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Abstract6

Insect outbreaks can cause large scale defoliation of forest trees or destruction of crops, leading to ecosystem
degradation and economic losses. Some outbreaks occur simultaneously across large geographic scales and
some outbreaks occur periodically every few years across space. Parasitoids are a natural enemy of these
defoliators and could help mitigate these pest outbreaks. A holistic understanding of the host-parasitoid
interactions in a spatial context would thus enhance our ability to understand, predict and prevent these
outbreaks. We use a discrete time deterministic model of the host parasitoid system with populations
migrating between 2 patches to study spatial host outbreaks. We show that whenever populations persist
indefinitely, host outbreaks in both patches occur alternatively (out of phase) at low migration between
patches whereas host outbreaks occur simultaneously (in phase) in both patches at high migration between
patches. We show that our results are robust across di!erent modelling approaches and give an analytical
expression for the period of oscillations when the migration is low i.e. when host outbreaks in both patches are
out of phase. We end our paper by showing that we get the same results whether we include the biologically
rooted formulations from May et al. (1981) or a general cellular automata model with qualitative rules.

Keywords: Population dynamics, Insect oscillations, Host-parasitoid interactions, Functional responses,7

Cellular Automata models8

1. Introduction9

It is long known that insect herbivores are10

agents causing great threats to ecosystems - threat-11

ening irreversible changes to food security, forest12

cover etc Balla et al. (2021) Boyd et al. (2013)13

Gandhi and Herms (2010). These insect popula-14

tions can remain at a low density for many years,15

often going unnoticed. However, every few years,16

these insect populations explode in numbers, caus-17

ing large scale loss of forest cover Liebhold and18

Bentz (2011) Hunter and Dwyer (1998). Many19

factors including growth rates, predation, envi-20

ronmental factors and changes in food quality are21

known to influence the population trends of these22

herbivores (Barbosa et al. (1987)) Myers (1988),23

however the exact reasons still remain elusive. Sev-24

eral time-lagged mechanisms like interactions with25

predators, diseases, maternal e!ects etc., have been26

identified to cause such cyclical dynamics Umban-27

howar and Hastings (2002).28

29

Classical biological control is the phenomenon30

of purposefully introducing and establishing a for-31

eign species (natural enemy) with the aim of sup-32

pressing the outbreaks of the native species Briese33

et al. (2000) Caltagirone (1981). Pests which can34

be controlled by introducing natural enemy in-35

cludes invertebrates, vertebrates and weeds. The36

organisms that function as natural enemy include37

vertebrates (birds, reptiles) and invertebrates (par-38

asitoids). Here, we focus our attention on herbivore39

insect populations and parasitoids40

41

Parasitoids have long been a subject of eco-42

logical interest for several reasons. Roughly 14%43

of all insect species are parasitoids Hassell and44

Waage (1984). The female parasitoid searches for45

an immature stage of the herbivore insect (host)46

and lays eggs inside it. These eggs hatch inside47

the body of the host and the parasitoid larvae feed48

and grow at the expense of hosts, inside the host.49

At a later stage, they emerge from the host, typ-50

ically killing it in the process. Thus, parasitoids51

are considered agents of biological control as they52

can keep the herbivore insect populations to low53

numbers by direct mortality Waage and Hassell54

(1982), Wang et al. (2019) Godfray et al. (1994)55

Strand and Obrycki (1996).56

57

There are several simplifications which make58

the study of host-parasitoid system more suited59

to study enemy-victim dynamics than more gen-60
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eral predator prey dynamics. Many parasitoids are61

