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Effect of Migrations on Synchrony in Host-Parasitoid system

% Department of Mathematics, University of California, Davis, One Shields Avenue, Davis, 95616, California, United States
of America

Abstract

Insect outbreaks can cause large scale defoliation of forest trees or destruction of crops, leading to ecosystem
degradation and economic losses. Some outbreaks occur simultaneously across large geographic scales and
some outbreaks occur periodically every few years across space. Parasitoids are a natural enemy of these
defoliators and could help mitigate these pest outbreaks. A holistic understanding of the host-parasitoid
interactions in a spatial context would thus enhance our ability to understand, predict and prevent these
outbreaks. We use a discrete time deterministic model of the host parasitoid system with populations
migrating between 2 patches to study spatial host outbreaks. We show that whenever populations persist
indefinitely, host outbreaks in both patches occur alternatively (out of phase) at low migration between
patches whereas host outbreaks occur simultaneously (in phase) in both patches at high migration between
patches. We show that our results are robust across different modelling approaches and give an analytical
expression for the period of oscillations when the migration is low i.e. when host outbreaks in both patches are
out of phase. We end our paper by showing that we get the same results whether we include the biologically
rooted formulations from May et al. (1981) or a general cellular automata model with qualitative rules.

Keywords: Population dynamics, Insect oscillations, Host-parasitoid interactions, Functional responses,
Cellular Automata models

1. Introduction s be controlled by introducing natural enemy in-
s cludes invertebrates, vertebrates and weeds. The

It is long known that insect herbivores are 3 organisms that function as natural enemy include

agents causing great threats to ecosystems - threat- 5 vertebrates (birds, reptiles) and invertebrates (par-

ening irreversible changes to food security, forest s asitoids). Here, we focus our attention on herbivore

cover etc Balla et al. (2021) BOYd et al. (2013) w0 Insect populations and parasjtoids

Gandhi and Herms (2010). These insect popula-

tions can remain at a low density for many years,

often going unnoticed. However, every few years, Parasitoids have long been a subject of eco-

these insect populations explode in numbers, caus- logical interest for several reasons. Roughly 14%

ing large scale loss of forest cover Licbhold and  * of all insect species are parasitoids Hassell and
Bentz (2011) Hunter and Dwyer (1998). Many Waage (1984). The female parasitoid searches for
! s an immature stage of the herbivore insect (host)

« and lays eggs inside it. These eggs hatch inside
s the body of the host and the parasitoid larvae feed

factors including growth rates, predation, envi-
ronmental factors and changes in food quality are

known to influence the population trends of these

herbivores (Barbosa et al. (1987)) Myers (1988), jﬁd glr otw attthe e;;pense of hoits, ints}ildehthi htOSt'
however the exact reasons still remain elusive. Sev- a later stage, they emerge fromn the ost, typ-

eral time-lagged mechanisms like interactions with ™ ically killing it in the process. Thus, parasitoids
predators, diseases, maternal effects etc., have been  * are considered agents of biological control as they

identified to cause such cyclical dynamics Umban- % can keep the herbivore insect populations to low
howar and Hastings (2002) s« numbers by direct mortality Waage and Hassell

55 (1982), Wang et al. (2019) Godfray et al. (1994)
ss  Strand and Obrycki (1996).

57

Classical biological control is the phenomenon
of purposefully introducing and establishing a for-
eign species (natural enemy) with the aim of sup- s There are several simplifications which make
pressing the outbreaks of the native species Briese s the study of host-parasitoid system more suited
et al. (2000) Caltagirone (1981). Pests which can e to study enemy-victim dynamics than more gen-

Preprint submitted to Elsevier January 2, 2025
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eral predator prey dynamics. Many parasitoids are
highly specific to the hosts they predate Strand and
Obrycki (1996), allowing us to consider the host-
parasitoid system as a closed system, independent
of the influence of other populations. Furthermore,
this specificity also leads to synchronized life cy-
cles of host and parasitoid species, allowing the
use of discrete time equations appropriate. Since
hosts are attacked only by adult parasitoids, we
can further ignore age structure in our modelling
Mills and Getz (1996).

