

¹ Highlights

² **Effect of Migrations on Synchrony in Host-Parasitoid system**

³ ● Research highlight 1

⁴ ● Research highlight 2

Effect of Migrations on Synchrony in Host-Parasitoid system

^a*Department of Mathematics, University of California, Davis, One Shields Avenue, Davis, 95616, California, United States of America*

6 Abstract

Insect outbreaks can cause large scale defoliation of forest trees or destruction of crops, leading to ecosystem degradation and economic losses. Some outbreaks occur simultaneously across large geographic scales and some outbreaks occur periodically every few years across space. Parasitoids are a natural enemy of these defoliators and could help mitigate these pest outbreaks. A holistic understanding of the host-parasitoid interactions in a spatial context would thus enhance our ability to understand, predict and prevent these outbreaks. We use a discrete time deterministic model of the host-parasitoid system with populations migrating between 2 patches to study spatial host outbreaks. We show that whenever populations persist indefinitely, host outbreaks in both patches occur alternatively (out of phase) at low migration between patches whereas host outbreaks occur simultaneously (in phase) in both patches at high migration between patches. We show that our results are robust across different modelling approaches and give an analytical expression for the period of oscillations when the migration is low i.e. when host outbreaks in both patches are out of phase. We end our paper by showing that we get the same results whether we include the biologically rooted formulations from [May et al. \(1981\)](#) or a general cellular automata model with qualitative rules.

7 *Keywords:* Population dynamics, Insect oscillations, Host-parasitoid interactions, Functional responses,
8 Cellular Automata models

9 1. Introduction

10 It is long known that insect herbivores are
11 agents causing great threats to ecosystems - threatening irreversible changes to food security, forest
12 cover etc [Balla et al. \(2021\)](#) [Boyd et al. \(2013\)](#)
13 [Gandhi and Herms \(2010\)](#). These insect populations
14 can remain at a low density for many years, often going unnoticed. However, every few years, these insect populations explode in numbers, causing large scale loss of forest cover [Liebhold and Bentz \(2011\)](#) [Hunter and Dwyer \(1998\)](#). Many factors including growth rates, predation, environmental factors and changes in food quality are known to influence the population trends of these herbivores ([Barbosa et al. \(1987\)](#)) [Myers \(1988\)](#), however the exact reasons still remain elusive. Several time-lagged mechanisms like interactions with predators, diseases, maternal effects etc., have been identified to cause such cyclical dynamics [Umbanhowar and Hastings \(2002\)](#).

30 Classical biological control is the phenomenon
31 of purposefully introducing and establishing a foreign species (natural enemy) with the aim of suppressing the outbreaks of the native species [Briese et al. \(2000\)](#) [Caltagirone \(1981\)](#). Pests which can

35 be controlled by introducing natural enemy includes invertebrates, vertebrates and weeds. The
36 organisms that function as natural enemy include
37 vertebrates (birds, reptiles) and invertebrates (parasitoids). Here, we focus our attention on herbivore
38 insect populations and parasitoids

41

42 Parasitoids have long been a subject of ecological interest for several reasons. Roughly 14%
43 of all insect species are parasitoids [Hassell and Waage \(1984\)](#). The female parasitoid searches for
44 an immature stage of the herbivore insect (host) and lays eggs inside it. These eggs hatch inside
45 the body of the host and the parasitoid larvae feed and grow at the expense of hosts, inside the host.
46 At a later stage, they emerge from the host, typically killing it in the process. Thus, parasitoids
47 are considered agents of biological control as they can keep the herbivore insect populations to low
48 numbers by direct mortality [Waage and Hassell \(1982\)](#), [Wang et al. \(2019\)](#) [Godfray et al. \(1994\)](#)
49 [Strand and Obrycki \(1996\)](#).

57

58 There are several simplifications which make
59 the study of host-parasitoid system more suited
60 to study enemy-victim dynamics than more gen-

61 general predator prey dynamics. Many parasitoids are
 62 highly specific to the hosts they predate [Strand and Obrycki \(1996\)](#), allowing us to consider the host-
 63 parasitoid system as a closed system, independent
 64 of the influence of other populations. Furthermore,
 65 this specificity also leads to synchronized life cy-
 66 cles of host and parasitoid species, allowing the
 67 use of discrete time equations appropriate. Since
 68 hosts are attacked only by adult parasitoids, we
 69 can further ignore age structure in our modelling
 70 [Mills and Getz \(1996\)](#).

73 Migration is of crucial importance in unrav-
 74 eling the dynamics of spatial synchrony in insect
 75 populations [Abbott and Dwyer \(2008\)](#) [Liebhold](#)
 76 [et al. \(2004\)](#). Migration can introduce traveling
 77 population waves, leading to complex relationships
 78 between synchrony and distance [Liebhold et al. \(2004\)](#), [Hassell et al. \(1991\)](#). It shapes the abun-
 79 dance and demographic properties of insect popu-
 80 lations by influencing reproductive patterns, mor-
 81 tality rates, and population characteristics such as
 82 size and age distributions. Moreover, migratory
 83 movements can synchronize the dynamics of dif-
 84 ferent species, including those with direct trophic
 85 interactions and shared resources [Liebhold et al. \(2004\)](#). Investigating migration patterns can lead
 86 to insights into the mechanisms driving spatial syn-
 87 chrony which is vital for predicting and managing
 88 insect outbreaks, understanding ecological inter-
 89 actions, and effectively conserving and controlling
 90 insect populations.

