

Comparative Analysis of Thermoregulation Models to Assess Heat Strain in Moderate to Extreme Heat

Ankit Joshi,^{1,2*} Bryce Twidwell,¹ Michael Park,¹ and Konrad Rykaczewski^{1,2*}

1. *School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA*
2. *Julie Ann Wrigley Global Futures Laboratory, Arizona State University, Tempe, AZ 85287, USA*

Corresponding authors:

Konrad Rykaczewski, Ph.D.
Associate Professor
Arizona State University
777 E. University Dr.
Tempe, AZ 85281
Email: konradr@asu.edu

Ankit Joshi, Ph.D.
Assistant Research Scientist
Arizona State University
777 E. University Dr.
Tempe, AZ 85281
Email: ankit.joshi@asu.edu

ORCIDs:

Ankit Joshi: 0000-0002-5399-1069

Konrad Rykaczewski: 0000-0002-5801-7177

Acknowledgement: This research was supported by the National Science Foundation Leading Engineering for America's Prosperity, Health, and Infrastructure (LEAP HI) #2152468 award.

Competing Interests: The authors have no relevant financial or non-financial interests to disclose.

Abstract

As global temperatures rise due to climate change, the frequency and intensity of heatwaves are increasing, posing significant threats to human health, productivity, and well-being. Thermoregulation models are important tools for quantifying the risk of extreme heat, providing insights into physiological strain indicators such as core and skin temperatures, sweat rates, and thermal comfort levels. This study evaluated four thermoregulation models of varying complexity, differentiated by the geometry and underlying thermoregulatory mechanisms. The models assessed include the Gagge two-node model, the Stolwijk-1971 model, the JOS3 model, and the UTCI-Fiala model. Additionally, we introduce the Stolwijk-2024 model, a modified version of the original Stolwijk model, which incorporates updated empirical coefficients derived from recent studies while retaining the original framework. The models were tested against human trial data across a wide range of extreme heat exposures, including transient extreme heat, humid heat, various physical activity levels, and clothing insulation scenarios. Our findings demonstrate that multi-node and multi-segment models, such as JOS3, UTCI-Fiala, and Stolwijk-2024, reliably predict core (average RMSD: $<0.3^{\circ}\text{C}$) and skin (average root-mean-square deviation, RMSD: $<0.6^{\circ}\text{C}$) temperatures, making them suitable for assessing heat strain and thermal comfort in moderate to extreme environmental conditions. In contrast, simpler models like the single-segment, two-node Gagge's model performed poorly in predicting core temperature under conditions involving high metabolic rates (>3.75 met) in moderate to hot environments ($>35^{\circ}\text{C}$), with an average RMSD of 1.2°C . Similarly, the Stolwijk-1971 model showed a systematic bias ($\sim 0.45^{\circ}\text{C}$), underpredicting core temperatures during high metabolic rates. This study underscores the robustness and applicability of open-source models like JOS3 and Stolwijk-2024 in public health, urban design, and climate impact research, highlighting their potential to improve our understanding of heat strain and thermal comfort in the context of a warming climate.

Highlights

- Comprehensive validation of thermoregulation models under extreme climate
- Updated Stolwijk model has enhanced accuracy in predicting core and skin temperatures
- Two-node or overly simplified models can underperform in analyzing heat exposures

Keywords: Thermoregulation model, Model evaluation, Comparative analysis, Extreme heat exposure, Heat strain assessment

60 **1. Introduction**

61 As global temperatures rise due to climate change, humans are experiencing more
62 frequent, prolonged, and intense heatwaves (Intergovernmental Panel on Climate Change
63 (IPCC), 2019; Perkins-Kirkpatrick and Gibson, 2017). These extreme heat events pose
64 significant challenges to human health, livability, productivity, and overall well-being (Ebi
65 et al., 2021, 2020; Vanos et al., 2023). Vulnerable populations, such as the elderly, those
66 with pre-existing medical conditions, and individuals living in poverty, are at heightened
67 risk (Jay et al., 2021; Trenberth et al., 2003). Understanding the degree of heat strain
68 associated with extreme heat across various demographics and activities is important for
69 informing behavioral, policy, and infrastructure decisions aimed at mitigating these
70 dangers (Cissé et al., 2022; Joshi et al., 2023a; Karanja et al., 2024; Vanos et al., 2024).

71 Heat strain assessment involves consideration of the energy balance of the human
72 body and thermoregulatory processes. The energy balance includes heat generated
73 internally (from metabolism and physical activity), heat and mass transfer pathways
74 between the body and the environment (i.e., convection, radiation, and evaporation), and
75 factors that affect these pathways. In particular, the degree of heat strain on human body
76 is impacted by air temperature, ambient vapor pressure, air speed, long- and short-wave
77 radiation (or mean radiant temperature), internal heat generation and redistribution within
78 the body, and the thermal properties of clothing. Many human energy balance models and
79 heat indices provide simplified representations of environmental stress, for example, only
80 considering air temperature and humidity. In contrast, more advanced models incorporate
81 complete treatment of environmental exposure with thermoregulatory controls driven by
82 thermoreceptors, which sense the current thermal state of the body, either in the brain or
83 in both the brain and skin (Stolwijk, 1971; J. A. J. Stolwijk and Hardy, 1966). Based on
84 feedback from thermoreceptors, the hypothalamus activates thermoregulatory responses
85 (such as vasomotion, sweating, and shivering) that aim to maintain the body's core
86 temperature at healthy levels.

87 Advanced thermoregulatory models output comprehensive information about heat
88 strain, such as core temperature, skin temperature, sweat rate, skin wettedness, cardiac
89 output, and thermal comfort levels. Furthermore, advanced models can be extended to
90 account for the effect of age, body mass index (BMI), gender, and other conditions that
91 impact thermoregulatory functions to assess the heat strain at an individual level (Davoodi
92 et al., 2018; Havenith, 2001, 1997; Takada et al., 2009; Takahashi et al., 2021; Van Marken
93 Lichtenbelt et al., 2007; Zhang et al., 2001). Such tailoring can enable a nuanced
94 understanding of how diverse populations are affected by complex environmental
95 conditions, offering valuable insights for improving health and safety in extremely hot
96 conditions (Deng et al., 2018; Karanja et al., 2024; Ou et al., 2023; Vanos et al., 2024;
97 Zhao et al., 2020). However, uncertainty regarding the reliability and validation of models
98 for heat exposure as well as availability (open source vs. commercial software that might
99 be out of the financial reach of many researchers) are significant obstacles in analyzing
100 the health risks posed by current and future heatwaves.

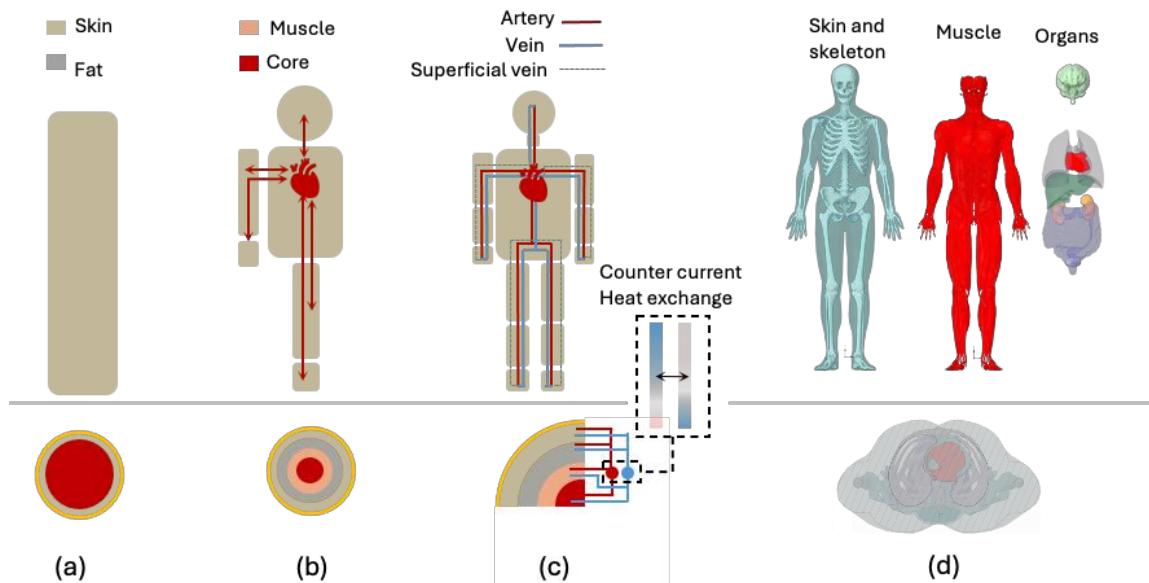
101 This study evaluated five thermoregulation models representing a wide range of
102 complexity regarding thermoregulatory mechanisms, body segments, and tissue types
103 (see Figure 1). The selected models include the two-node (single segment: core and skin)
104 model by Gagge, two versions of the 25-node (six body segments) model by Stolwijk, 85-
105 node JOS3 model (17 segments), and 187-node UTCI-Fiala multi-node model (12
106 segments) (Fiala et al., 2012; Gagge, 1971; Stolwijk, 1971; Takahashi et al., 2021). In
107 addition, we introduce Stolwijk-2024 model, a modified version of the original model with
108 updated empirical coefficients reflecting contemporary data from recent human trials while

109 retaining the original framework. Besides the open-source models (either previously
110 available or published with this paper), we also included results from the commercial
111 UTCI-Fiala model because it is comprehensively validated and used in developing the
112 Universal Thermal Climate Index (UTCI) that often serves as a benchmark (Jendritzky et
113 al., 2012; Psikuta et al., 2012). We could not include recent complex 3D numerical models
114 in the direct comparison, as the lack of published source code makes it challenging to
115 reproduce them accurately (Castellani et al., 2021; Joshi et al., 2022; Kang et al., 2019;
116 Nelson et al., 2009; Silva et al., 2018). Evaluating the selected five models using the same
117 heat exposure and human trial data can reveal whether increased complexity improves
118 accuracy in predicted physiological parameters and if simple, open-source models can
119 perform reliably. To test the robustness and reliability of the models, we selected human
120 subject data from the literature that covers a wide range of conditions for validation. These
121 conditions include:

122 (i) extreme heat exposures where subjects transitioned between moderate and extreme
123 conditions, reflecting transient air temperature and humidity,
124 (ii) hot and humid environments with high wet bulb temperatures,
125 (iii) scenarios where the mean radiant temperature is significantly higher than the air
126 temperature,
127 (iv) various physical activities conducted in warm to hot conditions and
128 (v) a diverse range of clothing ensembles with differing levels of thermal insulation.

129 Evaluating these models will guide future developments and enable their use in public
130 weather services, health systems, urban design, tourism, and climate impact research for
131 accurate heat strain predictions.

132



133

134

135 **Figure 1.** Side and cross-sectional overview of thermoregulation modeling approaches
136 with varying levels of complexity; (a) single segment multi-node model (e.g., Gagge,
137 1971), (b) multi-segment multi-node model with simplified vascular system (e.g., Stolwijk,
138 1971), (c) multi-segment multi-node model with detailed vascular system (e.g., Fiala et al.,
139 2012; Takahashi et al., 2021), and (d) 3D-anatomic thermoregulation models (e.g.,
140 Castellani et al., 2021; Nelson et al., 2009; Silva et al., 2018).