highly specific to the hosts they predate Strand and62

Obrycki (1996), allowing us to consider the host-63

parasitoid system as a closed system, independent64

of the influence of other populations. Furthermore,65

this specificity also leads to synchronized life cy-66

cles of host and parasitoid species, allowing the67

use of discrete time equations appropriate. Since68

hosts are attacked only by adult parasitoids, we69

can further ignore age structure in our modelling70

Mills and Getz (1996).71

72

Migration is of crucial importance in unrav-73

eling the dynamics of spatial synchrony in insect74

populations Abbott and Dwyer (2008) Liebhold75

et al. (2004). Migration can introduce traveling76

population waves, leading to complex relationships77

between synchrony and distanceLiebhold et al.78

(2004),Hassell et al. (1991). It shapes the abun-79

dance and demographic properties of insect popu-80

lations by influencing reproductive patterns, mor-81

tality rates, and population characteristics such as82

size and age distributions. Moreover, migratory83

movements can synchronize the dynamics of dif-84

ferent species, including those with direct trophic85

interactions and shared resourcesLiebhold et al.86

(2004). Investigating migration patterns can lead87

to insights into the mechanisms driving spatial syn-88

chrony which is vital for predicting and managing89

insect outbreaks, understanding ecological inter-90

actions, and e!ectively conserving and controlling91

insect populations.92

93

Given the rather strong assumptions made in94

most spatial host-parasitoid models, it could ap-95

pear that drawing conclusions about a specific bi-96

ological system could be di”cult. We address this97

gap here by trying to demonstrate robust results98

that should apply across a range of systems. In99

this paper, we study coupled dynamics of a host-100

parasitoid system with a focus on exploring the role101

of migration in ensuing dynamics. We use a 2 patch102

host-parasitoid system, with the dynamics within103

each patch as given by Umbanhowar and Hastings104

(2002), with hosts and parasitoids migrating be-105

tween the patches after reproduction. Within each106

patch, the hosts are limited by intraspecific com-107

petition and parasitism Umbanhowar and Hastings108

(2002). We show that at low migration, the host109

outbreaks in the 2 patches occur alternatively (out110

of phase) and at high migration, the host outbreaks111

in both patches occur simultaneously (in phase).112

While similar results for host-parasitoid systems113

have been shown before Adler (1993), we focus114

our attention to the robustness and cause of such115

oscillations. We address the robustness by test-116

ing our results across di!erent biologically relevant117

functional forms for intraspecific competition and118

parasitism. We then show that similar results are119

obtained in a cellular automata model devoid of120

biological detail, which only qualitatively captures121

host-paraisioid system, thus establishing the role of122

migration independent of other biological interac-123

tions. Lastly, we provide an analytical expression124

for calculating the time period of the oscillations125

of the system, when the two patches oscillate out126

of phase.127

2. Single patch dynamics128

We use the general formulations from May129

et al. (1981), which models 3 phenological processes130

- reproduction, intraspecific competition amongst131

hosts and parasitism (by parasitoids). This gives132

a general form for annual densities for hosts (Ht)133

and parasitoids (Pt)134

Ht+1 = ωF (Ht)G(Ht, Pt)

Pt+1 = cF (Ht)(1→G(Ht, Pt)) (1)

Here ω is the intrinsic growth rate of the hosts135

and c is the no of parasitoids that emerge from a136

single larvae. Following the analysis done in Um-137

banhowar and Hastings (2002), we assume the fol-138

lowing form of non-dimensionalized equations for139

the host-parasitoid dynamics within each patch,140

where the min function is used to model intraspe-141

cific competition. It is exactly compensatory, as142

opposed to Ricker or many other forms of intraspe-143

cific competition which are over compensatory.144

This model has an unstable fixed point and thus145

leads to oscillations as shown in Figure 1.146

ht+1 = ωmin(ht, 1)e
→pt

pt+1 = εmin(ht, 1)(1→ e
→pt) (2)

147

148

The oscillations produced by this model can149

be divided into 3 phases - 1) Buildup - which is150

marked by low host and parasitoid densities (i.e.151

ht ↑ 0, pt ↑ 0), followed by 2) Outbreak - which152

is marked by high host density but low parasitoid153

density (i.e. ht ↑ ω, pt ↑ 0), which is followed by154

3) Crash - where the parasitoid population is large155

enough to reduce host population significantly (i.e.156

pt > 1, ht ↑ 0).157

2
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Figure 1: a) Time series and b) phase plot of a single host-parasitoid population at steady state is shown. As shown, the

densities show a quasi-periodicity, where they are confined within a manifold as shown in (b).

