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Abstract. Lateral migration of meandering rivers poses erosional risks to human settlements, roads, and infras-
tructure in alluvial floodplains. While there is a large body of scientific literature on the dominant mechanisms
driving river migration, it is still not possible to accurately predict river meander evolution over multiple years.
This is in part because we do not fully understand the relative contribution of each mechanism and because
deterministic mathematical models are not equipped to account for stochasticity in the system. Besides, uncer-
tainty due to model structure deficits and unknown parameter values remains. For a more reliable assessment of
risks, we therefore need probabilistic forecasts. Here, we present a workflow to generate geomorphic risk maps
for river migration using probabilistic modeling. We start with a simple geometric model for river migration,
where nominal migration rates increase with local and upstream curvature. We then account for model structure
deficits using smooth random functions. Probabilistic forecasts for river channel position over time are generated
by Monte Carlo runs using a distribution of model parameter values inferred from satellite data. We provide a
recipe for parameter inference within the Bayesian framework. We demonstrate that such risk maps are rela-
tively more informative in avoiding false negatives, which can be both detrimental and costly, in the context of
assessing erosional hazards due to river migration. Our results show that with longer prediction time horizons,
the spatial uncertainty of erosional hazard within the entire channel belt increases — with more geographical
area falling within 25 % < probability < 75 %. However, forecasts also become more confident about erosion
for regions immediately in the vicinity of the river, especially on its cut-bank side. Probabilistic modeling thus
allows us to quantify our degree of confidence — which is spatially and temporally variable — in river migration
forecasts. We also note that to increase the reliability of these risk maps, we need to describe the first-order
dynamics in our model to a reasonable degree of accuracy, and simple geometric models do not always possess
such accuracy.

Meandering rivers migrate in their alluvial plain due to differ-
ential erosion and deposition along the outer and inner banks.
Among other processes, this migration primarily happens be-
cause the shear stresses exerted on the cut bank are relatively
high and the shear stresses on the point bar are relatively low,

leading to erosion on one side and deposition on another (Di-
etrich and Smith, 1983; Parker et al., 2010; Phillips et al.,
2022). This is, in turn, a consequence of spatial divergence
and convergence of the sediment flux, respectively, caused by
spatial acceleration and deceleration of the flow. The global
distribution of migration rates of channels spans orders of
magnitudes, and in some cases, these rates reach tens to hun-
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dreds of meters per year (Langhorst and Pavelsky, 2023). As
a large fraction of the human population lives in close prox-
imity to rivers, such rates of bank erosion pose risks to in-
frastructure and communities in the vicinity of these rivers
(Wu et al., 2023; Jarriel et al., 2021).

Both local and nonlocal mathematical theories have been
postulated to understand the dynamics of river migration (La-
gasse, 2004; Giineralp et al., 2012; Bogoni et al., 2017). The
spatially localized theories focus on the erodibility of the
bank material versus the hydraulic and gravitational stresses
that induce erosion. The dominant processes that cause such
an aggregate bank retreat are near-bank and overbank flow,
seepage flows, fluctuations in soil pore pressure, and inter-
mittent collapse of overhanging slump blocks (Zhao et al.,
2022). Previous studies have explored the effects of flood-
plain heterogeneity and substrate strength on meandering
river planform and migration (Giineralp and Rhoads, 2011;
Limaye and Lamb, 2014; Bogoni et al., 2017). In contrast,
nonlocal theories are primarily geometric, where the curva-
ture over a channel length is used as a predictive variable that
tells us about the effective erosion rate experienced at vari-
ous locations (Howard and Knutson, 1984; Sylvester et al.,
2019). These geometric models use a weighted sum of up-
stream curvatures to forecast the effective migration at a lo-
cation along the channel. Geomorphic and hydrologic fea-
tures of the alluvium and river are represented by fitting the
model parameters to the observed migration. The benefit of
these geometric models is their computational economy. Lo-
cal models rely on equations of motion to calculate the veloc-
ity and depth fields, which in turn allow for the calculation of
shear stress distribution on the banks. This shear stress field
can then be used to estimate erosion and deposition rates.
However, such a spatially distributed physics-based approach
comes with large data needs and a heavy computational bur-
den. The geometric models, on the other hand, rely on the
emergent behavior of river migration. These models can be
run over and over, allowing us to compute various statistics
of the forecast (Posner and Duan, 2012). This computational
efficiency is especially helpful in making predictions in the
probabilistic framework.

Along with working on the predictive accuracy of earth
and environmental science models, over the past few
decades, there has been a growing interest in and acknowl-
edgement of the cascading chain of uncertainties, especially
when these models are used to evaluate risks and engineer
solutions (Beven, 2006; Liu et al., 2009; Caers, 2011; Slingo
and Palmer, 2011). Proper treatment of such uncertainties al-
lows for risk-based decision-making (Reichert et al., 2015;
Reichert, 2020). However, there is an underlying prerequisite
to enable such a shift in decision-making paradigms — that
is, the evaluation of reliable forecast probabilities. And this
holds true for river migration modeling as well (Jerolmack,
2011). Due to stochastic variability (Scheidegger, 1991) — in
hydraulic stressors, sediment supply, and mechanical prop-
erties of banks — and due to model structure deficits, deter-
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ministic representations are generally only able to capture
the first-order dynamics. To assess the geomorphic risk of
the meandering river to its surrounding reaches, we there-
fore propose embedding deterministic river migration mod-
els into a probabilistic framework. This work takes inspira-
tion from risk maps that are offered for other earth-system-
related hazards like floods (Biichele et al., 2006; Neal et al.,
2012), droughts (Zargar et al., 2011), hurricanes (Emanuel
et al., 2006), and earthquakes (Gaull et al., 1990). The goal
of this work is to combine concepts from probability theory
and geomorphic modeling and provide a step-by-step guide-
line to account for — within the model representation — vari-
ous model-related uncertainties and stochasticity in the sys-
tem. We proceed to constrain parameter uncertainties using
observational data within the Bayesian framework.

There has been previous work on introducing probabilis-
tic analysis to geomorphic modeling by introducing Monte
Carlo simulations over parameter values as well as incor-
porating distributions of rainstorm intensity, discharge, sedi-
ment motion, and sediment supply (Posner and Duan, 2012;
Benda et al., 1998; Benda and Dunne, 1997a, b; Dunne et al.,
2016). Here, we wish to extend that literature and provide a
more comprehensive recipe to (a) try accounting for model
structure deficits by deploying additive smooth random func-
tions, then (b) infer distributions of model parameters from
observations, and (c) finally generate geomorphic risk maps
using forward Monte Carlo simulations. For this, we also
had to devise an algorithm that determines whether a mod-
eled channel has passed over a geographical location or not.
Moreover, environmental systems, like migrating channels,
can be modeled by various types of governing equations —
varying in their detail and complexity. These model structure
choices dictate the performance of the model as well as the
statistical properties of its residual errors. We therefore dis-
cuss the pros and cons of our statistical assumptions as well.