141 **2. Methods**

142 **2.1 Overview and rationale for the five model selection**

143 Since the 1960s, mathematical models of human thermoregulation have evolved in
144 complexity, incorporating factors like thermal physiology, body geometry, clothing, and
145 environmental influences on heat transfer (Castellani et al., 2021; Fiala et al., 2012;
146 Gagge, 1971; Joshi et al., 2022; Kang et al., 2019; Nelson et al., 2009; Silva et al., 2018;
147 Stolwijk, 1971; Takahashi et al., 2021; Tanabe et al., 2002; Wissler, 2018). Among these,
148 the Gagge model (Gagge, 1971) consists of a single segment with two nodes representing
149 the core and skin. In this model, the thermal properties of different tissues are lumped
150 together within these two nodes. Because the model is limited to a single segment, it has
151 a restrictive capacity for capturing variations in key thermoregulatory mechanisms, such
152 as heat generation, blood flow, and sweating, which differ significantly across various body
153 segments. These limitations constrain the model's ability to calculate these mechanisms
154 with higher spatial resolution. Despite this limitation, it has been used as heat strain and
155 thermal comfort assessment tool due to its simplicity and accuracy (Haslam and Parsons,
156 1994, 1988; Ooka et al., 2010; Standard, 1992; Tartarini et al., 2020).

157 The Stolwijk-1971 model includes six body segments and four tissue types (core,
158 muscle, fat, and skin) allowing for detailed spatial resolution in thermoregulatory analysis,
159 as described in described in Figure 1b (Stolwijk, 1971). The multi-segmented nature of the
160 model enables the detailed definition of thermal properties for body tissues and clothing
161 layers in individual segments, allowing for higher spatial resolution in representing
162 thermoregulatory mechanisms. Stolwijk's and similar models assume that each node
163 directly exchanges heat with a central blood pool. It is also critical to point out that
164 validation of Stolwijk-1971 model and its derivatives have generally been limited to low
165 activity levels under semi-nude conditions (Munir et al., 2009; Roelofsen et al., 2023;
166 Roelofsen and Vink, 2016; Stolwijk, 1971; Tang et al., 2020). In the Stolwijk-2024 model,
167 we updated the Stolwijk-1971 thermoregulation model by incorporating recent findings,
168 including updated weighing factors for various thermoregulatory mechanisms, heat
169 transfer coefficients, and improved methods for calculating heat transfer through clothing,
170 as described in the Supplemental Material (SM).

171 The Stolwijk model has served as foundation for many existing thermoregulation
172 models, with its derivative models enhancing the original model (referred as Stolwijk-1971)
173 by improving thermoregulatory systems, body segmentation, and individual characteristics
174 of thermoregulations (Huizenga et al., 2001; Roelofsen and Vink, 2016; Stolwijk, 1971;
175 Takada et al., 2009; Takahashi et al., 2021; Tanabe et al., 2002; Tang et al., 2020; Zhang
176 et al., 2001), and detailed heat transfer through arteries and veins (Dongmei et al., 2012;
177 Ooka et al., 2010; Takada et al., 2009; Takahashi et al., 2021). More recent developments
178 in thermoregulation models significantly improve the spatial resolution by increasing the
179 number of body segments and, consequently, the number of nodes (Fiala et al., 2012;
180 Takahashi et al., 2021). Furthermore, these models also consider the improved
181 thermoregulatory mechanisms, especially heat transfer via blood flow through the complex
182 networks of arteries and veins (Fiala et al., 2012; Takahashi et al., 2021). The JOS-3 and
183 UTCI-Fiala models consider the counter-current heat exchange and convective heat
184 transfer in capillary beds and local tissue. Therefore, arteries at each segment have
185 different blood temperatures, leading to potentially large differences for extremities (e.g.
186 hand and feet) due to convective heat transfer in upstream segments. Such characteristics
187 are particularly important in cold temperatures and cannot be captured by the Stolwijk
188 model where all the segments exchange heat with the central blood pool that is at one
189 particular thermal state at any given time (Fiala et al., 2012; Gagge, 1971; Stolwijk, 1971;

190 Takahashi et al., 2021). The key features and rationale for model selection for comparison
191 are also summarized in Table 1.

192

193 Table 1. Key features and rationale for the model selection

Model and year	Number of body segments	Number of nodes	Key features
Two-node Gagge (1971)	1	2	Widely used model for assessing heat strain and thermal comfort due to its simplicity.
Stolwijk (1971)	6	25	Serves as the foundation for many modern thermoregulation models. Uses simplified blood flow, where each node exchanges heat directly with a central blood pool.
Modified Stolwijk (2024)	6	25	Updated version of the Stolwijk-1971 model, incorporating recent advancements in vasomotion control, shivering, sweating, heat transfer coefficients, and heat transfer through clothing.
JOS-3 (2021)	17	85	Models counter-current heat exchange in arteries and veins, along with convective heat transfer in capillaries and local tissues,
UTCI-Fiala (2012)	12	187	The foundation model for the Universal Thermal Climate Index (UTCI), validated for assessing heat strain across a wide range of environmental conditions. Similar to JOS-3, models major key thermoregulatory mechanisms.

194

195 **2.2. Improved thermoregulation model: Stolwijk-2024**

196 The improved Stolwijk-2024 thermoregulation model consists of six body segments: head,
197 trunk, arms, hands, legs, and feet. Each segment includes four concentric layers (core,
198 muscle, fat, and skin) along with a node representing the central blood compartment
199 (Figure 1(b)). This section focuses on the modifications made primarily to the control
200 system to enhance the accuracy and functionality of the classical Stolwijk model.
201 Additionally, the set point temperatures for each node and the heat exchange with the
202 environment through clothing were updated in the new Stolwijk-2024 model. For a detailed
203 description, please refer to the supplemental material.

204 The control system of human thermoregulation receives signals from thermoreceptors
205 and processes them in the hypothalamus. Based on these signals, the control system
206 activates various thermoregulatory mechanisms such as vasoconstriction, vasodilation,
207 shivering, and sweating. Stolwijk (Stolwijk, 1971) defined the control system based on
208 error signals defined as the difference between actual temperature at any given time and
209 set point temperature at given node (see Equations 1 to 5). Accordingly, a positive error
210 signal indicates warm sensing at the thermoreceptors, while a negative error signal
211 indicates cold sensing. The mathematical form of the thermoregulatory mechanisms
212 considers signals from both central and skin thermoreceptors.

213

214
$$ERR_{j,i} = T_{j,i} - T_{set_{j,i}}$$
 (1)

215 $WRM_{j,i} = \max(ERR_{j,i}, 0)$ (2)

216 $CLD_{j,i} = |\min(ERR_{j,i}, 0)|$ (3)

217 $WRMS = \sum_{j=0}^5 D F_{TR_j} \cdot WRM_j$ (4)

218 $CLDS = \sum_{j=0}^5 D F_{TR_j} \cdot CLD_j$ (5)

219
 220 where, ERR is error signal ($^{\circ}\text{C}$), $T_{j,i}$ is temperature of given node and body segment ($^{\circ}\text{C}$),
 221 $T_{set,j,i}$ is set point temperature (temperature at physiological thermal neutrality) of given
 222 node and body segment ($^{\circ}\text{C}$), $WRM_{j,i}$ is warm sensing signal (N. D.), $CLD_{j,i}$ is cold sensing
 223 signal (N. D.), $WRMS$ is total warm thermoreceptors signal (N. D.), $CLDS$ is total cold
 224 thermoreceptors signal (N. D.), and DF_{TR_j} is distribution of thermoreceptor over different
 225 body segments (N. D.)

226 Stolwijk assumed that effector part of thermoregulation system can be modelled by the
 227 control equations, which combine weighted signal from hypothalamus (central
 228 thermoreceptor), and integrated signal from the skin thermoreceptors (Stolwijk, 1971).
 229 Based on these assumptions Stolwijk suggested the controller equations for various
 230 thermoregulatory mechanisms, as described in Equations 6 to 9 (Stolwijk, 1971). Recently,
 231 the JOS-3 thermoregulation model proposed updated control coefficients (Takahashi et
 232 al., 2021), which are incorporated into the present study. These control coefficients have
 233 significant impact on efferent signals such as vasomotion, sweating, and shivering. As
 234 shown in Figure 2, simulation follows a 240-minute transient exposure, structured as 60
 235 minutes in a moderately cool environment at 28°C , 120 minutes in an extreme heat
 236 condition at 47.8°C , and a final 60 minutes back at 28°C (Case 7 in Table 2). Figure 2a
 237 illustrates the responses of afferent signals from skin and central thermoreceptors, which
 238 trigger various efferent thermoregulatory actions in both the original Stolwijk-1971 model
 239 and the modified Stolwijk-2024 model (Figure 2b to 2e).

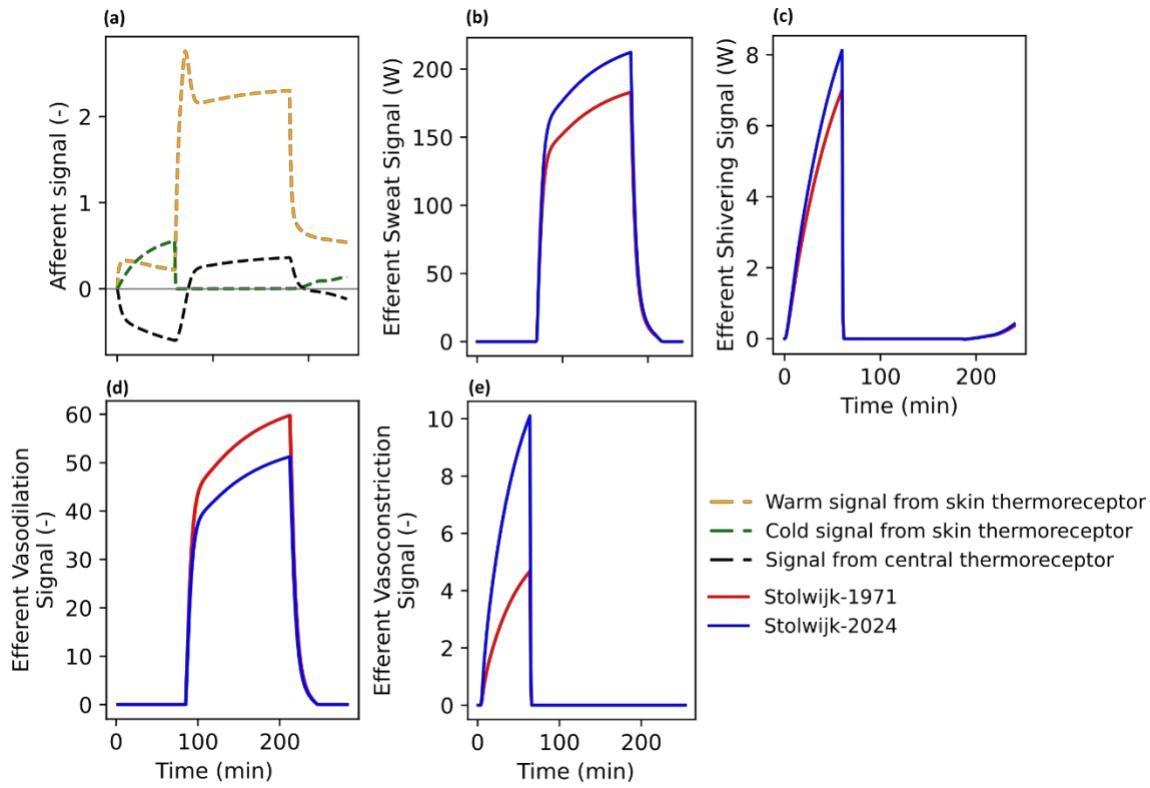
240
 241 $SW = (371.2 \cdot ERR_{Head_{core}}) + (33.64 \cdot (WRMS - CLDS))$ (6)

242 $VD = (100.5 \cdot ERR_{Head_{core}}) + (6.4 \cdot (WRMS - CLDS))$ (7)

243 $SH = 24.36 \cdot ERR_{Head_{core}} \cdot CLDS$ (8)

244 $VC = (-10.8 \cdot ERR_{Head_{core}}) + (-10.8 \cdot (WRMS - CLDS))$ (9)

245
 246 where, SW is total efferent sweat signal (W), $ERR_{Head_{core}}$ is error signal from central
 247 thermoreceptor, representing changes in hypothalamus (N. D.), VD is total efferent skin
 248 vasodilation signal (N. D.), SH is total efferent shivering signal (W), VC is total efferent skin
 249 vasoconstriction signal (N. D.)