93 Given the rather strong assumptions made in
 94 most spatial host-parasitoid models, it could ap-
 95 pear that drawing conclusions about a specific bi-
 96 ological system could be difficult. We address this
 97 gap here by trying to demonstrate robust results
 98 that should apply across a range of systems. In
 99 this paper, we study coupled dynamics of a host-
 100 parasitoid system with a focus on exploring the role
 101 of migration in ensuing dynamics. We use a 2 patch
 102 host-parasitoid system, with the dynamics within
 103 each patch as given by [Umbanhowar and Hastings \(2002\)](#), with hosts and parasitoids migrating be-
 104 tween the patches after reproduction. Within each
 105 patch, the hosts are limited by intraspecific com-
 106 petition and parasitism [Umbanhowar and Hastings \(2002\)](#). We show that at low migration, the host
 107 outbreaks in the 2 patches occur alternatively (out
 108 of phase) and at high migration, the host outbreaks
 109 in both patches occur simultaneously (in phase).
 110 While similar results for host-parasitoid systems
 111 have been shown before [Adler \(1993\)](#), we focus

115 our attention to the robustness and cause of such
 116 oscillations. We address the robustness by test-
 117 ing our results across different biologically relevant
 118 functional forms for intraspecific competition and
 119 parasitism. We then show that similar results are
 120 obtained in a cellular automata model devoid of
 121 biological detail, which only qualitatively captures
 122 host-parasitoid system, thus establishing the role of
 123 migration independent of other biological interac-
 124 tions. Lastly, we provide an analytical expression
 125 for calculating the time period of the oscillations
 126 of the system, when the two patches oscillate out
 127 of phase.

128 2. Single patch dynamics

129 We use the general formulations from [May](#)
 130 [et al. \(1981\)](#), which models 3 phenological processes
 131 - reproduction, intraspecific competition amongst
 132 hosts and parasitism (by parasitoids). This gives
 133 a general form for annual densities for hosts (H_t)
 134 and parasitoids (P_t)

$$135 \begin{aligned} H_{t+1} &= \lambda F(H_t)G(H_t, P_t) \\ P_{t+1} &= cF(H_t)(1 - G(H_t, P_t)) \end{aligned} \quad (1)$$

135 Here λ is the intrinsic growth rate of the hosts
 136 and c is the no of parasitoids that emerge from a
 137 single larvae. Following the analysis done in [Umbanhowar and Hastings \(2002\)](#), we assume the fol-
 138 lowing form of non-dimensionalized equations for
 139 the host-parasitoid dynamics within each patch,
 140 where the min function is used to model intra-
 141 specific competition. It is exactly compensatory, as
 142 opposed to Ricker or many other forms of intra-
 143 specific competition which are over compensatory.
 144 This model has an unstable fixed point and thus
 145 leads to oscillations as shown in Figure 1.

$$147 \begin{aligned} h_{t+1} &= \lambda \min(h_t, 1) e^{-p_t} \\ p_{t+1} &= \gamma \min(h_t, 1) (1 - e^{-p_t}) \end{aligned} \quad (2)$$

148 The oscillations produced by this model can
 149 be divided into 3 phases - 1) Buildup - which is
 150 marked by low host and parasitoid densities (i.e.
 151 $h_t \rightarrow 0, p_t \rightarrow 0$), followed by 2) Outbreak - which
 152 is marked by high host density but low parasitoid
 153 density (i.e. $h_t \rightarrow \lambda, p_t \rightarrow 0$), which is followed by
 154 3) Crash - where the parasitoid population is large
 155 enough to reduce host population significantly (i.e.
 156 $p_t > 1, h_t \rightarrow 0$).

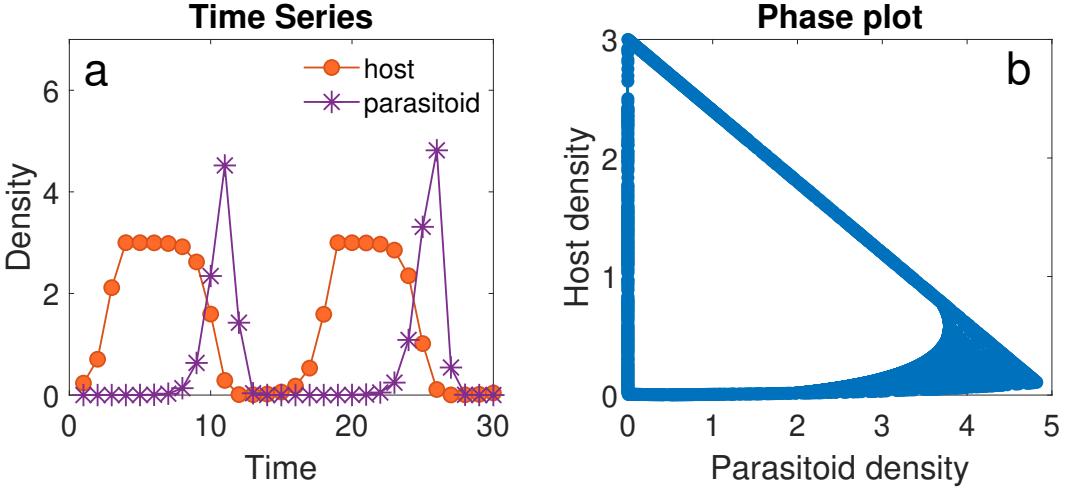


Figure 1: a) Time series and b) phase plot of a single host-parasitoid population at steady state is shown. As shown, the densities show a quasi-periodicity, where they are confined within a manifold as shown in (b).

158 **3. Two patch dynamics**

159 Let h_t^i, p_t^i be the host and parasitoid population
160 in patch i at time t . Let λ be the growth rate of the
161 host and γ be the growth rate of parasitoid. Let
162 ϵ be the fraction of population migrating from one
163 patch to another. The equations for the resulting
164 dynamical system is:

$$\begin{aligned} h_{t+1}^1 &= h_{tm}^1(1 - \epsilon) + \epsilon h_{tm}^2 \\ h_{t+1}^2 &= h_{tm}^2(1 - \epsilon) + \epsilon h_{tm}^1 \\ p_{t+1}^1 &= p_{tm}^1(1 - \epsilon) + \epsilon p_{tm}^2 \\ p_{t+1}^2 &= p_{tm}^2(1 - \epsilon) + \epsilon p_{tm}^1 \end{aligned} \quad (3)$$

165 Here h_{tm}, p_{tm} represent the host and parasitoid
166 densities at t before migration after competition,
167 parasitism and reproduction have taken place i.e.

$$\begin{aligned} h_{tm} &= \lambda \min(h_t, 1) e^{-p_t} \\ p_{tm} &= \gamma \min(h_t, 1) (1 - e^{-p_t}) \end{aligned} \quad (4)$$

168 In our model, reproduction is given by a multi-
169 plicative factor, thus, the order of migration and
170 reproduction can be interchanged. Biologically,
171 it'll refer to the scenario where the surviving adults
172 after competition and parasitism have taken place,
173 migrate and then reproduce.

