

SPAA ’24, June 17–21, 2024, Nantes, France Raghavendra Kanakagiri and Edgar Solomonik

a single decomposition, di�erent algorithms often rely on di�er-
ent SpTTN kernels [51]. By developing algorithms and libraries
for arbitrary SpTTN kernels, we provide functionality for contrac-
tion arising (e.g., as a result of a gradient calculation, described in
Section 3) from any decomposition/network consisting of dense
tensors.

The main challenge in implementation of an SpTTN kernel is
�nding the most e�cient loop nest. In line with prior work [31],
we represent such loop nest as a tree, in which each vertex is a loop
and its descendants are the loops contained within it. In Section 4,
we show how to enumerate all loop nests (assuming fusion is done
wherever possible) for a given SpTTN. Since each loop order for any
pair of contracted tensors yields a distinct loop nest, the size of this
space grows factorially in the loop nest depth< and exponentially
in the number of tensors # . We provide a dynamic programming
algorithm to �nd a cost-optimal loop nest with substantially lower

cost, namely $ (# 3
2
<<) instead of $ ((<!)#). We state the algo-

rithm for a general cost function that can be decomposed according
to the loop nest tree structure, then provide speci�c cost functions
to minimize bu�er size and cache misses.

The new software framework encompassing these SpTTN ker-
nels, SpTTN-Cyclops, is an extension of the CTF [57] library for
sparse/dense distributed tensor contractions. CTF provides routines
for mapping sparse or dense tensor data to multidimensional proces-
sor grids and redistributing data between any pair of grids. Given a
mathematical description of a tensor and a sets of contractions, CTF
automatically �nds a contraction path (sequence of pairs of tensors
to contract) and performs each contraction in parallel on a suitable
grid. SpTTN-Cyclops instead simultaneously contracts the sparse
tensor with all dense tensors in the tensor network, forgoing con-
struction of large (sparse) intermediate tensors required by the CTF
method. This all-at-once contraction method has been shown to be
e�cient in theory and practice for some speci�c SpTTN kernels
such as MTTKRP [3, 4, 53, 56].

The all-at-once contraction approach allows SpTTN-Cyclops
to keep the sparse tensor data in place, and rely on existing CTF
routines for communication of the other operands. Locally, each
processor must then simply execute a loop nest for a smaller SpTTN
of the same type. Our framework leverages the new SpTTN loop
nest enumeration and search algorithms to select the best choice of
loop nest, which is not possible with any previously existing library.
To achieve good performance for the innermost loops, we leverage
the Basic Linear Algebra Subroutines (BLAS) [7], whenever possible,
and incorporate this into our cost function. A similar technique
has been used in Mosaic [5], a sparse tensor algebra compiler that
demonstrates the bene�ts of binding tensor sub-expressions to
external functions of other tensor algebra libraries and compilers.

We evaluate our framework against the single node performance
of TACO and SparseLNR, and the distributed memory implemen-
tation of CTF. We also compare SpTTN-Cyclops with the state-of-
the-art specialized implementation of one of the SpTTN kernels
(SPLATT [56]). Our results demonstrate that we achieve higher per-
formance or close to SPLATT’s speci�cally tuned implementation
of one of the kernels. We outperform all three generalized frame-
works (TACO, SparseLNR, and CTF) by orders of magnitude. Across
some of the kernels, we achieve speedups in the range of 2 to 100x

when compared to these generalized frameworks. We show strong
scaling results in the distributed memory setting using tensors of
various dimensions and sparsity. We also enable the computation
of some of these kernels on larger tensor inputs for which the other
frameworks run out of memory.

2 BACKGROUND

2.1 Tensor Notation

We use calligraphic letters to denote tensors, e.g., T . An order #
tensor corresponds to an # -dimensional array. We denote elements
of tensors in parenthesis, e.g., T (8, 9, :, ;) for an order 4 tensor T .
The indices that do not appear in the output tensor are considered
to be summed (contracted). We use capitalized letters to denote the
dimensions of the respective indices. For example, the dimension
of index 8 in A(8, 9) is denoted as � .

2.2 Tensor Sparsity and Sparse Storage

We use one of the most common ways to store sparse tensors, the
Compressed Sparse Fiber (CSF) format [53]. We refer to the to-
tal number of nonzero elements of a tensor T as nnz(T). For a
sparse tensor T with 3 dimensions of size �1, . . . , �3 , we represent
the number of non-zeroes in the :th level of the CSF tree for T
(with the �rst index being at the root) as nnz(�1 · · ·�:) (T). Equiv-
alently, this nonzero count may be obtained by considering the
number of nonzeros in a reduced tensor obtained by summing

away the remaining modes, i.e., nnz(�1 · · ·�:) (T) = nnz(S), where
S(81, . . . , 8:) =

∑

8:+1,...,83 |T (81, . . . , 83) |.

