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Abstract

Exploring the collective behavior of interacting entities is of great interest and importance. Rather than
focusing on static and uniform connections, we examine the co-evolution of diverse mobile agents experi-
encing varying interactions across both space and time. Analogous to the social dynamics of intrinsically
diverse individuals who navigate between and interact within various physical or digital locations, agents in
our model traverse a complex network of heterogeneous environments and engage with everyone they en-
counter. The precise nature of agents’ internal dynamics and the various interactions that nodes induce are
left unspecified and can be tailored to suit the requirements of individual applications. We derive e!ective
dynamical equations for agent states which are instrumental in investigating thresholds of consensus, devis-
ing e!ective attack strategies to hinder coherence, and designing optimal network structures with inherent
node variations in mind. We demonstrate that agent cohesion can be promoted by increasing agent density,
introducing network heterogeneity, and intelligently designing the network structure, aligning node degrees
with the corresponding interaction strengths they facilitate. Our findings are applied to two distinct scenar-
ios: the synchronization of brain activities between interacting individuals, as observed in recent collective
MRI scans, and the emergence of consensus in a cusp catastrophe model of opinion dynamics.

Keywords: synchronization, mobile agents, attractive-repulsive interactions, time-varying networks,
network science

1. Introduction

In recent years, the scientific community has
made impressive progress in comprehending the
complexities of interacting systems. The method-
ology of network science [1] has provided a pow-
erful framework for this quest. It has unveiled
fresh insights into the role of the network structure,
wielding profound influence over collective behav-
ior [2, 3], in diverse realms spanning from the net-
works of cortical neurons to the fabric of society.
However, most studies have focused on scenarios
where the interactions between units remain con-
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stant over time, neglecting numerous realistic sit-
uations with time-varying interactions [4], such as
person-to-person communication [5, 6], cooperative
dynamics of animal groups [7] and rational individ-
uals [8], and robot and vehicle movements [9, 10],
among others.

Here, we study the co-evolution of diverse mobile

agents with interactions varying across space and

time. Consider how social consensus emerges when
individuals, each with a unique thinking pattern,
navigate between and interact within varied physi-
cal or digital locations. Accordingly, in our model,
various agents navigate a complex network of di-
verse locations, interacting with everyone they meet
along the way (see Fig. 1). To maintain realism, we
assume that nodes can facilitate a range of inter-
actions, while the specific forms of agents’ internal
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dynamics and interactions are deliberately left un-
specified and can be chosen based on the applica-
tion. Our approach yields concise e!ective dynam-
ical equations for agent states in the weak coupling
limit. These equations serve as critical tools to ex-
plore thresholds of consensus, crucial in opinion dy-
namics [11, 12], devise e!ective strategies to hinder
coherence, and design optimal network structures
with inherent node variations in mind.
We find that enhancing the e!ective interac-

tion strength and thus promoting coherence can be
achieved by: increasing the number of agents, re-
ducing the network size, aligning node degrees with
the interactions they induce, or augmenting the de-
gree distribution in the network. The latter serves
as a prime example of converse symmetry break-
ing [13], since discrepancies in node degrees pro-
mote unity among agent states. We also find that
a strategic approach to disrupt coherence involves
targeting high-degree nodes due to their extensive
influence on collective behavior.

Figure 1: Network of heterogeneous locations hosting di-
verse mobile agents. Agents move around the network and
interact with other agents. Types of agent interactions de-
pend on the host.

For validation and applications, we will intro-
duce specific internal dynamics and interactions for
agents. As the first example, we will delve into
an intriguing line of experimental research that ex-
amines the “conceptual alignment” or “brain-to-
brain synchronization” between interacting individ-
uals [14, 15, 16]. Such experiments often utilize col-
lective MRI and EEG brain scans [17]. This neu-
roimaging technique is called “Hyperscanning” and
it simultaneously records brain activity from mul-
tiple individuals during social interactions or co-
ordinated tasks. Recent observations have shown
that brain activity patterns in response to stimuli

become synchronized and remain so after engag-
ing in a common discussion [18]. Similarly, the
pupils of conversing individuals contract and di-
late in synchrony [19]. To represent these interac-
tions, we will model the participants as Kuramoto
agents that synchronize during constructive discus-
sions and desynchronize during disruptive interac-
tions. This example is similar to the metapopula-
tion model [20] where Kuramoto agents perform a
degree biased random walk on a network. However,
in contrast from Ref. [20], our work considers non-
uniform couplings and allows them to be repulsive.

As the second application, we will explore a
mathematical model of polarization within and
across individuals [21]. This model incorporates
internal dynamics based on a cusp catastrophe of
opinion, which is a function of external influence
and individuals’ attention to the subject matter.
We will incorporate this model as the agents’ inter-
nal dynamics and study the feasibility of consensus.

In both application systems, the individuals will
navigate various social settings, including online
platforms like the comments sections of news ar-
ticles and social media posts, as well as in-person
gatherings such as o”ces, schools, bars, and book
clubs. Each interaction venue is considered a dis-
tinct node in the network. During these gatherings,
agents engage in interactions with all other partici-
pants present in the same node. Experimental stud-
ies have shown that exposure to a di!erent point of
view can lead to either convergence [22] or diver-
gence [23] in opinions. It is plausible that the nature
of the interaction setting plays an important role
in this outcome. Thus, in our model, the network
nodes represent diverse environments inducing var-
ious interactions among the visitors. For example,
interactions in a bar are expected to be di!erent
from interactions in a debate club. Some nodes will
foster consensus by introducing attractive (cohe-
sive) interactions between interacting agents, while
others may contribute to discord by imposing re-
pulsive (disruptive) interactions.

The literature on mobile agents [24, 25, 26, 27, 28,
29] remains limited and most studies have focused
on two simplistic assumptions. First, they consider
mobile agents moving randomly on a continuous
two or three-dimensional plane. In contrast, we
use a novel approach assuming that mobile agents
traverse a complex network, hopping node to node
along the edges. This movement exposes them to
varying sets of neighbors. Second, the interactions
in the literature are usually fixed and independent
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of the agents absolute location. Our model over-
comes this assumption by allowing the locations to
dictate how the agents will interact. The local inter-
actions on the nodes promote local coherence of the
internal dynamics whereas the random walk contin-
uously updates the interacting subsets of agents, fa-
cilitating global coherence. It is important to note
that our proposed model only partially reflects the
complexities of real-world scenarios. Nonetheless,
in an e!ort to capture the richness of natural set-
tings, we incorporate both cohesive and disruptive
interactions [30, 31, 32, 33, 34, 35, 36, 37, 38, 39].
The interplay between positive and negative cou-
plings holds significant relevance in neuronal net-
works comprised of both excitatory and inhibitory
neurons [40, 41]. Similarly, in social networks, one
can discern the coexistence of contrarians alongside
conformists [42], giving rise to starkly contrasting
dynamics evident in phenomena such as political
elections or the spread of rumors. The coexistence
of these two types of couplings allows our model
to capture a wide range of realistic settings [43].
By introducing these advancements to the study of
mobile agents, we aim to expand our understand-
ing of complex systems and their collective behav-
iors, acknowledging the inherent simplifications of
our model while embracing its potential to capture
essential aspects of real-world dynamics.
With the aforementioned objectives in mind, we

embark on addressing the following pivotal ques-
tions through analytical means:

1. Can coherence be achieved among mobile

agents, even under disruptive influences? We

aim to determine the critical threshold analyt-

ically, indicating the number and strength of

disruptive nodes required to fully disrupt coher-

ence.

2. How does the network topology impact the col-

lective behavior, among these mobile agents

when subjected to the combined influence of at-

tractive and repulsive interactions? Can we

discern which network topology is more robust

in the face of repulsive interactions?

To unravel the answers to these inquiries, we first
provide an in-depth exposition of our model in Sec.
2. In Sec. 3, we give a comprehensive analytical
derivation of our main result, the e!ective equations
of agents’ internal states. We also discuss the gen-
eral insights o!ered by them. In Sec. 4 we focus on
the application example of Brain-to-Brain synchro-
nization, and, for the first time in Sec. 4.1, we in-

troduce specific free evolution and interactions into
our system. We also need to specify the distribution
of disruptive and cohesive nodes. Section 4.2 con-
siders the “untargeted attacks”, where disruptive
nodes are selected uniformly at random. In con-
trast, Sec. 4.3 considers “targeted attacks,” where
the disruptive nodes are selected among the most
well connected nodes. Sections 4.2 and 4.3 comprise
various subsections, each dedicated to exploring a
distinct network topology, namely: (i) Regular [44],
(ii) Random [45], (iii) Small-world [46], and (iv)
Scale-free [47, 48]. For each attack strategy and
each network topology, we derive the threshold of
synchronization analytically and compare it with
extensive numerical calculations. In Sec. 4.4, we
briefly discuss the scenario of targeting low degree
nodes. Next, in Sec. 5 we move on to the second ap-
plication, the cusp catastrophe model of opinion dy-
namics. Section 5.1 introduces the applicable free
evolution and interaction functions and computes
analytically the condition of consensus formation
among mobile agents under untargeted attacks. We
additionally confirm the result through numerical
validation. Finally, Sec. 6 presents the discussion
and conclusions.

