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Abstract 

As global temperatures rise due to climate change, the frequency and intensity of 28 
heatwaves are increasing, posing significant threats to human health, productivity, and 29 
well-being. Thermoregulation models are important tools for quantifying the risk of extreme 30 
heat, providing insights into physiological strain indicators such as core and skin 31 
temperatures, sweat rates, and thermal comfort levels. This study evaluated four 32 
thermoregulation models of varying complexity, differentiated by the geometry and 33 
underlying thermoregulatory mechanisms. The models assessed include the Gagge two-34 
node model, the Stolwijk-1971 model, the JOS3 model, and the UTCI-Fiala model. 35 
Additionally, we introduce the Stolwijk-2024 model, a modified version of the original 36 
Stolwijk model, which incorporates updated empirical coefficients derived from recent 37 
studies while retaining the original framework. The models were tested against human trial 38 
data across a wide range of extreme heat exposures, including transient extreme heat, 39 
humid heat, various physical activity levels, and clothing insulation scenarios. Our findings 40 
demonstrate that multi-node and multi-segment models, such as JOS3, UTCI-Fiala, and 41 
Stolwijk-2024, reliably predict core (average RMSD: <0.3°C) and skin (average root-42 
mean-square deviation, RMSD: <0.6°C) temperatures, making them suitable for 43 
assessing heat strain and thermal comfort in moderate to extreme environmental 44 
conditions. In contrast, simpler models like the single-segment, two-node Gagge’s model 45 
performed poorly in predicting core temperature under conditions involving high metabolic 46 
rates (>3.75 met) in moderate to hot environments (>35°C), with an average RMSD of 47 
1.2°C. Similarly, the Stolwijk-1971 model showed a systematic bias (~0.45°C), 48 
underpredicting core temperatures during high metabolic rates. This study underscores 49 
the robustness and applicability of open-source models like JOS3 and Stolwijk-2024 in 50 
public health, urban design, and climate impact research, highlighting their potential to 51 
improve our understanding of heat strain and thermal comfort in the context of a warming 52 
climate. 53 

Highlights 54 

• Comprehensive validation of thermoregulation models under extreme climate  55 
• Updated Stolwijk model has enhanced accuracy in predicting core and skin temperatures 56 
• Two-node or overly simplified models can underperform in analyzing heat exposures  57 

Keywords: Thermoregulation model, Model evaluation, Comparative analysis, Extreme 58 
heat exposure, Heat strain assessment  59 
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1.Introduction 60 

 As global temperatures rise due to climate change, humans are experiencing more 61 
frequent, prolonged, and intense heatwaves (Intergovernmental Panel on Climate Change 62 
(IPCC), 2019; Perkins-Kirkpatrick and Gibson, 2017). These extreme heat events pose 63 
significant challenges to human health, livability, productivity, and overall well-being (Ebi 64 
et al., 2021, 2020; Vanos et al., 2023). Vulnerable populations, such as the elderly, those 65 
with pre-existing medical conditions, and individuals living in poverty, are at heightened 66 
risk (Jay et al., 2021; Trenberth et al., 2003). Understanding the degree of heat strain 67 
associated with extreme heat across various demographics and activities is important for 68 
informing behavioral, policy, and infrastructure decisions aimed at mitigating these 69 
dangers (Cissé et al., 2022; Joshi et al., 2023a; Karanja et al., 2024; Vanos et al., 2024). 70 
 Heat strain assessment involves consideration of the energy balance of the human 71 
body and thermoregulatory processes. The energy balance includes heat generated 72 
internally (from metabolism and physical activity), heat and mass transfer pathways 73 
between the body and the environment (i.e., convection, radiation, and evaporation), and 74 
factors that affect these pathways. In particular, the degree of heat strain on human body 75 
is impacted by air temperature, ambient vapor pressure, air speed, long- and short-wave 76 
radiation (or mean radiant temperature), internal heat generation and redistribution within 77 
the body, and the thermal properties of clothing. Many human energy balance models and 78 
heat indices provide simplified representations of environmental stress, for example, only 79 
considering air temperature and humidity. In contrast, more advanced models incorporate 80 
complete treatment of environmental exposure with thermoregulatory controls driven by 81 
thermoreceptors, which sense the current thermal state of the body, either in the brain or 82 
in both the brain and skin(Stolwijk, 1971; J. A. J. Stolwijk and Hardy, 1966). Based on 83 
feedback from thermoreceptors, the hypothalamus activates thermoregulatory responses 84 
(such as vasomotion, sweating, and shivering) that aim to maintain the body's core 85 
temperature at healthy levels.  86 
 Advanced thermoregulatory models output comprehensive information about heat 87 
strain, such as core temperature, skin temperature, sweat rate, skin wettedness, cardiac 88 
output, and thermal comfort levels. Furthermore, advanced models can be extended to 89 
account for the effect of age, body mass index (BMI), gender, and other conditions that 90 
impact thermoregulatory functions to assess the heat strain at an individual level (Davoodi 91 
et al., 2018; Havenith, 2001, 1997; Takada et al., 2009; Takahashi et al., 2021; Van Marken 92 
Lichtenbelt et al., 2007; Zhang et al., 2001). Such tailoring can enable a nuanced 93 
understanding of how diverse populations are affected by complex environmental 94 
conditions, offering valuable insights for improving health and safety in extremely hot 95 
conditions (Deng et al., 2018; Karanja et al., 2024; Ou et al., 2023; Vanos et al., 2024; 96 
Zhao et al., 2020). However, uncertainty regarding the reliability and validation of models 97 
for heat exposure as well as availability (open source vs. commercial software that might 98 
be out of the financial reach of many researchers) are significant obstacles in analyzing 99 
the health risks posed by current and future heatwaves. 100 
 This study evaluated five thermoregulation models representing a wide range of 101 
complexity regarding thermoregulatory mechanisms, body segments, and tissue types 102 
(see Figure 1). The selected models include the two-node (single segment: core and skin) 103 
model by Gagge, two versions of the 25-node (six body segments) model by Stolwijk, 85-104 
node JOS3 model (17 segments), and 187-node UTCI-Fiala multi-node model (12 105 
segments) (Fiala et al., 2012; Gagge, 1971; Stolwijk, 1971; Takahashi et al., 2021). In 106 
addition, we introduce Stolwijk-2024 model, a modified version of the original model with 107 
updated empirical coefficients reflecting contemporary data from recent human trials while 108 
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retaining the original framework. Besides the open-source models (either previously 109 
available or published with this paper), we also included results from the commercial 110 
UTCI-Fiala model because it is comprehensively validated and used in developing the 111 
Universal Thermal Climate Index (UTCI) that often serves as a benchmark (Jendritzky et 112 
al., 2012; Psikuta et al., 2012). We could not include recent complex 3D numerical models 113 
in the direct comparison, as the lack of published source code makes it challenging to 114 
reproduce them accurately (Castellani et al., 2021; Joshi et al., 2022; Kang et al., 2019; 115 
Nelson et al., 2009; Silva et al., 2018). Evaluating the selected five models using the same 116 
heat exposure and human trial data can reveal whether increased complexity improves 117 
accuracy in predicted physiological parameters and if simple, open-source models can 118 
perform reliably. To test the robustness and reliability of the models, we selected human 119 
subject data from the literature that covers a wide range of conditions for validation. These 120 
conditions include:  121 
(i) extreme heat exposures where subjects transitioned between moderate and extreme 122 
conditions, reflecting transient air temperature and humidity, 123 
(ii) hot and humid environments with high wet bulb temperatures,  124 
(iii) scenarios where the mean radiant temperature is significantly higher than the air 125 
temperature,  126 
(iv) various physical activities conducted in warm to hot conditions and  127 
(v) a diverse range of clothing ensembles with differing levels of thermal insulation.  128 
 Evaluating these models will guide future developments and enable their use in public 129 
weather services, health systems, urban design, tourism, and climate impact research for 130 
accurate heat strain predictions.  131 
 132 

