L))

Check for
Updates

Handling Working Memory Knowledge Through a
Consultant-Level Resource Management Strategy

Rafael Sousa Silva
rsousasilva@mines.edu
Colorado School of Mines
Golden, Colorado, USA

ABSTRACT

Working memory is an important component of cognition that influ-
ences key cognitive processes, such as language. As such, working
memory should play a key role in cognitive models for language-
capable robots. The ways in which working memory buffers are
organized within a robot’s architecture can inform processes such
as Referring Expression Generation. Thus, it is important to un-
derstand how information and resources within working memory
may be organized to lead to human-like robotic language. Previous
work on the DIARC cognitive architecture described an entity-
level, feature-based working memory framework in which each
known entity had its own dedicated working memory buffer. This
paper expands on that framework and proposes a new resource
management strategy in which sets of entities that belong to the
same type share a single working memory buffer. We end the paper
with a brief discussion of how this novel strategy compares to the
previously implemented entity-level strategy.

CCS CONCEPTS

« Computing methodologies — Cognitive robotics; « Com-
puter systems organization — Distributed architectures.

KEYWORDS

robot cognitive architectures, working memory, referring expres-
sion generation

ACM Reference Format:

Rafael Sousa Silva and Tom Williams. 2024. Handling Working Memory
Knowledge Through a Consultant-Level Resource Management Strategy. In
Companion of the 2024 ACM/IEEE International Conference on Human-Robot
Interaction (HRI °24 Companion), March 11-14, 2024, Boulder, CO, USA. ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3610978.3640634

1 INTRODUCTION AND MOTIVATION

Cognitive models for language-capable robots may borrow inspi-
ration from human cognition in order to promote more natural,
human-like dialogue. Working memory is a pervasive component of
human cognition [3], influencing key cognitive processes, including
language [cf. 1, 2, 6,9-11, 14, 18]. Given its importance to cognition,
working memory is commonly featured in robot cognitive archi-
tectures and plays a major role on the intrinsic decision-making

HRI "24 Companion, March 11-14, 2024, Boulder, CO, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0323-2/24/03.
https://doi.org/10.1145/3610978.3640634

This work is licensed under a Creative Commons Attribution
International 4.0 License.

999

Tom Williams
twilliams@mines.edu
Colorado School of Mines
Golden, Colorado, USA

processes that guide an agent’s behavior. In this paper, we directly
build upon recent work on one of these architectures, DIARC [15],
which has historically implemented cognitively-inspired models
of working memory to facilitate the process of Referring Expres-
sion Generation [16, 22]. For example, activated working memory
contents may be prioritized by a robot speaker when generating
referring expressions to facilitate hearers’ understanding.

One of the main characteristics of working memory is its limited
capacity, which is usually estimated to range from 4 to 9 items [5, 13].
This low storage capacity and the volatility of working memory
suggest that its contents are subject to constant updates. Therefore,
it is important to understand how items leave working memory
in order to give space to more salient items. As such, DIARC’s
working memory models are centered around the mechanism of
forgetting, which performs the maintenance of working memory
through two cognitively-inspired strategies. The first strategy is
decay [4, 8], in which items within working memory are removed
from buffers over time. The second strategy is interference [7, 19],
in which older working memory items are replaced with newer
entries if not rehearsed or reiterated.

Finally, instead of storing salient entities, DIARC’s working mem-
ory buffers store the features of such entities to prioritize the quality
over the quantity of working memory representations [12]. This
feature-based perspective introduces different structural options for
how working memory buffers are distributed across the architec-
ture. In previous work, Williams et al. [22] described an entity-level,
feature-based framework in which each entity known by the ar-
chitecture has a dedicated working memory buffer that will hold
salient features. In this work, we formally define a consultant-level
framework (see Section 2.1) that instead assigns working memory
buffers to different entity types. These buffers are shared by all
entities that belong to their corresponding type. For example, if a
robot has information about three humans in a knowledge base,
these three entities would share the same “people” working memory
buffer. More details about DIARC’s knowledge bases and working
memory are provided in the next section.

After formalizing and introducing our new strategy for working
memory buffer organization (Section 3), we perform a discussion of
how our model compares to the entity-level framework described in
previous work (Section 4). Finally, we state our concluding remarks
and a few directions for future work (Section 5).