174 When $\epsilon \rightarrow 0$, both patches oscillate almost
175 independently i.e. the effect of coupling due to
176 migration between patches is negligible. Note that
177 the parameters are identical in both the patches.

180 As we increase the strength of coupling due to
181 migration i.e. ϵ from 0, we first get out of phase
182 solutions (as shown in Figure 2 (b)), where the
183 peaks in host densities (i.e. host outbreaks) in 2
184 patches occur alternatively (out of phase). These
185 out of phase oscillations persist indefinitely in our
186 simulations as long as the initial conditions in the
187 2 patches aren't very identical. If the initial con-
188 ditions are identical, then both patches behave as
189 one single patch and thus, they oscillate in uni-
190 son (see Figure 2 (d)). In our simulations, initial
191 conditions were selected randomly and the host
192 densities of 2 patches at steady state is shown in
193 Figure 2.

194 These out of phase solutions occur for a wide
195 range of migrations as shown in Figure 2 (b,c)),
196 ranging several orders of magnitude. With in-
197 creasing ϵ , we find that the length of the outbreaks
198 decrease until the outbreaks occur for 1-2 genera-
199 tions. Further increasing ϵ , beyond this point leads
200 to a transition towards in phase solutions, where
201 the host outbreaks occur simultaneously in both
202 patches (as shown in Figure 2 d). We find that, the
203 transition occurs in a very small window for ϵ i.e.
204 (in $0.01 < \epsilon < 0.025$). The exact nature and win-
205 dows of transition is complex and depends on other
206 parameters i.e. λ and γ . Out of phase solutions are
207 further characterized by periods of near absence of
208 hosts are accompanied by sudden outbreaks which
209 last for few generations in each patch. However, if
210 we look at the overall sum of host densities in both
211 patches, they remain unchanging for most of the
212 generations as shown in Figure 3 (a). However, the

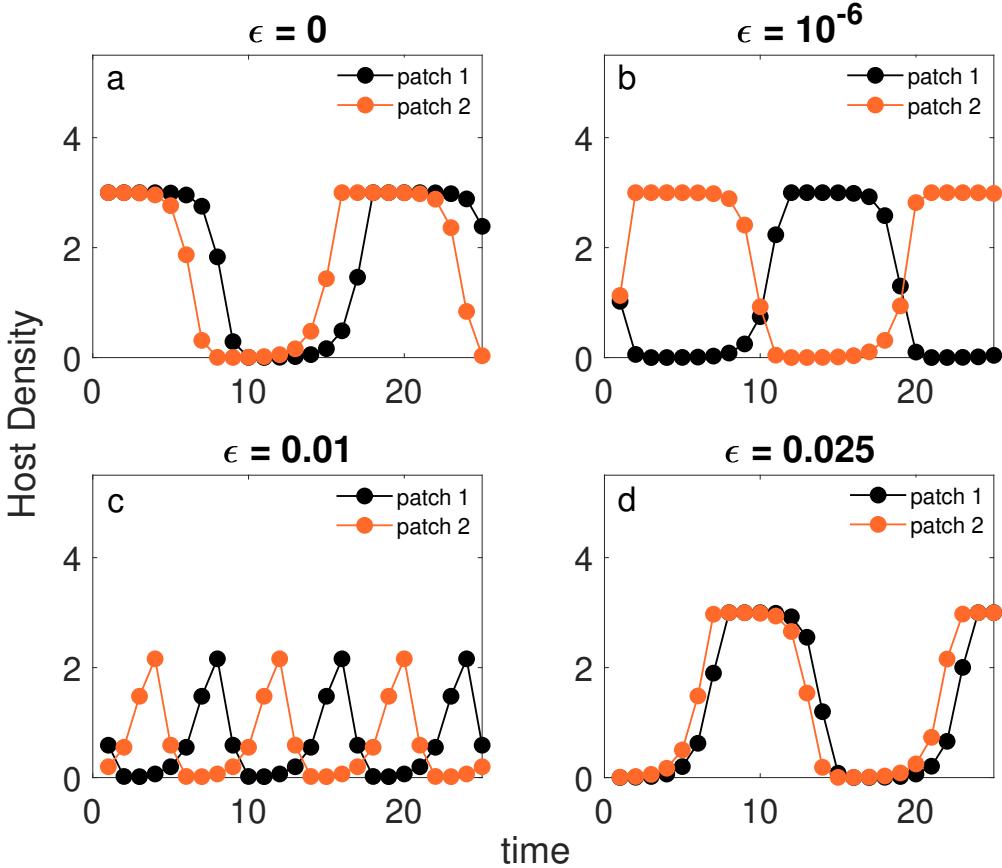


Figure 2: Host densities at steady state are shown for different migration rates. The parameters $\lambda = 3$, $\gamma = 6$ were fixed. In (a), there is no coupling between the patches. However, when we increase ϵ , we see out of phase solutions (b,c), where the host outbreaks in the 2 patches occur alternatively. These out of phase solutions exist for a large range of ϵ values. Increasing ϵ , the time period of host outbreaks decrease till the outbreak occurs for 1-2 generations (as shown in (c)). With further increase in migration, the host outbreaks in both the patches occur simultaneously as shown in (d).

214 in phase solutions are different as periods of near
 215 absence of hosts are accompanied by sudden out-
 216 breaks lasting few generations, both at individual
 217 patch level and overall sum over both patches as
 218 shown in Figure 3 (b).

220 At higher values of ϵ , we see in phase solu-
 221 tions, where the peaks in host densities (i.e. host
 222 outbreaks) in 2 patches occur simultaneously (as
 223 shown in Figure 2b) i.e. both patches oscillate in
 224 phase. High migration rates i.e. ($\epsilon \rightarrow 1$) lowers
 225 any difference in population in 2 patches. This
 226 happens till both patches oscillate in phase after
 227 which the effect of migration is negligible, as shown
 228 below.