2. Mathematical Model

We consider a finite network of n vertices. The
connectivity of this network is characterized by an
adjacency matrix A = [Aωε ]n↑n, where Aωε = 1
(or 0) indicates the presence (or absence) of a
link between nodes ω and ε. We also impose the
following assumptions on the network: it is con-
nected, undirected (Aωε = Aεω), devoid of self-
loops (Aωω = 0). The degree of a node ω is given by
the conventional way, expressed as dω =

∑
n

ε=1 Aωε .
Greek indices number the nodes, while Latin indices
are reserved for enumerating the agents which we
discuss next.

We randomly place N mobile agents on this net-
work of n nodes. After every fixed time interval#T ,
each agent jumps to one of the nodes adjacent to its
current position. Consider the i-th agent, located
at node ω at time t. At the time (t+#T ), this agent
will hop to one of the node-ω’s neighbor nodes, say
ε, with a uniform probability Aωε

dω
. Once the agent

has made its jump, it interacts with all the other
agents present in node ε at that time. The state ϑi

of the mobile agent i (i = 1, 2, 3, · · · , N), situated
on node ω (ω = 1, 2, 3, · · · , n), evolves according to
the following equation:
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ϑ̇i = Fi(ϑi) +
∑

j↓Oω

Hω(ϑi,ϑj). (1)

The term Fi(ϑi) describes the agents natural, free
evolution. The subscript of Fi explicitly enumerates
the diversity of the agents. Hω(ϑi,ϑj) describes
how agents interact with each other within node
ω. The subscript of Hω enumerates the diversity
of nodes or locations. At every time instance, each
node ω hosts a particular subset of mobile agents
Oω, and these subsets change after random walk
iterations. We continue this hopping process, which
involves local interactions, for a significant number
of iterations until a stationary state is reached.

3. Analytical findings

To start our analysis, we use a master equation
describing the random walk of a single mobile agent
on the network. Let us assume that the random
walk begins at a node ϖ. We use the notation Pωϑ(t)
to represent the probability of finding the agent at
node ω after a specific time t. This probability can
be expressed recursively using the master equation

Pωϑ(t) =
∑

ε

Aωε

Pεϑ(t→#T )

dε
. (2)

The random walk iterations occur regularly at
intervals of #T , therefore, Pεϑ(t →#T ) represents
the probabilities during the last iteration. The mas-
ter equation states that the agent will be in node
ω if, during the previous iteration, it was in one
of the neighboring nodes ε (probability given by
Pεϑ(t→#T )), and then it jumped to node ω (prob-
ability given by 1

dε
). As the time t approaches

infinity, Eq. (2) reaches a stationary state where
the probability distribution becomes independent
of time t and the starting node ϖ [49]. Thus, in the
stationary state, we have the following equation,

Pω =
∑

ε

Aωε

Pε

dε
. (3)

We can easily verify that Pω
dω

= c (with c indepen-

dent of ω) is a solution of Eq. (3). Pulling out Pε

dε
as

a common factor, the remaining sum evaluates to
dω. Therefore, the expression Pω

dω
= c satisfies the

stationary state condition. After normalization, the

probability of finding the specific agent in node ω
can be expressed as

Pω =
dω∑
ε
dε

. (4)

In a connected network, any node can be reached
from any other node. This means that the Markov
chain corresponding to such a random walk is irre-
ducible and therefore the stationary state given by
Eq. (4) must be unique.

Considering that we have a total of N agents,
the expected number of agents in node ω can be
calculated using the following equation:

|Oω| =
Ndω∑
ε
dε

. (5)

Next, we will utilize the averaging theory to es-
tablish the equations for the internal states of the
mobile agents in the weak coupling limit. We define
the weak coupling limit by demanding that the in-
teraction time-scale is much slower than the random
walk time-scale. In this case the averaging theory
[50] allows us to replace the weak, fast-shifting in-
teraction terms in Eq. (1) with their averaged values
over all agents. This approximation becomes exact
in the limit of infinitely separated time scales, where
#T ↑ 0+. One can equivalently interpret this as
a rapid random walk instead of weak interactions.
In terms of opinion dynamics, this limit is justified
by the fact that changing ones opinion significantly
is unlikely after just one interaction. By averaging
over all possible neighbors, Eq. (1) can be simplified
as follows

ϑ̇i = Fi(ϑi) +
∑

j↓Oω

1

N

N∑

l=1

Hω(ϑi,ϑl),

= Fi(ϑi) + |Oω|
1

N

N∑

l=1

Hω(ϑi,ϑl),

= Fi(ϑi) +
dω∑
n

ε=1 dε

N∑

l=1

Hω(ϑi,ϑl).

(6)

Recall that, in the given expression, node ω rep-
resents the current location of agent i. Building
upon the reasoning discussed earlier; we can pro-
ceed by averaging the interaction terms originat-
ing from node ω across all possible nodes ϖ that
the agent could visit. This averaging considers the
appropriate probability weights Pϑ associated with
each node ϖ. Hence, we obtain
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ϑ̇i = Fi(ϑi) +
n∑

ϑ=1

Pϑ

dϑ∑
n

ε=1 dε

N∑

l=1

Hϑ(ϑi,ϑl). (7)

To make further progress, we assume that the in-
teraction functions of di!erent nodes relate to each
other through scaling Hϑ(ϑi,ϑj) = kϑH(ϑi,ϑj),
where kϑ is the coupling strength between the mo-
bile agents in node ϖ.

ϑ̇i = Fi(ϑi) +
n∑

ϑ=1

Pϑ

kϑdϑ∑
n

ε=1 dε

N∑

l=1

H(ϑi,ϑl),

= Fi(ϑi) +

∑
n

ϑ=1 kϑdϑ
2

(∑
n

ε=1 dε
)2

N∑

l=1

H(ϑi,ϑl),

= Fi(ϑi) +
1
n

∑
n

ϑ=1 kϑdϑ
2

n
(
1
n

∑
n

ε=1 dε
)2

N∑

l=1

H(ϑi,ϑl),

= Fi(ϑi) +
↓d2k↔

n↓d↔2

N∑

l=1

H(ϑi,ϑl),

= Fi(ϑi) +
k̃

N

N∑

l=1

H(ϑi,ϑl).

(8)

In the given expression, the notation ↓·↔ repre-
sents a simple, unweighted average taken over all
nodes. It is important to observe that the out-
come is a di!erential equation resembling the orig-
inal equation (1). However, this time the system is
globally coupled with an e!ective coupling strength
denoted as k̃. The resulting e!ective dynamical
equation is

ϑ̇i = Fi(ϑi) +
k̃

N

N∑

j=1

H(ϑi,ϑj)

k̃ =
N

n

↓d2k↔

↓d↔2
.

(9)

These e!ective di!erential equations for agent
states are the main analytic result of our findings.
The e!ective coupling strength k̃ depends on sev-
eral factors including the size of the network, the
number of agents, the network topology, and the
distribution of the coupling strengths. Therefore,
by varying any of these parameters, the e!ective
coupling strength can be altered, leading to di!er-
ent dynamics and collective behaviors in the net-
work of interacting mobile agents. Below, we will

discuss the insights readily available from Eq. (9),
as well as its detailed consequences for di!erent ap-
plications in Secs. 4 and 5.

At this stage, several observations can be made
without delving into the specific details of the dy-
namics.

• First, due to the weighting by the squared node

degree, nodes with higher degrees have a greater

influence on the system’s behavior. These

highly connected nodes play a more significant

role in shaping the overall dynamics of the sys-

tem.

• Second, when considering the number of agents

N and the network size n, an inverse relation-

ship can be observed. As the number of agents

increases and the network size decreases, the

agents become more concentrated within the

network. This concentration leads to a higher

frequency of interactions among any given pair

of agents, resulting in an increased e!ective

coupling strength. This density-dependent syn-

chronization threshold is closely linked to phe-

nomena like bacterial infection, biofilm forma-

tion, and bioluminescence, unveiling quorum-

sensing transitions in coupled systems [51, 52,

53, 54].

• Third, the term ↓d2k↔ in the e!ective coupling

informs an intelligent design of the network

structure, with nodes’ inherent variations in

mind. In particular, correlating the node de-

grees with their coupling strengths enhances the

e!ective interactions.