Migration is of crucial importance in unrav-
eling the dynamics of spatial synchrony in insect
populations Abbott and Dwyer (2008) Liebhold
et al. (2004). Migration can introduce traveling
population waves, leading to complex relationships
between synchrony and distanceliebhold et al.
(2004),Hassell et al. (1991). It shapes the abun-
dance and demographic properties of insect popu-
lations by influencing reproductive patterns, mor-
tality rates, and population characteristics such as
size and age distributions. Moreover, migratory
movements can synchronize the dynamics of dif-
ferent species, including those with direct trophic
interactions and shared resourcesLiebhold et al.
(2004). Investigating migration patterns can lead
to insights into the mechanisms driving spatial syn-
chrony which is vital for predicting and managing
insect outbreaks, understanding ecological inter-
actions, and effectively conserving and controlling
insect populations.

Given the rather strong assumptions made in
most spatial host-parasitoid models, it could ap-
pear that drawing conclusions about a specific bi-
ological system could be difficult. We address this
gap here by trying to demonstrate robust results
that should apply across a range of systems. In
this paper, we study coupled dynamics of a host-
parasitoid system with a focus on exploring the role
of migration in ensuing dynamics. We use a 2 patch
host-parasitoid system, with the dynamics within
each patch as given by Umbanhowar and Hastings
(2002), with hosts and parasitoids migrating be-
tween the patches after reproduction. Within each
patch, the hosts are limited by intraspecific com-
petition and parasitism Umbanhowar and Hastings
(2002). We show that at low migration, the host
outbreaks in the 2 patches occur alternatively (out
of phase) and at high migration, the host outbreaks
in both patches occur simultaneously (in phase).
While similar results for host-parasitoid systems
have been shown before Adler (1993), we focus
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our attention to the robustness and cause of such
oscillations. We address the robustness by test-
ing our results across different biologically relevant
functional forms for intraspecific competition and
parasitism. We then show that similar results are
obtained in a cellular automata model devoid of
biological detail, which only qualitatively captures
host-paraisioid system, thus establishing the role of
migration independent of other biological interac-
tions. Lastly, we provide an analytical expression
for calculating the time period of the oscillations
of the system, when the two patches oscillate out
of phase.

2. Single patch dynamics

We use the general formulations from May
et al. (1981), which models 3 phenological processes
- reproduction, intraspecific competition amongst
hosts and parasitism (by parasitoids). This gives
a general form for annual densities for hosts (H;)
and parasitoids (P;)

H;y = A\F(H,)G(Hy, P;)

Pipq = cF(Hy)(1 — G(Hy, B)) (1)

Here )\ is the intrinsic growth rate of the hosts
and c is the no of parasitoids that emerge from a
single larvae. Following the analysis done in Um-
banhowar and Hastings (2002), we assume the fol-
lowing form of non-dimensionalized equations for
the host-parasitoid dynamics within each patch,
where the min function is used to model intraspe-
cific competition. It is exactly compensatory, as
opposed to Ricker or many other forms of intraspe-
cific competition which are over compensatory.
This model has an unstable fixed point and thus
leads to oscillations as shown in Figure 1.

ht+1 = /\min(ht, 1)671%

pry1 = ymin(he, 1)(1 — e7P)

(2)

The oscillations produced by this model can
be divided into 3 phases - 1) Buildup - which is
marked by low host and parasitoid densities (i.e.
hy — 0,p; — 0), followed by 2) Outbreak - which
is marked by high host density but low parasitoid
density (i.e. hy — X, py — 0), which is followed by
3) Crash - where the parasitoid population is large
enough to reduce host population significantly (i.e.
pt > 1, ht — 0)
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Figure 1: a) Time series and b) phase plot of a single host-parasitoid population at steady state is shown. As shown, the
densities show a quasi-periodicity, where they are confined within a manifold as shown in (b).

3. Two patch dynamics

Let hi, pi be the host and parasitoid population
in patch ¢ at time ¢. Let A be the growth rate of the
host and v be the growth rate of parasitoid. Let
€ be the fraction of population migrating from one
patch to another. The equations for the resulting
dynamical system is:

hity = hin(1—€)+e€hi,
h’tJrl - h ( —€)te h’%m
pt+1 = ptm(l —€)te p?m
pt+1 = ptm(l —€)t+e ptm (3)

Here Ay, pim represent the host and parasitoid
densities at ¢t before migration after competiton,
parasitism and reproduction have taken place i.e.

htm = Amin(hy, 1)e™Pt

Ptm = ymin(hy, 1)(1 — e7P1) (4)

In our model, reproduction is given by a multi-
plicative factor, thus, the order of migration and
reproduction can be interchanged. Biologically,
it’ll refer to the scenario where the surviving adults
after competition and parasitism have taken place,
migrate and then reproduce.