3. Two patch dynamics158

Let hi

t
, pi

t
be the host and parasitoid population159

in patch i at time t. Let ω be the growth rate of the160

host and ε be the growth rate of parasitoid. Let161

ϑ be the fraction of population migrating from one162

patch to another. The equations for the resulting163

dynamical system is:164

h
1
t+1 = h

1
tm

(1→ ϑ) + ϑ h
2
tm

h
2
t+1 = h

2
tm

(1→ ϑ) + ϑ h
1
tm

p
1
t+1 = p

1
tm

(1→ ϑ) + ϑ p
2
tm

p
2
t+1 = p

2
tm

(1→ ϑ) + ϑ p
1
tm

(3)

Here htm, ptm represent the host and parasitoid165

densities at t before migration after competiton,166

parasitism and reproduction have taken place i.e.167

htm = ωmin(ht, 1)e
→pt

ptm = εmin(ht, 1)(1→ e
→pt) (4)

In our model, reproduction is given by a multi-168

plicative factor, thus, the order of migration and169

reproduction can be interchanged. Biologically,170

it’ll refer to the scenario where the surviving adults171

after competition and parasitism have taken place,172

migrate and then reproduce.173

174

When ϑ →↑ 0, both patches oscillate almost175

independently i.e. the e!ect of coupling due to176

migration between patches is negligible. Note that177

the parameters are identical in both the patches.178

179

As we increase the strength of coupling due to180

migration i.e. ϑ from 0, we first get out of phase181

solutions (as shown in Figure 2 (b)), where the182

peaks in host densities (i.e. host outbreaks) in 2183

patches occur alternatively (out of phase). These184

out of phase oscillations persist indefinitely in our185

simulations as long as the initial conditions in the186

2 patches aren’t very identical. If the initial con-187

ditions are identical, then both patches behave as188

one single patch and thus, they oscillate in uni-189

son (see Figure 2 (d)). In our simulations, initial190

conditions were selected randomly and the host191

densities of 2 patches at steady state is shown in192

Figure 2.193

194

These out of phase solutions occur for a wide195

range of migrations as shown in Figure 2 (b,c)),196

ranging several orders of magnitude. With in-197

creasing ϑ, we find that the length of the outbreaks198

decrease until the outbreaks occur for 1-2 genera-199

tions. Further increasing ϑ, beyond this point leads200

to a transition towards in phase solutions, where201

the host outbreaks occur simultaneously in both202

patches (as shown in Figure 2 d). We find that, the203

transition occurs in a very small window for ϑ i.e.204

(in 0.01 < ϑ < 0.025). The exact nature and win-205

dow of transition is complex and depends on other206

parameters i.e. ω and ε. Out of phase solutions are207

further characterized by periods of near absence of208

hosts are accompanied by sudden outbreaks which209

last for few generations in each patch. However, if210

we look at the overall sum of host densities in both211

patches, they remain unchanging for most of the212

generations as shown in Figure 3 (a). However, the213
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Figure 2: Host densities at steady state are shown for di!erent migration rates. The parameters ω = 3, ε = 6 were fixed. In

(a), there is no coupling between the patches. However, when we increase ϑ, we see out of phase solutions (b,c), where the host

outbreaks in the 2 patches occur alternatively. These out of phase solutions exist for a large range of ϑ values. Increasing ϑ, the
time period of host outbreaks decrease till the outbreak occurs for 1-2 generations (as shown in (c)). With further increase in

migration, the host outbreaks in both the patches occur simultaneously as shown in (d).