229

$$h_{t+1}^1 - h_{t+1}^2 = \lambda(1 - 2\epsilon)\delta \quad (5)$$

where

$$\delta = \left(\min(h_t^1, 1)e^{-p_t^1} - \min(h_t^2, 1)e^{-p_t^2} \right)$$

When

$$\epsilon \rightarrow 1, \quad \lambda(1 - 2\epsilon) < 1$$

and

$$|(\min(h_t^1, 1)e^{-p_t^1} - \min(h_t^2, 1)e^{-p_t^2})| \leq |h_t^1 - h_t^2|$$

230 Thus, the difference in population in 2 patches
 231 decreases every generation

$$|h_{t+1}^1 - h_{t+1}^2| < |h_t^1 - h_t^2| \quad (6)$$

Thus, at steady state, both patches oscillate in phase, i.e.

$$\lim_{t \rightarrow \infty} h_t^1 = h_t^2$$

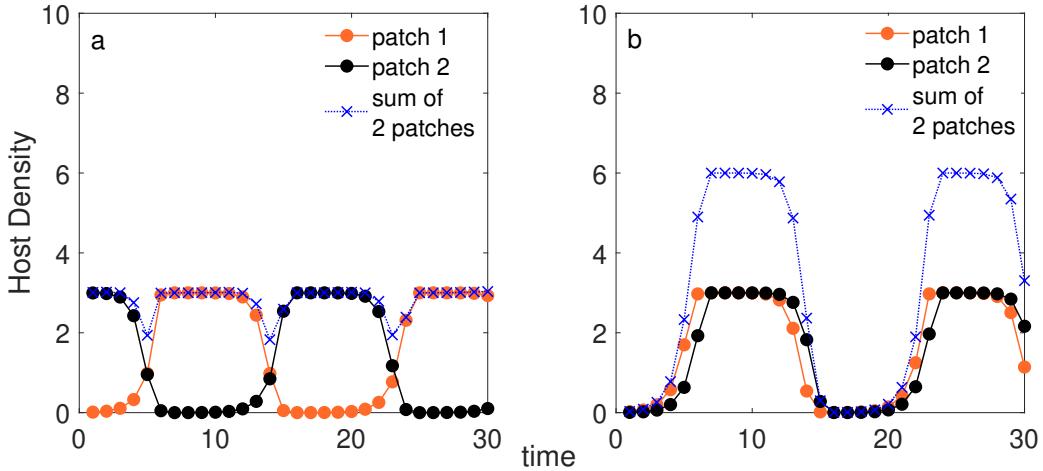


Figure 3: Host densities at steady state are shown for different migration rates. At low migration (a) i.e. $\epsilon = 10^{-6}$, we see that the host outbreaks in the 2 patches occur alternatively. The sum of the host densities remains constant with small fluctuations every few generations. In contrast, at high migration rates i.e $\epsilon = 0.025$, host outbreaks in both the patches occur simultaneously as shown in b). We see cycles of large overall host outbreaks followed by generations of near host absence, as shown by the sum of the host densities in the 2 patches. The parameters used were $\lambda = 3$, $\gamma = 6$.

Table 1: List of all different functions we've tested in our 2 patch model

Description	Mathematical form	Other parameters involved
Ricker map for hosts intraspecific competition	$F(H_t) = e^{r(1 - \frac{H_t}{K})}$	Growth rate r , Carrying Capacity K
Smith map for hosts intraspecific competition	$F(H_t) = \frac{H_t}{1 + (\lambda - 1)(\frac{H_t}{K})^b}$	Growth factor λ , Carrying capacity K , strength of competition b
Independent search by parasitoids for hosts	$G(H_t, P_t) = e^{-aP_t}$	Per capita searching efficiency a
Aggregated attacks by parasitoids on hosts	$G(H_t, P_t) = \left(1 + \frac{aP(t)}{k}\right)^{-k}$	Per capita searching efficiency a , Degree of aggregation k

232 **4. Robustness across choice of functions**

233 Our results from the previous section are robust
 234 across different choices of intraspecific competition
 235 i.e. $F(H_t)$ and parasitism $G(H_t, P_t)$. For $F(H_t)$,
 236 we chose Ricker map and a function described by
 237 Maynard Smith, for annual insects amongst choice
 238 of intraspecific competition (as shown in the table
 239 below). For $G(H_t, P_t)$, we used both independent
 240 and aggregated parasitoid search for hosts.

241
 242 We found similar out of phase and in phase
 243 oscillations at low and high values of migration
 244 for any combination of functions mentioned above.
 245 Figure 4 shows a few specific cases of our findings.

247 **5. Length of the cycle**

248 When migration rate is high, both patches os-
 249 cillate in phase, behaving like a single patch. Thus,
 250 any measure of length of cycle i.e. time between
 251 successive host outbreaks, can be calculated using
 252 the equations derived for a single isolated patch
 253 [Umbanhowar and Hastings \(2002\)](#). We provide an
 254 approximate expression for length of cycle when
 255 migration rates are low and both patches oscillate
 256 out of phase. We define $T_{b,i}$, $T_{o,i}$ and $T_{c,i}$ as the
 257 number of generations patch i undergoes buildup,
 258 outbreak and crash respectively. We use the fol-
 259 lowing observations (without losing generality):
 260

- Duration of build up in 1 patch must be no more than the combined duration of outbreak