250
251 **Figure 2.** (a) Afferent signals from various thermoreceptor; Comparison of efferent signal
252 from Stolwijk-1971 and improved Stolwijk-2024 model for given afferent signals (b) efferent
253 sweating signal, (c) efferent shivering signal, (d) efferent vasodilation signal, and (e)
254 efferent vasoconstriction signal.
255

256 **2.3. The human trial cases used for evaluating performance of the models**

257 The five selected models with varying level of complexity were evaluated to predict
258 core and mean skin temperature across a wide range of parameters affecting the body's
259 heat balance. The models were evaluated under a wide range of conditions, including air
260 temperature, mean radiant temperature, relative humidity, air speed, activity levels, and
261 clothing thermal insulation, as detailed in **Table 2**. The validation cases were focused on
262 moderate to extreme hot climatic conditions (T_{air} : 21 to 49.5°C, MRT: 21 to 57°C, RH: 21
263 to 69.4 %, and v_{air} : 0.1 to 3.3 m·s⁻¹ along with various metabolic activity levels (0.8 to 12.1
264 met) and clothing insulation (0.016 to 0.262 m²·K⁻¹°C⁻¹)). The thermal and evaporative
265 resistances presented in Table 2 are obtained from reported values in respective literature
266 of human trial data and based on clothing descriptions especially for nude or semi-nude
267 conditions. The accuracy and precision of the predicted core and skin temperatures were
268 assessed using the root-mean-square deviation (RMSD) and bias. The UTCI-Fiala model
269 was evaluated in 9 out of the 15 heat exposure cases (Table 2), where both simulated
270 core and/or skin temperature data were available from the literature. Due to licensing
271 restrictions, the UTCI-Fiala model could not be applied to the remaining cases. In cases
272 10 to 15, only core temperature data were reported in literature, so comparisons were
273 made exclusively for core temperatures, as skin temperature data were not available.

274
$$\text{RMSD} = \sqrt{\frac{\sum_{i=1}^n (x_i - \hat{x}_i)^2}{n}} \quad (1)$$

275
$$\text{Bias} = \frac{\sum_{i=1}^n (x_i - \hat{x}_i)}{n} \quad (2)$$

276 where, RMSD is root-mean-square deviation of the thermoregulation model, Bias is bias of
277 the thermoregulation model, i is data point in given time series, n is total number of data
278 points in given time series, x_i = experimental data points, and \hat{x}_i = simulated data points.
279 A model's predictive performance is considered acceptable when the RMSD falls within
280 the maximum standard deviation of core temperature (0.5°C) and mean skin temperature
281 (1.6°C), based on experimental data from 590 human subject experiments across 80
282 different ambient conditions (Haslam and Parsons, 1994; Joshi et al., 2022).

283

284

285

Table 2. Details of environmental conditions, activity level, and clothing resistance for comparison of the thermoregulation models.

Case	Duration [min]	T_{air} [°C]	MRT [°C]	RH_{air} [%]	V_{air} [m·s ⁻¹]	Metabolic rate [met]	R_{cl} [m ² ·°C ⁻¹ W ⁻¹]	R_{cl} [m ² ·Pa ⁻¹ W ⁻¹]	Source
Case 1	130	30	30	30	0.1	1.0 to 3.6	0.016	2.5	(Haslam and Parsons, 1988; Psikuta et al., 2012)
Case 2	240	27.8 to 33.3	27.8 33.3	to 37 to 34	0.1	0.8	0	0.0	(Stolwijk and Hardy, 1966a)
Case 3	240	28.5 to 37.5	28.5 37.5	to 41 to 33	0.1	0.8	0	0.0	(Stolwijk and Hardy, 1966a)
Case 4	400	21 to 39.6	21 to 39.6	40 to 69	0.2	1 to 3.0	0.040	7.0	(Smallcombe et al., 2022)
Case 5	180	28 to 45	28 to 45	53 to 21	0.1	1.1 to 2.4	0.016	2.5	(Psikuta et al., 2012)
Case 6	240	28 to 42.5	28 to 42.5	37 to 28	0.1	0.8	0	0	(Stolwijk and Hardy, 1966a)
Case 7	240	28.1 to 47.8	28.1 47.8	to 43 to 27	0.1	0.8	0	0	(Stolwijk and Hardy, 1966a)
Case 8	90	43	43	57	0.15	1.6	0.078	6.0	(Song et al., 2019)
Case 9	160	28 to 36	28 to 57	25 to 15	0.5	1.8 to 3.9	0.016 0.093	to 2.5 to 14.8	(Psikuta et al., 2012)
Case 10	40	28	28	50	3.28	12.1	0.016	2.5	(Jack, 2009; Psikuta et al., 2012)
Case 11	40	28	28	50	3.28	9.2	0.016	2.5	(Jack, 2009; Psikuta et al., 2012)
Case 12	90	49.5	49.5	32	0.1	1.0 to 4.4	0.016	2.5	(Haslam and Parsons, 1988; Psikuta et al., 2012)
Case 13	120	40	40	40	0.2	3.4	0.016	2.5	(Moran et al., 1998; Psikuta et al., 2012)
Case 14	100	35	35	50	1	4.0	0.127	20.3	(Gonzalez et al., 1997; Psikuta et al., 2012)
Case 15	100	35	35	50	1	3.8	0.262	41.8	(Gonzalez et al., 1997; Psikuta et al., 2012)

286

287

288 **3. Results**

289 The simulation results cover a broad spectrum of environmental and physical activity
 290 conditions, providing insights into the predictive performance of thermoregulation models
 291 with varying levels of complexity. These models were tested under scenarios including
 292 transient and extreme dry-heat exposures, humid-heat environments, high radiative heat
 293 sources, and different levels of physical activity in moderate to hot climates. The validation
 294 process also included cases with varying degrees of clothing insulation and physical
 295 activity levels to ensure a comprehensive model evaluation. The following subsections
 296 evaluate the performance of the models in specific scenarios.

297

298 **3.1 Transient exposure to moderate climate (Cases 1-4)**

299 Prior to the application of thermoregulation models in extreme climates, we assessed
 300 their performance in scenarios with moderate to low heat strain (Figure 3, Cases 1-4).
 301 Although the risk of heat illness in these cases is low, the predicted core and skin
 302 temperatures are useful indicators of thermal comfort and sensation.

303 In Case 1, where 11 male subjects exercised in a moderate environment (Haslam and
 304 Parsons, 1988; Psikuta et al., 2012), most thermoregulation models accurately predicted
 305 the increase in both core and skin temperatures (Figure 3). However, the UTCI-Fiala
 306 model consistently underpredicted skin temperature throughout the exposure, with an
 307 RMSD of 1.6°C. Psikuta et al. (Psikuta et al., 2012) observed similar underprediction in
 308 other cases with higher activity levels, possibly due to impaired sweat evaporation at the
 309 measurement site, where the skin temperature sensor was taped using semi-permeable
 310 tape. Despite this, the other models we evaluated accurately predicted the magnitude and
 311 trend of skin temperature.

312 In Cases 2 and 3, three subjects were exposed to transient, moderately warm
 313 environments (Stolwijk and Hardy, 1966b), alternating between chambers with different air
 314 temperatures, as shown in Figure 3. All models predicted core and skin temperatures with
 315 acceptable accuracy for these exposures. However, in models with a simplified vascular
 316 and blood flow system (such as Gagge's two-node model and both Stolwijk models), the
 317 predicted core temperature responded more quickly to changes in air temperature. In
 318 contrast, models with a more detailed vascular system (like JOS-3 and UTCI-Fiala)
 319 showed a slower response, with trends that better aligned with those observed in human
 320 subjects.

321 Case 4 involved highly transient environmental conditions and activities, where the
 322 human subject followed a work-rest cycle typical of occupational workers, alternating
 323 between a warm environment (39.6°C) and a comfortable environment (21°C)
 324 (Smallcombe et al., 2022). All models satisfactorily predicted core and skin temperatures
 325 within acceptable thresholds (Figure 3), except for Gagge's two-node model, which
 326 showed an RMSD of 0.68°C above the acceptable range for predicted core temperature.

