk-2024 model, a modified version of the original model with
updated empirical coefficients reflecting contemporary data from recent human trials while
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retaining the original framework. Besides the open-source models (either previously
available or published with this paper), we also included results from the commercial
UTCI-Fiala model because it is comprehensively validated and used in developing the
Universal Thermal Climate Index (UTCI) that often serves as a benchmark (Jendritzky et
al., 2012; Psikuta et al., 2012). We could not include recent complex 3D numerical models
in the direct comparison, as the lack of published source code makes it challenging to
reproduce them accurately (Castellani et al., 2021; Joshi et al., 2022; Kang et al., 2019;
Nelson et al., 2009; Silva et al., 2018). Evaluating the selected five models using the same
heat exposure and human trial data can reveal whether increased complexity improves
accuracy in predicted physiological parameters and if simple, open-source models can
perform reliably. To test the robustness and reliability of the models, we selected human
subject data from the literature that covers a wide range of conditions for validation. These
conditions include:
(i) extreme heat exposures where subjects transitioned between moderate and extreme
conditions, reflecting transient air temperature and humidity,
(ii) hot and humid environments with high wet bulb temperatures,
(iii) scenarios where the mean radiant temperature is significantly higher than the air
temperature,
(iv) various physical activities conducted in warm to hot conditions and
(v) a diverse range of clothing ensembles with differing levels of thermal insulation.
Evaluating these models will guide future developments and enable their use in public
weather services, health systems, urban design, tourism, and climate impact research for
accurate heat strain predictions.

Skin Muscle Artery Skin and Muscle

. Vein —— skeleton
Fat M Core Superficial vein —— i ;

i
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O ° AR
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Figure 1. Side and cross-sectional overview of thermoregulation modeling approaches
with varying levels of complexity; (a) single segment multi-node model (e.g., Gagge,
1971), (b) multi-segment multi-node model with simplified vascular system (e.g., Stolwijk,
1971), (c) multi-segment multi-node model with detailed vascular system (e.g., Fiala et al.,
2012; Takahashi et al., 2021), and (d) 3D-anatomic thermoregulation models (e.g.,
Castellani et al., 2021; Nelson et al., 2009; Silva et al., 2018).
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2. Methods

2.1 Overview and rationale for the five model selection

Since the 1960s, mathematical models of human thermoregulation have evolved in
complexity, incorporating factors like thermal physiology, body geometry, clothing, and
environmental influences on heat transfer (Castellani et al., 2021; Fiala et al., 2012;
Gagge, 1971; Joshi et al., 2022; Kang et al., 2019; Nelson et al., 2009; Silva et al., 2018;
Stolwijk, 1971; Takahashi et al., 2021; Tanabe et al., 2002; Wissler, 2018). Among these,
the Gagge model (Gagge, 1971) consists of a single segment with two nodes representing
the core and skin. In this model, the thermal properties of different tissues are lumped
together within these two nodes. Because the model is limited to a single segment, it has
a restrictive capacity for capturing variations in key thermoregulatory mechanisms, such
as heat generation, blood flow, and sweating, which differ significantly across various body
segments. These limitations constrain the model's ability to calculate these mechanisms
with higher spatial resolution. Despite this limitation, it has been used as heat strain and
thermal comfort assessment tool due to its simplicity and accuracy (Haslam and Parsons,
1994, 1988; Ooka et al., 2010; Standard, 1992; Tartarini et al., 2020).

The Stolwijk-1971 model includes six body segments and four tissue types (core,
muscle, fat, and skin) allowing for detailed spatial resolution in thermoregulatory analysis,
as described in described in Figure 1b (Stolwijk, 1971). The multi-segmented nature of the
model enables the detailed definition of thermal properties for body tissues and clothing
layers in individual segments, allowing for higher spatial resolution in representing
thermoregulatory mechanisms. Stolwijk’s and similar models assume that each node
directly exchanges heat with a central blood pool. It is also critical to point out that
validation of Stolwijk-1971 model and its derivatives have generally been limited to low
activity levels under semi-nude conditions (Munir et al., 2009; Roelofsen et al., 2023;
Roelofsen and Vink, 2016; Stolwijk, 1971; Tang et al., 2020). In the Stolwijk-2024 model,
we updated the Stolwijk-1971 thermoregulation model by incorporating recent findings,
including updated weighing factors for various thermoregulatory mechanisms, heat
transfer coefficients, and improved methods for calculating heat transfer through clothing,
as described in the Supplemental Material (SM).