Finally, it is informative to examine the scenario
where all nodes possess an identical positive cou-
pling strength. In this case, the coupling term
can be factored out of the expectation, resulting
in ↓d2k↔ = k↓d2↔. Consequently, the expression for
the e!ective coupling in Eq. (9) simplifies to:

k̃ =
N

n

↓d2↔

↓d↔2
k. (10)

This observation reveals a counter-intuitive find-
ing: degree heterogeneity, which refers to variation
in the number of connections among network nodes,
actually enhances the e!ective coupling and pro-
motes coherence among the agents. On the other
hand, when network nodes have similar degrees,
the similarity in agent states decreases exemplify-
ing the converse symmetry breaking phenomenon
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[13]. This result becomes more intuitive when in-
terpreted in the context of opinion dynamics. When
there are several highly connected hubs in the net-
work that serve as focal points for discussions or in-
teractions, and most agents are concentrated within
these hubs, it becomes easier to reach a consensus
or synchronization among the agents. In contrast,
if there are many small discussion venues or nodes
with equal popularity, the process of achieving con-
sensus becomes more challenging.

4. Exploring Synchronization: Random
walk of Kuramoto agents

The exploration of synchronization has a fasci-
nating history that dates back to Huygens’ classical
pendulum experiment [55] and Winfree’s pioneer-
ing work [56] on coupled oscillators for circadian
rhythms. Winfree discovered that synchronization
spontaneously emerges when the coupling strength
between oscillators exceeds a critical value, resem-
bling a phase transition. Building upon this, Ku-
ramoto [57] simplified the model and derived an ex-
act analytical solution, sparking widespread inter-
est in the dynamics of coupled oscillators [58]. Ku-
ramoto’s model has been extended to various sys-
tems beyond circadian rhythms in recent years. Ex-
amples include firing neurons [59], chorusing frogs
[60], and even audiences clapping in perfect uni-
son at concerts [61]. The study of Kuramoto os-
cillators synchronizing has also provided insights
into diverse phenomena, such as the behavior of
power grids [62], phase locking in Josephson junc-
tion arrays [63], the feedback between the oscilla-
tory and cascading dynamics [64], and even the un-
expected wobbling of London’s Millennium Bridge
on its opening day [65]. Remarkable progress has
been achieved in understanding how di!erent net-
work structures influence the synchronization be-
havior of coupled Kuramoto oscillators [66].
It is worth highlighting that the domains of

swarming and synchronization share numerous
commonalities, residing at the intersection of non-
linear dynamics and statistical physics. However, it
is regrettable that these fields have remained largely
disconnected, calling for additional research atten-
tion. In the study of swarming, the primary em-
phasis lies in understanding how individuals move
collectively, often overlooking the internal dynamics
within each agent. Conversely, studies on synchro-
nization predominantly delve into the intricacies of
oscillators’ internal dynamics, paying less attention

to their motion. This disparity in focus presents an
intriguing opportunity for further exploration and
integration of ideas from both fields. By bridging
this gap and combining insights from swarming and
synchronization [67, 68], we can gain a deeper un-
derstanding of collective behaviors in complex sys-
tems.

Below we discuss swarming and synchronizability
of oscillators motivated by recent neuro-sociological
studies [14, 15, 16, 18, 19]. These experiments show
that brain activities of interacting individuals get
synchronized. We will consider mobile agents that
synchronize upon interactions with others. After
interacting for some time, they move to other loca-
tions in a network of interaction venues, where they
interact with a new set of agents, and so on. We
represent the agents’ internal dynamics and their
interactions through the most widely studied model
of synchronization, the Kuramoto dynamics.

First, we will describe the specific setup of Ku-
ramoto oscillators in our model (Sec.4.1). Then, we
will compute explicitly the synchronizability con-
dition for various network topologies and compare
them with simulations for various attack strategies
(Secs. 4.2, 4.3, 4.4).

4.1. Kuramoto model as internal dynamics of mo-

bile agents

To progress with the analysis, we fix the free evo-
lution function Fi(ϑi) = ϱi and the interaction
function H(ϑi,ϑj) = sin(ϑj → ϑi) in accordance
with Kuramoto dynamics. Here, ϱi represents the
natural frequency of agent i sampled from a uni-
modal, symmetric distribution denoted g(ϱ). We
can numerically investigate the system’s dynamics
and validate our theoretical analysis. A video show-
casing the random movement and synchronization
of such Kuramoto agents can be found at [69]. With
these choices, Eq. (9) can be expressed as

ϑ̇i = ϱi +
k̃

N

N∑

j=1

sin(ϑj → ϑi). (11)

To analyze synchronization, we employ the
conventional Kuramoto order parameter r =
|
1
N

∑
N

j=1 exp (̂iϑj)| where î =
↗
→1. Here averag-

ing happens over all N agents. For the incoherent
states, the order parameter vanishes in the ther-
modynamic limit of agents N ↑ ↘, while once
synchronization emerges, order parameter attains
a positive value in this limit. The synchronizability
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condition for the globally coupled Kuramoto oscil-
lators, as described in Ref. [66], can be expressed
as

k̃ >
2

ς≃g(ϱ)≃↔
. (12)

The notation ≃g(ϱ)≃↔ refers to the L-infinity
norm of the distribution g(ϱ) and is calculated as
the maximum value of g(ϱ). Combining Eqs. (9)
and (12), we get the synchronization condition for
the full model

↓d2k↔

↓d↔2
>

n

N

2

ς≃g(ϱ)≃↔
. (13)

It depends on the joint degree and coupling distri-
butions through the term ↓d2k↔. The computation
of the expectation terms in this equation relies on
the specific distributions used to generate the net-
work under consideration. In order to obtain accu-
rate results using this expression, it is necessary to
consider the thermodynamic limit of the network
size n ↑ ↘. In this limit, the degree distribu-
tions become exact and more accurately represent
the statistical properties of the network structure.
To validate our results through simulations, we

need to specify the frequency distribution g(ϱ). As
is customary in many studies, we select the normal
distribution:

g(ϱ) =
1

#ϱ
↗
2ς

exp

(
→
1

2

(
ϱ → ϱ0

#ϱ

)2
)
. (14)

Here, ϱ0 represents the mean or central value of
the frequencies, and #ϱ is the standard deviation
or width of the distribution. The normal distri-
bution is a widely used choice in modeling various
systems, including Kuramoto oscillators, due to its
abundance in real world, mathematical tractability,
and symmetry.
The maximum value of the normal distribution

g(ϱ) occurs at the mean frequency ϱ = ϱ0. By
substituting ϱ = ϱ0 into Eq. (14), we obtain

≃g(ϱ)≃↔ = g(ϱ0) =
1

#ϱ
↗
2ς

. (15)

Consequently, the synchrony condition given in
Eq. (13) can be rewritten as

↓d2k↔

↓d↔2
>

√
8

ς

n

N
#ϱ. (16)

In this form, the condition relates the joint de-
gree and coupling distributions to the network size
n, the number of agents N , and the width of the
frequency distribution #ϱ. It provides a criterion
for synchronization based on these parameters, in-
dicating the necessary condition for achieving syn-
chronization in the system of Kuramoto oscillators.

4.2. Untargeted attacks

We begin our analysis by examining the sim-
plest scenario of untargeted attacks where nodes
are chosen uniformly at random to be corrupted,
i.e., assigned a negative, repulsive coupling. Then
the coupling distribution is not influenced by the
node degree, and any node has an equal probabil-
ity of being repulsive, regardless of its degree. In
this case, we can observe that the joint distribution
term becomes independent and separates into two
individual terms

↓d2k↔ = ↓d2↔↓k↔. (17)

This equation simplifies the analysis, allowing
us to examine the behavior of each term indepen-
dently. Consequently, Eq. (16) becomes

↓k↔ >

√
8

ς

n

N

↓d↔2

↓d2↔
#ϱ. (18)

The quantity ↗d↘2
↗d2↘ is always non-negative and it

can not exceed 1 since the nonnegativity of the vari-
ance implies ↓d↔2 ⇐ ↓d2↔. The extreme cases for this
quantity are observed in two types of networks. In
regular networks, where each node has the same de-

gree, we have ↗d↘2
↗d2↘ = 1. On the other hand, in scale-

free networks with a degree distribution character-
ized by a power-law exponent 1 < φ ⇐ 3, we find

that ↗d↘2
↗d2↘ = 0 (explicitly derived later in (4.2.4)).

In summary, the scale-free networks with this range

of power-law exponents are the most robust to un-

targeted attacks, while regular networks are weak-

est to untargeted attacks. This finding perfectly
aligns with the structural robustness of the giant
connected component in complex networks under
random removal of nodes [70, 71]. By understand-

ing the behavior of the quantity ↗d↘2
↗d2↘ and its im-

plications for network robustness, we gain valuable
insights into the interplay between network struc-
ture and the impact of untargeted attacks.