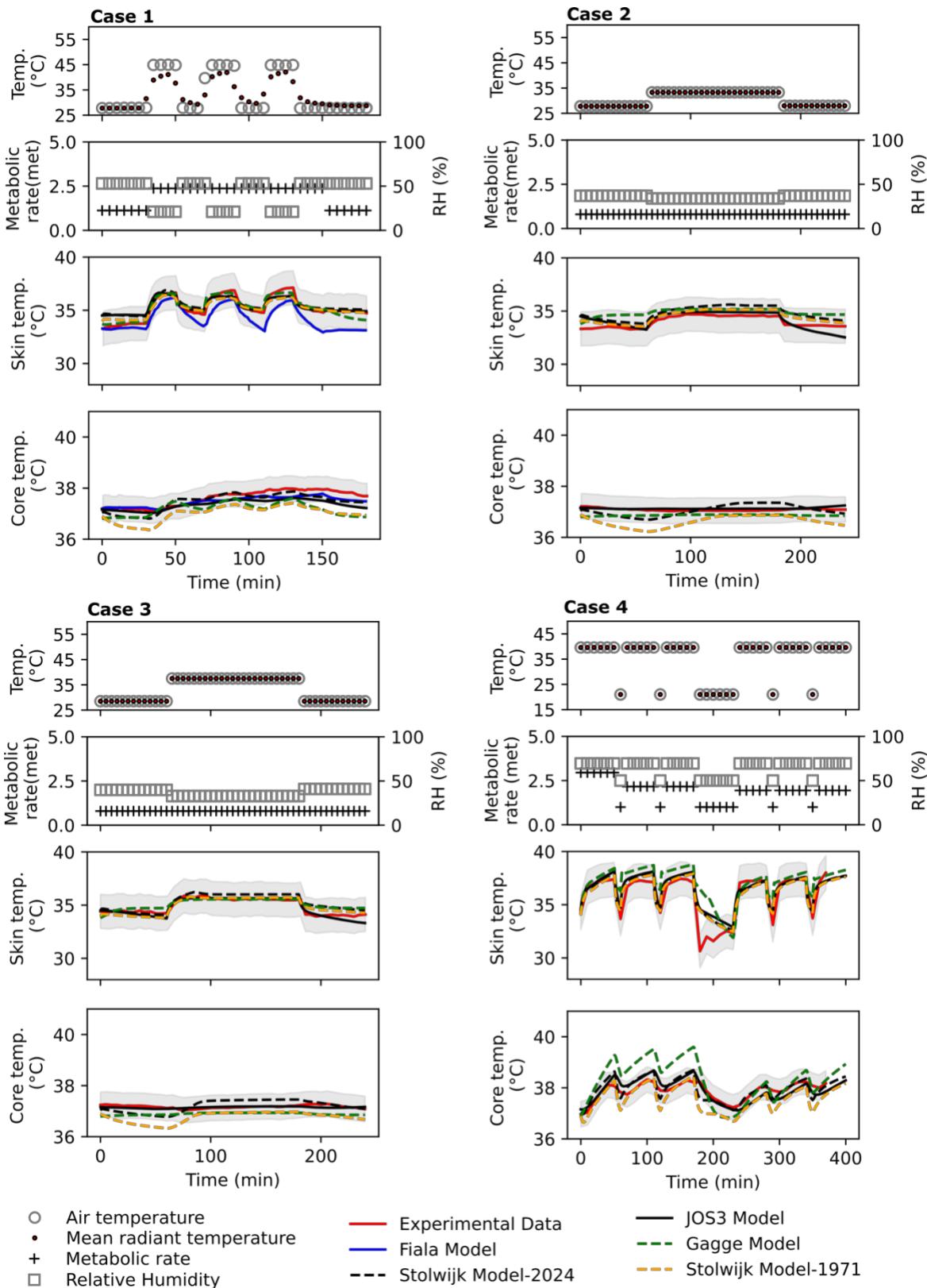
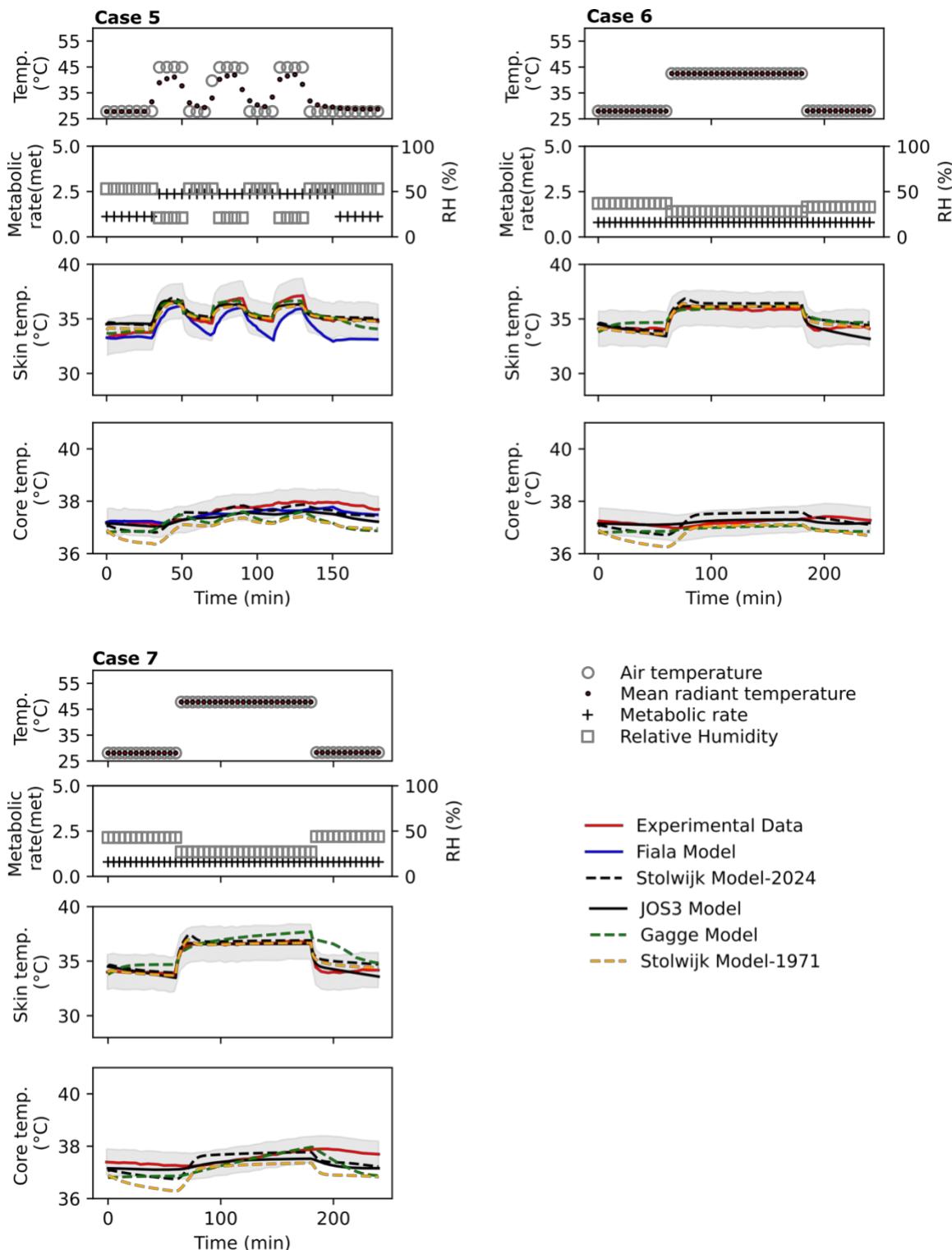


Figure 3. Evaluation of thermoregulation model for moderate to warm exposure (Cases 1 to 4, Table1); Shaded area represents the deviation in measured data.

330 **3.2 Transient and extreme dry-heat exposure (Cases 5-7)**

331 In Cases 5 to 7 (Table 2), air temperature, mean radiant temperature, and relative
332 humidity varied from moderate to extreme heat conditions, while activity levels remained
333 constant with nude or semi-nude subjects. In Case 5, six human subjects exercised at a
334 constant metabolic rate (2.4 met) while air and mean radiant temperature alternated
335 between 28°C and 45°C (Psikuta et al., 2012). The Stolwijk-1971 and Gagge two-node
336 models significantly underpredicted core temperature by 0.63°C and 0.53°C, respectively.
337 The UTCI-Fiala model underpredicted skin temperature by 1.2°C. In contrast, the other
338 models accurately predicted both the trend and absolute values of core and skin
339 temperatures (Figure 4).

340 In Cases 6 and 7, three subjects were exposed to alternating air temperatures and
341 relative humidity (Stolwijk and Hardy, 1966a). The predicted core and skin temperatures
342 were within the acceptable range for all models, except for the Stolwijk-1971 model in
343 Case 7, where the RMSD for predicted core temperature (0.67°C) exceeded the
344 acceptable range of 0.5°C. In contrast, the Stolwijk-2024 model demonstrated a lower
345 RMSD (0.35°C) in predicted core temperature, highlighting the importance of
346 incorporating updated set-point temperatures, heat transfer coefficients, and other
347 thermoregulatory coefficients in improving model accuracy.



348

349

350

351

352

353

Figure 4. Evaluation of thermoregulation models for extreme dry-heat exposures (Case 5 to 7 in Table 2); Shaded area represents the deviation in measured data.

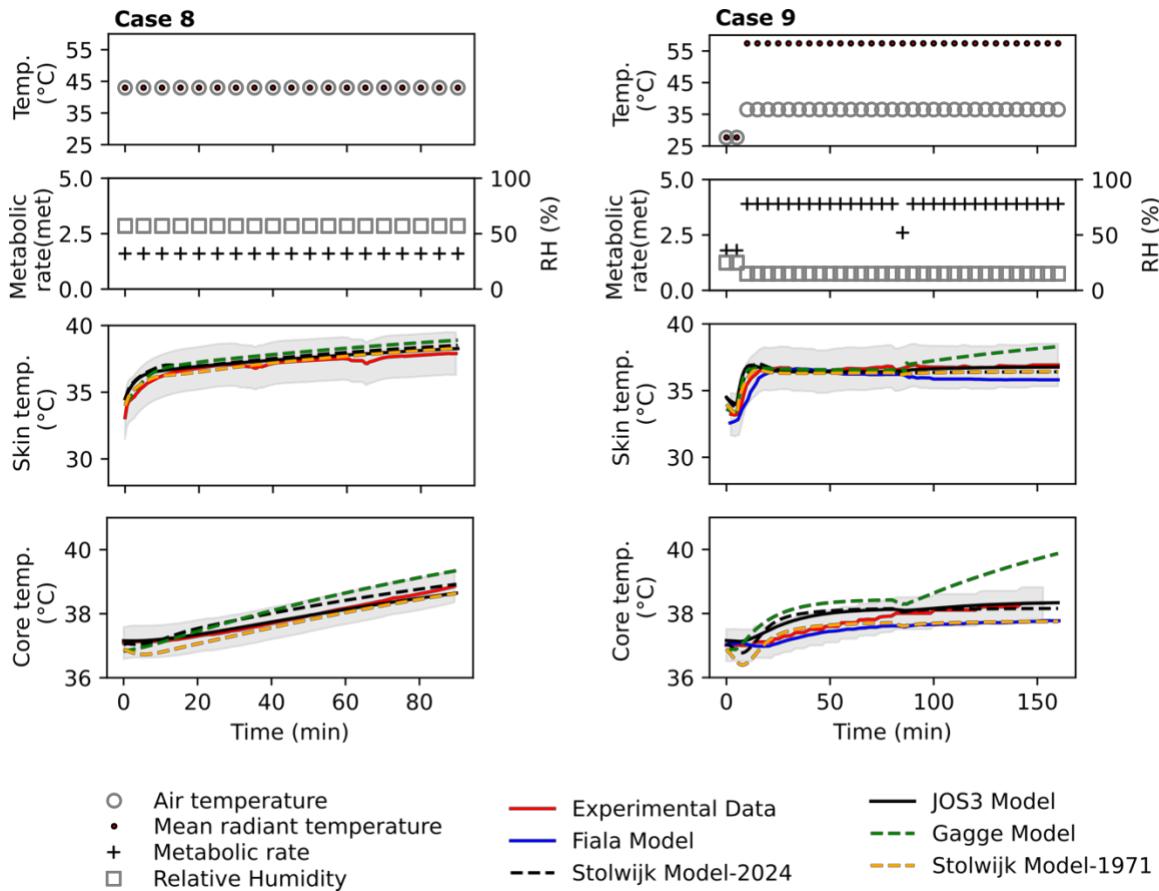
354 **3.3 Humid-heat exposure (Case 8)**

355 In Case 8, human subjects were exposed to hot (43°C) and humid (57% RH)
356 conditions, with a wet bulb temperature of 34.2°C, for 90 minutes (Song et al., 2019). All
357 models accurately predicted the simulated core and mean skin temperatures, showing
358 good agreement with the measured experimental data (Figure 5). During the first 20
359 minutes of exposure, the core temperature rose slowly, indicating increased strain on the
360 thermoregulatory system. As the exposure continued, both core and skin temperatures
361 steadily increased, suggesting that autonomic thermoregulation, including vasodilation
362 and sweating, was insufficient to maintain core temperature at safe levels.

363

364 **3.4 Intense radiative exposure (Case 9)**

365 Another common scenario in extreme heat conditions involves intense exposure to
366 short- and long-wave radiation, which can be expressed as high mean radiant
367 temperatures. To evaluate the models under such conditions, we modeled Case 9 in which
368 five semi-nude ($0.016 \text{ m}^2 \cdot \text{°C}^{-1} \text{W}^{-1}$) human subjects were exposed to a radiant heat source
369 positioned in front of them. In all models we simulated the radiant heat fluxes as mean
370 radiant temperature (Psikuta et al., 2012). At the 80-minute mark, the subjects donned
371 light clothing ($0.093 \text{ m}^2 \cdot \text{°C}^{-1} \text{W}^{-1}$), leading to a significant deviation in core temperature
372 values predicted by the two-node Gagge model. All other models accurately predicted
373 both core and mean skin temperatures within acceptable thresholds (Figure 5). The
374 significantly higher radiant temperature of 57°C caused elevated core and skin
375 temperatures, indicating heat strain; however, thermoregulatory mechanisms such as
376 sweating and vasodilation were able to compensate for the excess heat, maintaining core
377 temperature below the dangerous levels associated with heat stroke or exhaustion.



380 **Figure 5.** Evaluation of models for hot and humid conditions (43°C and 57%RH,
 381 representing the high wet bulb temperature of 34.2°C) and high mean radiant temperature
 382 (57°C) exposures (Cases 8 and 9 in Table 2); Shaded area represents the deviation in
 383 measured data.

385 **3.5 Varied physical activity levels in moderate to hot climate (Cases 10-15)**

386 To address the conditions of occupational workers and athletes with various level of
 387 clothing thermal insulation and physical activities, cases 10 to 15 (Table 2) were evaluated
 388 for intense physical activities (ranging from 3.35 to 12.1 met) and high clothing thermal
 389 (0.262 m²·°C⁻¹W⁻¹) and evaporative (41.8 m²·°C⁻¹W⁻¹) resistances (Gonzalez et al., 1997;
 390 Haslam and Parsons, 1988; Jack, 2009; Moran et al., 1998; Psikuta et al., 2012). The
 391 predictive ability of the models for the skin temperature could not be tested for these cases,
 392 as it was not available in literature.