The Stolwijk model has served as foundation for many existing thermoregulation
models, with its derivative models enhancing the original model (referred as Stolwijk-1971)
by improving thermoregulatory systems, body segmentation, and individual characteristics
of thermoregulations (Huizenga et al., 2001; Roelofsen and Vink, 2016; Stolwijk, 1971;
Takada et al., 2009; Takahashi et al., 2021; Tanabe et al., 2002; Tang et al., 2020; Zhang
et al., 2001), and detailed heat transfer through arteries and veins (Dongmei et al., 2012;
Ooka et al., 2010; Takada et al., 2009; Takahashi et al., 2021). More recent developments
in thermoregulation models significantly improve the spatial resolution by increasing the
number of body segments and, consequently, the number of nodes (Fiala et al., 2012;
Takahashi et al., 2021). Furthermore, these models also consider the improved
thermoregulatory mechanisms, especially heat transfer via blood flow through the complex
networks of arteries and veins (Fiala et al., 2012; Takahashi et al., 2021). The JOS-3 and
UTCI-Fiala models consider the counter-current heat exchange and convective heat
transfer in capillary beds and local tissue. Therefore, arteries at each segment have
different blood temperatures, leading to potentially large differences for extremities (e.g.
hand and feet) due to convective heat transfer in upstream segments. Such characteristics
are particularly important in cold temperatures and cannot be captured by the Stolwijk
model where all the segments exchange heat with the central blood pool that is at one
particular thermal state at any given time (Fiala et al., 2012; Gagge, 1971; Stolwijk, 1971;
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Takahashi et al., 2021). The key features and rationale for model selection for comparison

are also summarized in Table 1.

Table 1. Key features and rationale for the model selection

Number of
body segments

Model and year

Number
of nodes

Key features

Two-node Gagge (1971) 1

Stolwijk (1971) 6

Modified Stolwijk (2024) 6

JOS-3 (2021) 17

UTCI-Fiala (2012) 12

2

25

25

85

187

Widely used model for assessing heat strain
and thermal comfort due to its simplicity.
Serves as the foundation for many modern
thermoregulation models. Uses simplified
blood flow, where each node exchanges heat
directly with a central blood pool.

Updated version of the Stolwijk-1971 model,
incorporating recent advancements in
vasomotion control, shivering, sweating, heat
transfer coefficients, and heat transfer
through clothing.

Models counter-current heat exchange in
arteries and veins, along with convective heat
transfer in capillaries and local tissues,

The foundation model for the Universal
Thermal Climate Index (UTCI), validated for
assessing heat strain across a wide range of
environmental conditions. Similar to JOS-3,

models  major  key
mechanisms.

2.2. Improved thermoregulation model: Stolwijk-2024

The improved Stolwijk-2024 thermoregulation model consists of six body segments: head,
trunk, arms, hands, legs, and feet. Each segment includes four concentric layers (core,
muscle, fat, and skin) along with a node representing the central blood compartment
(Figure 1(b)). This section focuses on the modifications made primarily to the control
system to enhance the accuracy and functionality of the classical Stolwijk model.
Additionally, the set point temperatures for each node and the heat exchange with the
environment through clothing were updated in the new Stolwijk-2024 model. For a detailed
description, please refer to the supplemental material.

The control system of human thermoregulation receives signals from thermoreceptors
and processes them in the hypothalamus. Based on these signals, the control system
activates various thermoregulatory mechanisms such as vasoconstriction, vasodilation,
shivering, and sweating. Stolwijk (Stolwijk, 1971) defined the control system based on
error signals defined as the difference between actual temperature at any given time and
set point temperature at given node (see Equations 1 to 5). Accordingly, a positive error
signal indicates warm sensing at the thermoreceptors, while a negative error signal
indicates cold sensing. The mathematical form of the thermoregulatory mechanisms
considers signals from both central and skin thermoreceptors.

ji = Tji = Tset;, (1)

thermoregulatory
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WRM;; = max(ERR;;,0) (2)

CLD;; = |min(ERR;;,0)| (3)
WRMS =¥3_, D Frg, - WRM; (4)
CLDS = %5_oD Frg, - CLD; (5)

where, ERR is error signal (°C), T;; is temperature of given node and body segment (°C),
Tset].’i is set point temperature (temperature at physiological thermal neutrality) of given
node and body segment (°C), WRM;; is warm sensing signal (N.D.), CLD;; is cold sensing

signal (N.D.), WRMS is total warm thermoreceptors signal (N.D.), CLDS is total cold
thermoreceptors signal (N.D.), and DFrg, is distribution of thermoreceptor over different

body segments (N.D.)