 133 
 134 
Figure 1. Side and cross-sectional overview of thermoregulation modeling approaches 135 
with varying levels of complexity; (a) single segment multi-node model (e.g., Gagge, 136 
1971), (b) multi-segment multi-node model with simplified vascular system (e.g., Stolwijk, 137 
1971), (c) multi-segment multi-node model with detailed vascular system (e.g., Fiala et al., 138 
2012; Takahashi et al., 2021), and (d) 3D-anatomic thermoregulation models (e.g., 139 
Castellani et al., 2021; Nelson et al., 2009; Silva et al., 2018). 140 
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2. Methods 141 

2.1 Overview and rationale for the five model selection 142 
 Since the 1960s, mathematical models of human thermoregulation have evolved in 143 
complexity, incorporating factors like thermal physiology, body geometry, clothing, and 144 
environmental influences on heat transfer (Castellani et al., 2021; Fiala et al., 2012; 145 
Gagge, 1971; Joshi et al., 2022; Kang et al., 2019; Nelson et al., 2009; Silva et al., 2018; 146 
Stolwijk, 1971; Takahashi et al., 2021; Tanabe et al., 2002; Wissler, 2018). Among these, 147 
the Gagge model (Gagge, 1971) consists of a single segment with two nodes representing 148 
the core and skin. In this model, the thermal properties of different tissues are lumped 149 
together within these two nodes. Because the model is limited to a single segment, it has 150 
a restrictive capacity for capturing variations in key thermoregulatory mechanisms, such 151 
as heat generation, blood flow, and sweating, which differ significantly across various body 152 
segments. These limitations constrain the model's ability to calculate these mechanisms 153 
with higher spatial resolution. Despite this limitation, it has been used as heat strain and 154 
thermal comfort assessment tool due to its simplicity and accuracy (Haslam and Parsons, 155 
1994, 1988; Ooka et al., 2010; Standard, 1992; Tartarini et al., 2020). 156 
 The Stolwijk-1971 model includes six body segments and four tissue types (core, 157 
muscle, fat, and skin) allowing for detailed spatial resolution in thermoregulatory analysis, 158 
as described in described in Figure 1b (Stolwijk, 1971). The multi-segmented nature of the 159 
model enables the detailed definition of thermal properties for body tissues and clothing 160 
layers in individual segments, allowing for higher spatial resolution in representing 161 
thermoregulatory mechanisms. Stolwijk’s and similar models assume that each node 162 
directly exchanges heat with a central blood pool. It is also critical to point out that 163 
validation of Stolwijk-1971 model and its derivatives have generally been limited to low 164 
activity levels under semi-nude conditions (Munir et al., 2009; Roelofsen et al., 2023; 165 
Roelofsen and Vink, 2016; Stolwijk, 1971; Tang et al., 2020). In the Stolwijk-2024 model, 166 
we updated the Stolwijk-1971 thermoregulation model by incorporating recent findings, 167 
including updated weighing factors for various thermoregulatory mechanisms, heat 168 
transfer coefficients, and improved methods for calculating heat transfer through clothing, 169 
as described in the Supplemental Material (SM). 170 
 The Stolwijk model has served as foundation for many existing thermoregulation 171 
models, with its derivative models enhancing the original model (referred as Stolwijk-1971) 172 
by improving thermoregulatory systems, body segmentation, and individual characteristics 173 
of thermoregulations (Huizenga et al., 2001; Roelofsen and Vink, 2016; Stolwijk, 1971; 174 
Takada et al., 2009; Takahashi et al., 2021; Tanabe et al., 2002; Tang et al., 2020; Zhang 175 
et al., 2001), and detailed heat transfer through arteries and veins (Dongmei et al., 2012; 176 
Ooka et al., 2010; Takada et al., 2009; Takahashi et al., 2021). More recent developments 177 
in thermoregulation models significantly improve the spatial resolution by increasing the 178 
number of body segments and, consequently, the number of nodes (Fiala et al., 2012; 179 
Takahashi et al., 2021). Furthermore, these models also consider the improved 180 
thermoregulatory mechanisms, especially heat transfer via blood flow through the complex 181 
networks of arteries and veins (Fiala et al., 2012; Takahashi et al., 2021). The JOS-3 and 182 
UTCI-Fiala models consider the counter-current heat exchange and convective heat 183 
transfer in capillary beds and local tissue. Therefore, arteries at each segment have 184 
different blood temperatures, leading to potentially large differences for extremities (e.g. 185 
hand and feet) due to convective heat transfer in upstream segments. Such characteristics 186 
are particularly important in cold temperatures and cannot be captured by the Stolwijk 187 
model where all the segments exchange heat with the central blood pool that is at one 188 
particular thermal state at any given time (Fiala et al., 2012; Gagge, 1971; Stolwijk, 1971; 189 
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Takahashi et al., 2021). The key features and rationale for model selection for comparison 190 
are also summarized in Table 1. 191 
 192 
Table 1. Key features and rationale for the model selection 193 

Model and year Number of 
body segments 

Number 
of nodes 

Key features 

Two-node Gagge (1971) 1 2 Widely used model for assessing heat strain 
and thermal comfort due to its simplicity. 