393 In case 10, professional athletes ran on treadmill at moderate ambient temperatures
 394 and very high metabolic rate of 12.1 met (Jack, 2009; Psikuta et al., 2012). For this case,
 395 UTCI-Fiala and two-node model significantly overpredicted the core temperature (RMSD:
 396 0.9 and 1.2 °C). On the other hand, Stolwijk-1971 model underpredicted the core
 397 temperature by 0.72 °C. These discrepancies in predicted core temperature potentially
 398 emerge from the limitations of the sweat and vasodilation controls in the original model.
 399 The JOS-3 and Stolwijk-2024 model accurately predicted the core temperature of intense
 400 activity levels. Case 11 is similar to case 10, where activity was performed by recreational

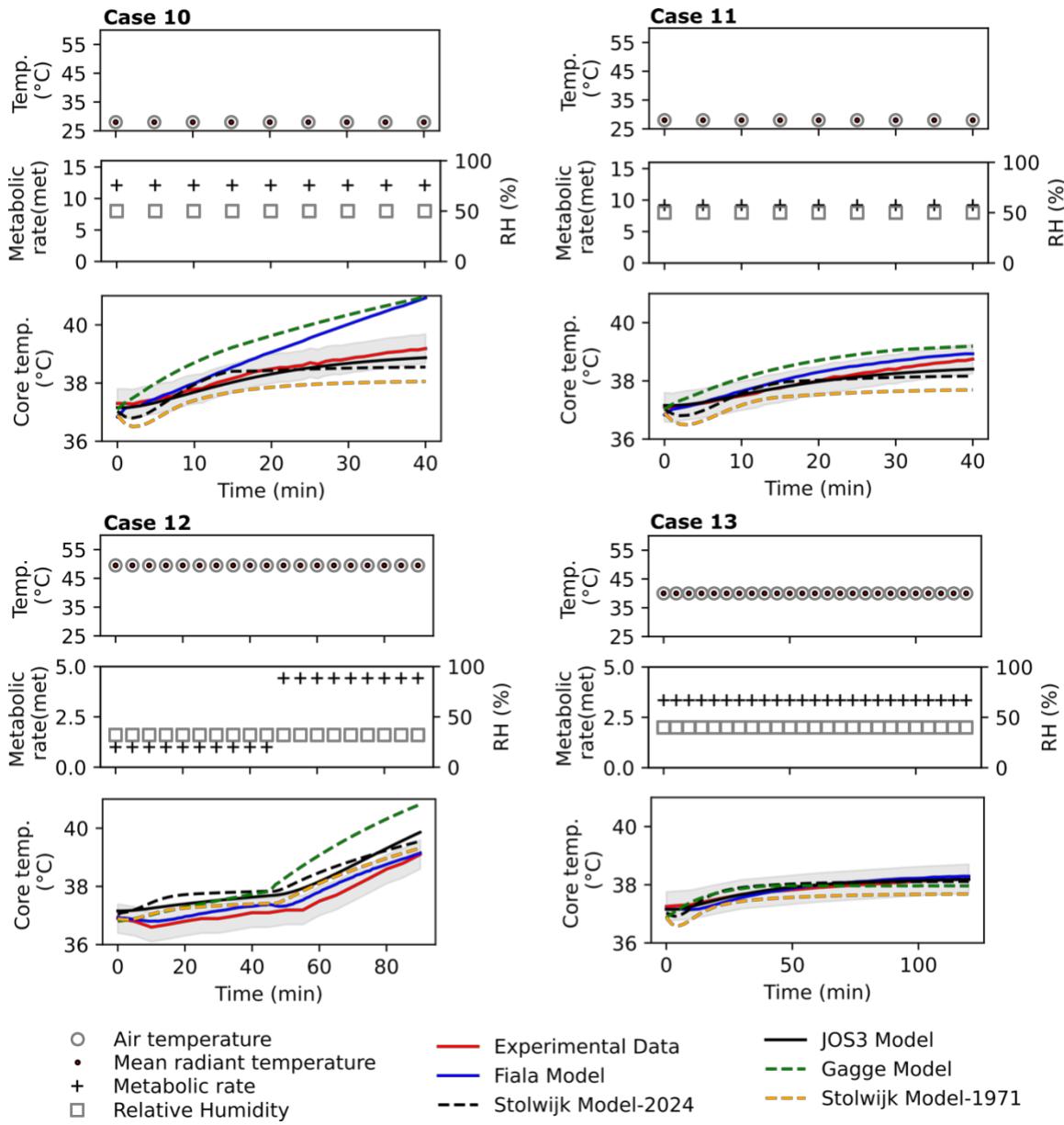
401 athletes, hence at lower metabolic rate of 9.2 met compared to professional athletes. For,
402 case 11 all the models accurately predicted the core temperature.

403 For case 12, five human subjects were exposed to extreme heat conditions (49.5 °C)
404 for 90 mins, where for first 45 min metabolic activity was 1.0 met and for later 45 mins at
405 4.42 met (Haslam and Parsons, 1988; Psikuta et al., 2012). For this exposure, JOS-3,
406 Stolwijk-2024, and two-node model overpredicts (0.6, 0.8, and 1.2 °C, respectively) the
407 core temperature beyond the acceptable limit; while the UTCI-Fiala and Stolwijk-1971
408 model predicts the core temperature accurately (Figure 6).

409 In case 13, 100 human subjects were exposed to hot and humid environment (40 °C
410 40% RH) with moderate physical activity at 3.35 met. For this scenario, the core
411 temperature predicted by all the models were in the acceptable range (Figure 6).

412 For Case 14 and 15, ten human subjects were exposed to moderately hot
413 environments (35 °C, 50%RH) and performed physical activity at around 4 met. In Case
414 14 subjects were wearing clothing with thermal insulation of $0.127 \text{ m}^2 \cdot \text{°C}^{-1} \text{W}^{-1}$, while in
415 case 15 subjects were wearing a more thermally insulative clothing at $0.262 \text{ m}^2 \cdot \text{°C}^{-1} \text{W}^{-1}$.
416 For these cases with varying level of clothing thermal insulation, all models accurately
417 predicted the core temperature except the Gagge's two-node model (Figure 7).

418
419



420

421 **Figure 6.** Evaluation of the models for wide range of physical activities (1.0 to 12.1 met)
422 under moderate to extreme heat environment (Cases 10 to 13 in Table 2); Shaded area
423 represents the deviation in measured data.

424

425

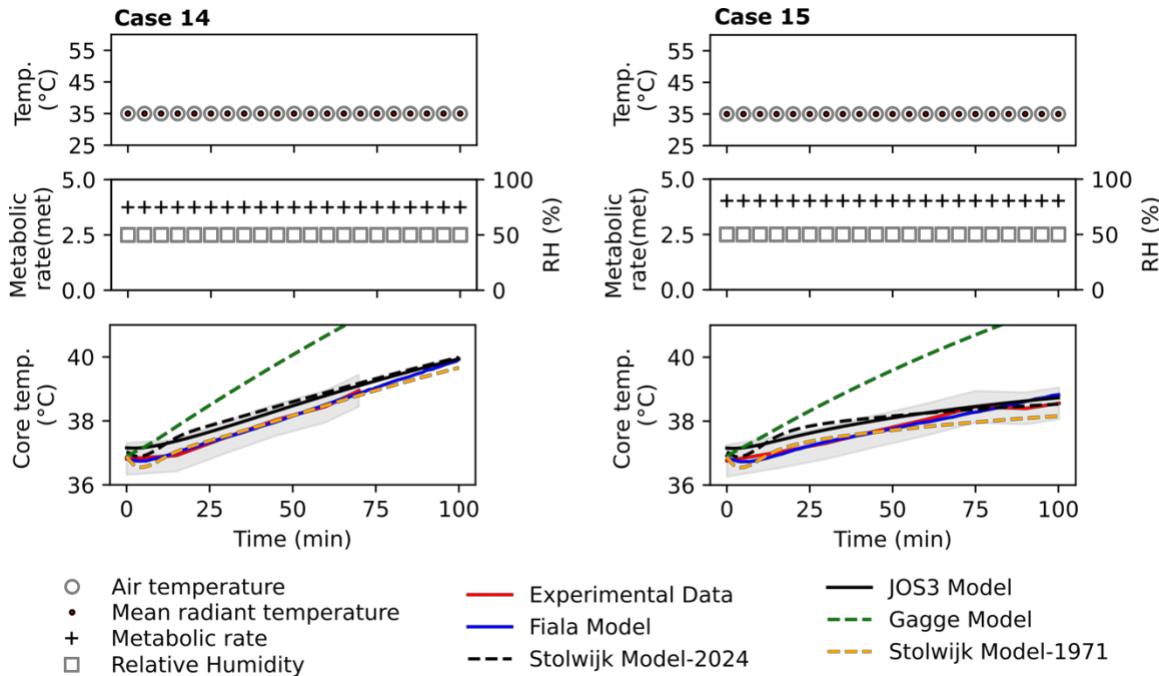
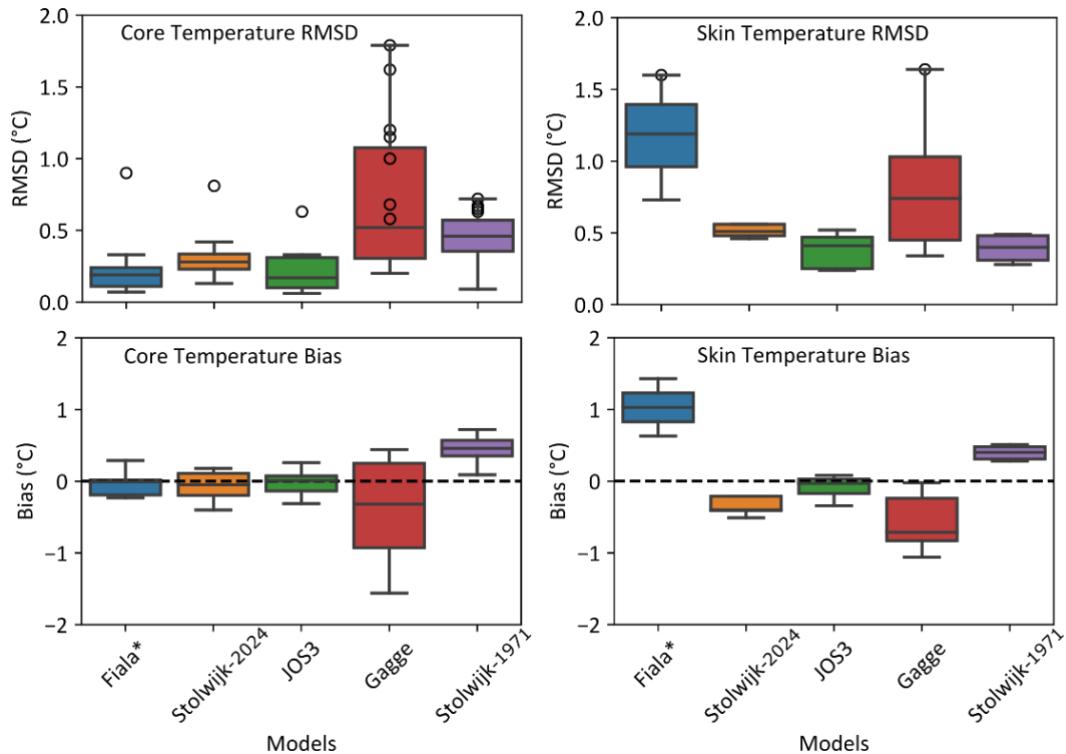


Figure 7. Evaluation of the models for different level of clothing thermal insulation (0.127 and $0.262 \text{ m}^2 \cdot \text{K}^{-1} \text{W}^{-1}$) (Cases 14 and 15 in Table 2); Shaded area represents the deviation in measured data.