In the next sections, we will go over methodological de-
tails describing how to make geometric models stochastic
and generate risk maps using inferred parameter distribu-
tions. We present the results from our simulation experi-
ments on synthetic data and on a real case study. After the
results, we discuss the advantages of this method over purely
deterministic prediction setups. Finally, we discuss some of
the unique challenges in generating risk maps for migrating
rivers — growing uncertainty with increasing prediction hori-
zon, identification of adequate geometric models that capture
the first-order dynamics, and the nonlinearity introduced by
cutoffs. We end the paper with some generalizable conclu-
sions from this analysis.

2 Methods and material
Here, we introduce the recipe to extend a deterministic ge-

ometric model of river migration into a stochastic model.
We first motivate river migration as a problem concerning an
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evolving curve. We introduce a simple geometric model that
can guide channel evolution. We then go through the vari-
ous additive stochastic terms that can be used to account for
model structure deficits. We propose a novel application of
smooth random functions for the river migration dynamics,
which is different in characteristics than other space—time
processes like discharge time series or flow velocity fields.
Once the stochastic model for river migration is defined, we
prepare the inverse problem by selecting the observations and
defining the likelihood function. We finally introduce a novel
counting algorithm as a counting problem for a 1D mani-
fold in a 2D space and explain how to generate risk maps
from the initial and final channel geometry — which is much
more efficient than tracking the geometry during the entirety
of evolution time.

2.1 Geometric geomorphic models and uncertainty

In geomorphic models, like most predictive models in earth
and environmental sciences, we plug the input variables in
the model and get the output. However, the nature of the
dependent variable is different — unlike a time series or a
geospatial field, it is a dynamic 1D manifold, when chan-
nel evolution is viewed in its totality. In the context of flu-
vial geomorphology, we generally assume the channels to be
smooth planar curves (a one-dimensional manifold in a real
Euclidean plane R?), and their forward simulation provides
the evolution of this curve given an initial channel geometry.

¢ = {.» e R 70.0). Co} (M

Here C; represents the subset of points in R? space repre-
senting the channel, and f(8,t) represents a deterministic
function with parameters 6 that guide the evolution of the
channel from its initial state Cy to C; at time ¢ (Fig. 1). These
parameter values indirectly reflect the geomorphological and
hydrological processes active in each channel reach. We can
extend this definition to incorporate stochastic elements in
channel evolution. In addition to f, which captures the first-
order dynamics, we can have an additive stochastic term g to
capture the deviations from the average behavior.

G ={r. ) e RU£0.0+ 8w 9). Co @)

While g could very well be dependent on 6 as well, here
we restrict our analysis to g(y, s). One of the most popu-
lar geometric models used for estimating river migration was
proposed by Howard and Knutson (1984). This model works
under the assumption that more curved regions of the chan-
nel experience more shear stresses and therefore, on average,
migrate more. The migration rate can thus be considered a
compound effect of local curvature and curvature upstream.
The effective migration R rate is estimated as the weighted
sum of local and upstream curvatures:
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where Sylvester et al. (2019) describe the nominal migration
rate Ry as the one that is only dependent on the local curva-
ture,

Ro =k W/R. 4)

Q and I' are weighting parameters, (W/R) is the ratio of
width to the radius of curvature, and k; is the migration
rate constant. They assume the values of €2 and I" to be —1
and 2.5. In this model, s is the location along the centerline
at time ¢, € is the along-channel distance upstream from that
location, and G(§) is a function for the convolution integral,
which weights the contribution of upstream curvature:

GE)=e, Q)

where «, a tunable parameter, is a function of a dimension-
less friction factor Cr and water depth D, and k is a constant
that equals 1,

o =2kCg/D. (6)

Sylvester et al. (2019) have developed a Python package,
MeanderPy, which uses these equations for channel migra-
tion and comes with very handy analysis and visualization
tools. However, to constrain the channel evolution with site-
specific geomorphic properties, we first need to determine
the model parameter values, which vary from case to case.
Learning about these parameters from observations of the
system response is labeled as the inverse problem, where the
question being answered is the following: given an initial and
final channel geometry, what values of parameters could have
produced these dynamics? This inversion of parameter val-
ues is confounded by noise in the process and model struc-
ture deficits. For example, there are many instances when this
simple assumed relationship between channel curvature and
migration rate does not hold (Donovan et al., 2021) or other
controls dominate the dynamics (Wiel and Darby, 2007; Li-
maye and Lamb, 2014).

In deterministic modeling paradigms, for a given input
channel geometry and parameter values, a unique output ge-
ometry is expected. Observed deviations over and above the
deterministic model f are generally neglected. In such de-
terministic paradigms, modelers seek the most likely evo-
Iution that they expect from a migrating river system. The
model calibration, i.e., tuning of its parameters, is carried
out using specific optimization metrics like seeking the least-
squared error by comparing the predicted and observed chan-
nel geometry. To prevent fitting the model to the noise, cross-
validation techniques are employed, where observations are
split into three categories: calibration, validation, and test.
However, within probabilistic paradigms, we are not only
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Figure 1. This illustrative figure depicts river migration as a prob-
lem of evolving planar curves. (a) A river channel can be depicted
as a 1D manifold in RZ, assuming it to be the set of points C;= at
an arbitrary time t*, where x and y represent the two spatial dimen-
sions in the alluvium. (b) A river channel can also be depicted as a
2D manifold in R3, assuming it to be the set of points C.;, where
interval O to 7 is the time of evolution from some arbitrary initial to
arbitrary final state.

interested in the “best guess” about parameter values and
model output, but we want to employ the whole distribution
of the parameters and, in turn, obtain the entire distribution
of channel output; we start with a mathematical framework
that can assign probabilities to our modeled system response.
Given the inherent nonlinearities in the migrating river sys-
tems, we posit that using a distribution of inferred parameter
values allows for more reliable forecast, with an explicit con-
sideration for uncertainties.

While geometric geomorphic models lose accuracy due to
simplifying assumptions, models that describe the system in
greater detail - by incorporating hydraulics and soil mechan-
ics — do not necessarily improve the predictive capability.
This is because many other factors play a role. An attempt at
adding more subprocesses to the system description also re-
quires that the representation of those subprocesses is correct
—1i.e., the model is able to represent the true dynamics of the
system. Besides, more data are needed to feed these models.
So there is a tendency to accumulate errors when we go to
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more detailed models that resolve various spatial processes.
Therefore, geomorphic models tend to have uncertainties as-
sociated with them irrespective of the detail with which they
try to describe the hydrologic and geomorphic systems.