Stolwijk (1971) 6 25 Serves as the foundation for many modern 
thermoregulation models. Uses simplified 
blood flow, where each node exchanges heat 
directly with a central blood pool. 

Modified Stolwijk (2024) 6 25 Updated version of the Stolwijk-1971 model, 
incorporating recent advancements in 
vasomotion control, shivering, sweating, heat 
transfer coefficients, and heat transfer 
through clothing. 

JOS-3 (2021) 17 85 Models counter-current heat exchange in 
arteries and veins, along with convective heat 
transfer in capillaries and local tissues, 

UTCI-Fiala (2012) 12 187 The foundation model for the Universal 
Thermal Climate Index (UTCI), validated for 
assessing heat strain across a wide range of 
environmental conditions. Similar to JOS-3, 
models major key thermoregulatory 
mechanisms. 

 194 

2.2. Improved thermoregulation model: Stolwijk-2024 195 

The improved Stolwijk-2024 thermoregulation model consists of six body segments: head, 196 
trunk, arms, hands, legs, and feet. Each segment includes four concentric layers (core, 197 
muscle, fat, and skin) along with a node representing the central blood compartment 198 
(Figure 1(b)). This section focuses on the modifications made primarily to the control 199 
system to enhance the accuracy and functionality of the classical Stolwijk model. 200 
Additionally, the set point temperatures for each node and the heat exchange with the 201 
environment through clothing were updated in the new Stolwijk-2024 model. For a detailed 202 
description, please refer to the supplemental material. 203 
 The control system of human thermoregulation receives signals from thermoreceptors 204 
and processes them in the hypothalamus. Based on these signals, the control system 205 
activates various thermoregulatory mechanisms such as vasoconstriction, vasodilation, 206 
shivering, and sweating. Stolwijk (Stolwijk, 1971) defined the control system based on 207 
error signals defined as the difference between actual temperature at any given time and 208 
set point temperature at given node (see Equations 1 to 5). Accordingly, a  positive error 209 
signal indicates warm sensing at the thermoreceptors, while a negative error signal 210 
indicates cold sensing. The mathematical form of the thermoregulatory mechanisms 211 
considers signals from both central and skin thermoreceptors. 212 
 213 

𝐸𝑅𝑅𝑗,𝑖 = 𝑇𝑗,𝑖 − 𝑇𝑠𝑒𝑡𝑗,𝑖        (1) 214 
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𝑊𝑅𝑀𝑗,𝑖 = 𝑚𝑎𝑥(𝐸𝑅𝑅𝑗,𝑖, 0)       (2) 215 
𝐶𝐿𝐷𝑗,𝑖 = |𝑚𝑖𝑛(𝐸𝑅𝑅𝑗,𝑖, 0)|       (3) 216 
𝑊𝑅𝑀𝑆 = ∑ 𝐷5

𝑗=0 𝐹𝑇𝑅𝑗 ⋅ 𝑊𝑅𝑀𝑗        (4) 217 

𝐶𝐿𝐷𝑆 = ∑ 𝐷5
𝑗=0 𝐹𝑇𝑅𝑗 ⋅ 𝐶𝐿𝐷𝑗        (5) 218 

 219 
where, ERR is error signal (°C), Tj,i is temperature of given node and body segment (°C), 220 
Tsetj,i is set point temperature (temperature at physiological thermal neutrality) of given 221 
node and body segment (°C), WRMj,i is warm sensing signal (N. D. ), CLDj,i is cold sensing 222 
signal (N. D. ) , WRMS  is total warm thermoreceptors signal (N. D. ) , CLDS  is total cold 223 
thermoreceptors signal (N. D. ), and DFTRj is distribution of thermoreceptor over different 224 
body segments (N. D. ) 225 
 Stolwijk assumed that effector part of thermoregulation system can be modelled by the 226 
control equations, which combine weighted signal from hypothalamus (central 227 
thermoreceptor), and integrated signal from the skin thermoreceptors (Stolwijk, 1971). 228 
Based on these assumptions Stolwijk suggested the controller equations for various 229 
thermoregulatory mechanisms, as described in Equations 6 to 9 (Stolwijk, 1971). Recently, 230 
the JOS-3 thermoregulation model proposed updated control coefficients (Takahashi et 231 
al., 2021), which are incorporated into the present study. These control coefficients have 232 
significant impact on efferent signals such as vasomotion, sweating, and shivering. As 233 
shown in Figure 2, simulation follows a 240-minute transient exposure, structured as 60 234 
minutes in a moderately cool environment at 28°C, 120 minutes in an extreme heat 235 
condition at 47.8°C, and a final 60 minutes back at 28°C (Case 7 in Table 2). Figure 2a 236 
illustrates the responses of afferent signals from skin and central thermoreceptors, which 237 
trigger various efferent thermoregulatory actions in both the original Stolwijk-1971 model 238 
and the modified Stolwijk-2024 model (Figure 2b to 2e). 239 
 240 