2 THE DIARC ARCHITECTURE

In this section, we briefly introduce how DIARC’s knowledge bases
and working memory component work. This information is neces-
sary to understand how our new resource management strategy
functions and informs robot decision-making.

https://doi.org/10.1145/3610978.3640634
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3610978.3640634
mailto:twilliams@mines.edu
mailto:rsousasilva@mines.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3610978.3640634&domain=pdf&date_stamp=2024-03-11

HRI 24 Companion, March 11-14, 2024, Boulder, CO, USA

2.1 DIARC’s Knowledge Bases and Consultants

In DIARC, world knowledge is not handled by a single knowledge
base, but is rather split across different Distributed Heterogeneous
Knowledge Bases (DHKBs) [23], allowing each different type of
knowledge to be handled in the way that suits it best. This decentral-
ized knowledge organization creates the need for a special type of
architectural component called consultants [20]. Consultants filter
the domain-specific information from these DHKBs into first-order
logic statements that can be understood and used by any other
component within the architecture. Thus, when other architectural
components require certain information from a DHKB, a consultant
will only share the necessary domain-independent information in
first-order logic format with them. For example, in a task where a
robot needs to formulate a description for an object that it knows
as object_1, the consultant responsible for storing the features of
object_1 may be queried by other DIARC components and return
a list of first-order logic statements that can be used in a description
(e.g., object_1 = [blue(X), mug(X)]).

2.2 DIARC’s Working Memory Manager

The Working Memory (WM) Manager is a component responsible
for implementing forgetting and maintaining working memory
buffers across the architecture. Previous work [22] has described
an entity-level, feature-based implementation for the WM Manager.
In this work, we expand this concept with a formal definition of the
WM Manager component that includes a consultant-level resource
management strategy.
The WM Manager can be described as W = (S, F, C), where:

o S={s:s € {et}} represents the active working memory re-
source management strategy within the architecture. When
S = {e}, an entity-level strategy is active within the archi-
tecture. Similarly, when S = {t}*, a consultant-level strategy
is active within the architecture.

e F = [J, a] represents the list of parameter values for Decay
and Interference that guide how Working Memory functions.
The parameter § represents the decay factor associated with
Decay and the parameter a represents the maximum Work-
ing Memory buffer size associated with Interference;

e C = {c1,...,cn} represents the set of active consultants
within the architecture. Each consultant ¢ € C is described
as ¢ = (Cdomains Cconstraints)> Where ¢gomain represents the
domain of entities within ¢ (e.g., "objects", "locations", "peo-

ple") and cconstraints represents the set of first-order logic
constraints that ¢ can handle (e.g., metallic(X), green(X),
on(X,Y)) [20, 21].

Our formal definition of the WM Manager introduces two new
features to this component. First, the parameter S, which specifies
the active resource management strategy within the architecture.
Second, in the initial framework the interference parameter « speci-
fied the size limit for each entity’s working memory buffer. With the
introduction of the consultant-level strategy, @ now specifies the up-
per bound for the number of total working memory properties per
consultant. As such, when S = {t}, each consultant ¢ € C will have
a dedicated working memory buffer B C cconstrainss such that

“We use t instead of ¢ to avoid confusions with previously established notation.

1000

Rafael Sousa Silva & Tom Williams

|B¢| < a for managing constraints that span all entities in cjomqin-
On the other hand, when S = {e}, each entity within a consultant
will have a dedicated working memory buffer B, C cconstraints
such that |Be| < [m] for managing salient constraints.

3 CONSULTANT-LEVEL FRAMEWORK

In this section we describe how features are encoded and removed
from Working Memory buffers at a consultant-level.

3.1 Encoding

In a consultant-level working memory model, features are added
to a consultant’s working memory buffer when they are used to
describe an entity within that consultant’s domain. The pseudocode
for this process is listed in Algorithm 1.

Algorithm 1 Consultant-level encoding

1: procedure ENCODE(R, C)
R: Referring expression.
C: Set of active consultants.
for allc € Cdo
for all r € R do
if r € cconstraints and r € B, then
remove(r, Bc)
push(r, Bc)
else if r € cconstraints and r € B then
push(r, Bc)

When a referring expression R € |J Cconstraints 1S generated

€
or processed by the robot architecturec (line 1), for each consultant
¢ € C (line 2), each constraint r € R (line 3) is added to ¢’s working
memory buffer B, if it is part of the list of constraints that can be
handled by c (i.e., ¥ € cconstraints)- If r is already in the working
memory buffer, then its recency is updated (lines 4-6). Otherwise,
it is added to the working memory buffer (lines 7-8).