The specific sources of uncertainty in geomorphic models
are as follows: (a) model structure uncertainty, which arises
from the fact that the equations used to describe the evolu-
tion of a system like (a meandering channel) are approxi-
mate. Model structure deficits can lead to a combination of
systematic (overestimation or underestimation of the migra-
tion rates) and random deviations from the real system re-
sponse. (b) The measurements of the input, elevation, and
system response itself suffer from systematic and random
deviations. This is called observational uncertainty. These
deviations may be stationary in time or show some depen-
dence on external drivers. This uncertainty becomes espe-
cially more pronounced when we want to carry out infer-
ences about the system invariants — like its parameters or
model structure — using these data. (c) The other source of
uncertainty is unknown parameter values. Many combina-
tions of parameter values, the ones we have not measured,
can produce a close fit to the observed migration of the chan-
nel geometry to a comparable degree, leading to parameter
uncertainty (Borgomeo et al., 2014; Beven and Lane, 2022).
Parameter uncertainty is usually a result of indeterminacy in
the deterministic paradigm; i.e., given an algebraic or dif-
ferential equation, there are n data points, depending on the
nature of the equation, necessary to fully define the system.
Having fewer observations then results in parameter uncer-
tainty. In the probabilistic paradigm, parameter uncertainty
is a consequence of the fact that different parameter values,
once a model is defined, can explain the same observational
data with varying probabilities because, as mentioned, ob-
servations have errors and models are imperfect. In an ideal
world, for example, for fitting a line, two observations with
no noise will uniquely define its parameters. However, the
presence of random error allows us to fit many lines through
the same data.

Given all these cascading chains of uncertainty, there is
prudence and value in quantifying them for risk assessments
(Beven and Lane, 2022). Risk can be described as a com-
bination of costs associated with various possible outcomes
and the associated uncertainty in the realization of those out-
comes. Thus, metrics like expected loss try to encapsulate
some aspects of risk. However, the underlying requirement
to have some faithful quantification of risk is the evaluation
of event probabilities. Probabilities can be derived from past
frequencies of the phenomena in question or using stochastic
models of the process. Various natural hazards are reported
in terms of their risk maps: for example, seismic risk maps,
weather-related risk maps, and flood risk maps. When fore-
cast variables have a hazard associated with them, most fields
rely on the concept of risk. They generate probabilistic fore-
casts, which in turn are used to make risk assessments.
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2.2 Extension of the deterministic models into
stochastic models

Model structure deficits can be thought of as an aggregation
of small deviations that come from several subprocesses not
being incorporated in the model equations. We can therefore
assume that errors due to model structure will follow some
parametric distribution in the limit. The simplest case that is
often employed is the normal distribution at each location.
However, if we want more structure to the additive term, we
will have to upgrade from random variables to random func-
tions, which are called stochastic processes.

2.2.1  Nonsmooth stochastic processes

Mathematical models of earth and environmental systems
can be considered the sum of a deterministic term and a ran-
dom variable (Higdon et al., 2004; Wani et al., 2017b, a;
Kennedy and O’Hagan, 2001; Wani et al., 2019). If the pre-
dicted variable is time or space continuous, we need to bor-
row more advanced concepts from statistics and use random
functions or fields as additive terms. These space—time con-
tinuous random functions or fields are referred to as con-
tinuous stochastic processes. Reichert and Schuwirth (2012)
propose describing true system response at time ¢ of an envi-
ronmental system as the sum of a deterministic model and a
stochastic process. If we adopt this method, the deterministic
model f(0,1) is given by the Howard—Knutson model. And
the stochastic term g(¢) can be given, for example, by the
Ornstein—Uhlenbeck process ), defined as

dVy = —BYVx-dx+y - dWy : Wyypar — Wy ~N(0, Ax). (7)

Here, W is a Wiener process. A Wiener process is the
continuous version of the normal noise, where increments
within an interval Ax are independent, are normally dis-
tributed, and have variance equal to the interval length. Given
its mathematical definition (Eq. 7), the Ornstein—Uhlenbeck
process comes out as stationary, Gaussian, and Markovian
(Van Kampen, 2007). The solution of the stochastic differen-
tial equation above, i.e., )y, is a continuous random function,
which is normally distributed at each spatial location x (Ras-
mussen and Williams, 2005). As f (0, ) maps us to (x, y), we
use an additive g(v) for x and y each (illustrated in Fig. 2).
Various other configurations can be used to randomly perturb
the f(6, ) model, but we start with the simplest of configura-
tions. Another configuration is possible: f(@,¢)-g(y). How-
ever, the function is not a smooth function and therefore if
used as g(v) does not provide smooth river channels.

2.2.2 Smooth stochastic processes

Modeling geomorphic evolution as a stochastic process
comes with a unique challenge in the case of migrating rivers
— at the scales we are interested in, channels appear to be
smooth (Fig. 2a). However, smoothness is not a require-
ment in other space—time processes related to other earth and
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environmental systems. When we perturb the river channel
evolved by a geometric model using Gaussian processes (for
example, Eq. 7), the final channel geometry is jagged and
does not resemble the smooth planar curves we observe at
the scales that we are interested in. Fortunately, statisticians
have also formulated descriptions of random functions that
are smooth and normally distributed at x. Filip et al. (2019)
elaborate on how to use truncated Fourier series with random
coefficients to generate such smooth stochastic processes.

Yy =ap +a\/§; |:aj cos (?) +bjsin (?)]
m=|L/A] ®)

where each a; and each b; is an independent sample from
N(0,1/(2m + 1)) and o is the standard deviation. And L is
the domain length of the random function. Depending on the
choice of A, we can choose the number of sines and cosines
we wish to add to generate our final smooth random func-
tion. The limit A — O generates a Gaussian process. If we
wish to learn about the parameters, like m of such stochastic
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processes, we can also try to infer their values from observa-
tions.

2.3 Learning from observational data

In the context of channel migration, a likelihood function
p(Ci16, ¥, Cp) is the probability density of observing a cer-
tain evolved channel C; at time 7, given the initial geome-
try Co, conditional on specific values of (6, v) that produced
it. Additionally, having a prior probability distribution over
the model parameters p(6, ¥), which can represent physical
constraints or expert knowledge, allows us to write the infer-
ence of parameters from observations C; as a Bayesian prob-
lem. The updated parameter distribution, after learning from
data, is called the posterior distribution, written as (Korup,
2021)

P16, ¥, Co) p(6, ¥)

This distribution updates our estimate of the parameter val-
ues of the model and narrows down the range of the esti-
mate after learning from the observed data (Fig. 3). While us-
ing the smooth formulation of additive stochastic processes
gives us the advantage of producing more realistic channel
geometries, we lose some of the analytical properties that
come with Gaussian processes. Most importantly, using a
Gaussian process as an additive stochastic term allows for
explicitly evaluating the likelihood function p(C;|6, ¥, Co).
This is not straightforward in the case of smooth random
functions. However, we can write an explicit likelihood func-
tion on a specific summary statistic of our channel geome-
try — the coefficients of sines and cosines in the smooth ran-
dom function, as they are, according to our assumption, nor-
mally distributed (a; and b; in Eq. 8). And we can recover
these coefficients from observations using Fourier transform
on the residuals, i.e., C; — f(0, ). We run the determinis-
tic model f(0) and then subtract the deviations in (x, y) of
the predicted channel using f from the observed channel.
From our construction in Eq. (2), this difference is distributed
as g(v). Fourier transform on one observed realization of g,
called gobs, yields a function in the frequency space.