In order to examine how the repulsive couplings
impact the system, let us consider the Bernoulli dis-
tribution for the coupling strengths. Each node will
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be assigned a negative coupling strength k≃ with
probability p (called disruptors or corrupted nodes),
or a positive coupling strength k+ with probability
(1→ p).

Pr(k = k≃) = p,

Pr(k = k+) = 1→ p.
(19)

Hence, the average coupling becomes

↓k↔ = p(k≃ → k+) + k+. (20)

By substituting the value of ↓k↔ into Eq. (18),
we obtain the expression for the critical fraction
pc of corrupted nodes needed to achieve complete
incoherence:

pc =
1

k+ → k≃

(
k+ →

√
8

ς

n

N

↓d↔2

↓d2↔
#ϱ

)
. (21)

It should be noted that the equation may yield
non-physical values such as pc < 0 or pc > 1. This
implies that no critical value of pc separates the syn-
chronized and incoherent phases. For instance, such
a scenario can arise when the positive coupling k+
lacks su”cient strength to synchronize the system,
even in the absence of corrupted nodes. Another ex-
treme scenario can occur if the disruptor coupling
k≃ is set to a positive value k≃ > 0, accompanied
by a narrow frequency distribution #ϱ ↑ 0. This
inevitably leads to synchrony.
Next, we take a closer look at how di!erent net-

work topologies a!ect the synchronization of mobile
agents. We specifically focus on understanding how
the critical fraction pc changes when we use various
network structures.

4.2.1. Regular networks

For regular networks such as random regular net-
works, complete graphs, regular lattices, or any
other regular network where each node has the same
degree d, a simplification can be made. In such

cases, the expression ↗d↘2
↗d2↘ evaluates to 1, resulting

in the critical coupling equation (21) being reduced
to

pc =
1

k+ → k≃

(
k+ →

√
8

ς

n

N
#ϱ

)
. (22)

We put our findings to test by comparing them to
simulations using regular networks. The outcome

Figure 2: Synchronizability of regular networks under
untargeted attacks: The critical fraction pc of disruptive
nodes required for full desynchronization as a function of
their strength k↑. The curve separates the synchronized
phase below it from incoherent phase above. As the repul-
sive coupling strength k↑ < 0 decreases, a smaller fraction pc
becomes su!cient to disrupt the synchronization among the
Kuramoto oscillators. The solid curve represents our analyt-
ically derived result (Eq. (22)), matching with the numerical
simulations in orange data points. Throughout our analysis,
we maintain fixed values for the other parameters: k+ = 1,
d = 3, ”ω = 1, n = 100, N = 500, and ”T = 0.001. To vali-
date our findings, we conduct multiple numerical simulations
and plot the results, showing the mean value along with the
standard error. This comprehensive approach ensures the
robustness and reliability of our conclusions.

is depicted in Fig. 2. As anticipated, when the
corrupted nodes possess strong negative couplings,
fewer of them are required to create disorder. This
figure is drawn by keeping fixed the parameters at
k+ = 1, d = 3, #ϱ = 1, n = 100, N = 500,
and #T = 0.001. Moving forward, Fig. 3 reveals
that the condition for synchronization remains un-

changed, regardless of the network connectivity. We
will see below that what matters instead is the de-
gree fluctuations. Our analytical finding in Eq. (22)
aligns well with these numerical simulations, as pc
does not depend on the degree of the regular net-
work. In other words, the ability for synchroniza-
tion to occur is not influenced by the specific way
the network is structured as long as it has a regular
degree distribution. The figure was generated using
the following parameter values: k+ = 1, k≃ = →1,
#ϱ = 1, n = 100, N = 500, and #T = 0.001.

Throughout our study, the plots serve as visual
representations of crucial parameter values that de-
fine the boundary between synchronized and inco-
herent phases. To generate each point on these
plots, we keep all parameters fixed except the one
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Figure 3: Degree independence of synchronizability
in regular networks: The critical fraction pc of disrup-
tive nodes required for full desynchronization as a function
of the network degree. The curve separates the synchronized
phase below it from incoherent phase above. The disruption
of coherence among the Kuramoto oscillators does not ap-
pear to depend on the degree d of each node in the regular
network. This observation is consistent with our analytical
result (Eq. (22)), represented by the solid line in the graph.
We maintain a consistent set of parameter values through-
out our analysis, with k+ = 1, k↑ = →1, ”ω = 1, n = 100,
N = 500, and ”T = 0.001.

represented on the y-axis. We then conduct sim-
ulations from the beginning, including the genera-
tion of the network, for di!erent values of the y-
axis parameter. During these simulations, we mea-
sure the global synchronization order parameter,
denoted as r, in the stationary state. We observe
how r changes as a function of the y-axis parameter.

In the incoherent phase, where the system lacks
synchronization, r is equal to 0. On the other hand,
when the system exhibits synchronization, r takes
on values greater than 0, with full synchrony ap-
proaching a value close to 1. With this information,
we fit the measured data using a heuristic curve
that captures the behavior of r. When the incoher-
ent phase lies below the critical point (y < yc), we
employ the curve expression r(y) = 2

ϖ
tan≃1(c(y →

yc))↼(y → yc), where ↼(·) represents the Heaviside
step function. Conversely, when the incoherent
phase is above the critical point (y > yc), we use
the expression r(y) = 2

ϖ
tan≃1(c(yc → y))↼(yc → y).

The values of c and yc are determined by fitting
the curve to the data using the root-mean-square
method. The extracted value of yc corresponds to
the critical value of the y-axis parameter. To en-
sure accuracy, we repeat this entire process multiple
times, generating a sample of yc measurements. In

the plots, we present the mean value of this sample,
along with the standard error, providing an indica-
tion of the reliability and precision of our findings.

4.2.2. Random networks

The case of random networks is di!erent from
regular networks because the degrees of nodes are
no longer equal. In fact, the probability that a node
has a certain degree can be described by the bino-
mial distribution [70]

Pr(d) =

(
n→ 1

d

)
↽d(1→ ↽)n≃1≃d. (23)

Here n represents the size of the network and ↽ is
the probability that two randomly chosen nodes are
connected.

We can calculate the average degree ↓d↔ and av-
erage squared degree ↓d2↔ of the network using the
following formulas:

↓d↔ = ↽(n→ 1),

↓d2↔ = ↽(1→ ↽)(n→ 1) + ↽2(n→ 1)2.
(24)

With this, the synchronization condition (21) re-
duces to

pc =
1

k+ → k≃

(
k+ →

√
8

ς

n

N

↽(n→ 1)

1→ ↽+ ↽(n→ 1)
#ϱ

)
.

(25)
Interestingly, when the condition ↽ ⇒= 1 is satis-

fied, we observe that the ratio ↗d↘2
↗d2↘ = ϱ(n≃1)

1≃ϱ+ϱ(n≃1) is
strictly less than 1. This finding has significant im-
plications; it indicates that the critical probability
pc is higher for random networks compared to reg-
ular networks: random networks generally exhibit

greater robustness and are capable of withstanding

a larger number of corrupted nodes than regular net-

works. It is worth noting that when ↽ = 1, random
networks become fully connected and therefore reg-
ular, hence both expressions (22) and (25) yield the
same results. To provide visual evidence support-
ing this observation, we have included a comparison
with simulations in Fig. 4 where we keep fixed the
parameter values at k+ = 1, ↽ = 0.03, #ϱ = 1,
n = 100, N = 500, and #T = 0.001. The close
correspondence between the analytical predictions
and the numerical data further validates the accu-
racy and reliability of our theoretical framework.
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Figure 4: Synchronizability of random networks un-
der untargeted attacks: The critical fraction pc of dis-
ruptors necessary to destroy synchrony as a function of their
coupling strength k↑ on a random network. The curve
separates the synchronized phase below it from incoherent
phase above. Solid curve presents our analytical result Eq.
(25) while the datapoints come from numerical simulations.
Fixed parameter values are k+ = 1, ε = 0.03, ”ω = 1,
n = 100, N = 500, and ”T = 0.001.

4.2.3. Small world networks

In the case of the Watts-Strogatz model for small-
world networks, the degree distribution [72] is de-
scribed by the equation:

Pr(d) =e≃qK

min(d≃K,K)∑

m=0

(
K

m

)
(1→ q)mqK≃m

⇑
(Kq)d≃K≃m

(d→K →m)!
, for d ⇓ K

(26)

where 2K represents the degree of the original lat-
tice (before rewiring), and q is the rewiring proba-
bility. We could not obtain a closed form expres-
sion for the synchronization threshold in this case
due to the complicated nature of the degree distri-
bution. Instead, we utilize Eq. (26) to numerically
determine the expectations ↓d↔ and ↓d2↔ and sub-
sequently apply them in Eq. (21) to predict the
critical fraction of corrupted nodes. The results,
complemented by simulation data, are illustrated
in Fig. 5 and show an agreement. The simulations
in Fig. 5 are produced by maintaining set param-
eter values: n = 100, K = 2, k≃ = →1, k+ = 1,
N = 500, #ϱ = 1, and #T = 0.001.