𝑆𝑊 = (371.2 ⋅ 𝐸𝑅𝑅𝐻𝑒𝑎𝑑𝑐𝑜𝑟𝑒) + (33.64 ⋅ (𝑊𝑅𝑀𝑆 − 𝐶𝐿𝐷𝑆))   (6) 241 

𝑉𝐷 = (100.5 ⋅ 𝐸𝑅𝑅𝐻𝑒𝑎𝑑𝑐𝑜𝑟𝑒) + (6.4 ⋅ (𝑊𝑅𝑀𝑆 − 𝐶𝐿𝐷𝑆))   (7) 242 
𝑆𝐻 = 24.36 ⋅ 𝐸𝑅𝑅𝐻𝑒𝑎𝑑𝑐𝑜𝑟𝑒 ⋅ 𝐶𝐿𝐷𝑆      (8) 243 
𝑉𝐶 = (−10.8 ⋅ 𝐸𝑅𝑅𝐻𝑒𝑎𝑑𝑐𝑜𝑟𝑒) + (−10.8 ⋅ (𝑊𝑅𝑀𝑆 − 𝐶𝐿𝐷𝑆))   (9) 244 

 245 

where, SW  is total efferent sweat signal (W), ERRHeadcore   is error signal from central 246 
thermoreceptor, representing changes in hypothalamus (N. D. ), VD is total efferent skin 247 
vasodilation signal (N. D. ), SH is total efferent shivering signal (W), VC is total efferent skin 248 
vasoconstriction signal (N. D. ) 249 
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 250 

Figure 2. (a) Afferent signals from various thermoreceptor; Comparison of efferent signal 251 
from Stolwijk-1971 and improved Stolwijk-2024 model for given afferent signals (b)efferent 252 
sweating signal, (c) efferent shivering signal, (d) efferent vasodilation signal, and (e) 253 
efferent vasoconstriction signal. 254 
 255 

2.3. The human trial cases used for evaluating performance of the models 256 

 The five selected models with varying level of complexity were evaluated to predict 257 
core and mean skin temperature across a wide range of parameters affecting the body’s 258 
heat balance. The models were evaluated under a wide range of conditions, including air 259 
temperature, mean radiant temperature, relative humidity, air speed, activity levels, and 260 
clothing thermal insulation, as detailed in Table 2. The validation cases were focused on 261 
moderate to extreme hot climatic conditions (Tair: 21 to 49.5°C, MRT: 21 to 57°C, RH: 21 262 
to 69.4 %, and vair: 0.1 to 3.3 m⋅s-1 along with various metabolic activity levels (0.8 to 12.1 263 
met) and clothing insulation (0.016 to 0.262 m2⋅K-1°C-1)). The thermal and evaporative 264 
resistances presented in Table 2 are obtained from reported values in respective literature 265 
of human trial data and based on clothing descriptions especially for nude or semi-nude 266 
conditions. The accuracy and precision of the predicted core and skin temperatures were 267 
assessed using the root-mean-square deviation (RMSD) and bias. The UTCI-Fiala model 268 
was evaluated in 9 out of the 15 heat exposure cases (Table 2), where both simulated 269 
core and/or skin temperature data were available from the literature. Due to licensing 270 
restrictions, the UTCI-Fiala model could not be applied to the remaining cases. In cases 271 
10 to 15, only core temperature data were reported in literature, so comparisons were 272 
made exclusively for core temperatures, as skin temperature data were not available. 273 
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RMSD = √∑ (xi−x̂i)2n
i=1

n
       (1) 274 

Bias = ∑ (xi−x̂i)n
i=1

n
       (2) 275 

where, RMSD is root-mean-square deviation of the thermoregulation model, Bias is bias of 276 
the thermoregulation model, i is data point in given time series, n is total number of data 277 
points in given time series, xi = experimental data points, and x̂i = simulated data points. 278 
A model’s predictive performance is considered acceptable when the RMSD falls within 279 
the maximum standard deviation of core temperature (0.5°C) and mean skin temperature 280 
(1.6°C), based on experimental data from 590 human subject experiments across 80 281 
different ambient conditions (Haslam and Parsons, 1994; Joshi et al., 2022).  282 

 283 

 284 
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Table 2. Details of environmental conditions, activity level, and clothing resistance for comparison of the thermoregulation models. 285 
Case Duration Tair MRT RHair Vair Metabolic  Rcl Recl Source 
 [min] [°C] [°C] [%] [m⋅s-1] rate [met]  [m2⋅°C -1W-1] [m2⋅Pa-1W-1]  
Case 1 130 30 30 30 0.1 1.0 to 3.6 0.016 2.5 (Haslam and Parsons, 1988; 

Psikuta et al., 2012) 
Case 2 240 27.8 to 33.3 27.8 to 

33.3 
37 to 34 0.1 0.8 0 0.0 (Stolwijk and Hardy, 1966a) 

Case 3 240 28.5 to 37.5 28.5 to 
37.5 

41 to 33 0.1 0.8 0 0.0 (Stolwijk and Hardy, 1966a) 

Case 4  400 21 to 39.6 21 to 39.6 40 to 69 0.2 1 to 3.0 0.040 7.0 (Smallcombe et al., 2022) 
Case 5 180 28 to 45 28 to 45 53 to 21 0.1 1.1 to 2.4 0.016 2.5 (Psikuta et al., 2012) 
Case 6 240 28 to 42.5 28 to 42.5 37 to 28 0.1 0.8 0 0 (Stolwijk and Hardy, 1966a) 
Case 7 240 28.1 to 47.8 28.1 to 

47.8 
43 to 27 0.1 0.8 0 0 (Stolwijk and Hardy, 1966a) 

Case 8 90 43 43 57 0.15 1.6 0.078 6.0 (Song et al., 2019) 
Case 9  160 28 to 36 28 to 57 25 to 15 0.5 1.8 to 3.9 0.016 to 

0.093 
2.5 to 14.8 (Psikuta et al., 2012) 

Case 10 40 28 28 50 3.28 12.1 0.016 2.5 (Jack, 2009; Psikuta et al., 
2012) 

Case 11 40 28 28 50 3.28 9.2 0.016 2.5 (Jack, 2009; Psikuta et al., 
2012) 

Case 12 90 49.5 49.5 32 0.1 1.0 to 4.4 0.016 2.5 (Haslam and Parsons, 1988; 
Psikuta et al., 2012) 