p(97 w'clvco) =

€))

o0

flp)= / Sobs(5)e TIP3 ds (10)

—00

s is the distance along the channel from an arbitrary upstream
point. In our current formulation, we add g separately to both
x values and y values, and therefore s becomes x and y in
each case. We can now use the fast Fourier transform to get
the values of f (¢). Depending on the composition of Eq. (8),
we expect the maximum values of 2/size(gobs(s)) - Re( f (@)
and 2/size(gobs(s)) - Im(f((p)) to give us a; and b}, respec-
tively (here I/m() is the imaginary part and Re() is the real
part). We can explicitly calculate the likelihood function for
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them as we assume them to be independent and normally
distributed with zero mean and variance . In this study,
we use the affine-invariant ensemble sampler for Markov
chain Monte Carlo (Goodman and Weare, 2010), packaged
in Python as EMCEE by Foreman-Mackey et al. (2013) and
Foreman-Mackey et al. (2019), to sample from the posterior
distribution. Another way to infer parameter values would be
using approximate Bayesian computation (ABC), where we
do not need to evaluate the likelihood function but only to
be able to sample from it, i.e., be able to run the stochastic
model f + g as a forward simulation. We have not analyzed
an ABC scheme in this work.

2.4 Generation of risk maps of erosional hazard due to
river migration

The goal of this study is to devise a framework that helps un-
derstand and quantify the risk of each pixel of land getting
eroded within a time frame by the evolving channel. Once
we have the inferred model parameter distribution from the
observed channel migration, we can use it to perform Monte
Carlo simulation and generate multiple channel evolutions,
the spread of which incorporates both parametric and model
structure uncertainty. To create a pixeled risk map over the
alluvium, we need to count the number of evolved channels
that cross a pixel. The ratio of the number of channels cross-
ing a pixel (x,y) to the total number of simulation runs n
gives us the probability of channel erosion, p, within the next
t years at that location.

l n
p=- E Ei(x,y), where
n
i=1

i ] 1 channel i crossing the pixel at (x, y)
Ei(x,y)= { 0 otherwise (1D

However, it is not possible to uniquely identify the number of
times an evolving 1D curve passes a point in a 2D plane from
its initial and final geometry unless some more constraints
are defined on the curve evolution. This is what we term as
the counting problem of evolving channels. Nonetheless, we
argue there are some unique properties to channel migration
that can allow us to determine whether a channel has crossed
a spatial point by simply comparing its initial shape and the
final shape. This greatly reduces the computational burden
of estimating erosion probabilities from Monte Carlo runs,
as we are not burdened with tracking the shape of the chan-
nel at every intermediate evolutionary time step. The three
constraints, enforced by the physical and empirical behavior
of rivers that makes this counting possible are the following:
(1) channels flow downstream; therefore, at scales of multi-
ple bends, they tend to enter the rectangular alluvial frame
for which we want the risk map on one edge and leave on
a different edge. (2) Channels evolve outwards on their con-
vex side. This excludes curve evolution where a curve moves
in one direction and then backtracks some of its paths later.
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f(6) Numerical Model +
g(¥) Stochastic additive term
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Step 1: Infer parameter values
from observed past migration.

Step 3: Based on the erosion
frequency, develop a risk map.

Step 2: Perform Monte Carlo simulations
using inferred parameter distribution.

Figure 3. Illustration for the generation of a risk map using parameter distribution inferred from satellite observations (see Algorithm 1).

These two constraints on the channel evolution help us come
up with a counting algorithm based on the initial and final
position of the channel.

Once these constraints are assumed, Fig. 4 provides the
method to establish whether channel geometry has evolved
over a point. Corresponding to each pixel (x/,y’) in the al-
luvial frame of interest, we draw a horizontal line and count
how many times the initial and final geometry of the chan-
nel crossed the line y = y’. We then divide the number of
crossings between the left side and the right side of x’. If the
number of crossings on either side has increased by an odd
number, then the river has crossed the point (x', y'); other-
wise, it has not (Fig. 4). We repeat this process for all the
pixels in the frame. And we do this for all the Monte Carlo
simulation runs. We finally do the counting of the channel
crossings, and after normalization with the total runs, we get
our geomorphic risk map, encoding the probability of ero-
sion at each spatial location for a given time horizon (Fig. 3;
Algorithm 1).

In this work, we have not taken into account the width of
the channel and only take into account the centerline of the
channel. This is because incorporation of the width poses ad-
ditional computational challenges. For example, the optimal
methods to sequentially assign each on the centerline to spe-
cific points on the bank have not been identified yet. Also, as
our risk estimation algorithm is based on comparing the static
configurations of initial and final channel geometries, it is not
straightforward to identify which one of the two banks is cre-
ating the risk. However, the resolution of these challenges is
not key to the assessment of our risk map generation frame-
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Algorithm 1 Generating risk map for river migration.

Require: Initial channel geometry Cy
Require: A stochastic river migration model (f + g) that gives
final channel geometry: C; = {(x, y) € Rzlf(é?, H+ g, s), Co}
Require: Posterior parameter distribution p (6, ¥|C/", C;)
[* denotes past observational data used for inference]
1: Generate samples from p (9, ¥|CF, C[)“ )
2: Run the stochastic model f(6, )+ g(¥, s), using the generated
samples, with Cy as the initial geometry (Fig. 2)
3: Count all the times the migrated river C; crosses a pixel within
the meander belt (method: Fig. 4)
4: Normalize the count with the number of Monte Carlo runs to get
the erosion probability

Initial channel geometry intersecting y’

Final geometry intersecting y’ (realization 1)
Final geometry intersecting y’(realization 2)

(x’, ¥') location of counting algorithm calculation
Initial channel geometry that intersects y’

Final channel geometry that intersects y’

oo |||

If n(x>x’) — n(x,>x’) is:
odd, channel crossed (x’, y) - e.g., realization 1
even, channel didn't cross (x’, y’) - e.g., realization 2

Figure 4. This figure illustrates the algorithmic counting scheme
that allows us to establish whether a channel eroded past a geo-
graphic location (x’, y") by analyzing its initial and final geometry.
Here n(x > x’) is a function that gives back the number of intersect-
ing channel points on y" with an x value greater than x’.
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work, and therefore we leave it as a question to be researched
further.

2.5 Performance assessment of generated risk maps

Unlike evaluating the performance of a deterministic fore-
cast, where observed system realization is compared to the
prediction using a distance metric (e.g., root mean squared
error or correlation coefficient), evaluating probabilistic fore-
casts is more challenging as the prediction is available as
probabilities. Here we describe a metric that can allow us to
compute the performance of the probabilistic risk map. We
also define the same metric over a subset of pixels to show the
performance in avoiding false negatives. We start by defining
the root mean squared departure (RMSD), where the depar-
ture is the difference in the probability value assigned to a
pixel and the actual observed erosion in that pixel.