Stolwijk assumed that effector part of thermoregulation system can be modelled by the
control equations, which combine weighted signal from hypothalamus (central
thermoreceptor), and integrated signal from the skin thermoreceptors (Stolwijk, 1971).
Based on these assumptions Stolwijk suggested the controller equations for various
thermoregulatory mechanisms, as described in Equations 6 to 9 (Stolwijk, 1971). Recently,
the JOS-3 thermoregulation model proposed updated control coefficients (Takahashi et
al., 2021), which are incorporated into the present study. These control coefficients have
significant impact on efferent signals such as vasomotion, sweating, and shivering. As
shown in Figure 2, simulation follows a 240-minute transient exposure, structured as 60
minutes in a moderately cool environment at 28°C, 120 minutes in an extreme heat
condition at 47.8°C, and a final 60 minutes back at 28°C (Case 7 in Table 2). Figure 2a
illustrates the responses of afferent signals from skin and central thermoreceptors, which
trigger various efferent thermoregulatory actions in both the original Stolwijk-1971 model
and the modified Stolwijk-2024 model (Figure 2b to 2e).

SW = (371.2 - ERRyeqa,,,,) + (33.64 - (WRMS — CLDS)) (6)
VD = (100.5 - ERRyeqq,,.,) + (6.4 - (WRMS — CLDS)) (7)
SH = 24.36 - ERRyeqq,,,, - CLDS (8)
VC = (-10.8 - ERRyeqq,,,,) + (—10.8 - (WRMS — CLDS)) (9)

where, SW is total efferent sweat signal (W), ERRyeagq,, . IS €rror signal from central
thermoreceptor, representing changes in hypothalamus (N.D.), VD is total efferent skin
vasodilation signal (N.D.), SH is total efferent shivering signal (W), VC is total efferent skin
vasoconstriction signal (N.D.)
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Figure 2. (a) Afferent signals from various thermoreceptor; Comparison of efferent signal
from Stolwijk-1971 and improved Stolwijk-2024 model for given afferent signals (b)efferent
sweating signal, (c) efferent shivering signal, (d) efferent vasodilation signal, and (e)
efferent vasoconstriction signal.

2.3. The human trial cases used for evaluating performance of the models

The five selected models with varying level of complexity were evaluated to predict
core and mean skin temperature across a wide range of parameters affecting the body’s
heat balance. The models were evaluated under a wide range of conditions, including air
temperature, mean radiant temperature, relative humidity, air speed, activity levels, and
clothing thermal insulation, as detailed in Table 2. The validation cases were focused on
moderate to extreme hot climatic conditions (Tair: 21 to 49.5°C, MRT: 21 to 57°C, RH: 21
to 69.4 %, and vair: 0.1 to 3.3 m-s™' along with various metabolic activity levels (0.8 to 12.1
met) and clothing insulation (0.016 to 0.262 m2-K'°C™")). The thermal and evaporative
resistances presented in Table 2 are obtained from reported values in respective literature
of human trial data and based on clothing descriptions especially for nude or semi-nude
conditions. The accuracy and precision of the predicted core and skin temperatures were
assessed using the root-mean-square deviation (RMSD) and bias. The UTCI-Fiala model
was evaluated in 9 out of the 15 heat exposure cases (Table 2), where both simulated
core and/or skin temperature data were available from the literature. Due to licensing
restrictions, the UTCI-Fiala model could not be applied to the remaining cases. In cases
10 to 15, only core temperature data were reported in literature, so comparisons were
made exclusively for core temperatures, as skin temperature data were not available.



274

275

276
277
278
279
280
281
282

283

284

N g 22
RMSD = Zi—, (Xi—%i)* )
n

Bias = 2= 2)

where, RMSD is root-mean-square deviation of the thermoregulation model, Bias is bias of
the thermoregulation model, i is data point in given time series, n is total number of data
points in given time series, x; = experimental data points, and &X; = simulated data points.
A model’s predictive performance is considered acceptable when the RMSD falls within
the maximum standard deviation of core temperature (0.5°C) and mean skin temperature
(1.6°C), based on experimental data from 590 human subject experiments across 80
different ambient conditions (Haslam and Parsons, 1994; Joshi et al., 2022).
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Table 2. Details of environmental conditions, activity level, and clothing resistance for comparison of the thermoregulation models.