When ¢ — 0, both patches oscillate almost
independently i.e. the effect of coupling due to
migration between patches is negligible. Note that
the parameters are identical in both the patches.
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As we increase the strength of coupling due to
migration i.e. e from 0, we first get out of phase
solutions (as shown in Figure 2 (b)), where the
peaks in host densities (i.e. host outbreaks) in 2
patches occur alternatively (out of phase). These
out of phase oscillations persist indefinitely in our
simulations as long as the initial conditions in the
2 patches aren’t very identical. If the initial con-
ditions are identical, then both patches behave as
one single patch and thus, they oscillate in uni-
son (see Figure 2 (d)). In our simulations, initial
conditions were selected randomly and the host
densities of 2 patches at steady state is shown in
Figure 2.

These out of phase solutions occur for a wide
range of migrations as shown in Figure 2 (b,c)),
ranging several orders of magnitude. With in-
creasing €, we find that the length of the outbreaks
decrease until the outbreaks occur for 1-2 genera-
tions. Further increasing €, beyond this point leads
to a transition towards in phase solutions, where
the host outbreaks occur simultaneously in both
patches (as shown in Figure 2 d). We find that, the
transition occurs in a very small window for € i.e.
(in 0.01 < € < 0.025). The exact nature and win-
dow of transition is complex and depends on other
parameters i.e. A and . Out of phase solutions are
further characterized by periods of near absence of
hosts are accompanied by sudden outbreaks which
last for few generations in each patch. However, if
we look at the overall sum of host densities in both
patches, they remain unchanging for most of the
generations as shown in Figure 3 (a). However, the
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Figure 2: Host densities at steady state are shown for different migration rates. The parameters A = 3, v = 6 were fixed. In
(a), there is no coupling between the patches. However, when we increase €, we see out of phase solutions (b,c), where the host
outbreaks in the 2 patches occur alternatively. These out of phase solutions exist for a large range of € values. Increasing ¢, the
time period of host outbreaks decrease till the outbreak occurs for 1-2 generations (as shown in (c)). With further increase in
migration, the host outbreaks in both the patches occur simultaneously as shown in (d).

in phase solutions are different as periods of near
absence of hosts are accompanied by sudden out-
breaks lasting few generations, both at individual
patch level and overall sum over both patches as
shown in Figure 3 (b).

At higher values of ¢, we see in phase solu-
tions, where the peaks in host densities (i.e. host
outbreaks) in 2 patches occur simultaneously (as
shown in Figure 2b) i.e. both patches oscillate in
phase. High migration rates i.e. (e — 1) lowers
any difference in population in 2 patches. This
happens till both patches oscillate in phase after
which the effect of migration is negligible, as shown
below.

hl — B2, = A(1—2€)8

230

where
J= (min(h%, ].)6_1)% — min(h2, 1)e_p?>
When
€1, A1 —2¢) < 1
and

|(min(h}, 1)e™"* — min(h?, 1)e™7)| < [h} — h?|

Thus, the difference in population in 2 patches
decreases every generation

|hiyr — (6)

Thus, at steady state, both patches oscillate in
phase, i.e.

ht2+1| < |ht1 - ht2‘

lim hl = h?
t—o00
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Figure 3: Host densities at steady state are shown for different migration rates. At low migration (a) i.e. ¢ = 1076, we
see that the host outbreaks in the 2 patches occur alternatively. The sum of the host densities remains constant with small
fluctuations every few generations. In contrast, at high migration rates i.e € = 0.025, host outbreaks in both the patches occur
simultaneously as shown in b). We see cycles of large overall host outbreaks followed by generations of near host absence, as
shown by the sum of the host densities in the 2 patches. The parameters used were A = 3, v = 6.