RMSD = (Z(Oi - Pi)2> (12)

i=1

Here, we call the error metric the root mean squared depar-
ture (RMSD). “Departure” is the difference in the probabil-
ity value assigned to a pixel and the observed erosion in that
pixel. O; represents the observed value or erosion (0 or 1) for
pixel i. P; represents the probability assigned for pixel i by
the probabilistic model (0 to 1) or the deterministic model (0
or 1). And n is the number of pixels in the alluvial frame.
Using the definition of Eq. (12), we can define a more spe-
cific metric that gives us the forecast performance for pix-
els where actual erosion occurs. This metric emphasizes the
ability of the forecast to avoid overconfidence that can lead
to false negatives.

n
RMSDeroged = (Z(o,- - P,-)2>, wherei|0; =1 (13)
i=1

2.6 Case study

To test our model, we focus on the Ucayali River in the west-
ern Amazon Basin. The Ucayali is a single-threaded, mean-
dering river that runs from the Andes through the Peruvian
Amazon and eventually joins with the Maraindén River to be-
come the Amazon River. The gauging station at Requena,
Peru, reports a mean annual discharge of 12 100m? s~! from
2000-2015 (Santini et al., 2019). Within the reach of in-
terest, the floodplain is unconfined, and the channel mi-
grates rapidly across its floodplain, averaging 36 myr~! of
lateral migration (Constantine et al., 2014; Schwenk et al.,
2017; Schwenk and Foufoula-Georgiou, 2016). We selected
the Ucayali River to demonstrate the utility of our frame-
work model for both these reasons, allowing us to observe
a large amount of channel migration over the period with
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Figure 5. A Landsat image depicting the region of Ucayali River,
with demarcated bends, used in this analysis to assess the proposed
geomorphic risk estimation framework (image courtesy: the US Ge-
ological Survey).

available satellite imagery that is largely unaffected by to-
pographic constraints, which is something that the Howard-
Knutson model is unable to account for (Fig. 5). We utilize
extracted channel centerlines of the Ucayali River produced
by Schwenk et al. (2017) from Landsat 5 and 7 imagery
between the years 1985-2015. We crop the area of interest
into multiple alluvial frames to focus on one, two, three, and
four bends along a reach of approximately 20 km. However,
the aim of our analysis is to show the strengths and weak-
nesses of our proposed risk-map-generating framework and
not for the case study per se.

2.7 Model analysis using systematic simulation
experiments

Our description of the stochastic geometric river migration
model is put to the test in a systematic manner using a suite of
simulation experiments. Through these model runs, we wish
to understand the following aspects of the proposed math-
ematical description: (a) how well are we able to constrain
the parameter values of the model using the satellite obser-
vations? (b) How well are the risk maps produced using our
stochastic description, in combination with inferred distribu-
tion of parameters, able to provide improvements in relia-
bility over deterministic descriptions, (c) Are the underlying
deterministic geometric models, like Howard—Knutson, able
to capture the first-order dynamics of the migrating river sys-
tem adequately?

The validity of the framework is tested using synthetic
data in order to check the convergence of the posterior to the
“true” parameter values that generate the observed river mi-
gration. Such controlled simulation experiments, where the
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parameter values of the system are known a priori, help in
ascertaining the ability of the inference algorithm and ob-
servational data to constrain the system parameters. In the
more detailed simulation experiments, we use the channel
centerlines from the case study. We infer three parameter val-
ues of our stochastic description — migration rate ki, friction
factor Ct, and standard deviation of the additive stochastic
term o (Egs. 4, 6, and 8). The MCMC simulations are run
using one, two, three, and four bends of the Ucayali River
as the initial state and evolve the state using our stochastic
model with predetermined parameter values. The multiplica-
tive constants are used instead of the absolute value to give a
comparable standard deviation to each parameter value.

The prior distribution of migration rate and the friction fac-
tor can be chosen based on expert opinion and specific char-
acteristics of the case study. In our case, where the river is
rapidly migrating, we chose a relatively high value of the mi-
gration rate constant. The specifications of the prior distribu-
tion that we used for our inference are as follows: uniformly
distributed within the range of [100, 500] for the migration
rate constant and [0, 0.03] for the friction factor. For the stan-
dard deviation of the additive error term, we use exponential
distribution as its prior within the range [0.01, 10] and with
the distribution parameter A as 1. This gives preference to
a smaller-magnitude additive error. We then use the initial
and final channel geometry as synthetic observations. The fi-
nal geometry was generated using parameter values of 200,
0.01, and 0.1 (Eq. 2) for the migration rate constant, the fric-
tion factor, and the standard deviation, respectively. For the
inference exercise to be useful, it needs to learn the value of
these parameter values, going from a wide prior distribution
to a narrow posterior distribution.

We then move on to study the effect of risk map gener-
ation on a real meandering river system using satellite ob-
servations. In real systems, the underlying dynamics of river
evolution are expected to deviate from the model that we de-
ploy to forecast it, thus putting the utility of our probabilistic
framework to the test. We assume our stochastic description
is the observation-generating process; i.e., each simulation
from the model, using a sampled parameter value from the
posterior, is a forecast of one possible course of river chan-
nel evolution, which is finally perturbed by a smooth random
noise. A large ensemble of such forward simulations there-
fore gives the aggregate statistics of our forecast. We conduct
extensive simulations for inference and prediction using the
data from Ucayali. We infer parameters using the river profile
in the year 1985 as the initial channel geometry and the river
profile in the year 1995 as the final channel geometry. We run
numerical experiments in multiple batches to understand the
effect of (a) systematically increasing the number of bends on
which the model parameters are inferred and (b) increasing
the time horizon for which prediction is made. We systemat-
ically infer the model parameters using data from one, two,
three, and four bends. We then predict the risk map for a time
horizon of 5, 10, 15, 20, 25, and 30 years, thus capturing the
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spatial dynamics of prediction uncertainty and confidence as
the forecast lead time increases. In this analysis, we have not
explicitly considered the width of the channel, and we sim-
ply evolve the centerline. As Ucayali is a fast-migrating river,
there is enough channel migration in multiples of 5 years that
the proposed framework can be evaluated without incorpo-
rating with width. However, for slowly migrating rivers or
with small forecast time horizons, the orthogonal correction
of channel width over the centerlines should be performed.

3 Results

In this section, we present the results from running our in-
verse and forward simulations using our stochastic descrip-
tion (Eq. 2). The results shed light on the ability of the like-
lihood function (Eq. 10) to help infer the unknown model
parameter values using data from the past evolution of the
channel. Finally, the forward simulations are evaluated based
on various performance metrics for their corresponding risk
maps (Fig. 3).