Case 13 120 40 40 40 0.2 3.4 0.016 2.5 (Moran et al., 1998; Psikuta et 
al., 2012) 

Case 14 100 35 35 50 1 4.0 0.127 20.3 (Gonzalez et al., 1997; Psikuta 
et al., 2012) 

Case 15 100 35 35 50 1 3.8 0.262 41.8 (Gonzalez et al., 1997; Psikuta 
et al., 2012) 

286 
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287 
3. Results 288 

 The simulation results cover a broad spectrum of environmental and physical activity 289 
conditions, providing insights into the predictive performance of thermoregulation models 290 
with varying levels of complexity. These models were tested under scenarios including 291 
transient and extreme dry-heat exposures, humid-heat environments, high radiative heat 292 
sources, and different levels of physical activity in moderate to hot climates. The validation 293 
process also included cases with varying degrees of clothing insulation and physical 294 
activity levels to ensure a comprehensive model evaluation. The following subsections 295 
evaluate the performance of the models in specific scenarios. 296 
 297 
3.1 Transient exposure to moderate climate (Cases 1-4) 298 
 Prior to the application of thermoregulation models in extreme climates, we assessed 299 
their performance in scenarios with moderate to low heat strain (Figure 3, Cases 1-4). 300 
Although the risk of heat illness in these cases is low, the predicted core and skin 301 
temperatures are useful indicators of thermal comfort and sensation. 302 
 In Case 1, where 11 male subjects exercised in a moderate environment (Haslam and 303 
Parsons, 1988; Psikuta et al., 2012), most thermoregulation models accurately predicted 304 
the increase in both core and skin temperatures (Figure 3). However, the UTCI-Fiala 305 
model consistently underpredicted skin temperature throughout the exposure, with an 306 
RMSD of 1.6°C. Psikuta et al. (Psikuta et al., 2012) observed similar underprediction in 307 
other cases with higher activity levels, possibly due to impaired sweat evaporation at the 308 
measurement site, where the skin temperature sensor was taped using semi-permeable 309 
tape. Despite this, the other models we evaluated accurately predicted the magnitude and 310 
trend of skin temperature. 311 
 In Cases 2 and 3, three subjects were exposed to transient, moderately warm 312 
environments (Stolwijk and Hardy, 1966b), alternating between chambers with different air 313 
temperatures, as shown in Figure 3. All models predicted core and skin temperatures with 314 
acceptable accuracy for these exposures. However, in models with a simplified vascular 315 
and blood flow system (such as Gagge’s two-node model and both Stolwijk models), the 316 
predicted core temperature responded more quickly to changes in air temperature. In 317 
contrast, models with a more detailed vascular system (like JOS-3 and UTCI-Fiala) 318 
showed a slower response, with trends that better aligned with those observed in human 319 
subjects. 320 
 Case 4 involved highly transient environmental conditions and activities, where the 321 
human subject followed a work-rest cycle typical of occupational workers, alternating 322 
between a warm environment (39.6°C) and a comfortable environment (21°C) 323 
(Smallcombe et al., 2022). All models satisfactorily predicted core and skin temperatures 324 
within acceptable thresholds (Figure 3), except for Gagge’s two-node model, which 325 
showed an RMSD of 0.68°C above the acceptable range for predicted core temperature. 326 
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 327 
Figure 3. Evaluation of thermoregulation model for moderate to warm exposure (Cases 1 328 
to 4, Table1); Shaded area represents the deviation in measured data. 329 
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3.2 Transient and extreme dry-heat exposure (Cases 5-7) 330 
 In Cases 5 to 7 (Table 2), air temperature, mean radiant temperature, and relative 331 
humidity varied from moderate to extreme heat conditions, while activity levels remained 332 
constant with nude or semi-nude subjects. In Case 5, six human subjects exercised at a 333 
constant metabolic rate (2.4 met) while air and mean radiant temperature alternated 334 
between 28°C and 45°C (Psikuta et al., 2012). The Stolwijk-1971 and Gagge two-node 335 
models significantly underpredicted core temperature by 0.63°C and 0.53°C, respectively. 336 
The UTCI-Fiala model underpredicted skin temperature by 1.2°C. In contrast, the other 337 
models accurately predicted both the trend and absolute values of core and skin 338 
temperatures (Figure 4).  339 
 In Cases 6 and 7, three subjects were exposed to alternating air temperatures and 340 
relative humidity (Stolwijk and Hardy, 1966a). The predicted core and skin temperatures 341 
were within the acceptable range for all models, except for the Stolwijk-1971 model in 342 
Case 7, where the RMSD for predicted core temperature (0.67°C) exceeded the 343 
acceptable range of 0.5°C. In contrast, the Stolwijk-2024 model demonstrated a lower 344 
RMSD (0.35°C) in predicted core temperature, highlighting the importance of 345 
incorporating updated set-point temperatures, heat transfer coefficients, and other 346 
thermoregulatory coefficients in improving model accuracy. 347 
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 348 
Figure 4. Evaluation of thermoregulation models for extreme dry-heat exposures (Case 5 349 
to 7 in Table 2); Shaded area represents the deviation in measured data. 350 
 351 
 352 
 353 
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3.3 Humid-heat exposure (Case 8) 354 
 In Case 8, human subjects were exposed to hot (43°C) and humid (57% RH) 355 
conditions, with a wet bulb temperature of 34.2°C, for 90 minutes (Song et al., 2019). All 356 
models accurately predicted the simulated core and mean skin temperatures, showing 357 
good agreement with the measured experimental data (Figure 5). During the first 20 358 
minutes of exposure, the core temperature rose slowly, indicating increased strain on the 359 
thermoregulatory system. As the exposure continued, both core and skin temperatures 360 
steadily increased, suggesting that autonomic thermoregulation, including vasodilation 361 
and sweating, was insufficient to maintain core temperature at safe levels. 362 
 363 
3.4 Intense radiative exposure (Case 9) 364 
 Another common scenario in extreme heat conditions involves intense exposure to 365 
short- and long-wave radiation, which can be expressed as high mean radiant 366 
temperatures. To evaluate the models under such conditions, we modeled Case 9 in which 367 
five semi-nude (0.016 m2⋅°C-1W-1) human subjects were exposed to a radiant heat source 368 
positioned in front of them. In all models we simulated the radiant heat fluxes as mean 369 
radiant temperature (Psikuta et al., 2012). At the 80-minute mark, the subjects donned 370 
light clothing (0.093 m2⋅ °C-1W-1), leading to a significant deviation in core temperature 371 
values predicted by the two-node Gagge model. All other models accurately predicted 372 
both core and mean skin temperatures within acceptable thresholds (Figure 5). The 373 
significantly higher radiant temperature of 57°C caused elevated core and skin 374 
temperatures, indicating heat strain; however, thermoregulatory mechanisms such as 375 
sweating and vasodilation were able to compensate for the excess heat, maintaining core 376 
temperature below the dangerous levels associated with heat stroke or exhaustion. 377 
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 378 