2.3 Tensor Decomposition and Completion
Algorithms

Tensor decomposition [33] and completion [55] refer to the problem
of decomposing a tensor into a combination of smaller tensors and
estimating missing or incomplete values in a tensor, respectively.

The algorithms for both tensor decomposition and completion
focus on a single sparse tensor (the input dataset) and require
computations that factorize or update the tensor by contracting it
with several smaller dense tensors (representing the decomposition).
These computations, which we refer to as kernels, account for a
signi�cant percentage of the overall execution of an algorithm.
They have been the focus of high-performance implementations
and are typically available as specialized libraries [13, 28, 36, 37, 48,
56]. We list some of the kernels below and describe their existing
implementations in the Section 2.4.
1. A standard approach to compute the Canonical Polyadic (CP)
decomposition [30] of a tensor is the alternating least squares (ALS)
algorithm. Matricized-Tensor times Khatri-Rao Product (MTTKRP)
is a key kernel in computing CP-ALS and is the main bottleneck
[8, 14, 26],

A(8, 0) =
∑

9,:

T (8, 9, :) · B(9, 0) · C(:, 0) . (1)

2. For Tucker decomposition [63], the analogous to ALS is the
higher-order orthogonal iteration (HOOI) algorithm. The primary

170

Minimum Cost Loop Nests for Contraction of a Sparse Tensor with a Tensor Network SPAA ’24, June 17–21, 2024, Nantes, France

i

𝒯 " 𝒱 → 𝒳

j

s

i

j

s

r

k

𝒳 " 𝑈 → 𝒮

(a) Each pairwise contraction has

an independent loop nest.

𝒯 " 𝒱 → 𝒳 𝒳 " 𝑈 → 𝒮

i

j

s

k s

r

(b) Vertices 8 and 9 are fused

across the two pairwise contrac-

tions.

𝒳 " 𝑈 → 𝒮

i

j

s

rk

𝒯 " 𝒱 → 𝒳

(c) Vertices 8, 9 and B are fused

across the two pairwise contrac-

tions.

𝑈 " 𝒱 → 𝒳

𝒳 " 𝒯 → 𝒮

s

i

j

r

j

k

r k

s

(d) None of the vertices can be

fused.

Figure 1: Graphs illustrating loop nests for computing an order 3 TTMc kernel. Sparse loops are shown as dotted vertices.

1 T_c s f = CSF (T_8 9:)
2 X = 0
3 for (i , T_ i) i n T_c s f :
4 for (j , T _ i j) i n T_i :
5 for (k , t _ i j k) i n T _ i j :
6 for s in range (S) :
7 X [i , j , s] += t _ i j k ∗ V [k , s]
8 for (i , T_ i) i n T_c s f :
9 for (j , T _ i j) i n T_i :
10 for s in range (S) :
11 for r in range (R) :
12 S [i , r , s] += X [i , j , s] ∗ U [j

, r]

Listing 2: TTMc kernel computed

via pairwise contractions.

1 T_c s f = CSF (T_8 9:)
2 for (i , T_ i) i n T_c s f :
3 for (j , T _ i j) i n T_i :
4 X = 0 / / r e s e t i n t e rm e d i a t e t e n s o r
5 for (k , T _ i j k) i n T _ i j :
6 for s in range (S) :
7 X [s] += t _ i j k ∗ V [k , s]
8 for s in range (S) :
9 for r in range (R) :
10 S [i , r , s] += X [s] ∗ U [j , r]

Listing 3: TTMc kernel computed using the

factorize-and-fuse approach. A single loop

nest of 8, 9 is used to iterate over both the

pairwise contractions.

1 T_c s f = CSF (T_8 9:)
2 for (i , T_ i) i n T_c s f :
3 for (j , T _ i j) i n T_i :
4 for s in range (S) :
5 X = 0 / / r e s e t i n t e rme d i a t e t e n s o r
6 for (k , T _ i j k) i n T _ i j :
7 X += t _ i j k ∗ V [k , s]
8 for r in range (R) :
9 S [i , r , s] += X ∗ U [j , r]

Listing 4: TTMc kernel computed using

the factorize-and-fuse approach. Indices

8, 9 ,B are fused.

kernel in HOOI is the tensor-times-matrix chain (TTMc) [44, 54],

S(8, A , B) =
∑

9,:

T (8, 9, :) · U(9, A) · V(:, B) . (2)

3. A common generic multi-tensor kernel in tensor completion is
the tensor-times-tensor-product (TTTP) [51]. TTTP generalizes
the sampled dense-dense matrix multiplication (SDDMM) kernel
[11, 43], and is also useful for CP decomposition of sparse tensors,