Table 1: List of all different functions we’ve tested in our 2 patch model

Description

Mathematical form

Other parameters involved

Ricker map for hosts intraspe-
cific competition

F(H,) = er0—%)

Growth rate r, Carrying Capac-
ity K

sitoids for hosts

Smith map for hosts intraspecific | F(H;) = m/\flw Growth factor A, Carrying ca-

competition " pacity K, strength of competi-
tion b

Independent search by para- | G(Hy, P;) = e %%% Per capita searching efficiency a

Aggregated attacks
sitoids on hosts

by para-

G(H,, P,) = (1 +

aP(t)

Per capita searching efficiency a,
Degree of aggregation k

0y

4. Robustness across choice of functions

Our results from the previous section are robust
across different choices of intraspecific competition
ie. F(H;) and parasitism G(H;, P;). For F'(Hy),
we chose Ricker map and a function described by
Maynard Smith, for annual insects amongst choice
of intraspecific competition (as shown in the table
below). For G(Hy, P;), we used both independent
and aggregated parasitoid search for hosts.

We found similar out of phase and in phase
oscillations at low and high values of migration
for any combination of functions mentioned above.
Figure 4 shows a few specific cases of our findings.
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5. Length of the cycle

When migration rate is high, both patches os-
cillate in phase, behaving like a single patch. Thus,
any measure of length of cycle i.e. time between
successive host outbreaks, can be calculated using
the equations derived for a single isolated patch
Umbanhowar and Hastings (2002). We provide an
approximate expression for length of cycle when
migration rates are low and both patches oscillate
out of phase. We define Ty ,, T, ; and T ; as the
number of generations patch ¢ undergoes buildup,
outbreak and crash respectively. We use the fol-
lowing observations (without losing generality):

e Duration of build up in 1 patch must be no
more than the combined duration of outbreak
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Figure 4: Host densities in 2 patches are plotted at steady state. Top (bottom) column represents cases for low (high) migra-
tion rates respectively. a) and c) are examples where host intraspecific competition was modelled using Ricker map and the
parasitoid attack was aggregated. b) and d) are examples where intraspecific competition was modelled using Smith map and

parasitoid search for hosts are independent.

and crash in other patch i.e.
Tb,l < To,2 + Tc,2

If this condition isn’t satisfied, then both the
patches will have build-up simultaneously,
which isn’t the case in out of phase oscilla-
tions.

e Duration of build up in 1 patch must be no
less than the duration of outbreak in other
patch i.e.

Ty > T2

If this condition isn’t satisfied, then both the
patches will have outbreaks simultaneously,
which isn’t the case in out of phase solutions.

Since a crash occurs for 2-3 generations, the

time for build up is given by
Tb,l = TO’Q +1or?2 (7)

Because both the patches are symmetric, we
have Ty 1 = Tp2 and T, 1 = T, 2. Henceforth, we
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will drop the patch numbers and just talk about
build up (7}), outbreak (7,), and crash phases (7¢)
and the total length of the cycle (7).

T=Ty,+T,+T. (8)

From T, = Tp,—1orT,—2 (from Equation [4]). Thus,
adding that the crash is usually 2-3 generations

9)

The host density at the start of build up is Hy =

T=2Tyor 2T, + 1

2 _'V(Q_%) .
Ae + e\, where the former term is a re-

sult of parasitism (as shown in Umbanhowar and
Hastings (2002)) and the latter is the host pop-
ulation which migrated into this patch from the
patch undergoing an outbreak. Since v is usu-

_ 2,&)
ally large, \%e W( *) &~ 0. This is supported
by the intuition that after the crash, the host den-
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Figure 5: Length of cycle (numerically and approximate expressions) are plotted. Each blue dot represents length of cycle
numerically obtained for a single iteration, after taking the mean of 1000 different time points after steady state was reached.
The green and black curves represent the approximate theoretical expressions derived in the text. Here A = 3.375 and v = 4.875.

sities are reduced to very small values due to par-
asitism. Thus, for very small values of migration
. -vl2—-% .
ie. €< de , we don'’t see any affect of mi-
gration and the two patches behave as if they are

A

isolated patches. But for 1 >> € >> Ae K ,
H, ~ e)\. Given the geometric nature of the growth
of host density during buildup (as parasitoid den-
sity is low, leading to no mortality due to para-
sitism) and host migration from the other patch
undergoing an outbreak, we have