4.2.4. Scale-free networks

When we look at scale-free networks, where
the node degree follows a power-law distribution

Figure 5: Synchronizability of small world networks
under untargeted attacks: The critical fraction pc of dis-
ruptive nodes required for full desynchronization as a func-
tion of the rewiring probability q. The curve separates the
synchronized phase below it from incoherent phase above.
We begin with a lattice structure where each node has a
degree of 2K. We rewire the links with a probability q.
While keeping other parameters fixed at n = 100, K = 2,
k↑ = →1, k+ = 1, N = 500, ”ω = 1, and ”T = 0.001, we
generate various small world networks by varying the value
of q. Subsequently, we plot the numerically simulated pc
for each of these networks alongside the analytical findings
(Eqs. (21) and (26)). The results from our numerical sim-
ulations exhibit an agreement with our theoretical analysis.
This confirms the accuracy and reliability of our analytical
predictions.

Pr(d) ⇔ d≃ς , we discover that the system behav-
ior changes qualitatively depending on the value
of the exponent φ. For 2 < φ ⇐ 3, the sec-
ond moment ↓d2↔ diverges while the first moment
↓d↔ is finite. And hence, the ratio ↓d2↔/↓d↔2 van-

ishes. Similarly, for 1 < φ ⇐ 2 we have ↗d2↘
↗d↘2 ↖

(2≃ς)2

(ς≃3)(ς≃1) lim
D⇐↔

(D2→ϑ≃1)2

D3→ϑ≃1 = 0. Thus, Eq. (21) re-

duces to

pc =
k+

k+ → k≃
. (27)

However, for φ > 3, we have

↓d↔ =
⇀(φ → 1)

⇀(φ)
,

↓d2↔ =
⇀(φ → 2)

⇀(φ)
,

(28)

where ⇀(φ) is the Riemann zeta function. Then,
Eq. (21) yields
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Figure 6: Synchronizability of scale-free networks un-
der untargeted attacks: The critical fraction pc of dis-
ruptive nodes required for full desynchronization as a func-
tion of the power-law exponent ϑ of the scale-free network.
The curve separates the synchronized phase below it from
incoherent phase above. Our analytical result (Eq. (27)) re-
veals that the critical fraction pc of nodes with repulsive cou-
pling, beyond which synchronization becomes unattainable,
remains constant regardless of the power law degree expo-
nent ϑ, as long as 1 < ϑ ↑ 3. As a result, when ϑ falls within
the range of (1, 3], we observe a horizontal line in our anal-
ysis, while for ϑ > 3, the solid line (Eq. (29)) demonstrates
a decreasing trend. We conduct numerical simulations on
scale-free networks with n = 1000 vertices and N = 5000
mobile agents to further verify this analytical understand-
ing. Other parameters are kept fixed at k↑ = →1, k+ = 1,
”ω = 1, and ”T = 0.0001.

pc =
1

k+ → k≃

(
k+ →

√
8

ς

n

N

⇀(φ → 1)2

⇀(φ → 2)⇀(φ)
#ϱ

)
.

(29)
Figure 6 presents numerical data on how pc de-

pends on φ. For values of φ below 3, pc remains con-
stant. Above 3, agents become easier to desynchro-
nize, resulting in a lower value of pc. Even though
the analytical curve and the numerical data show
the same trend, the curve is clearly outside the error
bars. This happens because the error bars show the
precision of the numerical data and not the accu-
racy. The accuracy, on the other hand, is controlled
by the extent to which we were able to reproduce
the infinite time-scale separation and the thermo-
dynamic limits of network size and agent numbers.
For the thermodynamic limits, one would need to
send N ↑ ↘ and n ↑ ↘, keeping n/N = constant

all the while. And the infinite time-scale separation
is attained by sending #T ↑ 0. Improving the sim-
ulations in either of these aspects is computation-
ally costly and can be realized only to an extent.

This figure was created using specific parameters:
n = 1000, k≃ = →1, k+ = 1, N = 5000, #ϱ = 1,
and #T = 0.0001. In other words, compared with
previous examples, we increased n and N , and de-
creased #T by one order of magnitude each. The
numerical results gradually approach our theoreti-
cal findings. Yet, we still see the finite size e!ects
in Fig. 6. This should not be a surprise since scale
free networks are extremely sensitive to finite size
e!ects [73, 74]. This topic will be discussed further
in Sec. 4.3.4.

4.3. Targeted Attacks: Unveiling the Impact of Tar-

geting High-Degree Nodes

In this new approach, we aim to strategically as-
sign the repulsive coupling strength k≃ by targeting
the highest degree nodes in the networks. These
nodes are particularly influential as they have a
greater impact on the collective behavior. To im-
plement this strategy, we sort the nodes in ascend-
ing order based on their degrees and select a frac-
tion p from the end of this sorted list. The nodes
in this selected fraction will be assigned a negative
coupling k≃, while the remaining nodes will have a
positive coupling k+. This targeted assignment en-
sures that the most highly connected nodes, which
have the potential to disrupt synchronization more
e”ciently, are equipped with the negative coupling,
while other nodes maintain a positive coupling.

To determine the synchronization condition in
this targeted attack scenario, we must calculate the
term ↓d2k↔ that appeared in Eq. (13). First, we
determine the cuto! degree dc ↙ Z beyond which
nodes are targeted and assigned with negative cou-
pling k≃. This cuto! is determined by the consis-
tency equation:

p =
↔∑

d=dc

Pr(d) = 1→ Pr(d ⇐ dc), (30)

where Pr(d ⇐ dc) represents the cumulative prob-
ability distribution of node degrees. It’s important
to note that p represents a fraction of nodes with
values ranging from 0 to 1, while d denotes integer
values for node degrees. Consequently, there might
not be a clean integer cuto! dc that isolates an ar-
bitrary fraction p of all nodes. In such cases, we can
resort to continuous approximations of the sums or,
when applicable, start the summation at d = ∝dc′
and include only the fraction ∝dc′→dc of nodes with
degree ∞dc∈. Similar interpretations apply to sums
with non-integer bounds.
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For the targeted attack scenario, the expression
for the joint distribution term becomes:

↓d2k↔ = k+

dc≃1∑

d=1

d2 Pr(d) + k≃

↔∑

d=dc

d2 Pr(d). (31)

By utilizing this expression along with Eq. (16),
we can determine the critical coupling strength kc≃
required to disrupt synchronization for the cor-
rupted nodes:

kc≃ =
→1

↔∑
d=dc

d2 Pr(d)

(
k+

dc≃1∑

d=1

d2 Pr(d)→
n
↗
8↓d↔2#ϱ

N
↗
ς

)
.

(32)
The advantage of targeting higher-degree nodes

becomes evident when comparing the term ↗d2
k↘

↗d↘2

(the left-hand side of Eq. (13)) for the two at-
tack strategies. By sorting the nodes ω based on
their degrees (non-decreasing order), we observe
that since the highest degree nodes possess the neg-
ative coupling k≃, the sequence kω becomes non-
increasing. Utilizing Chebyshev’s sum inequality,
we obtain:

↓d2k↔

↓d↔2
⇐

↓d2↔↓k↔

↓d↔2
. (33)

We recognize the upper bound in Eq. (33) as the
left-hand side of Eq. (13) for the untargeted at-
tack scenario. This inequality indicates that the

synchronization condition (13) is more di”cult to

satisfy under targeted attacks, signifying a weaker

network robustness in this case. It is worth not-
ing that the inequality in Eq. (33) is not strict,
and some networks may exhibit equal robustness
against both types of attacks.