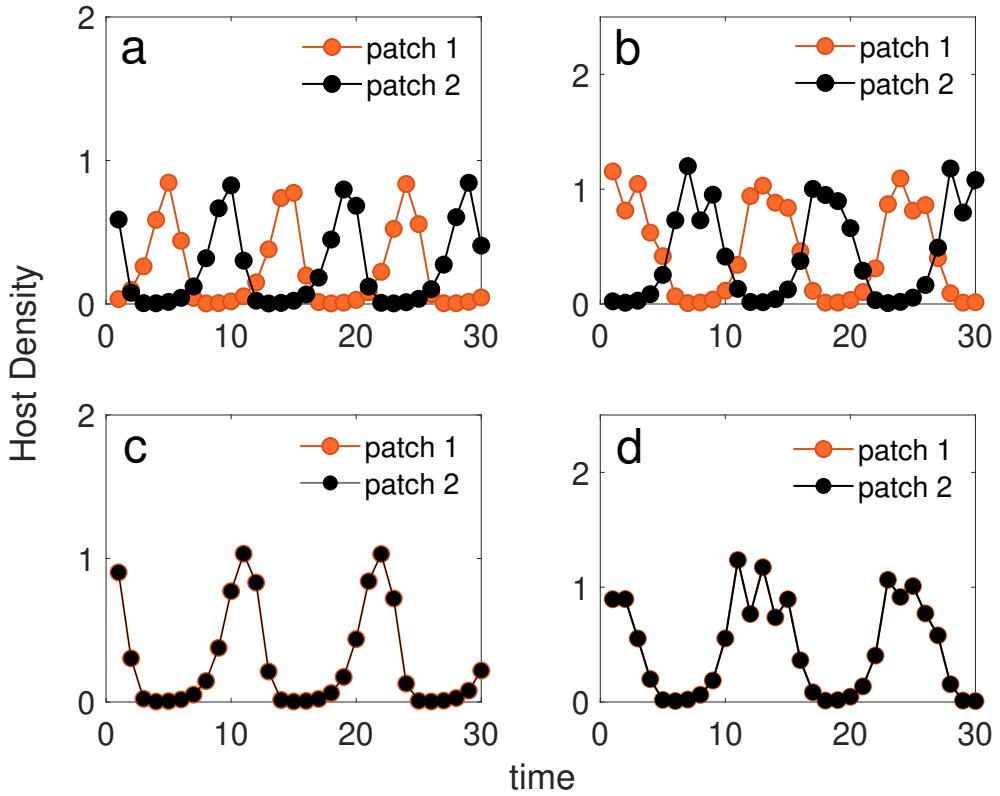


Figure 4: Host densities in 2 patches are plotted at steady state. Top (bottom) column represents cases for low (high) migration rates respectively. a) and c) are examples where host intraspecific competition was modelled using Ricker map and the parasitoid attack was aggregated. b) and d) are examples where intraspecific competition was modelled using Smith map and parasitoid search for hosts are independent.

and crash in other patch i.e.

$$T_{b,1} \leq T_{o,2} + T_{c,2}$$

If this condition isn't satisfied, then both the patches will have build-up simultaneously, which isn't the case in out of phase oscillations.

- Duration of build up in 1 patch must be no less than the duration of outbreak in other patch i.e.

$$T_{b,1} > T_{o,2}$$

If this condition isn't satisfied, then both the patches will have outbreaks simultaneously, which isn't the case in out of phase solutions.

Since a crash occurs for 2-3 generations, the time for build up is given by

$$T_{b,1} = T_{o,2} + 1 \text{ or } 2 \quad (7)$$

Because both the patches are symmetric, we have $T_{b,1} = T_{b,2}$ and $T_{o,1} = T_{o,2}$. Henceforth, we

will drop the patch numbers and just talk about build up (T_b), outbreak (T_o), and crash phases (T_c) and the total length of the cycle (T).

$$T = T_b + T_o + T_c \quad (8)$$

From $T_o = T_b - 1$ or $T_b - 2$ (from Equation [4]). Thus, adding that the crash is usually 2-3 generations

$$T = 2T_b \text{ or } 2T_b + 1 \quad (9)$$

The host density at the start of build up is $H_1 = \lambda^2 e^{-\gamma(2-\frac{1}{\lambda})} + \epsilon \lambda$, where the former term is a result of parasitism (as shown in [Umbanhower and Hastings \(2002\)](#)) and the latter is the host population which migrated into this patch from the patch undergoing an outbreak. Since γ is usually large, $\lambda^2 e^{-\gamma(2-\frac{1}{\lambda})} \approx 0$. This is supported by the intuition that after the crash, the host den-

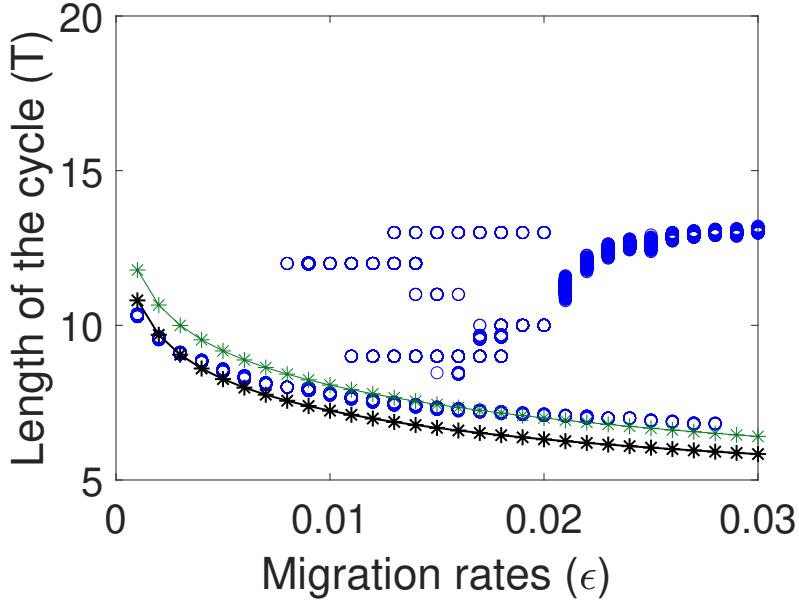


Figure 5: Length of cycle (numerically and approximate expressions) are plotted. Each blue dot represents length of cycle numerically obtained for a single iteration, after taking the mean of 1000 different time points after steady state was reached. The green and black curves represent the approximate theoretical expressions derived in the text. Here $\lambda = 3.375$ and $\gamma = 4.875$.