 379 

Figure 5. Evaluation of models for hot and humid conditions (43°C and 57%RH, 380 
representing the high wet bulb temperature of 34.2°C) and high mean radiant temperature 381 
(57°C) exposures (Cases 8 and 9 in Table 2); Shaded area represents the deviation in 382 
measured data. 383 
 384 
3.5 Varied physical activity levels in moderate to hot climate (Cases 10-15) 385 

 To address the conditions of occupational workers and athletes with various level of 386 
clothing thermal insulation and physical activities, cases 10 to 15 (Table 2) were evaluated 387 
for intense physical activities (ranging from 3.35 to 12.1 met) and high clothing thermal 388 
(0.262 m2⋅°C-1W-1) and evaporative (41.8 m2⋅°C-1W-1) resistances (Gonzalez et al., 1997; 389 
Haslam and Parsons, 1988; Jack, 2009; Moran et al., 1998; Psikuta et al., 2012). The 390 
predictive ability of the models for the skin temperature could not be tested for these cases, 391 
as it was not available in literature. 392 
 In case 10, professional athletes ran on treadmill at moderate ambient temperatures 393 
and very high metabolic rate of 12.1 met (Jack, 2009; Psikuta et al., 2012). For this case, 394 
UTCI-Fiala and two-node model significantly overpredicted the core temperature (RMSD: 395 
0.9 and 1.2 °C). On the other hand, Stolwijk-1971 model underpredicted the core 396 
temperature by 0.72 °C. These discrepancies in predicted core temperature potentially 397 
emerge from the limitations of the sweat and vasodilation controls in the original model. 398 
The JOS-3 and Stolwijk-2024 model accurately predicted the core temperature of intense 399 
activity levels. Case 11 is similar to case 10, where activity was performed by recreational 400 
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athletes, hence at lower metabolic rate of 9.2 met compared to professional athletes. For, 401 
case 11 all the models accurately predicted the core temperature. 402 
 For case 12, five human subjects were exposed to extreme heat conditions (49.5 °C) 403 
for 90 mins, where for first 45 min metabolic activity was 1.0 met and for later 45 mins at 404 
4.42 met (Haslam and Parsons, 1988; Psikuta et al., 2012). For this exposure, JOS-3, 405 
Stolwijk-2024, and two-node model overpredicts (0.6, 0.8, and 1.2 °C, respectively) the 406 
core temperature beyond the acceptable limit; while the UTCI-Fiala and Stolwijk-1971 407 
model predicts the core temperature accurately (Figure 6). 408 
 In case 13, 100 human subjects were exposed to hot and humid environment (40 °C 409 
40% RH) with moderate physical activity at 3.35 met. For this scenario, the core 410 
temperature predicted by all the models were in the acceptable range (Figure 6).  411 
 For Case 14 and 15, ten human subjects were exposed to moderately hot 412 
environments (35 °C, 50%RH) and performed physical activity at around 4 met. In Case 413 
14 subjects were wearing clothing with thermal insulation of 0.127 m2⋅°C-1W-1, while in 414 
case 15 subjects were wearing a more thermally insulative clothing at 0.262 m2⋅°C-1W-1. 415 
For these cases with varying level of clothing thermal insulation, all models accurately 416 
predicted the core temperature except the Gagge’s two-node model (Figure 7).  417 
 418 
 419 
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 420 

Figure 6. Evaluation of the models for wide range of physical activities (1.0 to 12.1 met) 421 
under moderate to extreme heat environment (Cases 10 to 13 in Table 2); Shaded area 422 
represents the deviation in measured data. 423 