(1)

H, =N+ 1. ..
t =€\ + + N1

+A) =€ (10)
As long as the other patch is undergoing an out-
break, the host density in the patch in the build up
phase will continue to grow according to the expres-
sion above. Assuming that the outbreak lasts for

T, = Ty, — 2 generations, we would have

()
Hry2 = A—=mg—

(11)

Following an outbreak, the other patch under-
goes crash which has high parasitoid density, re-
ducing host densities in that patch. Thus, we can
ignore the effect of migration for the remainder of
the 2 generations of buildup, giving us the expres-
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sion for host density at the end of the build up
(12)

Similarly, at the end of buildup the host density
is Hy, ~ 1 (as shown in Umbanhowar and Hast-
ings (2002)). Equating the expected host densities
at the start of outbreak, we get

SRl PO

o1 (13)

This gives us an approximate expression for T
and T = 2T} as follows

A—1
T, =2+ M (14)
In(\)
T—4+2ln <1+é;31) (15)
B In(\)

Furthermore, if instead we take T, = T, —1 gen-
erations and T = 27T}, + 1, we get the approximate
expression as



316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

Ty =1+ ln()\; (16)
In(1+ 21
T=3+2 (IHJEA;A ) (17)

To test our expression for T against numerical
simulations, we plot these expressions against the
length of cycle numerically observed in out of phase
solutions for different migration rates (for fixed A
and 7). To find the length of the cycle numeri-
cally, we measure the no of generations between
peak parasitism (during crash) within each patch.
We measure this 1000 times from either patch at
random times after steady state was reached. The
length of the cycle is the mean of these 1000 in-
stances. Furthermore, for each value of €, we repeat
this for 10,000 different iterations, with different
initial conditions, to account for any dependency
on initial conditions. We plot the length of a cycle
for all of these 10,000 iterations (for a given ) in
the same plot. When € = 0 or € =~ 1, the length of
cycle should be same as that of a single patch. For
intermittent values of ¢, we expect the length of cy-
cle to first decrease and then increase as e &~ 1, in
agreement with what we see in Figure 5. As shown
in Figure 5, the numerical and approximate ana-
lytical expressions (shown in green and black) are
in agreement. Furthermore, as € increases, we see
that length of cycle increases as both patches are
in phase, albeit there are some instances in which
system still ends up out of phase, implying the de-
pendence of initial conditions.

6. Cellular Automata model

In this section, we show that our main results
- patches oscillating out of phase at low migration
rates and in phase at higher migration rates - is
independent of the exact biological details of our
modelling of host parasitoid system. We introduce
a cellular automata model which qualitatively cap-
tures the different phases of host-parasitoid system
i.e. the buildup, outbreak and crash. Our model
is sequential i.e. it stays in buildup phase for m
generations, then in outbreak for n generations
and then in crash for o generations and the cy-
cle continues. For simplicity of presenting results
later, we say outbreak is state 1, crash is state 0
and buildup is state —1.
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We consider 2 patches, each with this cellu-
lar automata model, with diffusive migration be-
tween them. We only consider scenarios where at
least one patch has high host or parasitoid density,
so that migration could cause change in the other
patch. The 2 patch dynamics can be summarized
as follows (since both patches are symmetric):

e If patch 1 is in buildup and patch 2 is in out-
break, then patch 1 inches closer to outbreak
phase, depending on the migration rate. The
reasoning for considering this is that the host
density in 2 is high and thus migration could
cause a change in host density in patch 1,
which is undergoing buildup. Any change
in parasitoid densities is ignored because the
densities in both patches are low.

e If patch 1 is in outbreak and patch 2 is in
crash, the patch 1 inches closer to crash, de-
pending on the migration rate. The para-
sitoid density in 2 is high and thus any migra-
tion could cause a change in parasitoid den-
sity in patch 1, which is undergoing outbreak.
Any change in host densities in either patches
is ignored because of high parasitoid density
in patch 2 and low parasitoid density in patch
1.