Case Duration  Tair MRT RHair Vair Metabolic R Reci Source
[min] [°C] [°C] [%] [m-s'l  rate [met] [m2°C-'W'] [m?Pa’'W]
Case 1 130 30 30 30 0.1 1.0t0 3.6 0.016 2.5 (Haslam and Parsons, 1988;
Psikuta et al., 2012)
Case2 240 27.8t033.3 27.8 to 37t0o34 0.1 0.8 0 0.0 (Stolwijk and Hardy, 1966a)
33.3
Case3 240 28.5t037.5 285 to 411033 0.1 0.8 0 0.0 (Stolwijk and Hardy, 1966a)
37.5
Case4 400 2110 39.6 211039.6 40to69 0.2 1t03.0 0.040 7.0 (Smallcombe et al., 2022)
Case5 180 28 to 45 28 to 45 53t021 041 1.1t02.4 0.016 25 (Psikuta et al., 2012)
Case6 240 2810425 28t0425 37t028 0.1 0.8 0 0 (Stolwijk and Hardy, 1966a)
Case7 240 28.1t1047.8 28.1 to 43t027 0.1 0.8 0 0 (Stolwijk and Hardy, 1966a)
47.8
Case8 90 43 43 57 0.15 1.6 0.078 6.0 (Song et al., 2019)
Case9 160 28 to 36 28 to 57 25t015 0.5 1.8t03.9 0.016 to 25t014.8 (Psikuta et al., 2012)
0.093
Case 10 40 28 28 50 3.28 121 0.016 25 (Jack, 2009; Psikuta et al.,
2012)
Case 11 40 28 28 50 3.28 9.2 0.016 25 (Jack, 2009; Psikuta et al.,
2012)
Case 12 90 49.5 495 32 0.1 1.0to4.4 0.016 2.5 (Haslam and Parsons, 1988;
Psikuta et al., 2012)
Case 13 120 40 40 40 0.2 34 0.016 2.5 (Moran et al., 1998; Psikuta et
al., 2012)
Case 14 100 35 35 50 1 4.0 0.127 20.3 (Gonzalez et al., 1997; Psikuta
etal., 2012)
Case 15 100 35 35 50 1 3.8 0.262 41.8 (Gonzalez et al., 1997; Psikuta

etal., 2012)
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3. Results

The simulation results cover a broad spectrum of environmental and physical activity
conditions, providing insights into the predictive performance of thermoregulation models
with varying levels of complexity. These models were tested under scenarios including
transient and extreme dry-heat exposures, humid-heat environments, high radiative heat
sources, and different levels of physical activity in moderate to hot climates. The validation
process also included cases with varying degrees of clothing insulation and physical
activity levels to ensure a comprehensive model evaluation. The following subsections
evaluate the performance of the models in specific scenarios.

3.1 Transient exposure to moderate climate (Cases 1-4)

Prior to the application of thermoregulation models in extreme climates, we assessed
their performance in scenarios with moderate to low heat strain (Figure 3, Cases 1-4).
Although the risk of heat illness in these cases is low, the predicted core and skin
temperatures are useful indicators of thermal comfort and sensation.

In Case 1, where 11 male subjects exercised in a moderate environment (Haslam and
Parsons, 1988; Psikuta et al., 2012), most thermoregulation models accurately predicted
the increase in both core and skin temperatures (Figure 3). However, the UTCI-Fiala
model consistently underpredicted skin temperature throughout the exposure, with an
RMSD of 1.6°C. Psikuta et al. (Psikuta et al., 2012) observed similar underprediction in
other cases with higher activity levels, possibly due to impaired sweat evaporation at the
measurement site, where the skin temperature sensor was taped using semi-permeable
tape. Despite this, the other models we evaluated accurately predicted the magnitude and
trend of skin temperature.

In Cases 2 and 3, three subjects were exposed to transient, moderately warm
environments (Stolwijk and Hardy, 1966b), alternating between chambers with different air
temperatures, as shown in Figure 3. All models predicted core and skin temperatures with
acceptable accuracy for these exposures. However, in models with a simplified vascular
and blood flow system (such as Gagge’s two-node model and both Stolwijk models), the
predicted core temperature responded more quickly to changes in air temperature. In
contrast, models with a more detailed vascular system (like JOS-3 and UTCI-Fiala)
showed a slower response, with trends that better aligned with those observed in human
subjects.

Case 4 involved highly transient environmental conditions and activities, where the
human subject followed a work-rest cycle typical of occupational workers, alternating
between a warm environment (39.6°C) and a comfortable environment (21°C)
(Smallcombe et al., 2022). All models satisfactorily predicted core and skin temperatures
within acceptable thresholds (Figure 3), except for Gagge’'s two-node model, which
showed an RMSD of 0.68°C above the acceptable range for predicted core temperature.