 424 
 425 
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 426 
Figure 7. Evaluation of the models for different level of clothing thermal insulation (0.127 427 
and 0.262 m2⋅K-1W-1) (Cases 14 and 15 in Table 2); Shaded area represents the deviation 428 
in measured data. 429 
 430 
 431 
4. Discussion 432 
4.1 Evaluating model performance in predicting the core and skin temperatures 433 
 The predictive accuracy of core and mean skin temperatures was evaluated using 434 
Root Mean Square Deviation (RMSD) and Bias (Figure 8), revealing that most models 435 
performed well within acceptable thresholds across these diverse validation scenarios 436 
(Table 2). However, the two-node Gagge’s model and the Stolwijk-1971 model with legacy 437 
coefficients, exhibited limitations under specific conditions, such as extreme heat, high 438 
physical activity, or highly transient environments, where deviations from the experimental 439 
data on human subjects were observed. Multi-segment models (JOS3, UTCI-Fiala, and 440 
Stolwijk-2024) demonstrated strong predictive performance for core temperature, with 441 
average RMSD values across all cases of 0.22 ± 0.15°C, 0.25 ± 0.26°C, and 0.31 ± 442 
0.16°C, respectively. These values fall within the acceptable range of the maximum 443 
standard deviation (0.5°C) observed in measured core temperatures from human subjects 444 
(Haslam and Parsons, 1994; Joshi et al., 2022). As shown in Figure 8, each of these multi-445 
node models had one outlier where the RMSD of predicted core temperature exceeded 446 
0.5°C. For the JOS3 and Stolwijk-2024 models, this occurred under conditions of very high 447 
ambient temperature (49.5°C, Case 12), while the Fiala model showed lower accuracy for 448 
cases involving very high metabolic rates (12.1 met, Case 10). The bias in predicted core 449 
temperature for these three models was close to zero -0.04°C, -0.08°C, and -0.09°C, 450 
respectively indicating very good accuracy. Overall, these multi-node models performed 451 
well across a wide range of conditions, including exposure to dry heat, humid heat, various 452 
levels of physical activity, and different clothing thermal properties. 453 
 454 
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 455 
Figure 8. Root-mean-square deviation (RMSD) and bias of simulated core and mean skin 456 
temperature, Outlier marker represents the cases where simulated values of temperature 457 
were beyond the acceptable range (0.5°C for core and 1.6°C for mean skin temperature 458 
(Haslam and Parsons, 1988; Joshi et al., 2022)), *: Fiala’s model validated for 9 cases 459 
only. 460 
 461 
 Comparing the predicted values from models to human subject data for the same heat 462 
exposure offers a clearer understanding of the strengths and limitations of each model.  463 
The original Stolwijk model (Stolwijk-1971) and the Gagge’s model exhibited relatively 464 
high RMSD values in predicting core temperature, with 0.45 ± 0.18°C and 0.71 ± 0.52°C, 465 
respectively. Both the Stolwijk-1971 and Gagge’s two-node models performed poorly in 466 
cases involving high metabolic rates and hot exposures. Specifically, the Stolwijk-1971 467 
model consistently underpredicted core temperatures in cases with high metabolic rates 468 
(cases 10 and 11). This model also demonstrated a positive bias of 0.45 °C (Figure 8) in 469 
predicted core temperature, indicating a systematic underprediction. One possible reason 470 
for this underprediction could be the setpoint temperature of the hypothalamus (Table S1 471 
to S3 in SM) and the coefficients used in the thermoregulatory control system (equations 472 
S7 to S10 in SM). When comparing the setpoint temperatures of the Stolwijk-1971 model 473 
with those of the JOS-3 (or Stolwijk-2024) models, it becomes evident that the setpoint 474 
temperatures in the Stolwijk-1971 model are significantly lower (by up to 0.5°C). This lower 475 
setpoint triggers an earlier onset of sweating and vasodilation, with higher magnitudes, 476 
leading to a reduction in core temperature. In contrast, the modified Stolwijk-2024 model 477 
shows significant improvement in predicting core temperature compared to the original 478 
Stolwijk-1971 model. This improved performance can be attributed to the updated setpoint 479 
temperatures (Table S1 in SM) and improved convective and radiative heat transfer 480 
coefficients (Table S3 in SM). On the other hand, although Gagge’s two-node model did 481 
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not exhibit a clear bias in predicted core temperature, its overall accuracy was lower in 482 
cases involving higher metabolic rates. This is likely because the model is a single-483 
segment, two-node (core and skin) model, which oversimplifies the distribution of heat 484 
generated by physical activity. In reality, heat is distributed differently within the muscle 485 
layer of the body, a factor that cannot be effectively accounted for in such an oversimplified 486 
model. 487 
 Overall, in hot-dry conditions, there was a higher scatter and disagreement among 488 
different models. However, all models showed good agreement with measured core 489 
temperatures from human subjects during hot and humid exposures. This variation can 490 
be attributed to the differences in how each model handles sweating. As shown in Figure 491 
9, various thermoregulation models have significant variations in efferent signals related 492 
to sweating due to underlying control coefficients and error signal (equations 1 to 9). Figure 493 
9 represents the variation in sweat signal for two cases (case 7 and 10), where sweating 494 
signal expected to be the significant due to high heat strain due to environmental stress 495 
and physical activity. In dry conditions, the sweat rate becomes the driving factor, and the 496 
coefficients used by each model to simulate sweating vary significantly, leading to 497 
discrepancies in their performance. In contrast, during hot and humid exposures, the 498 
driving factor is sweat evaporation. Here, all models accurately predicted sweat 499 
evaporation, suggesting that the Lewis coefficient, which governs this process, is well 500 
established and effective across different models. 501 
 502 