4.3.1. Regular networks

In the case of regular networks, degree-targeted
attacks do not provide any advantage over untar-
geted attacks. This happens due to the absence
of any strategic targets in regular networks, where
each node contributes equally to the global dynam-
ics. Thus the synchronization condition remains
governed by Eq. (22).
As we found in the last section, the system is

less robust under targeted attacks than under un-
targeted attacks. The more heterogeneous the de-
grees, the more strategic targets exist. Thus regular

Figure 7: Synchronizability of random networks un-
der targeted attacks: The critical coupling strength kc↑
of disruptive nodes required for full desynchronization as a
function of the fraction p of these nodes. The curve sepa-
rates the synchronized phase above it from the incoherent
phase below. In this figure, we set the parameters as fol-
lows: n = 100, k+ = 1, ”ω = 1, ε = 0.05, N = 500, and
”T = 0.001. The solid line represents our analytical re-
sult (see Eqs. (32) and (35)), which is well aligned with the
numerical simulations.

networks represent an edge case with no added ben-
efit from targeting, and as we will see later, scale-
free networks with 1 < φ ⇐ 3 become the least
robust under targeted attacks. All this may sug-
gest that regular networks should be the most ro-
bust topologies under targeted attack, but this is
not so. The reason for this lies in the interplay be-
tween degree heterogeneity and the synchronization
ability of nodes with positive couplings. While de-
gree heterogeneity enhances the influence of highly
connected corrupted nodes with repulsive coupling
strength k≃ < 0, it also improves the synchroniza-
tion capability of nodes with positive couplings. As
a result, the overall e!ect is not straightforward.
Even under targeted attacks, heterogeneous net-
works may exhibit easier synchronization compared
to regular networks. The degree distribution of the
most robust network depends on various factors,
such as the fraction p of corrupted nodes, the cou-
pling strengths, and the distribution of frequencies.
The dynamics of the system play a crucial role in
determining the specific characteristics of the most
robust network structure.

4.3.2. Random networks

In random networks, the degrees of nodes are dis-
tributed binomially, as described by Eq. (23). An-
alytically working with the binomial distribution
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can be challenging, so we make use of the nor-

mal approximation Pr(d) ↖
1

φ
⇒
2ϖ

exp
(
→

(x≃µ)2

2φ2

)
.

The mean of this approximation is given by µ =
(n → 1)↽ = ↓d↔, and the standard deviation is
⇁ =

√
(n→ 1)(1→ ↽)↽. With this approximation,

Eq. (30) can be expressed as:

p = 1→ Pr(d ⇐ dc)

= 1→
1

2

(
1 + erf

(
dc → µ

⇁
↗
2

))

=
1

2

(
1→ erf

(
dc → µ

⇁
↗
2

))
.

(34)

Solving for dc, we obtain:

dc = µ+ ⇁
↗

2 erf≃1(1→ 2p)

= (n→ 1)↽+
√
2(n→ 1)(1→ ↽)↽ erf≃1(1→ 2p).

(35)

Using these expressions, we can compute the crit-
ical corrupted coupling strength kc≃ through Eq.
(32). However, the closed-form solution, obtained
by evaluating the sums as integrals of the normal
approximation, is lengthy and not explicitly pre-
sented here. Figure 7 provides a comparison be-
tween the analytical results and simulation data.
In this figure, we set the parameters as follows:
n = 100, k+ = 1, #ϱ = 1, ↽ = 0.05, N = 500,
and #T = 0.001. The plot shows that as the mag-
nitude of kc≃ increases, the critical fraction p de-
creases. This means that only a smaller fraction of
nodes with a higher repulsive coupling strength is
needed to disrupt the synchronization among the
mobile agents. The trend observed in this figure is
similar to the untargeted attack case (cf. Fig. 4),
where higher values of k≃ require a smaller fraction
pc to destroy the coherence among the Kuramoto
oscillators. This suggests that increasing the re-

pulsive coupling strength makes the synchronization

more vulnerable, regardless of whether the attack is

targeted or untargeted.

4.3.3. Small world networks

Here, we explore the relationship between the
critical negative coupling strength kc≃ and the
rewiring probability q in small world networks. The
degree distribution of small world networks is given
by Eq. (26), which is quite complex. Therefore, we
could not obtain a closed-form solution for kc≃ in

this case. Instead, we adopt a numerical approach
to calculate kc≃. First, we numerically solve Eq.
(30) to find the cuto! degree dc. Then, we directly
evaluate Eq. (32) to determine the critical repulsive
coupling strength kc≃.

The results obtained from this numerical ap-
proach are plotted alongside the simulations in Fig.
8. We compare the values of k≃ obtained numeri-
cally with those obtained from Eqs. (30) and (32),
providing a visual representation of the agreement
between theory and practice. Figure 8 illustrates
the impact of rewiring probability q on the criti-
cal negative coupling strength kc≃ required to dis-
rupt synchronization in small-world networks. The
parameters used in the simulations are n = 100,
K = 2, p = 0.1, k+ = 1, N = 500, #ϱ = 1, and
#T = 0.0001. The figure shows that as the rewiring
probability q increases, the magnitude of the crit-
ical negative coupling strength kc≃ decreases. This
means that with a higher probability of rewiring,
a relatively smaller magnitude of the negative cou-
pling strength is su”cient to disrupt the coherence
among the phase oscillators and lead to desynchro-
nization.

Note, that increasing the rewiring probability q
showed the opposite e!ect on the system under tar-
geted (Fig. 5) and untargeted (Fig. 8) attacks.
If, during untargeted attacks, higher rewiring fa-
cilitated synchrony, in case of targeted attacks, it
hindered synchronizability. This is because origi-
nal lattice is completely uniform and thus regular,
while rewiring introduces degree fluctuations that
can be exploited during targeting.

We should also address the unexpected corner in
Fig. 8, occurring at q = 0.06. It is directly re-
lated to a very similar corner in the plot of the
average degree of top 10% highest degree nodes as
a function of q (see the analytic curve in the in-
set of Fig. 8). This is caused by the fact that for
q < 0.06 there are not enough nodes with degree 5
and higher, so nodes with degree 4 make the cuto!.
For q > 0.06 all the selected nodes have degree 5 or
higher. Thus below q = 0.06, an infinitesimal incre-
ment of q replaces degree 4 nodes with higher degree
nodes, whereas above q = 0.06, same increment of
q replaces degree 5 nodes with higher degree nodes,
resulting in discontinuously larger gain of average
degree in the top 10% of most well connected nodes.

4.3.4. Scale-free networks

In the case of scale-free networks with degree dis-
tribution Pr(k) ⇔ k≃ς , where 1 < φ ⇐ 3, the left-
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Figure 8: Synchronizability of small world networks
under targeted attacks: The critical coupling strength
kc↑ of disruptive nodes required for full desynchronization
as a function of rewiring probability q. The curve separates
the synchronized phase above it from the incoherent phase
below. As the rewiring probability q increases, the strength
of negative coupling kc↑ needed to disrupt synchronization
decreases. Thus, with more rewiring, a weaker negative cou-
pling can disrupt the coherence among the nodes and lead to
desynchronization. In the initial ring lattice structure, the
network is regular, making it quite resilient under targeted
attacks. However, as rewiring increases, the degree fluctua-
tions grow, creating strategic targets and making the attack
more e#ective. Other parameters: n = 100, K = 2, p = 0.1,
k+ = 1, N = 500, ”ω = 1, and ”T = 0.0001. The inset
shows the analytically computed average degree of top 10%
of most well connected nodes as a function of the rewiring
probability q for K = 2 in the thermodynamic limit n ↓ ↔.

hand side of Eq. (13) diverges to negative infinity

(since ↗d2
k↘

↗d↘2 ↑ →↘), indicating absolute vulner-
ability to targeted attacks. In other words, any
finite fraction of the most connected nodes being
corrupted can disrupt synchronization, regardless
of the magnitude of the negative coupling strength
k≃. This contrasts with the untargeted attack sce-
nario that are highly robust against untargeted at-
tacks. Targeted attacks corrupt hubs whereas un-
targeted attacks corrupt nodes at random, which
are predominantly leafs and other low degree nodes.

This observation aligns with earlier findings [75,
76, 77, 78, 79, 80] on the structural robustness of
heterogeneous networks. Heterogeneous networks,
which include scale-free networks as a special case,
are characterized by a wide range of node degrees.
They are structurally robust against random node
removal because the majority of nodes have low de-
grees and their removal does not significantly af-
fect the overall connectivity. However, when we
selectively remove important nodes, such as hubs,

the network structure becomes fragmented, and its
robustness is compromised [70, 71]. This fragility
to preferential attacks on hubs is a consequence of
the inherent structure of scale-free networks, where
a small number of highly connected nodes play a
crucial role in maintaining the overall connectiv-
ity and coherence. Therefore, our findings highlight
the dual nature of scale-free networks—they possess

robustness against random disruptions but exhibit

fragility when targeted attacks are directed towards

hubs for 1 < φ ⇐ 3. These results resonate with the
earlier studies [75, 76, 77, 78, 79, 80] on the struc-
tural robustness and vulnerability of heterogeneous
networks, emphasizing the intricate relationship be-
tween network topology, targeted attacks, and sys-
tem dynamics.

Figure 9: Synchronizability of scale-free networks un-
der targeted attacks: The critical coupling strength kc↑
of disruptive nodes required for full desynchronization as a
function of the power-law exponent ϑ of the scale-free net-
work. The curve separates the synchronized phase above
it from the incoherent phase below. The vulnerability of
scale-free networks to targeted attacks depends on the net-
work’s size and the distribution of connections. Achieving
a perfect match between theoretical predictions and simula-
tions can be tricky due to sensitivity of scale-free networks to
finite size e#ects, and computational constraints. Nonethe-
less, larger networks exhibit behavior closer to the analytical
predictions, while smaller networks display more significant
deviation. Hubs with limited-degree have a diminished abil-
ity to disrupt synchronization, demanding stronger negative
couplings to achieve the same disruptive e#ect. Other pa-
rameters: p = 0.1, k+ = 1, ”ω = 1, and ”T = 0.0001.