11
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3.2 Transient and extreme dry-heat exposure (Cases 5-7)

In Cases 5 to 7 (Table 2), air temperature, mean radiant temperature, and relative
humidity varied from moderate to extreme heat conditions, while activity levels remained
constant with nude or semi-nude subjects. In Case 5, six human subjects exercised at a
constant metabolic rate (2.4 met) while air and mean radiant temperature alternated
between 28°C and 45°C (Psikuta et al., 2012). The Stolwijk-1971 and Gagge two-node
models significantly underpredicted core temperature by 0.63°C and 0.53°C, respectively.
The UTCI-Fiala model underpredicted skin temperature by 1.2°C. In contrast, the other
models accurately predicted both the trend and absolute values of core and skin
temperatures (Figure 4).

In Cases 6 and 7, three subjects were exposed to alternating air temperatures and
relative humidity (Stolwijk and Hardy, 1966a). The predicted core and skin temperatures
were within the acceptable range for all models, except for the Stolwijk-1971 model in
Case 7, where the RMSD for predicted core temperature (0.67°C) exceeded the
acceptable range of 0.5°C. In contrast, the Stolwijk-2024 model demonstrated a lower
RMSD (0.35°C) in predicted core temperature, highlighting the importance of
incorporating updated set-point temperatures, heat transfer coefficients, and other
thermoregulatory coefficients in improving model accuracy.
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3.3 Humid-heat exposure (Case 8)

In Case 8, human subjects were exposed to hot (43°C) and humid (57% RH)
conditions, with a wet bulb temperature of 34.2°C, for 90 minutes (Song et al., 2019). All
models accurately predicted the simulated core and mean skin temperatures, showing
good agreement with the measured experimental data (Figure 5). During the first 20
minutes of exposure, the core temperature rose slowly, indicating increased strain on the
thermoregulatory system. As the exposure continued, both core and skin temperatures
steadily increased, suggesting that autonomic thermoregulation, including vasodilation
and sweating, was insufficient to maintain core temperature at safe levels.

3.4 Intense radiative exposure (Case 9)

Another common scenario in extreme heat conditions involves intense exposure to
short- and long-wave radiation, which can be expressed as high mean radiant
temperatures. To evaluate the models under such conditions, we modeled Case 9 in which
five semi-nude (0.016 m2-°C'W-') human subjects were exposed to a radiant heat source
positioned in front of them. In all models we simulated the radiant heat fluxes as mean
radiant temperature (Psikuta et al., 2012). At the 80-minute mark, the subjects donned
light clothing (0.093 m2.°C'W-"), leading to a significant deviation in core temperature
values predicted by the two-node Gagge model. All other models accurately predicted
both core and mean skin temperatures within acceptable thresholds (Figure 5). The
significantly higher radiant temperature of 57°C caused elevated core and skin
temperatures, indicating heat strain; however, thermoregulatory mechanisms such as
sweating and vasodilation were able to compensate for the excess heat, maintaining core
temperature below the dangerous levels associated with heat stroke or exhaustion.
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Figure 5. Evaluation of models for hot and humid conditions (43°C and 57%RH,
representing the high wet bulb temperature of 34.2°C) and high mean radiant temperature
(57°C) exposures (Cases 8 and 9 in Table 2); Shaded area represents the deviation in
measured data.

3.5 Varied physical activity levels in moderate to hot climate (Cases 10-15)

To address the conditions of occupational workers and athletes with various level of
clothing thermal insulation and physical activities, cases 10 to 15 (Table 2) were evaluated
for intense physical activities (ranging from 3.35 to 12.1 met) and high clothing thermal
(0.262 m?-°C'W-") and evaporative (41.8 m?-°C"W-") resistances (Gonzalez et al., 1997;
Haslam and Parsons, 1988; Jack, 2009; Moran et al., 1998; Psikuta et al., 2012). The
predictive ability of the models for the skin temperature could not be tested for these cases,
as it was not available in literature.

In case 10, professional athletes ran on treadmill at moderate ambient temperatures
and very high metabolic rate of 12.1 met (Jack, 2009; Psikuta et al., 2012). For this case,
UTCI-Fiala and two-node model significantly overpredicted the core temperature (RMSD:
0.9 and 1.2 °C). On the other hand, Stolwijk-1971 model underpredicted the core
temperature by 0.72 °C. These discrepancies in predicted core temperature potentially
emerge from the limitations of the sweat and vasodilation controls in the original model.
The JOS-3 and Stolwijk-2024 model accurately predicted the core temperature of intense
activity levels. Case 11 is similar to case 10, where activity was performed by recreational
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athletes, hence at lower metabolic rate of 9.2 met compared to professional athletes. For,
case 11 all the models accurately predicted the core temperature.