in phase solutions are di!erent as periods of near214

absence of hosts are accompanied by sudden out-215

breaks lasting few generations, both at individual216

patch level and overall sum over both patches as217

shown in Figure 3 (b).218

219

At higher values of ϑ, we see in phase solu-220

tions, where the peaks in host densities (i.e. host221

outbreaks) in 2 patches occur simultaneously (as222

shown in Figure 2b) i.e. both patches oscillate in223

phase. High migration rates i.e. (ϑ ↑ 1) lowers224

any di!erence in population in 2 patches. This225

happens till both patches oscillate in phase after226

which the e!ect of migration is negligible, as shown227

below.228

229

h
1
t+1 → h

2
t+1 = ω(1→ 2ϑ)ϖ (5)

where

ϖ =
(
min(h1

t
, 1)e→p

1
t →min(h2

t
, 1)e→p

2
t

)

When

ϑ ↑ 1, ω(1→ 2ϑ) < 1

and

|(min(h1
t
, 1)e→p

1
t →min(h2

t
, 1)e→p

2
t )| ↓ |h1

t
→ h

2
t
|

Thus, the di!erence in population in 2 patches230

decreases every generation231

|h1
t+1 → h

2
t+1| < |h1

t
→ h

2
t
| (6)

Thus, at steady state, both patches oscillate in
phase, i.e.

lim
t↑↓

h
1
t
= h

2
t
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Figure 3: Host densities at steady state are shown for di!erent migration rates. At low migration (a) i.e. ϑ = 10
→6

, we

see that the host outbreaks in the 2 patches occur alternatively. The sum of the host densities remains constant with small

fluctuations every few generations. In contrast, at high migration rates i.e ϑ = 0.025, host outbreaks in both the patches occur

simultaneously as shown in b). We see cycles of large overall host outbreaks followed by generations of near host absence, as

shown by the sum of the host densities in the 2 patches. The parameters used were ω = 3, ε = 6.

Table 1: List of all di!erent functions we’ve tested in our 2 patch model

Description Mathematical form Other parameters involved

Ricker map for hosts intraspe-
cific competition

F (Ht) = e
r(1→Ht

K
) Growth rate r, Carrying Capac-

ity K

Smith map for hosts intraspecific
competition

F (Ht) =
Ht

1+(ω→1)(H

K
)b

Growth factor ω, Carrying ca-
pacity K, strength of competi-
tion b

Independent search by para-
sitoids for hosts

G(Ht, Pt) = e
→aPt Per capita searching e”ciency a

Aggregated attacks by para-
sitoids on hosts

G(Ht, Pt) =
(
1 + aP (t)

k

)→k

Per capita searching e”ciency a,
Degree of aggregation k

4. Robustness across choice of functions232

Our results from the previous section are robust233

across di!erent choices of intraspecific competition234

i.e. F (Ht) and parasitism G(Ht, Pt). For F (Ht),235

we chose Ricker map and a function described by236

Maynard Smith, for annual insects amongst choice237

of intraspecific competition (as shown in the table238

below). For G(Ht, Pt), we used both independent239

and aggregated parasitoid search for hosts.240

241

We found similar out of phase and in phase242

oscillations at low and high values of migration243

for any combination of functions mentioned above.244

Figure 4 shows a few specific cases of our findings.245

246

5. Length of the cycle247

When migration rate is high, both patches os-248

cillate in phase, behaving like a single patch. Thus,249

any measure of length of cycle i.e. time between250

successive host outbreaks, can be calculated using251

the equations derived for a single isolated patch252

Umbanhowar and Hastings (2002). We provide an253

approximate expression for length of cycle when254

migration rates are low and both patches oscillate255

out of phase. We define Tb,i, To,i and Tc,i as the256

number of generations patch i undergoes buildup,257

outbreak and crash respectively. We use the fol-258

lowing observations (without losing generality):259

260

• Duration of build up in 1 patch must be no
more than the combined duration of outbreak

5
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Figure 4: Host densities in 2 patches are plotted at steady state. Top (bottom) column represents cases for low (high) migra-

tion rates respectively. a) and c) are examples where host intraspecific competition was modelled using Ricker map and the

parasitoid attack was aggregated. b) and d) are examples where intraspecific competition was modelled using Smith map and

parasitoid search for hosts are independent.

and crash in other patch i.e.