For scale-free networks with φ > 3, we can ex-
plicitly compute the summation terms in Eq. (32)
as shown in the following equation
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↔∑

d=dc

d2 Pr(d) =
↔∑

d=dc

d2≃ς

⇀(φ)
=

⇀(φ → 2, dc)

⇀(φ)
,

dc≃1∑

d=1

d2 Pr(d) =
dc≃1∑

d=1

d2≃ς

⇀(φ)

=
↔∑

d=1

d2≃ς

⇀(φ)
→

↔∑

d=dc

d2≃ς

⇀(φ)

=
⇀(φ → 2)→ ⇀(φ → 2, dc)

⇀(φ)
.

(36)

Here ⇀(·, ·) represents the Hurwitz zeta function.
Combining this with Eqs. (28) and (32), we get

kc≃ = →

(
k+

(
⇀(φ → 2)

⇀(φ → 2, dc)
→ 1

)

→
⇀(φ → 1)2

⇀(φ)⇀(φ → 2, dc)

√
8

ς

n

N
#ϱ

)
.

(37)

Now we calculate the cuto! degree dc in terms of
p. It must be chosen such that it separates the top
p fraction of nodes. In mathematical terms, this is
expressed as

p =
↔∑

d=dc

Pr (d) =
1

⇀(φ)

↔∑

d=dc

d≃ς =
⇀(φ, dc)

⇀(φ)
. (38)

Inverting this, we get

dc = ⇀≃1 (φ, ⇀(φ)p) , (39)

where ⇀≃1(x, y) denotes the inverse of the Hurwitz
zeta function with x fixed: ⇀≃1(x, ⇀(x, y)) = y.
Figure 9 presents the relationship between the

critical negative coupling strength and the scale-
free exponent φ. When it comes to targeted attacks
on scale-free networks, the dynamics are highly in-
fluenced by the system’s size, and our theoretical
derivations are valid in the thermodynamic limit,
i.e., for n,N ↑ ↘ and in the rapid movement limit
of mobile agents, i.e., for #T ↑ 0. Unfortunately,
the simulations with scale-free networks are highly
sensitive to finite size e!ects [73, 74], and due to
the limited computation capacity, it is challenging
to perfectly match numerical simulations with ana-
lytic predictions. However, as expected, increasing
the network size n and the number of mobile agents
N while maintaining a constant ratio n

N
brings the

simulations closer to the thermodynamic limit and
improves the agreement with analytic predictions.

The finite size e!ects can be understood intu-
itively as follows. In scale-free networks, the degrees
of the corrupted hubs are limited in finite-sized sys-
tems. As a consequence, these hubs have less influ-
ence on the synchronization dynamics compared to
hubs in larger networks. In order to disrupt the
synchronization, limited-degree hubs need to pos-
sess stronger negative couplings. This requirement
arises because their reduced influence necessitates a
more potent disruptive force to achieve incoherence.

Overall, these findings highlight the intricate re-
lationship between network size, topology, and the
e!ectiveness of targeted attacks on scale-free net-
works. They remind us of the complex interplay
between system properties, highlighting the impor-
tance of considering various factors when assessing
the vulnerability of networks to targeted attacks.

4.4. Targeted Attacks: Unveiling the Impact of Tar-

geting Low-Degree Nodes

The mathematical results derived in the previous
section can also be applied to a scenario where the
low-degree nodes are targeted instead of the high-
degree ones. In this case, we exchange the roles
of k≃ and k+ so that the nodes with the highest
degrees now have positive couplings represented by
k+. We also substitute p with 1 → p while using p
to describe the fraction of disruptive nodes.

Under this type of targeted attack strategy, regu-
lar networks behave identically to the previous two
cases. However, heterogeneous networks become
even more robust compared to untargeted attacks.
To understand this, we sort the nodes based on their
degrees, where dω represents a non-decreasing se-
quence. Since the highest degree nodes now have
positive couplings k+, the coupling strength kω
also exhibits a non-decreasing trend. By applying
Chebyshev’s sum inequality, we can establish the
following relationship:

↓d2k↔

↓d↔2
⇓

↓d2↔↓k↔

↓d↔2
. (40)

This inequality indicates that the synchronization
condition is more easily satisfied when lower-degree

nodes are targeted compared to the untargeted case.
It further reinforces the enhanced robustness of the
network under this targeted attack strategy.
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5. Exploring opinion dynamics: random
walk of polarized agents

To showcase the generality and applicability of
our results, we next consider a di!erent type of in-
ternal dynamics and interactions: the cusp catas-
trophe model for polarization within and across the
individuals [21] based on the Ising model of opinion.
Let us first consider the internal dynamics of

one individual as described in Ref. [21]. Each per-
son forms their attitude about a subject matter
based on an interconnected network of issues re-
lated to this subject. For example, if the subject
is meat consumption, the issues could consist of
beliefs (meat consumption doesn’t a!ect climate),
feelings (loves steak), and behavioral patterns (eats
burgers). Each of these issues is treated as a binary
node xi = →1, 1 indicating if the node label holds
true for the given person. The overall opinion is
given by an average over all subparts of attitude,
i.e., network nodes (note, that the network is inside
the individuals head, we are not discussing human-
to-human interactions yet). The edge weights are
given by ϱij . Additionally, one considers external
influences a!ecting each issue τi (all their friends
eat burgers) and attention to the subject matter A
(how important the person thinks this topic is).
When the attention A is low, the connected is-

sues can be misaligned xi ⇒= xj (they can think that
meat consumption a!ects the environment and still
eat lots of burgers). However, as the person spends
more and more time thinking about the topic, the
cognitive dissonance tends to align the nodes with
each-other and with the external influence. In other
words, high attention implies the lower misalign-
ment function

H = →

∑

i

τixi →

∑

i,j

ϱijxixj . (41)

This equation is known as the Ising model and
is well studied in physics. The analogue of high at-

tention in opinion dynamics is low temperature in
the Ising model since both result in the lower value
of Eq. (41). The overall opinion ϑ is analogous to
the magnetization in the Ising model. Magnetiza-
tion, on the other hand, has a cusp catastrophe
behavior as a function of temperature and exter-
nal influence in the Ising model. This can be di-
rectly translated to opinions: the opinion changes
smoothly as a function of external influence I for a
low value of attention, while for high attention, hys-
teresis appears and, depending on the initial state,

agent’s opinion may be positive or negative for the
same attention A and external influence I. The
normal form dynamical equation describing a cusp
catastrophe in its stationary states is given below:

ϑ̇ = f(ϑ) = →ϑ3 + (A → Ac)ϑ+ I. (42)

Here ϑ stands for opinion, A indicates the atten-
tion to the subject matter, Ac stands for the critical
value of attention beyond which the hysteresis ap-
pears, and I describes the external influence com-
ing from interactions with other individuals. For
an in-depth study of this model, along with the
description of interactions, and di!erent real-world
examples see Ref. [21].

5.1. Cusp catastrophe as internal dynamics of mo-

bile agents

The internal variable of mobile agents that stood
for the phase ϑi ↙ S1 will now be a real number
ϑi ↙ R denoting the opinion of the agent (note, that
the result in Eq. (9) remains the same, in fact the
internal state could even be a vector or a tensor).
We consider the internal dynamics of agent i to be
given by Eq. (42)

ϑ̇i = f(ϑi) = →ϑ3
i
+ (A → Ac)ϑi + I. (43)

For the sake of simplicity, we consider that agents
have a constant high value of attention A > Ac.
And that the external influence experienced by each
agent depends linearly on the neighbors’ opinions.
The coupling constants again vary between discus-
sion venues through which the agents move ran-
domly.

ϑ̇i = F (ϑi) + kω
∑

j↓Oω

H(ϑi,ϑj),

F (ϑi) = →ϑ3
i
+ (A → Ac)ϑi,

H(ϑi,ϑj) = ϑj .

(44)

Here the interaction term H(ϑi,ϑj) ensures that
agents with positive opinions a!ect their neighbors
in the positive direction proportional to their con-
viction level (as long as the coupling kω is positive).
For friendly, constructive discussions kω will be pos-
itive, meaning that the listener takes the speakers
words at the face value. For antagonistic interac-
tions the coupling may well be negative, indicating
that the listener will want to distance themselves
from the speaker.
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Employing Eq. (9), we can write down the state
equations in the weak coupling limit

ϑ̇i = →ϑ3
i
+ (A → Ac)ϑi +

k̃

N

N∑

j=1

ϑj ,

k̃ =
N

n

↓d2k↔

↓d↔2
.