3.2 Removal

The removal of constraints from working memory buffers is gov-
erned by the forgetting parameters specified in F = [, «]. When
decay isin use (i.e., § # o), the least recent property from a buffer is
removed every & seconds. When interference is in use (i.e., @ # o),
the least recent constraints are removed from a buffer that exceeds
the maximum capacity a. Algorithm 2 provides the pseudocode for
this process.

Algorithm 2 Consultant-level removal

1: procedure REMOVE(F, C)
F = [§, a]: List of forgetting parameters.
C: Set of active consultants.

forallc € Cdo

)

3 if § seconds have passed and |B;| > 0 then
& pop(Bc)

: while |B;| > « do

6: pop(Bc)

Handling Working Memory Knowledge Through a Consultant-Level Resource Management Strategy

Entity-Level Resource Management

Consultant A: People

Entities Working Memory Buffers

m—
@_

m—

Consultant B: Objects

Entities Working Memory Buffers
(Cobiect 1)— (SO Eresn RO cUBicO0 M
o oyindicred)]

(a) In an entity-level strategy, each entity known by the architecture
will have a dedicated working memory buffer. Properties in working
memory buffers are used to describe only their corresponding entity.

HRI ’24 Companion, March 11-14, 2024, Boulder, CO, USA

Consultant-Level Resource Management

Consultant A: People

-

Entities

Shared Working Memory Buffer

Consultant B: Objects

Shared Working Memory Buffer

(b) In a consultant-level strategy, all entities of the same type share
one single working memory buffer. Properties in a consultant’s buffer
may apply to different entities.

Figure 1: Architectural overview of the entity-level and consultant-level strategies with two example consultants.

For each consultant ¢ € C (line 2), if § seconds have passed
and there exist properties in B, then the least recent property is
removed from B (lines 3—4). In addition, if the size of B, exceeds the
maximum working memory buffer size «, the least recent properties
are removed until buffer capacity matches a (lines 5-6).

4 DISCUSSION

We will now briefly discuss how the consultant-level strategy com-
pares to the previously proposed entity-level strategy in terms of
their spatiotemporal needs and cognitive plausibility. While the
consultant-level strategy seems to carry a better computational effi-
ciency and a structure that is closer to the psychological definition
of working memory, there are a few downsides of using it instead
of the entity-level strategy.

4.1 Spatiotemporal Needs

The spatial and temporal needs of the consultant-level working
memory resource management strategy may be significantly lower
than those of the entity-level strategy. This is observed because in
the latter strategy one working memory buffer will be assigned to
each entity known by the architecture (see Figure 1a). As such, in
situations where the number of entities known by a consultant is
considerably high, the processes of encoding and removal may take
a while longer to be completed. Furthermore, a consultant-level
strategy reduces the number of required working memory buffers
according to the entity types that are known by the architecture (see
Figure 1b). Depending on the level of abstraction between different
entity types, the total working memory capacity for the entire archi-
tecture may be known in advance. For example, if an architectural
model adopts the taxonomy for core knowledge proposed by Spelke
and Kinzler [17], there will be at most five active consultants within
it (i.e., people, locations, objects, actions, numbers). Thus, the total

1001

working memory capacity for the architecture will have an upper
bound of 5a elements.

4.2 Cognitive Plausibility

A consultant-level resource management strategy is closer to cog-
nitive psychology models of human working memory in terms
of storage than the entity-level strategy. Specifically, the entity-
level resource management strategy is more likely to bring overall
storage capacity above the speculated human limit even with low
buffer sizes, and requires storage of some information about every
known entity in working memory, which is simply not cognitively
plausible. While a consultant-level strategy is not dependant on
the number of known entities and significantly reduces the total
working memory storage that is required, it still may overshoot the
stipulated working memory capacity for humans, depending on the
number of consultants, and on whether traditional human working
memory limitations are assumed to hold at the entity or feature
level. For example, an architectural model with five consultants
will already surpass the stipulated human capacity if « = 2. With
this in mind, future work may investigate the feasibility of a global
resource management strategy for working memory, in which only
one working memory buffer is assigned to all entity types.