Tb,1 ↓ To,2 + Tc,2

If this condition isn’t satisfied, then both the261

patches will have build-up simultaneously,262

which isn’t the case in out of phase oscilla-263

tions.264

• Duration of build up in 1 patch must be no
less than the duration of outbreak in other
patch i.e.

Tb,1 > To,2

If this condition isn’t satisfied, then both the265

patches will have outbreaks simultaneously,266

which isn’t the case in out of phase solutions.267

Since a crash occurs for 2-3 generations, the268

time for build up is given by269

Tb,1 = To,2 + 1 or 2 (7)

Because both the patches are symmetric, we270

have Tb,1 = Tb,2 and To,1 = To,2. Henceforth, we271

will drop the patch numbers and just talk about272

build up (Tb), outbreak (To), and crash phases (Tc)273

and the total length of the cycle (T ).274

T = Tb + To + Tc (8)

275

From To = Tb→1orTb→2 (from Equation [4]). Thus,276

adding that the crash is usually 2-3 generations277

T = 2Tb or 2Tb + 1 (9)

The host density at the start of build up is H1 =278

ω
2
e
→ε

(
2→ 1

ω

)

+ ϑω, where the former term is a re-279

sult of parasitism (as shown in Umbanhowar and280

Hastings (2002)) and the latter is the host pop-281

ulation which migrated into this patch from the282

patch undergoing an outbreak. Since ε is usu-283

ally large, ω
2
e
→ε

(
2→ 1

ω

)

↔ 0. This is supported284

by the intuition that after the crash, the host den-285

6
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Figure 5: Length of cycle (numerically and approximate expressions) are plotted. Each blue dot represents length of cycle

numerically obtained for a single iteration, after taking the mean of 1000 di!erent time points after steady state was reached.

The green and black curves represent the approximate theoretical expressions derived in the text. Here ω = 3.375 and ε = 4.875.

sities are reduced to very small values due to par-286

asitism. Thus, for very small values of migration287

i.e. ϑ ↓ ωe
→ε

(
2→ 1

ω

)

, we don’t see any a!ect of mi-288

gration and the two patches behave as if they are289

isolated patches. But for 1 >> ϑ >> ωe
→ε

(
2→ 1

ω

)

,290

H1 ↔ ϑω. Given the geometric nature of the growth291

of host density during buildup (as parasitoid den-292

sity is low, leading to no mortality due to para-293

sitism) and host migration from the other patch294

undergoing an outbreak, we have295

Ht = ϑ(ωt + ω
t→1 + · · ·+ ω) = ϑω

(
ω
t → 1

)

ω→ 1
(10)

As long as the other patch is undergoing an out-296

break, the host density in the patch in the build up297

phase will continue to grow according to the expres-298

sion above. Assuming that the outbreak lasts for299

To = Tb → 2 generations, we would have300

HTb→2 = ϑω

(
ω
Tb→2 → 1

)

ω→ 1
(11)

Following an outbreak, the other patch under-301

goes crash which has high parasitoid density, re-302

ducing host densities in that patch. Thus, we can303

ignore the e!ect of migration for the remainder of304

the 2 generations of buildup, giving us the expres-305

sion for host density at the end of the build up306

HTb
= ϑω

3

(
ω
Tb→2 → 1

)

ω→ 1
(12)

Similarly, at the end of buildup the host density307

is HTb
↔ 1 (as shown in Umbanhowar and Hast-308

ings (2002)). Equating the expected host densities309

at the start of outbreak, we get310

ϑω
3

(
ω
Tb→2 → 1

)

ω→ 1
↔ 1 (13)

This gives us an approximate expression for Tb311

and T = 2Tb as follows312

Tb = 2 +
ln
(
1 + ω→1

ϑω3

)

ln(ω)
(14)

T = 4 + 2
ln
(
1 + ω→1

ϑω3

)

ln(ω)
(15)

Furthermore, if instead we take To = Tb→1 gen-313

erations and T = 2Tb + 1, we get the approximate314

expression as315

7



Tb = 1 +
ln
(
1 + ω→1

ϑω2

)

ln(ω)
(16)