286 sities are reduced to very small values due to par-
 287 asitism. Thus, for very small values of migration
 288 i.e. $\epsilon \leq \lambda e^{-\gamma(2-\frac{1}{\lambda})}$, we don't see any affect of mi-
 289 gration and the two patches behave as if they are
 290 isolated patches. But for $1 >> \epsilon >> \lambda e^{-\gamma(2-\frac{1}{\lambda})}$,
 291 $H_1 \approx \epsilon \lambda$. Given the geometric nature of the growth
 292 of host density during buildup (as parasitoid den-
 293 sity is low, leading to no mortality due to para-
 294 sitism) and host migration from the other patch
 295 undergoing an outbreak, we have

$$H_t = \epsilon(\lambda^t + \lambda^{t-1} + \dots + \lambda) = \epsilon \lambda \frac{(\lambda^t - 1)}{\lambda - 1} \quad (10)$$

296 As long as the other patch is undergoing an out-
 297 break, the host density in the patch in the build up
 298 phase will continue to grow according to the expres-
 299 sion above. Assuming that the outbreak lasts for
 300 $T_o = T_b - 2$ generations, we would have

$$H_{T_b-2} = \epsilon \lambda \frac{(\lambda^{T_b-2} - 1)}{\lambda - 1} \quad (11)$$

301 Following an outbreak, the other patch under-
 302 goes crash which has high parasitoid density, re-
 303 ducing host densities in that patch. Thus, we can
 304 ignore the effect of migration for the remainder of
 305 the 2 generations of buildup, giving us the expres-

306 sion for host density at the end of the build up

$$H_{T_b} = \epsilon \lambda^3 \frac{(\lambda^{T_b-2} - 1)}{\lambda - 1} \quad (12)$$

307 Similarly, at the end of buildup the host density
 308 is $H_{T_b} \approx 1$ (as shown in [Umbanhower and Hastings \(2002\)](#)). Equating the expected host densities
 309 at the start of outbreak, we get

$$\epsilon \lambda^3 \frac{(\lambda^{T_b-2} - 1)}{\lambda - 1} \approx 1 \quad (13)$$

311 This gives us an approximate expression for T_b
 312 and $T = 2T_b$ as follows

$$T_b = 2 + \frac{\ln \left(1 + \frac{\lambda-1}{\epsilon \lambda^3} \right)}{\ln(\lambda)} \quad (14)$$

$$T = 4 + 2 \frac{\ln \left(1 + \frac{\lambda-1}{\epsilon \lambda^3} \right)}{\ln(\lambda)} \quad (15)$$

313 Furthermore, if instead we take $T_o = T_b - 1$ gen-
 314 erations and $T = 2T_b + 1$, we get the approximate
 315 expression as

$$T_b = 1 + \frac{\ln\left(1 + \frac{\lambda-1}{\epsilon\lambda^2}\right)}{\ln(\lambda)} \quad (16)$$

$$T = 3 + 2 \frac{\ln\left(1 + \frac{\lambda-1}{\epsilon\lambda^2}\right)}{\ln(\lambda)} \quad (17)$$

316 To test our expression for T against numerical
 317 simulations, we plot these expressions against the
 318 length of cycle numerically observed in out of phase
 319 solutions for different migration rates (for fixed λ
 320 and γ). To find the length of the cycle numerically,
 321 we measure the no of generations between
 322 peak parasitism (during crash) within each patch.
 323 We measure this 1000 times from either patch at
 324 random times after steady state was reached. The
 325 length of the cycle is the mean of these 1000 in-
 326 stances. Furthermore, for each value of ϵ , we repeat
 327 this for 10,000 different iterations, with different
 328 initial conditions, to account for any dependency
 329 on initial conditions. We plot the length of a cycle
 330 for all of these 10,000 iterations (for a given ϵ) in
 331 the same plot. When $\epsilon \approx 0$ or $\epsilon \approx 1$, the length of
 332 cycle should be same as that of a single patch. For
 333 intermittent values of ϵ , we expect the length of cy-
 334 cle to first decrease and then increase as $\epsilon \approx 1$, in
 335 agreement with what we see in Figure 5. As shown
 336 in Figure 5, the numerical and approximate ana-
 337 lytical expressions (shown in green and black) are
 338 in agreement. Furthermore, as ϵ increases, we see
 339 that length of cycle increases as both patches are
 340 in phase, albeit there are some instances in which
 341 system still ends up out of phase, implying the de-
 342 pendence of initial conditions.

343 6. Cellular Automata model

344 In this section, we show that our main results
 345 - patches oscillating out of phase at low migration
 346 rates and in phase at higher migration rates - is
 347 independent of the exact biological details of our
 348 modelling of host-parasitoid system. We introduce
 349 a cellular automata model which qualitatively cap-
 350 tures the different phases of host-parasitoid system
 351 i.e. the buildup, outbreak and crash. Our model
 352 is sequential i.e. it stays in buildup phase for m
 353 generations, then in outbreak for n generations
 354 and then in crash for o generations and the cy-
 355 cle continues. For simplicity of presenting results
 356 later, we say outbreak is state 1, crash is state 0
 357 and buildup is state -1 .

359 We consider 2 patches, each with this cellu-
 360 lar automata model, with diffusive migration be-
 361 tween them. We only consider scenarios where at
 362 least one patch has high host or parasitoid density,
 363 so that migration could cause change in the other
 364 patch. The 2 patch dynamics can be summarized
 365 as follows (since both patches are symmetric):

- 366 367 368 369 370 371 372 373 374 • If patch 1 is in buildup and patch 2 is in out-
 break, then patch 1 inches closer to outbreak
 phase, depending on the migration rate. The
 reasoning for considering this is that the host
 density in 2 is high and thus migration could
 cause a change in host density in patch 1,
 which is undergoing buildup. Any change
 in parasitoid densities is ignored because the
 densities in both patches are low.
- 375 376 377 378 379 380 381 382 383 384 • If patch 1 is in outbreak and patch 2 is in
 crash, the patch 1 inches closer to crash, de-
 pending on the migration rate. The para-
 sitoid density in 2 is high and thus any migra-
 tion could cause a change in parasitoid den-
 sity in patch 1, which is undergoing outbreak.
 Any change in host densities in either patches
 is ignored because of high parasitoid density
 in patch 2 and low parasitoid density in patch
 1.

385 Analogous to our host-parasitoid system, when
 386 $\epsilon \approx 0$, both patches should have no change in their
 387 state due to migration. Conversely, when $\epsilon \approx 1$,
 388 the patches should exchange their current state.
 389 Thus, we implement the effect of migration in a
 390 discrete steps between $[0, 1]$, in between these two
 391 extremes. For example, if patch 1 is $k1$ genera-
 392 tions into build up and patch 2 is $k2$ genera-
 393 tions into outbreak and ϵ is the migration rate, then patch
 394 1 inches forward by approximately $\epsilon(k2 + m - k1)$
 395 generations. Similarly, if patch 1 is $k1$ genera-
 396 tions into outbreak and patch 2 is $k2$ genera-
 397 tions into crash and ϵ is the migration rate, then patch 1
 398 inches forward by approximately $\epsilon(k2 + n - k1)$
 399 generations.