3.1 Ability to learn true parameter values from data

The results from the numerical simulations on synthetic data
show that the likelihood function on the summary statistic is
able to retrieve the underlying parameter values that gener-
ated the data (Eqs. 9 and 10). Figure 6 shows the convergence
of the posterior to the underlying parameter values, with the
highest probability mass gravitating towards 200 myr~! for
the migration rate constant and 0.01 for the friction factor.
We notice that increasing the number of bends used to infer
these values does not necessarily reduce the standard devia-
tion of the posterior distributions, as one would expect. This
we attribute to more degrees of freedom that are added when
the modeled river reach is extended. However, we learn a
much narrower spread of parameter values compared to the
assigned prior spread of [0, 500] and [0, 0.03] for the mi-
gration rate constant and friction factor, respectively (Fig. 6).
As the EMCEE sampler uses multiple particle chains, they
explore various regions of the parameter space. The initial
parameter values in these EMCEE chains do not represent
the underlying posterior and can therefore be excluded from
the final samples as a burn-in phase.

Results from the numerical simulation containing real ob-
servations (Fig. 6) show that the inference mechanism is able
to learn a narrower posterior distribution from the observa-
tions. Similar to synthetic data, the reason behind longer river
reaches not reducing the standard deviation of the posterior
can be attributed to the increasing degrees of freedom of river
migration with scale. Additionally, this can be attributed to
the fact that not every bend has the same value of the inferred
parameter, and adding more bends to the inference exercise
does not necessarily make us confident about the value of the
underlying parameter value of the process. Nonetheless, we
do see the inferred parameter distribution using observations
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Figure 6. The figure shows the posterior probability distribution of two parameters — migration rate constant and friction factor. The spread
of the posterior captures the confidence in learned parameter values. Top row — panels (a) and (b) — shows inference using synthetic data;
bottom row — panels (¢) and (d) — shows inference using real data. The differences in the posterior distribution inferred from observations of
multiple bends indicate that (1) different bends may converge to different values of parameters and (2) the likelihood function can be made

more flexible to allow for this spatial variability.

from one, two, three, and four bends gravitate towards the
same values of parameters (Fig. 6).

3.2 Generating geomorphic risk maps from learned
parameter values

After learning the posterior parameter distribution, we run
the forward model (Eq. 2) using parameter samples from
that distribution and employ our new framework to gener-
ate risk maps (Algorithm 1). The risk maps encapsulate the
spatially distributed information about the probability that a
geographical location in the alluvium will be eroded away by
the migrating river within a certain time frame (Fig. 7). As
expected, we see that most of the risk is concentrated along
sharply bending regions of the channel (Fig. 8). The risk map
can be generated for as small a region as a stretch of a channel
bend and all the way up to several meander bends. The ex-
tent of the risk map using a learned posterior distribution will
be governed by the assumption that the underlying parameter
values of channel evolution remain the same throughout the
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region. If the parameters of the stochastic model (Eq. 2) are
believed to vary from one region to another, then one could
either assign different model parameters to each region and
infer them separately or define an explicit functional depen-
dence of parameters with space. In that case, inference will
be performed for the parameters of that functional depen-
dence.

3.3 Effect of increasing forecast time horizon on risk
estimates

We observe that the lengthening of the forecast time hori-
zon increases uncertainty (Fig. 9). This uncertainty arises,
among other factors, due to an accumulation of deviations in
the real system from the modeled system. Besides, the non-
linear behavior of the river migration accentuates the effect
of uncertainty in parameters and the initial channel condi-
tion for the final forecast. As we mentioned before, this un-
certainty quantification should be encoded in the predictions,
and we see that happening for our probabilistic forecasts. The
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Figure 7. This figure showcases risk maps generated for various forecast time horizons. Each row represents the simulation when the model
is trained using one, two, three, and four bends. The panels jointly represent the effect of increasing temporal and spatial scales of the forecast
for river channel migration. Our framework is able to furnish spatial and temporal spread of erosion probabilities that deterministic paradigms

are unable to provide.
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Figure 8. (a) Figure depicting risk map, over a Landsat image (image courtesy: the US Geological Survey), generated using initial channel
geometry in the year 1985. (b) The final migrated channel after a 10-year evolution. The channel centerline is transparent.

risk map captures this by assigning more pixels with a prob-
ability that is neither too high nor too low, e.g., between 0.25
and 0.75. Therefore, we see in Fig. 7 that the probabilistic
estimates are able to reproduce the decrease in certainty re-
garding whether the river will migrate across a location. The
regions right next to the cut bank generally face a high proba-
bility of erosion. As the distance from the cut bank increases,
the confidence in a region being affected by erosion within
a time frame decreases. However, as the forecast time hori-
zon increases, the probability of these places getting affected
goes from low to moderate, thus increasing the uncertainty in
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the forecast. At the same time, forecasts become more con-
fident about the erosion of pixels adjacent to the cut bank of
the river. We use a probability value between 0.25 and 0.75
as a proxy for uncertainty and any probability value beyond
this range as a proxy for certainty (Fig. 9). Notwithstand-
ing the increase in uncertainty in particular regions, we are
also able to become more certain that there will be erosion
along the points that are adjacent to the migrating river. So
the rise in both certainty and uncertainty of the forecast is
captured by the probabilistic models, and the geographical
spread of these probabilities allows for risk-based decision-
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Figure 9. The effect of increasing forecast time horizon and spatial extent on the certainty and uncertainty forecasts (a — one bend; b —
two bends; ¢ — three bends; d —four bends). We classify certain pixels as the ones with an assigned probability of 0.75 or more. And uncertain
pixels have an assigned probability in the range of 0.25 to 0.75. The figure shows that both the number of uncertain and certain pixels that
face erosion grows as the prediction time horizon grows. This information is not furnished by deterministic forecasts.

making. They also guide us towards targeted data assimila-
tion at locations of relatively high importance but where our
forecasts are uncertain. Figure 8 shows how the actual chan-
nel profile may end up evolving over the forecast risk map.
As we make a probabilistic prediction, the real observation
is expected to sweep some areas that were labeled as high-
risk but may miss out on some regions because of the system
variability and model uncertainty. However, the overall per-
formance of the probabilistic forecast comes out to be better
than simply using one deterministic model run to evaluate
erosional hazard (Fig. 10).

3.4 Effect of increasing spatial extent on risk estimates

The inference of parameter values should, in principle, be
more precise as more observational data become available.
However, in the case of river migration, there seem to be di-
minishing marginal gains in constraining parameter values as
we include data from more bends. Figure 6 shows the poste-
riors for various simulation experiments. The posterior distri-
bution does not become narrower when we use four bends to
infer parameter values instead of one. This can be attributed
to the fact that each bend might have a tendency to converge
to a slightly different parameter value, and the overall poste-
rior distribution ends up being wide when we force the model
to have the same parameter values for each bend. However,
when we only use a single bend for parameter inference, the
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learned distribution is narrow as the model can relatively eas-
ily fit to the shorter channel stretch. The result suggests that
if the modelers have ample computational resources, they
should use different migration rates and friction factors for
each bend so that the most appropriate values can be learned
in a spatially explicit manner. We also notice that trying to
predict the river evolution for multiple bends using the same
posterior distribution results in, to a certain degree, a rela-
tively poorer prediction. While these results are qualified by
their application to one case study, it appears that the predic-
tion of risk due to erosion has better performance if it is done
on a bend-by-bend basis.