T = 3 + 2
ln
(
1 + ω→1

ϑω2

)

ln(ω)
(17)

To test our expression for T against numerical316

simulations, we plot these expressions against the317

length of cycle numerically observed in out of phase318

solutions for di!erent migration rates (for fixed ω319

and ε). To find the length of the cycle numeri-320

cally, we measure the no of generations between321

peak parasitism (during crash) within each patch.322

We measure this 1000 times from either patch at323

random times after steady state was reached. The324

length of the cycle is the mean of these 1000 in-325

stances. Furthermore, for each value of ϑ, we repeat326

this for 10,000 di!erent iterations, with di!erent327

initial conditions, to account for any dependency328

on initial conditions. We plot the length of a cycle329

for all of these 10,000 iterations (for a given ϑ) in330

the same plot. When ϑ ↔ 0 or ϑ ↔ 1, the length of331

cycle should be same as that of a single patch. For332

intermittent values of ϑ, we expect the length of cy-333

cle to first decrease and then increase as ϑ ↔ 1, in334

agreement with what we see in Figure 5. As shown335

in Figure 5, the numerical and approximate ana-336

lytical expressions (shown in green and black) are337

in agreement. Furthermore, as ϑ increases, we see338

that length of cycle increases as both patches are339

in phase, albeit there are some instances in which340

system still ends up out of phase, implying the de-341

pendence of initial conditions.342

6. Cellular Automata model343

In this section, we show that our main results344

- patches oscillating out of phase at low migration345

rates and in phase at higher migration rates - is346

independent of the exact biological details of our347

modelling of host parasitoid system. We introduce348

a cellular automata model which qualitatively cap-349

tures the di!erent phases of host-parasitoid system350

i.e. the buildup, outbreak and crash. Our model351

is sequential i.e. it stays in buildup phase for m352

generations, then in outbreak for n generations353

and then in crash for o generations and the cy-354

cle continues. For simplicity of presenting results355

later, we say outbreak is state 1, crash is state 0356

and buildup is state →1.357

358

We consider 2 patches, each with this cellu-359

lar automata model, with di!usive migration be-360

tween them. We only consider scenarios where at361

least one patch has high host or parasitoid density,362

so that migration could cause change in the other363

patch. The 2 patch dynamics can be summarized364

as follows (since both patches are symmetric):365

• If patch 1 is in buildup and patch 2 is in out-366

break, then patch 1 inches closer to outbreak367

phase, depending on the migration rate. The368

reasoning for considering this is that the host369

density in 2 is high and thus migration could370

cause a change in host density in patch 1,371

which is undergoing buildup. Any change372

in parasitoid densities is ignored because the373

densities in both patches are low.374

• If patch 1 is in outbreak and patch 2 is in375

crash, the patch 1 inches closer to crash, de-376

pending on the migration rate. The para-377

sitoid density in 2 is high and thus any migra-378

tion could cause a change in parasitoid den-379

sity in patch 1, which is undergoing outbreak.380

Any change in host densities in either patches381

is ignored because of high parasitoid density382

in patch 2 and low parasitoid density in patch383

1.384

Analogous to our host-parasitoid system, when385

ϑ ↔ 0, both patches should have no change in their386

state due to migration. Conversely, when ϑ ↔ 1,387

the patches should exchange their current state.388

Thus, we implement the e!ect of migration in a389

discrete steps between [0, 1], in between these two390

extremes. For example, if patch 1 is k1 generations391

into build up and patch 2 is k2 generations into392

outbreak and ϑ is the migration rate, then patch393

1 inches forward by approximately ϑ(k2 +m→ k1)394

generations. Similarly, if patch 1 is k1 generations395

into outbreak and patch 2 is k2 generations into396

crash and ϑ is the migration rate, then patch 1397

inches forward by approximately ϑ(k2 + n → k1)398

generations.399

400

Figure 6 shows the results for di!erent values401

of migration. We see that at low migration val-402

ues, we see both patches oscillate out of phase,403

which changes at higher migration rates. We used404

m = 10, n = 9 and o = 3 for our figure. But our405

results are valid for many values of m,n and o as406

long as m,n >> o. This is an important condi-407

tion because crash is often short-lived compared to408

build up or outbreak phases.409

410
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Figure 6: An example of the results for di!erent migration rates from our cellular automata model is shown. Here m = 10,

n = 9, o = 3. State 1 represents outbreak, state 0 represents crash and state -1 represents buildup. a) migration rate is 0 and

hence both patches oscillate independently. At intermediate values of migration ((b) and (c)), we see both patches out of phase.