400 401 402 403 404 405 406 407 408 409 Figure 6 shows the results for different values
 of migration. We see that at low migration val-
 ues, we see both patches oscillate out of phase,
 which changes at higher migration rates. We used
 $m = 10$, $n = 9$ and $o = 3$ for our figure. But our
 results are valid for many values of m, n and o as
 long as $m, n \gg o$. This is an important condi-
 tion because crash is often short-lived compared to
 build up or outbreak phases.

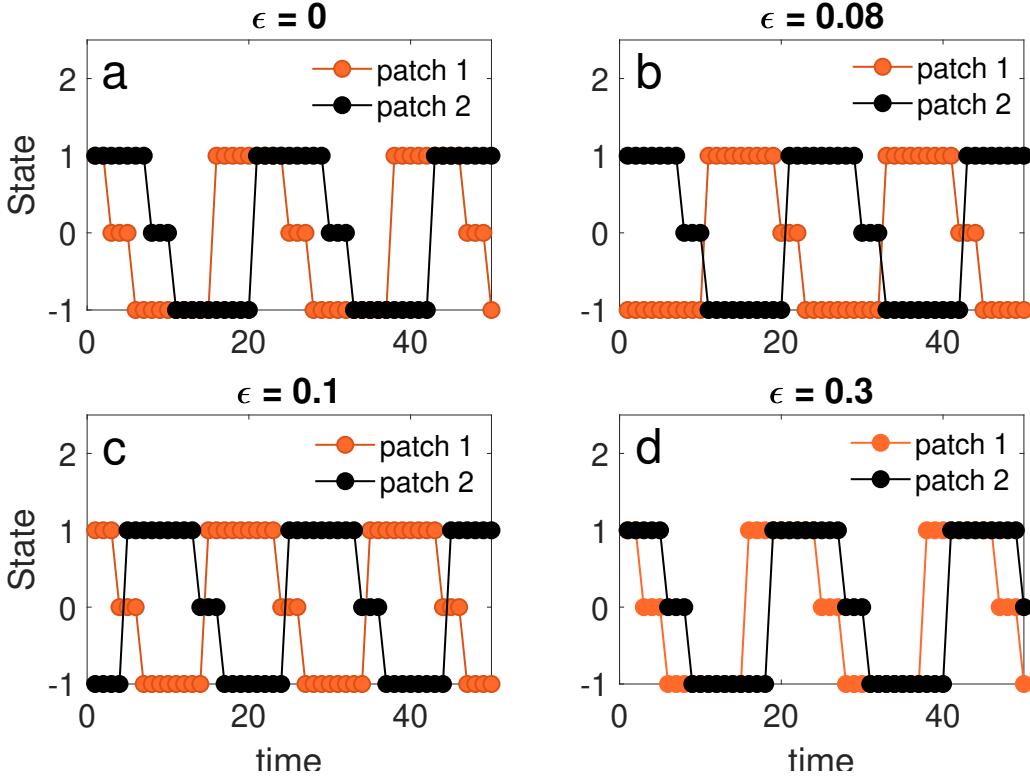


Figure 6: An example of the results for different migration rates from our cellular automata model is shown. Here $m = 10$, $n = 9$, $o = 3$. State 1 represents outbreak, state 0 represents crash and state -1 represents buildup. a) migration rate is 0 and hence both patches oscillate independently. At intermediate values of migration ((b) and (c)), we see both patches out of phase. At higher values of migration i.e. (d), we see both patches closer to being in phase.

411 7. Discussion and Conclusion

412 We analyze the robustness of the oscillations
 413 that arise when 2 patches, each having a host-
 414 parasitoid system, are coupled with density
 415 independent migration. Although, previous studies
 416 have shown the presence of in-phase and out of
 417 phase solutions in host-parasitoid systems Adler
 418 (1993), those models lacked important details such
 419 as effect of inter specific competition of hosts for
 420 resources or different parasitoid foraging behaviors
 421 (parasitism). It is now known that the outbreaking
 422 insect herbivores are often resource limited
 423 and thus including such interactions are key to
 424 the overall emergent dynamics. We surveyed the
 425 literature of host-parasitoid systems and used a
 426 suite of different functional forms to model in-
 427 traspecific competition for resources among hosts
 428 and parasitism, relevant to the literature. Our
 429 analysis shows that the result i.e. the two patches
 430 oscillate out of phase when migration is low, is ro-
 431 bust across the modelling choices for intraspecific
 432 competition and parasitism. Robustness across
 433 modelling choices is useful whenever direct com-

434 parison with data is lacking or difficult, which is
 435 often the case in host-parasitoid systems. This
 436 also presents avenues of further work where this
 437 robustness is mathematically shown starting from
 438 a modified version of Eq. (1).
 439

440 In addition, we also show an approximate way
 441 to derive an analytical expression for length of a
 442 cycle (Eq. (4-5)), when the two patches oscillate
 443 out of phase. We define length of a cycle as the
 444 expected number of generations between the peaks
 445 of parasitoid population in a single patch. Our
 446 approach is different from the standard analyses,
 447 where Eq.(3) is linearized and eigenvalues are cal-
 448 culated. We used approximations grounded in our
 449 understanding of different stages (i.e. buildup,
 450 outbreak and crash) that a host parasitoid under-
 451 goes Umbanhower and Hastings (2002) and found
 452 that our theoretical expressions are in agreement
 453 with the simulation results as shown in Figure 5.
 454 Further improvements to the analytical work can
 455 be made by including parasitoid migrations from
 456 the outbreaking patch to the patch undergoing

457 buildup, as that will give a better estimate for the
458 onset of outbreak in the latter patch.