Given the probabilistic nature of our framework, it en-
forces a forecast timescale on each case study for which
the uncertainty in erosion will be maximum. Beyond that
timescale, the river is expected to sweep its meander belt,
and the forecast will start becoming more confident about
the possibility of erosion, with the asymptotic behavior of
all pixels in the meander belt getting an erosion probability
of 1 for a large enough timescale. However, this will hap-
pen for long timescales of thousands of years. Conversely,
for planning horizons of several decades, predicting the evo-
lution of a river channel with high confidence is difficult
(Fig. 9). This is because we expect that most of the pixels
away from the cut bank will be assigned a probability be-
tween 0.25 and 0.75, which is a category signifying high un-
certainty.
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Figure 10. This shows the comparison of aggregate error (root mean square deviation) between probabilistic and deterministic forecasts.
(a) RMSD, as defined in Eq. (12), provides the aggregate error in predicted risk and materialized hazard over all pixels. (b) RMSD, as defined
in Eq. (13), provides the aggregate error in predicted risk and materialized hazard over the subset of pixels that end up actually being eroded.
We can see the performance gains of probabilistic forecasts being represented as smaller error values.

4 Discussion

4.1 Reliability of probabilistic framework for risk
estimation

The results show that uncertainty-aware forecasts are more
reliable than deterministic forecasts, which do not explic-
itly report their uncertainties (Fig. 10). This reliability is at-
tributable to two aspects of probabilistic models that their de-
terministic counterparts lack by construction. (a) The proba-
bilistic forecasts avoid overconfidence in the forecast by as-
signing appropriate probabilities to regions that can poten-
tially erode and avoid the strictly binary classification of de-
terministic paradigms. This is especially very valuable for
risk analytics and prevents decision-makers from making
false negative classifications where risk is inadvertently un-
derestimated (Fig. 10b). (b) As our probabilistic framework
is based on Monte Carlo simulation using inferred parameter
distribution, it allows the exploration of an entire region of
the parameter space instead of a vector in that space. There-
fore, the model is much more explorative in forward sim-
ulations and has a higher chance of capturing the eventual
dynamics of the real channel with more fidelity.

4.2 Spatial distribution of certain and uncertain
forecasts

Figure 7 also shows the effect of increasing the spatial and
temporal extent of the forecast. Just as we see for short pre-
diction time intervals, the forecast faithfully predicts the evo-
lution of the river for short length scales, i.e., single bend
(shown in row one of the panel in Fig. 7). We also notice that
the forecast performance varies when we attempt to predict
the evolution of different bends. This happens for both deter-
ministic and probabilistic predictions; however, probabilis-
tic models perform better on the two error metrics (Fig. 10a
and b). This can partly be explained by the presence of a
convolution integral in the Howard—Knutson model, which
aggregates the curvature information from upstream of a lo-
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cation. This aggregation can sometimes be informative and
sometimes erroneously influence the local predicted rate of
erosion at a bend. Such effects are mitigated when we learn
the parameter values from single bends and only evolve the
channel for the particular bend, which is another factor that
plays a role in forcing the same parameter values on various
bends. As mentioned before, different bends will have dif-
ferent properties in relation to their bank substrate, channel
slope, and aggregate hydrodynamics. Therefore, we specu-
late that learning parameters separately should improve this
performance.

Nonetheless, one important feature of geomorphic uncer-
tainty, which is expected qualitatively by forecasters but not
possible to reproduce by deterministic paradigms, is that re-
gions close to the river on the cut-bank side are highly likely
to be eroded, and regions farther away from the channel are
unlikely to be eroded; more intricate patterns of risk emerge
in regions at a moderate distance away from the cut bank.
This length scale is dictated by the prediction time horizon
and shifts outwards as the prediction time horizon increases.
Given our stochastic formulation, if two rivers have com-
parable parameter values and similar parametric and model
structure uncertainties, the bigger rivers with bigger bends
will have a bigger zone of confidence for erosional hazard.
Figure 7 shows that our probabilistic paradigm is able to
capture this feature of uncertainty in the erosion forecasts
of those spatial regions by assigning probabilities away from
the extreme values of 0 and 1 (i.e., for example, between 0.25
and 0.75).

4.3 The value of Bayesian inference over other ad hoc
parameter inversion methods

Parameter inversion can also be performed in the determinis-
tic paradigm, where a cost function, which generally encodes
the aggregate error in the model prediction, is minimized by
systematically exploring the parameter space. However, in
highly stochastic physical processes, like channel evolution,
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the observations deviate from the first-order dynamics due to
the aggregate effect of the neglected subprocesses. These de-
viations have a random character to them, hence confound-
ing the inversion of parameters with uncertainty. Bayesian
inference then becomes an attractive choice as a paradigm
to learn distributions about model parameter values from ob-
servations. Within the context of parameter inference, when
the observations are very informative, we learn very narrow
posterior distributions, and when the observations are not
very informative, they do not constrain the posterior distri-
butions to unjustifiably narrow regions of parameter space
(Fig. 6). This formal updating mechanism allows for the in-
corporation of parametric uncertainty, which is otherwise un-
available when using deterministic parameter inversion tech-
niques. Besides, regularization in the Bayesian framework is
achieved by using informative prior distributions of parame-
ter values. The ranges of these parameter priors can contain
information about the physics of the system as well as ex-
pert knowledge about the geomorphology of the specific case
study.

4.4 Geomorphic origins of stochasticity

The motivation to switch to stochastic models in a purely pre-
dictive framework is obvious — driven by the need to quan-
tify uncertainty and have more reliable forecasts for river
migration. However, from a scientific and mechanistic per-
spective within the context of fluvial landscape evolution,
such modeling choices also seem to be the most natural.
Scheidegger (1991) argues that the noise in the river migra-
tion is too hard to track deterministically and can therefore
be incorporated by considering probability calculus. Simi-
larly, given the system stochasticity, probabilistic descrip-
tions of the bed load sediment flux have been proposed (Fur-
bish et al., 2012; Roseberry et al., 2012). In the same spirit,
probabilistic cellular automata have been used to understand
and explain the behavior of emergent geomorphic dynam-
ics due to rivers eroding and depositing sediment over long
timescales (Roberts and Wani, 2024; Martin and Edmonds,
2022). However, in these and similar discussions, specifically
related to the lateral migration of rivers, the forwards are
studied in detail, but the inverse problem for such stochastic
formulations has not been studied. Our framework fills this
gap and is able to provide a recipe by which we can employ
satellite imagery to invert the parameter values that drive the
stochastic evolution of river channels while accounting for
parametric uncertainty.