For case 12, five human subjects were exposed to extreme heat conditions (49.5 °C)
for 90 mins, where for first 45 min metabolic activity was 1.0 met and for later 45 mins at
4.42 met (Haslam and Parsons, 1988; Psikuta et al., 2012). For this exposure, JOS-3,
Stolwijk-2024, and two-node model overpredicts (0.6, 0.8, and 1.2 °C, respectively) the
core temperature beyond the acceptable limit; while the UTCI-Fiala and Stolwijk-1971
model predicts the core temperature accurately (Figure 6).

In case 13, 100 human subjects were exposed to hot and humid environment (40 °C
40% RH) with moderate physical activity at 3.35 met. For this scenario, the core
temperature predicted by all the models were in the acceptable range (Figure 6).

For Case 14 and 15, ten human subjects were exposed to moderately hot
environments (35 °C, 50%RH) and performed physical activity at around 4 met. In Case
14 subjects were wearing clothing with thermal insulation of 0.127 m2.°C'W-", while in
case 15 subjects were wearing a more thermally insulative clothing at 0.262 m?-°C'W-'.
For these cases with varying level of clothing thermal insulation, all models accurately
predicted the core temperature except the Gagge’s two-node model (Figure 7).
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Figure 6. Evaluation of the models for wide range of physical activities (1.0 to 12.1 met)
under moderate to extreme heat environment (Cases 10 to 13 in Table 2); Shaded area

represents the deviation in measured data.
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4. Discussion
4.1 Evaluating model performance in predicting the core and skin temperatures
The predictive accuracy of core and mean skin temperatures was evaluated using
Root Mean Square Deviation (RMSD) and Bias (Figure 8), revealing that most models
performed well within acceptable thresholds across these diverse validation scenarios
(Table 2). However, the two-node Gagge’s model and the Stolwijk-1971 model with legacy
coefficients, exhibited limitations under specific conditions, such as extreme heat, high
physical activity, or highly transient environments, where deviations from the experimental
data on human subjects were observed. Multi-segment models (JOS3, UTCI-Fiala, and
Stolwijk-2024) demonstrated strong predictive performance for core temperature, with
average RMSD values across all cases of 0.22 + 0.15°C, 0.25 + 0.26°C, and 0.31
0.16°C, respectively. These values fall within the acceptable range of the maximum
standard deviation (0.5°C) observed in measured core temperatures from human subjects
(Haslam and Parsons, 1994; Joshi et al., 2022). As shown in Figure 8, each of these multi-
node models had one outlier where the RMSD of predicted core temperature exceeded
0.5°C. For the JOS3 and Stolwijk-2024 models, this occurred under conditions of very high
ambient temperature (49.5°C, Case 12), while the Fiala model showed lower accuracy for
cases involving very high metabolic rates (12.1 met, Case 10). The bias in predicted core
temperature for these three models was close to zero -0.04°C, -0.08°C, and -0.09°C,
respectively indicating very good accuracy. Overall, these multi-node models performed
well across a wide range of conditions, including exposure to dry heat, humid heat, various
levels of physical activity, and different clothing thermal properties.
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(Haslam and Parsons, 1988; Joshi et al., 2022)), *: Fiala’s model validated for 9 cases
only.

Comparing the predicted values from models to human subject data for the same heat
exposure offers a clearer understanding of the strengths and limitations of each model.
The original Stolwijk model (Stolwijk-1971) and the Gagge’s model exhibited relatively
high RMSD values in predicting core temperature, with 0.45 + 0.18°C and 0.71 + 0.52°C,
respectively. Both the Stolwijk-1971 and Gagge’s two-node models performed poorly in
cases involving high metabolic rates and hot exposures. Specifically, the Stolwijk-1971
model consistently underpredicted core temperatures in cases with high metabolic rates
(cases 10 and 11). This model also demonstrated a positive bias of 0.45 °C (Figure 8) in
predicted core temperature, indicating a systematic underprediction. One possible reason
for this underprediction could be the setpoint temperature of the hypothalamus (Table S1
to S3 in SM) and the coefficients used in the thermoregulatory control system (equations
S7 to S10 in SM). When comparing the setpoint temperatures of the Stolwijk-1971 model
with those of the JOS-3 (or Stolwijk-2024) models, it becomes evident that the setpoint
temperatures in the Stolwijk-1971 model are significantly lower (by up to 0.5°C). This lower
setpoint triggers an earlier onset of sweating and vasodilation, with higher magnitudes,
leading to a reduction in core temperature. In contrast, the modified Stolwijk-2024 model
shows significant improvement in predicting core temperature compared to the original
Stolwijk-1971 model. This improved performance can be attributed to the updated setpoint
temperatures (Table S1 in SM) and improved convective and radiative heat transfer
coefficients (Table S3 in SM). On the other hand, although Gagge’s two-node model did
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not exhibit a clear bias in predicted core temperature, its overall accuracy was lower in
cases involving higher metabolic rates. This is likely because the model is a single-
segment, two-node (core and skin) model, which oversimplifies the distribution of heat
generated by physical activity. In reality, heat is distributed differently within the muscle
layer of the body, a factor that cannot be effectively accounted for in such an oversimplified
model.