4. Discussion

4.1 Evaluating model performance in predicting the core and skin temperatures

The predictive accuracy of core and mean skin temperatures was evaluated using Root Mean Square Deviation (RMSD) and Bias (Figure 8), revealing that most models performed well within acceptable thresholds across these diverse validation scenarios (Table 2). However, the two-node Gagge's model and the Stolwijk-1971 model with legacy coefficients, exhibited limitations under specific conditions, such as extreme heat, high physical activity, or highly transient environments, where deviations from the experimental data on human subjects were observed. Multi-segment models (JOS3, UTCI-Fiala, and Stolwijk-2024) demonstrated strong predictive performance for core temperature, with average RMSD values across all cases of $0.22 \pm 0.15^\circ\text{C}$, $0.25 \pm 0.26^\circ\text{C}$, and $0.31 \pm 0.16^\circ\text{C}$, respectively. These values fall within the acceptable range of the maximum standard deviation (0.5°C) observed in measured core temperatures from human subjects (Haslam and Parsons, 1994; Joshi et al., 2022). As shown in Figure 8, each of these multi-node models had one outlier where the RMSD of predicted core temperature exceeded 0.5°C . For the JOS3 and Stolwijk-2024 models, this occurred under conditions of very high ambient temperature (49.5°C , Case 12), while the Fiala model showed lower accuracy for cases involving very high metabolic rates (12.1 met, Case 10). The bias in predicted core temperature for these three models was close to zero -0.04°C , -0.08°C , and -0.09°C , respectively indicating very good accuracy. Overall, these multi-node models performed well across a wide range of conditions, including exposure to dry heat, humid heat, various levels of physical activity, and different clothing thermal properties.

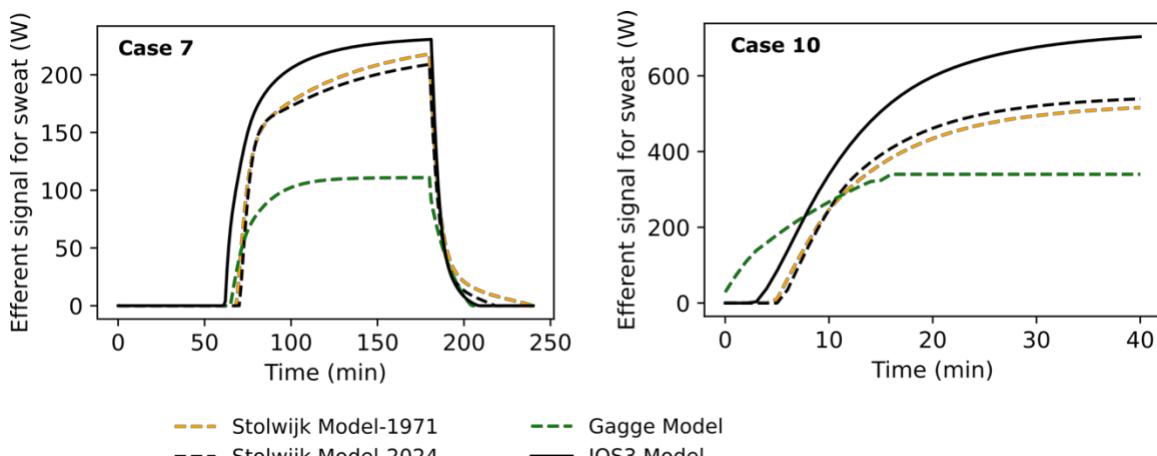


455
456 **Figure 8.** Root-mean-square deviation (RMSD) and bias of simulated core and mean skin
457 temperature, Outlier marker represents the cases where simulated values of temperature
458 were beyond the acceptable range (0.5°C for core and 1.6°C for mean skin temperature
459 (Haslam and Parsons, 1988; Joshi et al., 2022)), *: Fiala's model validated for 9 cases
460 only.

461
462 Comparing the predicted values from models to human subject data for the same heat
463 exposure offers a clearer understanding of the strengths and limitations of each model.
464 The original Stolwijk model (Stolwijk-1971) and the Gagge's model exhibited relatively
465 high RMSD values in predicting core temperature, with $0.45 \pm 0.18^\circ\text{C}$ and $0.71 \pm 0.52^\circ\text{C}$,
466 respectively. Both the Stolwijk-1971 and Gagge's two-node models performed poorly in
467 cases involving high metabolic rates and hot exposures. Specifically, the Stolwijk-1971
468 model consistently underpredicted core temperatures in cases with high metabolic rates
469 (cases 10 and 11). This model also demonstrated a positive bias of 0.45°C (Figure 8) in
470 predicted core temperature, indicating a systematic underprediction. One possible reason
471 for this underprediction could be the setpoint temperature of the hypothalamus (Table S1
472 to S3 in SM) and the coefficients used in the thermoregulatory control system (equations
473 S7 to S10 in SM). When comparing the setpoint temperatures of the Stolwijk-1971 model
474 with those of the JOS-3 (or Stolwijk-2024) models, it becomes evident that the setpoint
475 temperatures in the Stolwijk-1971 model are significantly lower (by up to 0.5°C). This lower
476 setpoint triggers an earlier onset of sweating and vasodilation, with higher magnitudes,
477 leading to a reduction in core temperature. In contrast, the modified Stolwijk-2024 model
478 shows significant improvement in predicting core temperature compared to the original
479 Stolwijk-1971 model. This improved performance can be attributed to the updated setpoint
480 temperatures (Table S1 in SM) and improved convective and radiative heat transfer
481 coefficients (Table S3 in SM). On the other hand, although Gagge's two-node model did

482 not exhibit a clear bias in predicted core temperature, its overall accuracy was lower in
 483 cases involving higher metabolic rates. This is likely because the model is a single-
 484 segment, two-node (core and skin) model, which oversimplifies the distribution of heat
 485 generated by physical activity. In reality, heat is distributed differently within the muscle
 486 layer of the body, a factor that cannot be effectively accounted for in such an oversimplified
 487 model.

488 Overall, in hot-dry conditions, there was a higher scatter and disagreement among
 489 different models. However, all models showed good agreement with measured core
 490 temperatures from human subjects during hot and humid exposures. This variation can
 491 be attributed to the differences in how each model handles sweating. As shown in Figure
 492 9, various thermoregulation models have significant variations in efferent signals related
 493 to sweating due to underlying control coefficients and error signal (equations 1 to 9). Figure
 494 9 represents the variation in sweat signal for two cases (case 7 and 10), where sweating
 495 signal expected to be the significant due to high heat strain due to environmental stress
 496 and physical activity. In dry conditions, the sweat rate becomes the driving factor, and the
 497 coefficients used by each model to simulate sweating vary significantly, leading to
 498 discrepancies in their performance. In contrast, during hot and humid exposures, the
 499 driving factor is sweat evaporation. Here, all models accurately predicted sweat
 500 evaporation, suggesting that the Lewis coefficient, which governs this process, is well
 501 established and effective across different models.



503
 504 **Figure 9.** Efferent signal for sweating from active/control system of various
 505 thermoregulation models.

506
 507 All the models predicted skin temperature with acceptable accuracy (RMSD < 1.6°C).
 508 The JOS3 and Stolwijk-2024 models consistently predicted mean skin temperature with
 509 low RMSD values (0.44°C and 0.56°C, respectively) and biases (-0.11°C and -0.30°C);
 510 both of which are significantly below the maximum standard deviation (1.6°C).

512 **4.2 Model performance in relation to complexity and accessibility**

513 Results from the validation study indicate that multi-node and multi-segment models,
 514 such as JOS-3, Stolwijk-2024, and UTCI-Fiala, excel because they define key
 515 thermoregulatory mechanisms, such as vasodilation, skin blood flow, and sweating, with
 516 higher spatial resolution. Notably, the JOS3 and UTCI-Fiala models offer detailed
 517 considerations of heat distribution due to blood flow, including counter-current heat
 518 exchange, to account for heat transfer through the network of arteries, veins, and

519 superficial veins in the human body. In contrast, the Stolwijk-2024 model simplifies the
520 process by assuming that each node exchanges heat with the central blood node through
521 blood flow, which reduces model complexity. This simplification results in a marginally
522 higher RMSD in core temperature when evaluated for various heat exposures, ranging
523 from 0.06 to 0.09°C. However, the accuracy of the predicted skin temperature in the
524 Stolwijk-2024 model remains comparable to more complex models like JOS-3 and UTCI-
525 Fiala model. Therefore, the modified Stolwijk-2024 model is well-suited for analyzing heat
526 strain and thermal comfort in moderate to extreme-hot environmental conditions. The
527 simplification of heat transfer through blood flow is appropriate for heat strain assessment,
528 as the spatial variation of temperature between different body segments and tissues is
529 minimal due to high blood perfusion (Gordon et al., 1976; Haslam and Parsons, 1994).
530 However, it is important to note that these findings cannot be extrapolated to cold-strain
531 scenarios, where variation in skin blood flow and local skin temperature is significantly
532 higher.

533 The validation of the thermoregulation models clearly highlights that multi-node and
534 multi-segment models can effectively simulate and analyze physiological heat strain
535 across a wide range of climatic conditions. Furthermore, open-source thermoregulation
536 models, such as JOS3 and Stolwijk-2024, either already incorporate or can be relatively
537 easily extended to account for factors that impact thermoregulatory functions, such as
538 aging, acclimatization, body size, gender, hydration status, and medical conditions. In
539 contrast, models like the UTCI-Fiala, which are integrated into commercial software
540 requiring licenses, may present accessibility challenges for those without access to
541 licensed software or resources. Such limitations make it cumbersome to reproduce,
542 modify, or extend commercial models to account for specific conditions that impact
543 thermoregulatory functions. Therefore, despite their comparable accuracy to open-source
544 models, the complexity and limitations of many models from literature can pose significant
545 challenges in their applications.

546

547

548 **4.3 Limitations**

549 The validation and comparison of the models in this study focused on analyzing heat
550 strain in individuals corresponding to young, healthy, and averages of the population.
551 However, this study did not account for inter-individual differences in thermoregulatory
552 responses due to factors such as age, gender, and body composition (Kaciuba-Uscilko
553 and Grucza, 2001; Matsumoto et al., 1999; Van Marken Lichtenbelt et al., 2007; Van
554 Someren et al., 2002). These differences can significantly impact thermoregulatory
555 functions and temperature distribution within the body. For example, older individuals tend
556 to experience higher heat strain (Hellon and Lind, 1956; Wagner et al., 1972) due to factors
557 such as decreased sweat secretion rates, reduced cardiac output, diminished skin blood
558 flow, and delayed onset of sweating. Furthermore, advanced models, such as the 3D
559 anatomic thermoregulation model, can provide highly detailed temperature distributions
560 within the human body, making them particularly useful for medical applications, such as
561 assessing temperature at the organ level or specific body locations; capabilities that are
562 not possible with simplified models. In this study, the mean skin temperature data used for
563 validation were sourced from multiple studies in the literature. These studies may have
564 employed different methods to calculate mean skin temperature, utilizing various weighing
565 factors and different sets of body segments for measurement. For instance, some studies
566 computed mean skin temperature based on a weighted average of 4 or 7 body segments
567 (Hardy et al., 1938; RAMANATHAN, 1964). These variations in methods introduce an

568 uncertainty of $\pm 0.4^{\circ}\text{C}$ (95% confidence interval) (Choi et al., 1997). However, this
569 uncertainty is considered negligible during the validation process, as it falls within the
570 acceptable threshold of 1.6°C . In the simulations conducted for this study, mean skin
571 temperature is calculated using the area-weighted average temperature of skin segments.