4.5 The counting algorithm

The counting algorithm (Fig. 4), which is able to track
whether a channel crossed a location in the meander belt
by just looking at the initial and final channel geometry,
comes with a suite of assumptions about the migration dy-
namics that make this otherwise indeterminate problem in-
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volving dynamic planar curves tractable. Without additional
constraints, it is not possible to know where the planar curve
has been by simply looking at its initial and final shape. It
could choose infinite paths to arrive at the final shape. The ad-
ditional constraints that go into making this algorithm are as
follows: (1) the river erodes along the cut-bank side. (2) The
rectangular frame of the river under consideration is large
enough such that the channel enters from one edge and de-
parts from a different edge. (3) The channel does not undergo
a cutoff between its initial and final geometry. These assump-
tions allow us to track regions that the river sweeps over
during its migration. To the best of our knowledge, we do
not know of any mathematical literature on evolving planar
curves that come with these special constraints. We therefore
think that this novel proposal to track river migration, with
its computational economy, is a useful contribution to the flu-
vial geomorphological modeling community. The problems
of cutoffs can be tackled by including the channel geometry
just before the cutoff takes place. This way, erosion can be
calculated using the proposed algorithm using two parts of
the channel evolution — pre-cutoff and post-cutoff.

4.6 Adequacy of the Howard—Knutson model

From the simulation experiments (Fig. 7) we notice that
Howard-Knutson model is not always able to adequately rep-
resent the first-order dynamics of channel evolution, as it ne-
glects many complex subprocesses that influence the mean-
der evolution. To do Monte Carlo simulations, we need mod-
els possessing computational economy, which can run mul-
tiple times over using available computing resources. How-
ever, these models nevertheless should be complex enough
to learn behaviors present in a variety of fluvial geomorphic
settings. These behaviors can be captured in the parameter
posterior distributions using the observed migration in the
past. However, the Howard—Knutson model does not come
with enough parameters that can be said to pack multiple
model structures into it. For example, the model will not be
able to start a migration if the river geometry is already lin-
ear, i.e., with not curvatures. Another limitation of Howard—
Knutson model is that it only allows evolution along the cut
bank. While this is generally the case, some river sections
can sometimes migrate in less restrictive ways, and a flood
can erode the point bar of a river. As our framework to gen-
erate risk maps is model-agnostic, we suggest the forecasters
should first check the adequacy of their geometric models for
capturing the first-order dynamics of the channel evolution.

4.7 Outlook

In this current formulation, we are using an additive stochas-
tic term g(y) to perturb the model output from a determinis-
tic numerical river migration model. This is one of the simple
ways of accounting for model structure uncertainty. This for-
mulation can, however, be extended to include heteroscedas-
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ticity in time — where the contribution of the model structure
errors to the uncertainty in the final prediction will become
even more pronounced as we forecast farther into the future.
Although we see the heteroscedastic effect in our current for-
mulation, it is in its entirety attributable to the Monte Carlo
simulations, i.e., the uncertainty in the parameter values. This
point can be elucidated by a thought experiment — if we can
identify the parameters narrowly enough, where the poste-
rior becomes a Dirac delta function (or simply a vector in the
parameter space), we will lose heteroscedasticity in our fore-
casts as the only remaining stochasticity in predictions will
be due to g(¥).

To address this limitation, further research is needed on
more sophisticated formulations of extending deterministic
river channel evolution models into their stochastic coun-
terparts. Model (in)validation can be pursued in a system-
atic way (Beven and Lane, 2022). For example, we can
(a) make g(v) into a function of time, where its standard
deviation grows in time and the time dependence is inferred
from observations. (b) Another more representative and natu-
ral way would be to introduce stochasticity within the numer-
ical model itself such that the evolution of the river migration
is affected by noise in the geomorphic system. We also note
that the additive stochastic error term sometimes generates
very large deviations from the predicted trajectories of the
Howard—Knutson model. As such, stochastic formulations
will not be invertible in a straightforward manner within the
Bayesian framework; we will have to employ approximate
Bayesian computations. Notwithstanding these limitations,
the current formulation of a smooth random function allows
us to show the proof of concept for our framework. We are
able to form a stochastic model of river migration and in-
fer the parameter values from past observations of the river
evolution. However, as mentioned before, real departures of
river migration from our deterministic model come with a
more detailed statistical structure compared to the truncated
Fourier series with random coefficients. This can be partly
mitigated by inferring from the observations the number of
sines and cosines that add up to form the error. Additionally,
we can allow the amplitudes of the departure to vary along
the channel length. Such a flexible additive error formulation
will be able to produce better representations of a meander-
ing river channel.

Another limitation of this work is that we have not in-
cluded time horizons where cutoffs take place, as our count-
ing algorithm (Fig. 4) breaks down after cutoffs. We posit
that the uncertainty in the predictions will grow markedly
once the cutoff timescales of channel evolution are reached,
as cutoffs are the strongest source of nonlinearity in the sys-
tem and can make this system chaotic. Nevertheless, through
our analysis, we intend to convey the value of switching
to stochastic models of channel migration for risk estima-
tion and provide a systematic framework for achieving that
switch.
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5 Conclusions

In this paper, we propose a framework to extend determin-
istic numerical models for river migration into probabilistic
models. Our framework allows for the incorporation of un-
certainty in model structure and parameter values while also
accounting for the effect of stochastic variations in the geo-
morphic systems. The framework is agnostic to the underly-
ing numerical model used to capture the first-order dynamics
of the migrating river. However, in this case study, we have
conducted our analyses using a geometric model, with the
formulation of Howard—Knutson, where the migration rate is
dictated by a weighted sum of local and upstream curvature.
From our analysis, we conclude the following.

— Deterministic models are uncertain and are additionally
unable to capture the stochastic variability in the geo-
morphic system.

— Some of this uncertainty can be faithfully incorporated
into the modeling exercise by using an additional addi-
tive stochastic term and using the inferred distribution
of parameters instead of single values.

— We propose a recipe that uses smooth random functions
as an additive stochastic term and then employs MCMC
simulation to infer a posterior parameter distribution,
which is conditioned on the observed migration in the
river system.

— The recipe is shown to work in principle by using it on
synthetic data (by inferring the parameter values that
generated the data).

— We show that the method is able to identify regions in
the vicinity of the river that are likely and unlikely to
erode in the next ¢ years. Besides, the forecast is sup-
plied in the form of a risk map, encoding both our con-
fidence and uncertainty, which deterministic models are
unable to do.

— We also propose a counting algorithm that enables us to
ascertain whether a river has crossed a spatial location
by just looking at its initial and final geometry. We men-
tion the assumptions and constraints of this algorithm.

— We see that the Howard—Knutson model may not always
be able to capture the first-order dynamics of the migrat-
ing river. We therefore suggest choosing the underlying
deterministic model based on the geomorphic complex-
ity of the case study.

— We also suggest further research into the extension of
our additive stochastic term, enabling it, for example, to
have variable statistical features in space and time.
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