At higher values of migration i.e. (d), we see both patches closer to being in phase.

7. Discussion and Conclusion411

We analyze the robustness of the oscillations412

that arise when 2 patches, each having a host-413

parasitoid system, are coupled with density in-414

dependent migration. Although, previous studies415

have shown the presence of in-phase and out of416

phase solutions in host-parasitoid systems Adler417

(1993), those models lacked important details such418

as e!ect of inter specific competition of hosts for419

resources or di!erent parasitoid foraging behaviors420

(parasitism). It is now known that the outbreak-421

ing insect herbivores are often resource limited422

and thus including such interactions are key to423

the overall emergent dynamics. We surveyed the424

literature of host-parasitoid systems and used a425

suite of di!erent functional forms to model in-426

traspecific competition for resources among hosts427

and parasitism, relevant to the literature. Our428

analysis shows that the result i.e. the two patches429

oscillate out of phase when migration is low, is ro-430

bust across the modelling choices for intraspecific431

competition and parasitism. Robustness across432

modelling choices is useful whenever direct com-433

parison with data is lacking or di”cult, which is434

often the case in host-parasitoid systems. This435

also presents avenues of further work where this436

robustness is mathematically shown starting from437

a modified version of Eq. (1).438

439

In addition, we also show an approximate way440

to derive an analytical expression for length of a441

cycle (Eq. (4-5)), when the two patches oscillate442

out of phase. We define length of a cycle as the443

expected number of generations between the peaks444

of parasitoid population in a single patch. Our445

approach is di!erent from the standard analyses,446

where Eq.(3) is linearized and eigenvalues are cal-447

culated. We used approximations grounded in our448

understanding of di!erent stages (i.e. buildup,449

outbreak and crash) that a host parasitoid under-450

goes Umbanhowar and Hastings (2002) and found451

that our theoretical expressions are in agreement452

with the simulation results as shown in Figure 5.453

Further improvements to the analytical work can454

be made by including parasitoid migrations from455

the outbreaking patch to the patch undergoing456

9



buildup, as that will give a better estimate for the457

onset of outbreak in the latter patch.458

459

A range of di!erent models can be employed460

to look at the questions studied here, the spatio-461

temporal dynamics of host-parasitoid systems.462

One way to demonstrate that results obtained are463

robust is by showing similar conclusions for di!er-464

ent models with di!erent underlying implicit as-465

sumptions. This can also determine what biolog-466

ical features lead to observed dynamics. Thus,467

lastly, we also analyzed if the oscillations we stud-468

ied were rooted in the specific biological details of469

a host-parasitoid system. We use a 3 state cellu-470

lar automata model devoid of any biological details471

(like competition, parasitism etc.), which qualita-472

tively undergoes buildup, outbreak and crash for473

m,n and o time steps respectively. We show that474

as long as m ↔ n >> o, the two patches oscillate475

out of phase when migration is low (Figure 6). Al-476

though similar cellular automata model have been477

used in studies before (see Hassell et al. (1991)),478

our work presents new insights. Our analysis shows479

that out of phase oscillations could arise as long as480

the population in each patch undergoes a cycle of 3481

stages, where one stage (i.e. crash) is much smaller482

than the other two (buildup and outbreak). This483

result could also hold true for populations other484

than host-parasitoid system. Our work could be485

extended to a more general framework which could486

map oscillations across patches to oscillations in487

individual patches, a problem which is of great in-488

terest in metapopulation studies.489
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