4.3 Disadvantages of Using the
Consultant-Level Strategy

Using a consultant-level strategy in situations where the total num-
ber of known entities by the architecture is not high may not be
ideal, as it may make referring expression generation less consistent.
Since working memory buffers are shared by entities of the same
type, the way in which a robot chooses to formulate descriptions
of objects will not be as specific as that of an entity-level strategy.
This is due to the fact that in an entity-level strategy, the buffer for
each entity will hold the most recent constraints that were used to

HRI 24 Companion, March 11-14, 2024, Boulder, CO, USA

describe it and thus will promote the repetition of the same prop-
erties in subsequent robot-formulated utterances. For example, if
an object is described to a robot as "the blue mug,' the properties
blue(X) and mug(X) will remain in that object’s working memory
buffer independently of how many other objects are referenced af-
terwards, and the robot will reuse blue (X) and mug(X) to describe
the object when necessary. In contrast, a consultant-level strategy
will update the buffer for each entity type whenever an entity of
that type is mentioned, and thus may not guarantee a consistent
referring expression generation process, as multiple entities may
share the same constraints. For instance, if an object is described to
a robot as "the blue mug,' blue (X) and mug(X) may be overwritten
by the features of other objects that are referenced after the blue
mug. This limitation is important as a less consistent process of
referring expression generation may hurt human interlocutors’ abil-
ity to perform reference resolution, i.e., understand which entity the
robot is referring to, and may decrease the quality of interaction.

5 CONCLUSION

In this work, we introduced a consultant-level resource manage-
ment strategy for the working memory models implemented in
the DIARC cognitive architecture. We formally proposed a defini-
tion for the Working Memory Manager component that adds the
need to specify which resource management strategy is guiding
working memory. Furthermore, we performed a high-level discus-
sion of the consultant-level strategy in terms of spatiotemporal
needs and cognitive plausibility compared to the entity-level strat-
egy. We observed that the consultant-level strategy likely promotes
better computational efficiency both in terms of space and time
needed to run the encoding and removal algorithms. In addition,
the consultant-level strategy has a higher cognitive plausibility
than the entity-level strategy, as less working memory buffers need
to be active simultaneously.

The introduction of this model opens opportunities for subse-
quent work to investigate how a consultant-level resource manage-
ment strategy impacts important natural language processes within
DIARC. For example, future work may assess how the referring ex-
pressions of an agent that is using this strategy to guide its working
memory are perceived by human interlocutors. An experiment can
be designed to compare the utterances generated by an entity-level
strategy, a consultant-level strategy, and a baseline framework for
Referring Expression Generation that does not use working mem-
ory. The experimental results will help identify the best structural
choices for robotic working memory models targeted at enabling
better language-based interactions with humans. Finally, future
work may also consider the implementation of a global resource
management strategy that limits working memory information to
a single architecture-wide buffer, an organization that will be more
cognitively plausible than the currently existing strategies and that
may be more appropriate for use in certain social contexts and
interactions.

1002

Rafael Sousa Silva & Tom Williams

ACKNOWLEDGMENTS
This work was funded in part by NSF CAREER grant IIS-2044865.

REFERENCES

[1] Alan Baddeley. 2010. Working memory. Current biology 20, 4 (2010), R136-R140.
[2] Alan D Baddeley, Susan E Gathercole, and Costanza Papagno. 1998. The phono-
logical loop as a language learning device. Exploring Working Memory (1998),
164-198.

Paul Baxter and Tony Belpaeme. 2014. Pervasive memory: The future of long-
term social hri lies in the past. In Third international symposium on new frontiers
in human-robot interaction at AISB.

John Brown. 1958. Some tests of the decay theory of immediate memory. Quar-
terly journal of experimental psychology 10, 1 (1958), 12-21.

Nelson Cowan. 2001. The magical number 4 in short-term memory: A recon-
sideration of mental storage capacity. Behavioral and brain sciences 24, 1 (2001),
87-114.