460 A range of different models can be employed
461 to look at the questions studied here, the spatio-
462 temporal dynamics of host-parasitoid systems.
463 One way to demonstrate that results obtained are
464 robust is by showing similar conclusions for differ-
465 ent models with different underlying implicit as-
466 sumptions. This can also determine what biolog-
467 ical features lead to observed dynamics. Thus,
468 lastly, we also analyzed if the oscillations we stud-
469 ied were rooted in the specific biological details of
470 a host-parasitoid system. We use a 3 state cellu-
471 lar automata model devoid of any biological details
472 (like competition, parasitism etc.), which qualita-
473 tively undergoes buildup, outbreak and crash for
474 m, n and o time steps respectively. We show that
475 as long as $m \approx n \gg o$, the two patches oscillate
476 out of phase when migration is low (Figure 6). Al-
477 though similar cellular automata model have been
478 used in studies before (see [Hassell et al. \(1991\)](#)),
479 our work presents new insights. Our analysis shows
480 that out of phase oscillations could arise as long as
481 the population in each patch undergoes a cycle of 3
482 stages, where one stage (i.e. crash) is much smaller
483 than the other two (buildup and outbreak). This
484 result could also hold true for populations other
485 than host-parasitoid system. Our work could be
486 extended to a more general framework which could
487 map oscillations across patches to oscillations in
488 individual patches, a problem which is of great in-
489 terest in metapopulation studies.

490 Declaration of Competing Interest

491 The authors declare that there was no compet-
492 ing interests, either financially or personally, that
493 could influence the results presented in this work.

494 Code availability

495 All codes used for this project can be found
496 [here](#).

497 Funding

498 NSF Grant DMS - 1817124. NSF grants no.
499 1840221 and 1817124

500 Contributions

501 Research question developed by both. Analysis
502 done by me with guidance by Alan. manuscript
503 written by me, edited by both authors.

504 References

505 References

506 RM May, MP Hassell, RM Anderson, and
507 DW Tonkyn. Density dependence in host-
508 parasitoid models. *The Journal of Animal
509 Ecology*, pages 855–865, 1981.

510 Amel Balla, Allaoua Silini, Hafsa Cherif-Silini,
511 Ali Chenari Bouket, Warren Keith Moser,
512 Justyna Anna Nowakowska, Tomasz Oszako,
513 Farida Benia, and Lassaad Belbahri. The
514 threat of pests and pathogens and the poten-
515 tial for biological control in forest ecosystems.
516 *Forests*, 12(11):1579, 2021.

517 Ian L Boyd, PH Freer-Smith, Christopher A
518 Gilligan, and Hugh Charles J Godfray. The
519 consequence of tree pests and diseases for
520 ecosystem services. *Science*, 342(6160):
521 1235773, 2013.

522 Kamal JK Gandhi and Daniel A Herms. Di-
523 rect and indirect effects of alien insect herbi-
524 vores on ecological processes and interactions
525 in forests of eastern north america. *Biological
526 Invasions*, 12:389–405, 2010.

527 A Liebhold and B Bentz. Insect distur-
528 bance and climate change. *US Department
529 of Agriculture, Forest Service, Climate
530 Change Resource Center*. [www.fs.usda.gov/ccrc/topics/insectdisturbance/insect-
531 disturbance](http://www.fs.usda.gov/ccrc/topics/insectdisturbance/insect-disturbance), 2011.

533 Alison F Hunter and Greg Dwyer. Outbreaks
534 and interacting factors: insect population ex-
535 plosions synthesized and dissected. *Integrative
536 Biology: Issues, News, and Reviews: Pub-
537 lished in Association with The Society for
538 Integrative and Comparative Biology*, 1(5):166–
539 177, 1998.

540 Pedro Barbosa, Jack C Schultz, et al. *Insect out-
541 breaks*. Academic Press, Inc., 1987.

542 Judith H Myers. Can a general hypothesis ex-
543 plain population cycles of forest lepidoptera?
544 In *Advances in Ecological Research*, volume 18,
545 pages 179–242. Elsevier, 1988.

546 James Umpanhowar and Alan Hastings. The im-
547 pact of resource limitation and the phenology
548 of parasitoid attack on the duration of insect
549 herbivore outbreaks. *Theoretical Population
550 Biology*, 62(3):259–269, 2002.

551 David T Briese et al. Classical biological control. 573 Michael R Strand and John J Obrycki. Host
552 *Australian weed management systems*, pages 574 specificity of insect parasitoids and predators.
553 161–192, 2000. 575 *BioScience*, 46(6):422–429, 1996.

554 LE Caltagirone. Landmark examples in classical 576 Nicholas J Mills and Wayne M Getz. Mod-
555 biological control. *Annual Review of Entomol- 577 elling the biological control of insect pests: a
556 ogy*, 26(1):213–232, 1981. 578 review of host-parasitoid models. *Ecological
579 modelling*, 92(2-3):121–143, 1996.

557 MP Hassell and JK Waage. Host-parasitoid 580 Karen C Abbott and Greg Dwyer. Using mech-
558 population interactions. *Annual review of ento- 581 anistic models to understand synchrony in for-
559 mology*, 29(1):89–114, 1984. 582 est insect populations: the north american
583 gypsy moth as a case study. *The American
584 Naturalist*, 172(5):613–624, 2008.

560 JK Waage and MP Hassell. Parasitoids as biolog- 585 Andrew Liebhold, Walter D Koenig, and Ottar N
561 ical control agents—a fundamental approach. 586 Bjørnstad. Spatial synchrony in population
562 *Parasitology*, 84(4):241–268, 1982. 587 dynamics. *Annu. Rev. Ecol. Evol. Syst.*, 35:
588 467–490, 2004.

563 Zhi-Zhi Wang, Yin-Quan Liu, SHI Min, Jian- 589 Michael P Hassell, Hugh N Comins, and
564 Hua Huang, and Xue-Xin Chen. Parasitoid 590 Robert M Mayt. Spatial structure and chaos
565 wasps as effective biological control agents. 591 in insect population dynamics. *Nature*, 353
566 *Journal of Integrative Agriculture*, 18(4):705– 592 (6341):255–258, 1991.

567 715, 2019.

568 Hugh CJ Godfray, Michael P Hassell, and 593 Frederick R Adler. Migration alone can produce
569 Robert D Holt. The population dynamic con- 594 persistence of host-parasitoid models. *The
570 sequences of phenological asynchrony between 595 American Naturalist*, 141(4):642–650, 1993.

571 parasitoids and their hosts. *Journal of Animal
572 Ecology*, pages 1–10, 1994.

573