 503 
Figure 9. Efferent signal for sweating from active/control system of various 504 
thermoregulation models. 505 
 506 
 All the models predicted skin temperature with acceptable accuracy (RMSD < 1.6°C). 507 
The JOS3 and Stolwijk-2024 models consistently predicted mean skin temperature with 508 
low RMSD values (0.44°C and 0.56°C, respectively) and biases (-0.11°C and -0.30°C); 509 
both of which are significantly below the maximum standard deviation (1.6°C).   510 
 511 
4.2 Model performance in relation to complexity and accessibility 512 
 Results from the validation study indicate that multi-node and multi-segment models, 513 
such as JOS-3, Stolwijk-2024, and UTCI-Fiala, excel because they define key 514 
thermoregulatory mechanisms, such as vasodilation, skin blood flow, and sweating, with 515 
higher spatial resolution. Notably, the JOS3 and UTCI-Fiala models offer detailed 516 
considerations of heat distribution due to blood flow, including counter-current heat 517 
exchange, to account for heat transfer through the network of arteries, veins, and 518 
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superficial veins in the human body. In contrast, the Stolwijk-2024 model simplifies the 519 
process by assuming that each node exchanges heat with the central blood node through 520 
blood flow, which reduces model complexity. This simplification results in a marginally 521 
higher RMSD in core temperature when evaluated for various heat exposures, ranging 522 
from 0.06 to 0.09°C. However, the accuracy of the predicted skin temperature in the 523 
Stolwijk-2024 model remains comparable to more complex models like JOS-3 and UTCI-524 
Fiala model. Therefore, the modified Stolwijk-2024 model is well-suited for analyzing heat 525 
strain and thermal comfort in moderate to extreme-hot environmental conditions. The 526 
simplification of heat transfer through blood flow is appropriate for heat strain assessment, 527 
as the spatial variation of temperature between different body segments and tissues is 528 
minimal due to high blood perfusion (Gordon et al., 1976; Haslam and Parsons, 1994). 529 
However, it is important to note that these findings cannot be extrapolated to cold-strain 530 
scenarios, where variation in skin blood flow and local skin temperature is significantly 531 
higher.  532 
 The validation of the thermoregulation models clearly highlights that multi-node and 533 
multi-segment models can effectively simulate and analyze physiological heat strain 534 
across a wide range of climatic conditions. Furthermore, open-source thermoregulation 535 
models, such as JOS3 and Stolwijk-2024, either already incorporate or can be relatively 536 
easily extended to account for factors that impact thermoregulatory functions, such as 537 
aging, acclimatization, body size, gender, hydration status, and medical conditions. In 538 
contrast, models like the UTCI-Fiala, which are integrated into commercial software 539 
requiring licenses, may present accessibility challenges for those without access to 540 
licensed software or resources. Such limitations make it cumbersome to reproduce, 541 
modify, or extend commercial models to account for specific conditions that impact 542 
thermoregulatory functions. Therefore, despite their comparable accuracy to open-source 543 
models, the complexity and limitations of many models from literature can pose significant 544 
challenges in their applications. 545 
 546 
 547 
4.3 Limitations 548 
 The validation and comparison of the models in this study focused on analyzing heat 549 
strain in individuals corresponding to young, healthy, and averages of the population. 550 
However, this study did not account for inter-individual differences in thermoregulatory 551 
responses due to factors such as age, gender, and body composition (Kaciuba-Uscilko 552 
and Grucza, 2001; Matsumoto et al., 1999; Van Marken Lichtenbelt et al., 2007; Van 553 
Someren et al., 2002). These differences can significantly impact thermoregulatory 554 
functions and temperature distribution within the body. For example, older individuals tend 555 
to experience higher heat strain (Hellon and Lind, 1956; Wagner et al., 1972) due to factors 556 
such as decreased sweat secretion rates, reduced cardiac output, diminished skin blood 557 
flow, and delayed onset of sweating. Furthermore, advanced models, such as the 3D 558 
anatomic thermoregulation model, can provide highly detailed temperature distributions 559 
within the human body, making them particularly useful for medical applications, such as 560 
assessing temperature at the organ level or specific body locations; capabilities that are 561 
not possible with simplified models. In this study, the mean skin temperature data used for 562 
validation were sourced from multiple studies in the literature. These studies may have 563 
employed different methods to calculate mean skin temperature, utilizing various weighing 564 
factors and different sets of body segments for measurement. For instance, some studies 565 
computed mean skin temperature based on a weighted average of 4 or 7 body segments 566 
(Hardy et al., 1938; RAMANATHAN, 1964). These variations in methods introduce an 567 
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uncertainty of ±0.4°C (95% confidence interval) (Choi et al., 1997). However, this 568 
uncertainty is considered negligible during the validation process, as it falls within the 569 
acceptable threshold of 1.6°C. In the simulations conducted for this study, mean skin 570 
temperature is calculated using the area-weighted average temperature of skin segments.571 
 Additionally, the performance of these models cannot be extrapolated to cold exposure 572 
scenarios. In cold environments, reduced blood flow to extremities increases the risk of 573 
major cold injuries, such as frostbite, which primarily affect the fingers, toes, and other 574 
extremities (Forster et al., 1946; Sullivan-Kwantes et al., 2019). Therefore, 3D 575 
thermoregulation models that incorporate detailed blood flow through Arteriovenous 576 
Anastomoses (AVA) and include anatomical features of the extremities are more suitable 577 
for simulating cold exposure conditions (Fallahi et al., 2017; Gorgas et al., 1977; Rida et 578 
al., 2014; Yang et al., 2017; Zhang et al., 2024, 2021). Furthermore, all the evaluated 579 
models use a simplified clothing model that does not account for wet conduction or sweat 580 
accumulation in the clothing. This limitation can impact the accuracy of predicted skin 581 
temperature and total heat transfer at skin/clothing surface (Joshi et al., 2023b), especially 582 
during transitional conditions—such as moving from a hot, humid environment to a dry 583 
one—an effect observed around the 200th minute in Case 4 (Figure 3 and Table 2). 584 

5. Conclusions 585 
 The comparative validation of five thermoregulation models with varying levels of 586 
complexity, including the updated Stolwijk-2024 model, demonstrates that multi-node and 587 
multi-segment models are highly effective in simulating physiological heat strain across a 588 
wide range of climatic conditions. The study's findings highlight the robust predictive 589 
performance of the JOS3, UTCI-Fiala, and Stolwijk-2024 models, with these models 590 
achieving low RMSD values and minimal bias in predicting core and skin temperatures. 591 
The Stolwijk-2024 model, which incorporates updated set-point temperatures, improved 592 
heat transfer coefficients, and refined efferent control signals, shows significant 593 
improvements over the original Stolwijk-1971 model. Despite its simplified approach to 594 
modeling blood flow and heat transfer, the Stolwijk-2024 model delivers reliable 595 
predictions that are comparable to more complex models like JOS3 and UTCI-Fiala. This 596 
study indicates that while increased complexity can enhance accuracy slightly (by less 597 
than 0.1°C in core temperature), well-designed simplified models can still provide highly 598 
accurate results for specific applications. 599 
 The study also underscores the importance of using multi-node and multi-segment 600 
models for analyzing heat strain under diverse conditions, including extreme dry-heat, 601 
humid-heat, transient heat exposures, and varying levels of physical activity and clothing 602 
insulation. However, the study also identifies limitations in simpler models like the Stolwijk-603 
1971 and Gagge two-node models, particularly in scenarios involving high metabolic rates 604 
and extreme heat. Stolwijk-1971 model tends to underpredict core temperatures, which 605 
could lead to a false sense of safety in real-world applications. This underlines the need 606 
for caution when applying such models in high heat-strain environments. 607 
 In summary, the validated multi-node and multi-segment thermoregulation models, 608 
particularly with the source-code such as JOS3 and Stolwijk-2024 models, provide reliable 609 
and accessible tools for assessing heat strain and thermal comfort in moderate to extreme 610 
environmental conditions. Future research should focus on further refining these models, 611 
addressing their limitations, and improving their accessibility to ensure they can be 612 
effectively utilized in assessing heat-strain at individual levels in a wide range of 613 
applications, from public health interventions to climate resilience planning. 614 
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