Analogous to our host-parasitoid system, when
€ ~ 0, both patches should have no change in their
state due to migration. Conversely, when € =~ 1,
the patches should exchange their current state.
Thus, we implement the effect of migration in a
discrete steps between [0, 1], in between these two
extremes. For example, if patch 1 is k1 generations
into build up and patch 2 is k2 generations into
outbreak and e is the migration rate, then patch
1 inches forward by approximately e(k2 + m — k1)
generations. Similarly, if patch 1 is k1 generations
into outbreak and patch 2 is k2 generations into
crash and € is the migration rate, then patch 1
inches forward by approximately e(k2 + n — k1)
generations.

Figure 6 shows the results for different values
of migration. We see that at low migration val-
ues, we see both patches oscillate out of phase,
which changes at higher migration rates. We used
m = 10, n = 9 and o = 3 for our figure. But our
results are valid for many values of m,n and o as
long as m,n >> o. This is an important condi-
tion because crash is often short-lived compared to
build up or outbreak phases.
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Figure 6: An example of the results for different migration rates from our cellular automata model is shown. Here m = 10,
n =9, o = 3. State 1 represents outbreak, state 0 represents crash and state -1 represents buildup. a) migration rate is 0 and
hence both patches oscillate independently. At intermediate values of migration ((b) and (c)), we see both patches out of phase.
At higher values of migration i.e. (d), we see both patches closer to being in phase.

7. Discussion and Conclusion

We analyze the robustness of the oscillations
that arise when 2 patches, each having a host-
parasitoid system, are coupled with density in-
dependent migration. Although, previous studies
have shown the presence of in-phase and out of
phase solutions in host-parasitoid systems Adler
(1993), those models lacked important details such
as effect of inter specific competition of hosts for
resources or different parasitoid foraging behaviors
(parasitism). It is now known that the outbreak-
ing insect herbivores are often resource limited
and thus including such interactions are key to
the overall emergent dynamics. We surveyed the
literature of host-parasitoid systems and used a
suite of different functional forms to model in-
traspecific competition for resources among hosts
and parasitism, relevant to the literature. Our
analysis shows that the result i.e. the two patches
oscillate out of phase when migration is low, is ro-
bust across the modelling choices for intraspecific
competition and parasitism. Robustness across
modelling choices is useful whenever direct com-

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

parison with data is lacking or difficult, which is
often the case in host-parasitoid systems. This
also presents avenues of further work where this
robustness is mathematically shown starting from
a modified version of Eq. (1).

In addition, we also show an approximate way
to derive an analytical expression for length of a
cycle (Eq. (4-5)), when the two patches oscillate
out of phase. We define length of a cycle as the
expected number of generations between the peaks
of parasitoid population in a single patch. Our
approach is different from the standard analyses,
where Eq.(3) is linearized and eigenvalues are cal-
culated. We used approximations grounded in our
understanding of different stages (i.e. buildup,
outbreak and crash) that a host parasitoid under-
goes Umbanhowar and Hastings (2002) and found
that our theoretical expressions are in agreement
with the simulation results as shown in Figure 5.
Further improvements to the analytical work can
be made by including parasitoid migrations from
the outbreaking patch to the patch undergoing
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buildup, as that will give a better estimate for the
onset of outbreak in the latter patch.

A range of different models can be employed
to look at the questions studied here, the spatio-
temporal dynamics of host-parasitoid systems.
One way to demonstrate that results obtained are
robust is by showing similar conclusions for differ-
ent models with different underlying implicit as-
sumptions. This can also determine what biolog-
ical features lead to observed dynamics. Thus,
lastly, we also analyzed if the oscillations we stud-
ied were rooted in the specific biological details of
a host-parasitoid system. We use a 3 state cellu-
lar automata model devoid of any biological details
(like competition, parasitism etc.), which qualita-
tively undergoes buildup, outbreak and crash for
m,n and o time steps respectively. We show that
as long as m ~ n >> o, the two patches oscillate
out of phase when migration is low (Figure 6). Al-
though similar cellular automata model have been
used in studies before (see Hassell et al. (1991)),
our work presents new insights. Our analysis shows
that out of phase oscillations could arise as long as
the population in each patch undergoes a cycle of 3
stages, where one stage (i.e. crash) is much smaller
than the other two (buildup and outbreak). This
result could also hold true for populations other
than host-parasitoid system. Our work could be
extended to a more general framework which could
map oscillations across patches to oscillations in
individual patches, a problem which is of great in-
terest in metapopulation studies.
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