Overall, in hot-dry conditions, there was a higher scatter and disagreement among
different models. However, all models showed good agreement with measured core
temperatures from human subjects during hot and humid exposures. This variation can
be attributed to the differences in how each model handles sweating. As shown in Figure
9, various thermoregulation models have significant variations in efferent signals related
to sweating due to underlying control coefficients and error signal (equations 1 to 9). Figure
9 represents the variation in sweat signal for two cases (case 7 and 10), where sweating
signal expected to be the significant due to high heat strain due to environmental stress
and physical activity. In dry conditions, the sweat rate becomes the driving factor, and the
coefficients used by each model to simulate sweating vary significantly, leading to
discrepancies in their performance. In contrast, during hot and humid exposures, the
driving factor is sweat evaporation. Here, all models accurately predicted sweat
evaporation, suggesting that the Lewis coefficient, which governs this process, is well
established and effective across different models.
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Figure 9. Efferent signal for sweating from active/control system of various
thermoregulation models.

All the models predicted skin temperature with acceptable accuracy (RMSD < 1.6°C).
The JOS3 and Stolwijk-2024 models consistently predicted mean skin temperature with
low RMSD values (0.44°C and 0.56°C, respectively) and biases (-0.11°C and -0.30°C);
both of which are significantly below the maximum standard deviation (1.6°C).

4.2 Model performance in relation to complexity and accessibility

Results from the validation study indicate that multi-node and multi-segment models,
such as JOS-3, Stolwijk-2024, and UTCI-Fiala, excel because they define key
thermoregulatory mechanisms, such as vasodilation, skin blood flow, and sweating, with
higher spatial resolution. Notably, the JOS3 and UTCI-Fiala models offer detailed
considerations of heat distribution due to blood flow, including counter-current heat
exchange, to account for heat transfer through the network of arteries, veins, and
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superficial veins in the human body. In contrast, the Stolwijk-2024 model simplifies the
process by assuming that each node exchanges heat with the central blood node through
blood flow, which reduces model complexity. This simplification results in a marginally
higher RMSD in core temperature when evaluated for various heat exposures, ranging
from 0.06 to 0.09°C. However, the accuracy of the predicted skin temperature in the
Stolwijk-2024 model remains comparable to more complex models like JOS-3 and UTCI-
Fiala model. Therefore, the modified Stolwijk-2024 model is well-suited for analyzing heat
strain and thermal comfort in moderate to extreme-hot environmental conditions. The
simplification of heat transfer through blood flow is appropriate for heat strain assessment,
as the spatial variation of temperature between different body segments and tissues is
minimal due to high blood perfusion (Gordon et al., 1976; Haslam and Parsons, 1994).
However, it is important to note that these findings cannot be extrapolated to cold-strain
scenarios, where variation in skin blood flow and local skin temperature is significantly
higher.

The validation of the thermoregulation models clearly highlights that multi-node and
multi-segment models can effectively simulate and analyze physiological heat strain
across a wide range of climatic conditions. Furthermore, open-source thermoregulation
models, such as JOS3 and Stolwijk-2024, either already incorporate or can be relatively
easily extended to account for factors that impact thermoregulatory functions, such as
aging, acclimatization, body size, gender, hydration status, and medical conditions. In
contrast, models like the UTCI-Fiala, which are integrated into commercial software
requiring licenses, may present accessibility challenges for those without access to
licensed software or resources. Such limitations make it cumbersome to reproduce,
modify, or extend commercial models to account for specific conditions that impact
thermoregulatory functions. Therefore, despite their comparable accuracy to open-source
models, the complexity and limitations of many models from literature can pose significant
challenges in their applications.