Nadiia Denhovska, Ludovica Serratrice, and John Payne. 2016. Acquisition of
second language grammar under incidental learning conditions: The role of
frequency and working memory. Language Learning 66, 1 (2016), 159-190.
Michaela T Dewar, Nelson Cowan, and Sergio Della Sala. 2007. Forgetting due to
retroactive interference: A fusion of Miiller and Pilzecker’s (1900) early insights
into everyday forgetting and recent research on anterograde amnesia. Cortex 43,
5 (2007), 616-634.

Hermann Ebbinghaus. 1885. Memory: A contribution to experimental psychology,
trans. HA Ruger & CE Bussenius. Teachers College.[rWvH] (1885).

Jeanette K Gundel, Nancy Hedberg, and Ron Zacharski. 1993. Cognitive status
and the form of referring expressions in discourse. Language (1993), 274-307.
Graeme S Halford, William H Wilson, and Steven Phillips. 1998. Processing
capacity defined by relational complexity: Implications for comparative, devel-
opmental, and cognitive psychology. Behavioral and brain sciences 21, 6 (1998),
803-831.

Patrick C Kyllonen and Raymond E Christal. 1990. Reasoning ability is (little
more than) working-memory capacity?! Intelligence 14, 4 (1990), 389-433.
Wei Ji Ma, Masud Husain, and Paul M Bays. 2014. Changing concepts of working
memory. Nature neuroscience 17, 3 (2014), 347-356.

George A Miller. 1956. The magical number seven, plus or minus two: Some
limits on our capacity for processing information. Psychological review 63, 2
(1956), 81.

Jerker Ronnberg, Mary Rudner, Thomas Lunner, Adriana A Zekveld, et al. 2010.
When cognition kicks in: Working memory and speech understanding in noise.
Noise and Health 12, 49 (2010), 263.

Matthias Scheutz, Thomas Williams, Evan Krause, Bradley Oosterveld, Vasanth
Sarathy, and Tyler Frasca. 2019. An overview of the distributed integrated
cognition affect and reflection diarc architecture. Cognitive architectures (2019),
165-193.

Rafael Sousa Silva, Michelle Lieng, and Tom Williams. 2023. Forget About It:
Entity-Level Working Memory Models for Referring Expression Generation
in Robot Cognitive Architectures. In Proceedings of the Annual Meeting of the
Cognitive Science Society, Vol. 45.

Elizabeth S Spelke and Katherine D Kinzler. 2007. Core knowledge. Developmental
science 10, 1 (2007), 89-96.

Heinz-Martin Siif3, Klaus Oberauer, Werner W Wittmann, Oliver Wilhelm, and
Ralf Schulze. 2002. Working-memory capacity explains reasoning ability—and a
little bit more. Intelligence 30, 3 (2002), 261-288.

Nancy C Waugh and Donald A Norman. 1965. Primary memory. Psychological
review 72, 2 (1965), 89.

Tom Williams. 2017. A Consultant Framework for Natural Language Processing
in Integrated Robot Architectures. IEEE Intell. Informatics Bull. 18,1 (2017), 10-14.
Tom Williams. 2017. Situated natural language interaction in uncertain and open
worlds. AI Matters 3, 2 (Jul 2017), 20-21. https://doi.org/10.1145/3098888.3098896
Tom Williams, Torin Johnson, Will Culpepper, and Kellyn Larson. 2020. To-
ward forgetting-sensitive referring expression generationfor integrated robot
architectures. arXiv preprint arXiv:2007.08672 (2020).

Tom Williams and Matthias Scheutz. 2016. A framework for resolving open-
world referential expressions in distributed heterogeneous knowledge bases. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 30.

[3]

[4]
[5]

l6

7

—_ =
L X

[10

(1]

[12

[13

[15

[16

[17

(18]

=
2

[20

[21

[22

(23]

https://doi.org/10.1145/3098888.3098896

	Abstract
	1 Introduction and Motivation
	2 The DIARC architecture
	2.1 DIARC's Knowledge Bases and Consultants
	2.2 DIARC's Working Memory Manager

	3 Consultant-Level Framework
	3.1 Encoding
	3.2 Removal

	4 Discussion
	4.1 Spatiotemporal Needs
	4.2 Cognitive Plausibility
	4.3 Disadvantages of Using the Consultant-Level Strategy

	5 Conclusion
	Acknowledgments
	References