572 Additionally, the performance of these models cannot be extrapolated to cold exposure
573 scenarios. In cold environments, reduced blood flow to extremities increases the risk of
574 major cold injuries, such as frostbite, which primarily affect the fingers, toes, and other
575 extremities (Forster et al., 1946; Sullivan-Kwantes et al., 2019). Therefore, 3D
576 thermoregulation models that incorporate detailed blood flow through Arteriovenous
577 Anastomoses (AVA) and include anatomical features of the extremities are more suitable
578 for simulating cold exposure conditions (Fallahi et al., 2017; Gorgas et al., 1977; Rida et
579 al., 2014; Yang et al., 2017; Zhang et al., 2024, 2021). Furthermore, all the evaluated
580 models use a simplified clothing model that does not account for wet conduction or sweat
581 accumulation in the clothing. This limitation can impact the accuracy of predicted skin
582 temperature and total heat transfer at skin/clothing surface (Joshi et al., 2023b), especially
583 during transitional conditions—such as moving from a hot, humid environment to a dry
584 one—an effect observed around the 200th minute in Case 4 (Figure 3 and Table 2).

585 5. Conclusions

586 The comparative validation of five thermoregulation models with varying levels of
587 complexity, including the updated Stolwijk-2024 model, demonstrates that multi-node and
588 multi-segment models are highly effective in simulating physiological heat strain across a
589 wide range of climatic conditions. The study's findings highlight the robust predictive
590 performance of the JOS3, UTCI-Fiala, and Stolwijk-2024 models, with these models
591 achieving low RMSD values and minimal bias in predicting core and skin temperatures.
592 The Stolwijk-2024 model, which incorporates updated set-point temperatures, improved
593 heat transfer coefficients, and refined efferent control signals, shows significant
594 improvements over the original Stolwijk-1971 model. Despite its simplified approach to
595 modeling blood flow and heat transfer, the Stolwijk-2024 model delivers reliable
596 predictions that are comparable to more complex models like JOS3 and UTCI-Fiala. This
597 study indicates that while increased complexity can enhance accuracy slightly (by less
598 than 0.1°C in core temperature), well-designed simplified models can still provide highly
599 accurate results for specific applications.

600 The study also underscores the importance of using multi-node and multi-segment
601 models for analyzing heat strain under diverse conditions, including extreme dry-heat,
602 humid-heat, transient heat exposures, and varying levels of physical activity and clothing
603 insulation. However, the study also identifies limitations in simpler models like the Stolwijk-
604 1971 and Gagge two-node models, particularly in scenarios involving high metabolic rates
605 and extreme heat. Stolwijk-1971 model tends to underpredict core temperatures, which
606 could lead to a false sense of safety in real-world applications. This underlines the need
607 for caution when applying such models in high heat-strain environments.

608 In summary, the validated multi-node and multi-segment thermoregulation models,
609 particularly with the source-code such as JOS3 and Stolwijk-2024 models, provide reliable
610 and accessible tools for assessing heat strain and thermal comfort in moderate to extreme
611 environmental conditions. Future research should focus on further refining these models,
612 addressing their limitations, and improving their accessibility to ensure they can be
613 effectively utilized in assessing heat-strain at individual levels in a wide range of
614 applications, from public health interventions to climate resilience planning.

615 **References**

616 Castellani, M.P., Rioux, T.P., Castellani, J.W., Potter, A.W., Xu, X., 2021. A geometrically accurate 3
617 dimensional model of human thermoregulation for transient cold and hot environments.
618 *Comput Biol Med* 138. <https://doi.org/10.1016/j.compbio.2021.104892>

619 Choi, J.K., Miki, K., Sagawa, S., Shiraki, K., 1997. Evaluation of mean skin temperature formulas by
620 infrared thermography. *Int J Biometeorol* 41, 68–75.
621 <https://doi.org/10.1007/S004840050056/METRICS>

622 Cissé, G., McLeman, R., Adams, H., Aldunce, P., Bowen, K., 2022. 2022: health, wellbeing, and the
623 changing structure of communities.

624 Davoodi, F., Hassanzadeh, H., Zolfaghari, S.A., Havenith, G., Maerefat, M., 2018. A new individualized
625 thermoregulatory bio-heat model for evaluating the effects of personal characteristics on
626 human body thermal response. *Build Environ* 136, 62–76.
627 <https://doi.org/10.1016/j.buildenv.2018.03.026>

628 Deng, Q., Zhao, J., Liu, W., Li, Y., 2018. Heatstroke at home: Prediction by thermoregulation modeling.
629 *Build Environ* 137, 147–156. <https://doi.org/10.1016/j.buildenv.2018.04.017>

630 Dongmei, P., Mingyin, C., Shiming, D., Minglu, Q., 2012. A four-node thermoregulation model for
631 predicting the thermal physiological responses of a sleeping person. *Build Environ* 52, 88–97.
632 <https://doi.org/10.1016/J.BUILDENV.2011.12.020>

633 Ebi, K.L., Capon, A., Berry, P., Broderick, C., De Dear, R., Havenith, G., Honda, Y., Kovats, S., Ma, W.,
634 Malik, A., Morris, N.B., Nybo, L., Seneviratne, S.I., Vanos, J., Jay, O., 2021. Hot weather and heat
635 extremes: health risks. *The Lancet* 398, 698–708. [https://doi.org/10.1016/S0140-6736\(21\)01208-3](https://doi.org/10.1016/S0140-6736(21)01208-3)

636 Ebi, K.L., Vanos, J., Baldwin, J.W., Bell, J.E., Hondula, D.M., Errett, N.A., Hayes, K., Reid, C.E., Saha, S.,
637 Spector, J., Berry, P., 2020. Extreme Weather and Climate Change: Population Health and
638 Health System Implications. *Annu Rev Public Health* 42, 293–315.
639 <https://doi.org/10.1146/ANNUREV-PUBLHEALTH-012420-105026>

640 Fallahi, A., Salimpour, M.R., Shirani, E., 2017. A 3D thermal model to analyze the temperature
641 changes of digits during cold stress and predict the danger of frostbite in human fingers. *J
642 Therm Biol* 65, 153–160. <https://doi.org/10.1016/J.JTHERBIO.2017.03.001>

643 Fiala, D., Havenith, G., Bröde, P., Kampmann, B., Jendritzky, G., 2012. UTCI-Fiala multi-node model of
644 human heat transfer and temperature regulation. *Int J Biometeorol* 56, 429–441.

645 Forster, R.E., Ferris, B.G., Day, R., 1946. The relationship between total heat exchange and blood flow
646 in the hand at various ambient temperatures. *Am J Physiol* 146, 600–609.
647 <https://doi.org/10.1152/AJPLLEGACY.1946.146.4.600>

648 Gagge, A.P., 1971. An effective temperature scale based on a simple model of human physiological
649 regulatory response. *Ashrae Trans.* 77, 247–262.

650

651 Gonzalez, R.R., Mclellan, T.M., Withey, W.R., Chang, S.K., Pandolf, K.B., 1997. Heat strain models
652 applicable for protective clothing systems: comparison of core temperature response. *J Appl*
653 *Physiol* (1985) 83, 1017–1032. <https://doi.org/10.1152/JAPPL.1997.83.3.1017>

654 Gordon, R.G., Roemer, R.B., Horvath, S.M., 1976. A Mathematical Model of the Human Temperature
655 Regulatory System–Transient Cold Exposure Response. *IEEE Trans Biomed Eng BME-23*,
656 434–444. <https://doi.org/10.1109/TBME.1976.324601>

657 Gorgas, K., Böck, P., Tischendorf, F., Currâ, S.B., 1977. The fine structure of human digital arterio-
658 venous anastomoses (Hoyer-Grosser's organs). *Anat Embryol (Berl)* 150, 269–289.
659 <https://doi.org/10.1007/BF00318346>

660 Hardy, J.D., Du Bois, E.F., Soderstrom, G.F., 1938. The Technic of Measuring Radiation and
661 Convection: One Figure. *J Nutr* 15, 461–475. <https://doi.org/10.1093/JN/15.5.461>

662 Haslam, R.A., Parsons, K.C., 1994. Using computer-based models for predicting human thermal
663 responses to hot and cold environments. *Ergonomics* 37, 399–416.
664 <https://doi.org/10.1080/00140139408963659>

665 Haslam, R.A., Parsons, K.C., 1988. An evaluation of computer-based models that predict human
666 responses to the thermal environment. *ASHRAE Trans* 94, e60.

667 Havenith, G., 2001. Individualized model of human thermoregulation for the simulation of heat
668 stress response. *J Appl Physiol* (1985) 90, 1943–1954.
669 <https://doi.org/10.1152/JAPPL.2001.90.5.1943>

670 Havenith, George., 1997. Individual heat stress response. [Katholieke Universiteit Nijmegen].

671 Hellon, R.F., Lind, A.R., 1956. Observations on the activity of sweat glands with special reference to
672 the influence of ageing. *J Physiol* 133, 132.
673 <https://doi.org/10.1113/JPHYSIOL.1956.SP005571>

674 Huizenga, C., Hui, Z., Arens, E., 2001. A model of human physiology and comfort for assessing
675 complex thermal environments. *Build Environ* 36, 691–699.
676 [https://doi.org/10.1016/S0360-1323\(00\)00061-5](https://doi.org/10.1016/S0360-1323(00)00061-5)

677 Intergovernmental Panel on Climate Change (IPCC), 2019. Global Warming of 1.5° C. An IPCC
678 Special Report on the impacts of global warming of 1.5° C above pre-industrial levels and
679 related global greenhouse gas emission pathways, in the context of strengthening the global
680 response to the threat of climate change. Ed. by Masson-Delmotte V, Zhai P, Portner HO, et al.
681 ipcc Geneva.

682 Jack, A., 2009. Einfluss hoch funktioneller Sporttextilien auf die Thermoregulation von
683 Ausdauerathleten bei unterschiedlichen Umgebungstemperaturen. Universität Bayreuth /
684 Kulturwissenschaftliche Fakultät.

685 Jay, O., Capon, A., Berry, P., Broderick, C., De Dear, R., Havenith, G., Honda, Y., Kovats, S., Ma, W., Malik,
686 A., Morris, N.B., Nybo, L., Seneviratne, S.I., Vanos, J., Ebi, K.L., 2021. Reducing the health effects

687 of hot weather and heat extremes: from personal cooling strategies to green cities. *The Lancet*
688 398, 709–724. [https://doi.org/10.1016/S0140-6736\(21\)01209-5](https://doi.org/10.1016/S0140-6736(21)01209-5)

689 Jendritzky, G., de Dear, R., Havenith, G., 2012. UTCI-Why another thermal index? *Int J Biometeorol*
690 56, 421–428. <https://doi.org/10.1007/s00484-011-0513-7>

691 Joshi, A., Bartels, L., Viswanathan, S.H., Martinez, D.M., Sadeghi, K., Jaiswal, A.K., Collins, D.,
692 Rykaczewski, K., 2023a. Evaluation of thermal properties and thermoregulatory impacts of
693 lower back exosuit using thermal manikin. *Int J Ind Ergon* 98, 103517.

694 Joshi, A., Psikuta, A., Bueno, M.A., Annaheim, S., Rossi, R.M., 2023b. Modelling of heat and mass
695 transfer in clothing considering evaporation, condensation, and wet conduction with case
696 study. *Build Environ* 228, 109786. <https://doi.org/10.1016/J.BUILDENV.2022.109786>

697 Joshi, A., Wang, F., Kang, Z., Yang, B., Zhao, D., 2022. A three-dimensional thermoregulatory model
698 for predicting human thermophysiological responses in various thermal environments. *Build*
699 *Environ* 207. <https://doi.org/10.1016/j.buildenv.2021.108506>

700 Kaciuba-Uscilko, H., Grucza, R., 2001. Gender differences in thermoregulation. *Curr Opin Clin Nutr*
701 *Metab Care* 4, 533–536.