(45)

Figure 10: Emergence of consensus in regular net-
works under untargeted attacks: The critical fraction
pc of disruptive nodes necessary for keeping the population
polarized as a function of their coupling strength k↑. The
curve separates the polarized phase above it from consensus
phase below. Other parameters: q = 0.1, (A → Ac) = 1,
k+ = 0.1, and ”T = 0.001.

As expected, the result is of the same form as
Eq. (43), but for globally coupled agents. We will
initiate the agents with polarized opinions. If the
e!ective coupling k̃ is large, the agents will achieve
a consensus, whereas for low values of k̃ the agents
will remain polarized. We can find the critical ef-
fective coupling necessary for the consensus using
bifurcation analysis. Treating (A → Ac) as a posi-
tive constant, and I as a parameter in Eq. (43), we
evaluate the bifurcation conditions f(ϑi) = 0 and
f ⇑(ϑi) = 0 to get the bifurcation curve

I = ±
2(A → Ac)

3
2

3
↗
3

. (46)

Without loosing generality, we focus on the positive
solution and compute the two equilibrium points for
opinion

ϑ≃ = →

√
A → Ac

3
,

ϑ+ = 2

√
A → Ac

3
.

(47)

This, in turn, helps us calculate the interaction
term I. Let us assume that in the initial state the
opinions are divided into fraction q that has a neg-
ative opinion and the rest (1 → q) tat that thinks
positively. Then the influence of population opin-
ions on each individual is

I =
k̃

N

N∑

j=1

ϑj = k̃
(
qϑ≃ + (1→ q)ϑ+

)

= k̃

√
A → Ac

3
(2→ 3q).

(48)

The consensus appears when the interaction term
Eq. (48) exceeds the bifurcation value Eq. (46).
This yields the condition

k̃ >
2(A → Ac)

6→ 9q
. (49)

Note that since we considered only the posi-
tive solution for the bifurcation curve, Eq. (49) is
relevant only when positive opinion prevails, i.e.,
q > 0.5. For the reversed scenario, the symme-
try of the problem implies that one simply needs
to replace q by 1 → q in Eq. (49). This condition
for consensus is for the globally coupled system Eq.
(45). Now we can use the expression for k̃ to arrive
at the general consensus condition for the random
walking agents

↓d2k↔

↓d↔2
>

n

N

2(A → Ac)

6→ 9q
. (50)

Equation (9) predicts that the impact of the net-
work topology and the coupling distribution (or the
attack strategy) remains independent of the inter-
nal dynamics of the agents (compare Eq. (50) with
Eq. (13)). In order to avoid redundancy, we only
present the numerical experiments with a regular
network under untargeted attacks.

The consensus condition for untargeted corrup-
tion of a fraction p of discussion venues is given by
a derivation identical to Eq. (21)

pc =
1

k+ → k≃

(
k+ →

2(A → Ac)

6→ 9q

n

N

↓d↔2

↓d2↔

)
. (51)

Figure 10 shows the numerical validation of Eq.
(51) with a random 3-regular network of n = 100
nodes and N = 1000 agents. The initial split of
opinions q = 0.1, the attention (A → Ac) = 1,
positive coupling k+ = 0.1, and the time intervals
#T = 0.001.
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6. DISCUSSION AND CONCLUSIONS

In this study, we have explored the dynamics
of mobile agents as they navigate a complex net-
work and interact with diverse sets of neighbors
in di!erent environments during their movements.
The agents’ internal dynamics are described by ar-
bitrary first-order di!erential equations, and their
interactions are governed by an arbitrary function
of agent states. The network nodes act as interac-
tion venues for the agents and exhibit heterogene-
ity. This variation between the nodes is modeled
by a parameter known as the coupling constant,
which regulates the strength of interactions between
agents within the node.
Our analytic framework is validated in two dis-

tinct scenarios motivated by di!erent applications.
In both cases, we consider individuals moving
through a network of interaction venues, including
o”ces, bars, online chats, social media comments
sections, news articles, and other physical or digital
locations. The internal dynamics and interactions
of individuals vary between the two applications.
The first application is synchronization of brain

activity among groups of interacting individuals.
This phenomenon has been observed in various
recent experiments, employing techniques such as
MRI, EEG, and eye tracking [14, 15, 16, 17, 18, 19].
We model this behavior by representing agents as
Kuramoto oscillators, which tend to synchronize
upon interactions, and explore the global synchro-
nizability of the system.
The second application pertains to a cusp catas-

trophe model of opinion dynamics [21]. This re-
cently published model delves into polarization
within and across individuals, highlighting how
Ising-like interactions between related issues lead
to the emergence of hysteresis in opinion dynamics
when attention to the subject matter is high. We
incorporate this cusp catastrophe model as the in-
ternal dynamics in our random-walking model to
examine the possibility of consensus.
Based on our analysis, which becomes exact in

the limit of weak couplings, we derive e!ective
di!erential equations governing the evolution of
agents’ internal states Eq. (9). Our analysis ac-
counts for the network topology and coupling het-
erogeneity, incorporated in the expression for the
e!ective coupling. Through our analytical findings
we can make several general observations: small
networks with many agents facilitate a strong ef-
fective coupling, high-degree nodes exert a strong

influence on the system behavior, and node degree
fluctuations play a crucial role in stimulating inter-
actions. Additionally, we find that designing the
network structure intelligently, with inherent node
variations in mind, can improve its functionality. In
particular, aligning node degrees with their respec-
tive couplings enhances interactions.

An important strength of our analysis lies in
its ability to accommodate diverse network nodes,
both in terms of their degrees and their internal
dynamics. The coupling constants associated with
nodes can be arbitrarily distributed, enabling us to
explore the interplay of positive and negative cou-
plings. Nodes with negative couplings can be in-
terpreted as disruptors of the system. Moreover,
our approach allows for the selection of disruptive
nodes to be dependent on the network topology,
leading to di!erent attack strategies and notions of
robustness concerning these attacks.

To investigate the e!ect of di!erent network
topologies on facilitating coherence under disrup-
tive influences, we consider two distinct methods of
introducing nodes with negative couplings. First,
we randomly select a portion of nodes and assign
them negative coupling strengths. Second, we em-
ploy a more sophisticated approach by specifically
targeting high-degree nodes and analyzing the con-
sequences of this preferential placement.

Through detailed analysis, we provide analyt-
ical proof that under untargeted attacks, scale-
free networks with a power-law exponent (φ) be-
tween 1 and 3 exhibit the highest robustness, while
regular networks are the most vulnerable. Ran-
dom networks fall somewhere in between these ex-
tremes. However, when attackers strategically tar-
get high-degree nodes, the response of the system
changes. Scale-free networks with 1 < φ ⇐ 3 be-
come the weakest, their coherence easily disrupted
even with mildly negative coupling strengths (k≃).
This reversal is well illustrated in small world net-
works too, where increasing the rewiring probabil-
ity makes coherence easier under untargeted attacks
but harder under targeted attacks. The networks
that were previously the most robust under un-
targeted attacks now become the most susceptible
when targeted. This finding aligns with previous
studies exploring complex networks’ structural ro-
bustness [80]. Regular networks, which were ini-
tially vulnerable, show higher robustness under tar-
geted attacks than heterogeneous networks. How-
ever, it is important to note that the most robust
network topology under targeted attacks is not uni-
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versally fixed and depends on various factors. The
heterogeneity of node degrees in the network plays a
crucial role. On one hand, heterogeneity promotes
coherence when it comes to nodes with positive cou-
pling. However, this very heterogeneity also creates
potential targets for disruptors aiming to destabi-
lize the network.
Our analysis indicates that achieving coherence

becomes more challenging when targeted attacks
are directed toward higher-degree nodes, demon-
strating a decreased network robustness. Addition-
ally, we investigate the e!ects of targeting lower-
degree nodes with repulsive couplings and find that
the coherence conditions are more readily satisfied
under this preferential attack. In addition to for-
mulating a comprehensive analytical solution, we
supplement our research with extensive numerical
experiments to corroborate our discoveries. While
the majority of these outcomes reveal robust con-
currence with our analytical conclusions, it becomes
evident that scale-free networks exhibit pronounced
finite-size e!ects. In conclusion, the relationship
between network topology and internal coherence
is complicated. The most robust network structure
under targeted attacks depends on agents’ internal
dynamics, interaction function, coupling strengths,
and the proportion of disruptors. Gaining a deep
understanding of these intricate details will enable
us to identify the network structures that are most
robust when faced with strategic attacks. By un-
raveling this interplay, we can enhance our ability
to design robust networks capable of withstanding
and recovering from disruptions.
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