4.3 Limitations

The validation and comparison of the models in this study focused on analyzing heat
strain in individuals corresponding to young, healthy, and averages of the population.
However, this study did not account for inter-individual differences in thermoregulatory
responses due to factors such as age, gender, and body composition (Kaciuba-Uscilko
and Grucza, 2001; Matsumoto et al., 1999; Van Marken Lichtenbelt et al., 2007; Van
Someren et al.,, 2002). These differences can significantly impact thermoregulatory
functions and temperature distribution within the body. For example, older individuals tend
to experience higher heat strain (Hellon and Lind, 1956; Wagner et al., 1972) due to factors
such as decreased sweat secretion rates, reduced cardiac output, diminished skin blood
flow, and delayed onset of sweating. Furthermore, advanced models, such as the 3D
anatomic thermoregulation model, can provide highly detailed temperature distributions
within the human body, making them particularly useful for medical applications, such as
assessing temperature at the organ level or specific body locations; capabilities that are
not possible with simplified models. In this study, the mean skin temperature data used for
validation were sourced from multiple studies in the literature. These studies may have
employed different methods to calculate mean skin temperature, utilizing various weighing
factors and different sets of body segments for measurement. For instance, some studies
computed mean skin temperature based on a weighted average of 4 or 7 body segments
(Hardy et al., 1938; RAMANATHAN, 1964). These variations in methods introduce an
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uncertainty of +0.4°C (95% confidence interval) (Choi et al., 1997). However, this
uncertainty is considered negligible during the validation process, as it falls within the
acceptable threshold of 1.6°C. In the simulations conducted for this study, mean skin
temperature is calculated using the area-weighted average temperature of skin segments.
Additionally, the performance of these models cannot be extrapolated to cold exposure
scenarios. In cold environments, reduced blood flow to extremities increases the risk of
major cold injuries, such as frostbite, which primarily affect the fingers, toes, and other
extremities (Forster et al., 1946; Sullivan-Kwantes et al.,, 2019). Therefore, 3D
thermoregulation models that incorporate detailed blood flow through Arteriovenous
Anastomoses (AVA) and include anatomical features of the extremities are more suitable
for simulating cold exposure conditions (Fallahi et al., 2017; Gorgas et al., 1977; Rida et
al., 2014; Yang et al., 2017; Zhang et al., 2024, 2021). Furthermore, all the evaluated
models use a simplified clothing model that does not account for wet conduction or sweat
accumulation in the clothing. This limitation can impact the accuracy of predicted skin
temperature and total heat transfer at skin/clothing surface (Joshi et al., 2023b), especially
during transitional conditions—such as moving from a hot, humid environment to a dry
one—an effect observed around the 200th minute in Case 4 (Figure 3 and Table 2).

5. Conclusions

The comparative validation of five thermoregulation models with varying levels of
complexity, including the updated Stolwijk-2024 model, demonstrates that multi-node and
multi-segment models are highly effective in simulating physiological heat strain across a
wide range of climatic conditions. The study's findings highlight the robust predictive
performance of the JOS3, UTCI-Fiala, and Stolwijk-2024 models, with these models
achieving low RMSD values and minimal bias in predicting core and skin temperatures.
The Stolwijk-2024 model, which incorporates updated set-point temperatures, improved
heat transfer coefficients, and refined efferent control signals, shows significant
improvements over the original Stolwijk-1971 model. Despite its simplified approach to
modeling blood flow and heat transfer, the Stolwijk-2024 model delivers reliable
predictions that are comparable to more complex models like JOS3 and UTCI-Fiala. This
study indicates that while increased complexity can enhance accuracy slightly (by less
than 0.1°C in core temperature), well-designed simplified models can still provide highly
accurate results for specific applications.

The study also underscores the importance of using multi-node and multi-segment
models for analyzing heat strain under diverse conditions, including extreme dry-heat,
humid-heat, transient heat exposures, and varying levels of physical activity and clothing
insulation. However, the study also identifies limitations in simpler models like the Stolwijk-
1971 and Gagge two-node models, particularly in scenarios involving high metabolic rates
and extreme heat. Stolwijk-1971 model tends to underpredict core temperatures, which
could lead to a false sense of safety in real-world applications. This underlines the need
for caution when applying such models in high heat-strain environments.

In summary, the validated multi-node and multi-segment thermoregulation models,
particularly with the source-code such as JOS3 and Stolwijk-2024 models, provide reliable
and accessible tools for assessing heat strain and thermal comfort in moderate to extreme
environmental conditions. Future research should focus on further refining these models,
addressing their limitations, and improving their accessibility to ensure they can be
effectively utilized in assessing heat-strain at individual levels in a wide range of
applications, from public health interventions to climate resilience planning.
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