702 Kang, Z., Wang, F., Udayraj, 2019. An advanced three-dimensional thermoregulation model of the
703 human body: Development and validation. *International Communications in Heat and Mass*
704 *Transfer* 107, 34–43. <https://doi.org/10.1016/J.ICEATMASSTRAFFER.2019.05.006>

705 Karanja, J., Vanos, J., Joshi, A., Penner, S., Guzman, G.E., Connor, D.S., Rykaczewski, K., 2024. Impact
706 of tent shade on heat exposures and simulated heat strain for people experiencing
707 homelessness. *Int J Biometeorol*. <https://doi.org/10.1007/S00484-024-02751-0>

708 Matsumoto, T., Miyawaki, T., Ue, H., Kanda, T., Zenji, C., Moritani, T., 1999. Autonomic responsiveness
709 to acute cold exposure in obese and non-obese young women. *International Journal of Obesity*
710 1999 23:8 23, 793–800. <https://doi.org/10.1038/sj.ijo.0800928>

711 Moran, D.S., Shitzer, A., Pandolf, K.B., 1998. A physiological strain index to evaluate heat stress. *Am*
712 *J Physiol* 275. <https://doi.org/10.1152/AJPREGU.1998.275.1.R129>

713 Munir, A., Takada, S., Matsushita, T., 2009. Re-evaluation of Stolwijk's 25-node human thermal
714 model under thermal-transient conditions: Prediction of skin temperature in low-activity
715 conditions. *Build Environ* 44, 1777–1787. <https://doi.org/10.1016/j.buildenv.2008.11.016>

716 Nelson, D.A., Charbonnel, S., Curran, A.R., Marttila, E.A., Fiala, D., Mason, P.A., Ziriax, J.M., 2009. A
717 high-resolution voxel model for predicting local tissue temperatures in humans subjected to
718 warm and hot environments. *J Biomech Eng* 131.
719 <https://doi.org/10.1115/1.3002765/459859>

720 Ooka, R., Minami, Y., Sakoi, T., Tsuzuki, K., Rijal, H.B., 2010. Improvement of sweating model in 2-
721 Node Model and its application to thermal safety for hot environments. *Build Environ* 45,
722 1565–1573. <https://doi.org/10.1016/J.BUILDENV.2009.12.012>

723 Ou, Y., Wang, F., Zhao, J., Deng, Q., 2023. Risk of heatstroke in healthy elderly during heatwaves: A
724 thermoregulatory modeling study. *Build Environ* 237, 110324.
725 <https://doi.org/10.1016/J.BUILDENV.2023.110324>

726 Perkins-Kirkpatrick, S.E., Gibson, P.B., 2017. Changes in regional heatwave characteristics as a
727 function of increasing global temperature. *Sci Rep* 7, 12256.

728 Psikuta, A., Fiala, Dusan, Laszewski, Gudrun, Jendritzky, Gerd, Richards, Mark, Błażejczyk,
729 Krzysztof, Mekjavič, I., Rintamäki, Hannu, Richards, M, Fiala, D, Laszewski, G, Jendritzky, G,
730 Błażejczyk, K, Rintamäki, H, Havenith, G., 2012. Validation of the Fiala multi-node
731 thermophysiological model for UTCI application. *Int J Biometeorol* 56, 443–460.
732 <https://doi.org/10.1007/s00484-011-0450-5>

733 RAMANATHAN, N.L., 1964. A new weighting system for mean surface temperature of the human
734 body. <https://doi.org/10.1152/jappl.1964.19.3.531> 19, 531–533.
735 <https://doi.org/10.1152/JAPPL.1964.19.3.531>

736 Rida, M., Karaki, W., Ghaddar, N., Ghali, K., Hoballah, J., 2014. A new mathematical model to simulate
737 AVA cold-induced vasodilation reaction to local cooling. *Int J Biometeorol* 58, 1905–1918.
738 <https://doi.org/10.1007/S00484-014-0792-X>

739 Roelofsen, P., Jansen, K., Vink, P., 2023. A transient thermal sensation equation fit for the modified
740 Stolwijk model. *Intelligent Buildings International*.
741 <https://doi.org/10.1080/17508975.2021.1962785>

742 Roelofsen, P., Vink, P., 2016. Improvement of the Stolwijk model with regard to clothing, thermal
743 sensation and skin temperature. *Work* 54, 1009–1024. <https://doi.org/10.3233/WOR-162357>

745 Silva, A.B.C.G., Wrobel, L.C., Ribeiro, F.L.B., 2018. A thermoregulation model for whole body cooling
746 hypothermia. *J Therm Biol* 78, 122–130. <https://doi.org/10.1016/J.JTHERBIO.2018.08.019>

747 Smallcombe, J.W., Foster, J., Hodder, S.G., Jay, O., Flouris, A.D., Havenith, · George, 2022. Quantifying
748 the impact of heat on human physical work capacity; part IV: interactions between work
749 duration and heat stress severity. *Springer* 1, 3. <https://doi.org/10.1007/s00484-022-02370-7>

751 Song, W., Wang, F., Zhang, C., 2019. Intermittent wetting clothing as a cooling strategy for body heat
752 strain alleviation of vulnerable populations during a severe heatwave incident. *J Therm Biol*
753 79, 33–41. <https://doi.org/10.1016/J.JTHERBIO.2018.11.012>

754 Standard, A., 1992. Thermal environmental conditions for human occupancy. *ANSI/ASHRAE*, 55 5.

755 Stolwijk, J.A., 1971. A mathematical model of physiological temperature regulation in man.

756 Stolwijk, J.A., Hardy, J.D., 1966a. Partitional calorimetric studies of responses of man to thermal
757 transients. *J Appl Physiol* 21, 967–977. <https://doi.org/10.1152/JAPPL.1966.21.3.967>

758 Stolwijk, J.A., Hardy, J.D., 1966b. Partitional calorimetric studies of responses of man to thermal
759 transients. *J Appl Physiol* 21, 967–977. <https://doi.org/10.1152/JAPPL.1966.21.3.967>

760 Stolwijk, J.A.J., Hardy, J.D., 1966. Temperature regulation in man--a theoretical study. *Pflugers Arch Gesamte Physiol Menschen Tiere* 291, 129–162. <https://doi.org/10.1007/BF00412787>

761

762 Sullivan-Kwantes, W., Moes, K., Limmer, R., Goodman, L., 2019. Finger cold-induced vasodilation test
763 does not predict subsequent cold injuries: A lesson from the 2018 Canadian Forces Exercise.
764 *Temperature: Multidisciplinary Biomedical Journal* 6, 142.
765 <https://doi.org/10.1080/23328940.2019.1574200>

766 Takada, S., Kobayashi, H., Matsushita, T., 2009. Thermal model of human body fitted with individual
767 characteristics of body temperature regulation. *Build Environ* 44, 463–470.
768 <https://doi.org/10.1016/j.buildenv.2008.04.007>

769 Takahashi, Y., Nomoto, A., Yoda, S., Hisayama, R., Ogata, M., Ozeki, Y., Tanabe, S. ichi, 2021.
770 Thermoregulation model JOS-3 with new open source code. *Energy Build* 231.
771 <https://doi.org/10.1016/j.enbuild.2020.110575>

772 Tanabe, S.I., Kobayashi, K., Nakano, J., Ozeki, Y., Konishi, M., 2002. Evaluation of thermal comfort
773 using combined multi-node thermoregulation (65MN) and radiation models and
774 computational fluid dynamics (CFD). *Energy Build* 34, 637–646.
775 [https://doi.org/10.1016/S0378-7788\(02\)00014-2](https://doi.org/10.1016/S0378-7788(02)00014-2)

776 Tang, Y., Yu, H., Wang, Z., Luo, M., Energies, C.L.-, 2020, undefined, 2020. Validation of the Stolwijk
777 and Tanabe human thermoregulation models for predicting local skin temperatures of older
778 people under thermal transient conditions. [mdpi.comY Tang, H Yu, Z Wang, M Luo, C LiEnergies, 2020•mdpi.com](https://doi.org/10.3390/en13246524). <https://doi.org/10.3390/en13246524>

779

780 Tartarini, F., Schiavon, S., Cheung, T., Hoyt, T., 2020. CBE Thermal Comfort Tool: Online tool for
781 thermal comfort calculations and visualizations. *SoftwareX* 12, 100563.
782 <https://doi.org/10.1016/J.SOFTX.2020.100563>

783 Trenberth, K.E., Dai, A., Rasmussen, R.M., Parsons, D.B., 2003. The changing character of
784 precipitation. *Bull Am Meteorol Soc* 84, 1205–1218.

785 Van Marken Lichtenbelt, W.D., Frijns, A.J.H., Van Ooijen, M.J., Fiala, D., Kester, A.M., Van Steenhoven,
786 A.A., 2007. Validation of an individualised model of human thermoregulation for predicting
787 responses to cold air. *Int J Biometeorol* 51, 169–179. <https://doi.org/10.1007/S00484-006-0060-9/FIGURES/4>

788

789 Van Someren, E.J.W., Raymann, R.J.E.M., Scherder, E.J.A., Daanen, H.A.M., Swaab, D.F., 2002. Circadian
790 and age-related modulation of thermoreception and temperature regulation: mechanisms
791 and functional implications. *Ageing Res Rev* 1, 721–778. [https://doi.org/10.1016/S1568-1637\(02\)00030-2](https://doi.org/10.1016/S1568-1637(02)00030-2)

792

793 Vanos, J., Guzman-Echavarria, G., Baldwin, J.W., Bongers, C., Ebi, K.L., Jay, O., 2023. A physiological
794 approach for assessing human survivability and liveability to heat in a changing climate. *Nat
795 Commun* 14. <https://doi.org/10.1038/s41467-023-43121-5>

796 Vanos, J.K., Joshi, A., Guzman-Echavarria, G., Rykaczewski, K., Hosokawa, Y., 2024. Impact of
797 Reflective Roadways on Simulated Heat Strain at the Tokyo, Paris and Los Angeles Olympics.
798 Journal of Science in Sport and Exercise. <https://doi.org/10.1007/S42978-024-00294-9>

799 Wagner, J.A., Robinson, S., Tzankoff, S.P., Marino, R.P., 1972. Heat tolerance and acclimatization to
800 work in the heat in relation to age. <https://doi.org/10.1152/jappl.1972.33.5.616> 33, 616-
801 622. <https://doi.org/10.1152/JAPPL.1972.33.5.616>

802 Wissler, E.H., 2018. Temperature Distribution in the Body. *Human Temperature Control* 265-287.
803 https://doi.org/10.1007/978-3-662-57397-6_7

804 Yang, J., Weng, W., Wang, F., Song, G., 2017. Integrating a human thermoregulatory model with a
805 clothing model to predict core and skin temperatures. *Appl Ergon* 61, 168-177.
806 <https://doi.org/10.1016/j.apergo.2017.01.014>

807 Zhang, H., Huizenga, C., Arens, E., Yu, T., 2001. Considering individual physiological differences in a
808 human thermal model. *J Therm Biol* 26, 401-408. [https://doi.org/10.1016/S0306-4565\(01\)00051-1](https://doi.org/10.1016/S0306-4565(01)00051-1)

810 Zhang, M., Li, R., Li, J., Wang, F., Subramaniam, S., Lang, J., Passalacqua, A., Song, G., 2021. A 3D multi-
811 segment thermoregulation model of the hand with realistic anatomy: Development,
812 validation, and parametric analysis. *Build Environ* 201.
813 <https://doi.org/10.1016/j.buildenv.2021.107964>

814 Zhang, M., Li, R., Wu, Y., Song, G., 2024. Thermoregulation of human hands in cold environments and
815 its modeling approach: A comprehensive review. *Build Environ* 248, 111093.
816 <https://doi.org/10.1016/J.BUILDENV.2023.111093>

817 Zhao, J., Wang, H., Li, Y., Xiao, F., Deng, Q., 2020. Heatstroke recovery at home as predicted by human
818 thermoregulation modeling. *Build Environ* 173.
819 <https://doi.org/10.1016/j.buildenv.2020.106752>

820

821