S(8, 9, :) =
∑

A

T (8, 9, :) · U(8, A) · V(9, A) · W(:, A). (3)

Note that S has the same sparsity pattern as that of T .
4. Tensor-Times-Tensor-chain (TTTc) kernel used in sparse tensor
train decomposition [69] to decompose a higher order sparse tensor
using �rst-order optimization methods,

Z(4, =) =
∑

8, 9,:,;,<,=,0,1,2,3

T (8, 9, :, ;,<, =) · A(8, 0) · B(0, 9, 1)

·C(1, :, 2) · D(2, ;, 3) · E(3,<, 4) . (4)

We restrict attention to sparse tensor kernels where the output is
dense or has the exact same sparsity as the sparse input tensor.
This precludes some common kernels, such as tensor times matrix
(TTM) [2] and contraction of two sparse tensors (e.g., SpGEMM
[19]), since these generally produce a sparse output.

2.4 Computation of Tensor Kernels in
Decomposition and Completion Algorithms

In this section we describe the existing approaches to compute the
kernels listed in Section 2.3.

2.4.1 Unfactorized Contraction.

To compute a kernel, we can iterate over all the indices and simul-
taneously contract all the input tensors in the innermost loop. We
refer to this approach as unfactorized. This unfactorized loop nest
has a depth equal to the number of unique indices. For example,
consider an order 3 TTMc kernel in Equation 2. The number of
operations is 3 nnz(T) · ' · (to leading order. In compiler driven
frameworks such as TACO [31] and COMET [62], the schedule
generated by default is unfactorized.

The unfactorized approach is optimal in cost for computing
certain kernels. For example, the MTTKRP kernel in Equation 1
can be computed using the unfactorized approach with an optimal
loop depth of 4. But this approach is asymptotically suboptimal for
many other kernels, such as the TTMc.

2.4.2 Pairwise Contraction.

A kernel can be computed with minimal asymptotic complexity
(loop depth) by contracting the input tensors pairwise. We refer
to this approach as pairwise contraction. It is typically used in li-
braries designed for dense tensor contractions, such as CTF [57],
Tensor Computation Engine (TCE) [6], and DEinsum [72]. For
example, consider the TTMc kernel in Equation 2. One way in
which the tensors can be contracted pairwise is to �rst contract
T with V , and then its result with U. Each pairwise contrac-
tion has an independent loop nest as shown in Listing 2. Both
the loop nests have a depth of 4, and the computational cost is

2 nnz(T) · (+ 2 nnz(� �) ·(· ' to leading order. Even though an un-
factorized approach for computing the MTTKRP kernel (Equation
1) has an optimal loop depth, up to a third of the operations can

171

SPAA ’24, June 17–21, 2024, Nantes, France Raghavendra Kanakagiri and Edgar Solomonik

be eliminated by using pairwise contraction. The unfactorized ap-
proach requires 3 · nnz(T) ·� scalar operations, while the pairwise

approach requires 2 nnz(� �) (T) · � + 2 nnz(� �) ·� operations.
For contractions involving only dense tensors, the pairwise ap-

proach can provide an optimal schedule. But for sparse tensors,
whose dimensions are often large, this approach can lead to un-
manageable memory requirements for storing dense intermediate
tensors. In practice, pairwise contraction with sparse storage of
such an intermediates has been observed to be much slower than
hand-tuned or even unfactorized implementations for SpTTN ker-
nels [51].

2.4.3 Factorize-and-Fuse.

The size of the intermediate tensors can be reduced by loop fusion.
Loop nests that share a common index can be nested together
with an outer loop that iterates over the shared index. The loop
nests that compute the pairwise contractions in Listing 2 can be
fused together as shown in Listing 3. We refer to this approach
as factorize-and-fuse. A single loop nest of 8 , 9 is used to iterate
over both the pairwise contractions and hence the indices are not
bu�ered. The computation cost remains the same as in the pairwise
case (in fact, the same set of operations is computed). The size of
the intermediate tensorX is reduced from � × � ×(to (. Specialized
libraries for some of these kernels use a similar approach in their
hand-tuned implementations [13, 26, 28, 36, 37, 48, 54, 56].

3 SPTTN KERNELS

In Section 2.3, we listed several kernels for tensor decomposition
and completion. We now aim to de�ne these generally. To moti-
vate this de�nition, consider any tensor decomposition or comple-

tion of tensor T given by a model T̃ composed of dense tensors
A1, . . . ,A= (factors), the objective function, denoted by 5 is ex-
pressed as,

5 (A1, . . . ,A=) = ∥T − T̃ (A1, . . . ,A=)∥
2

� .

The optimization methods generally leverage all or parts of the
gradient of the residual error norm, which yields a contraction of
the sparse tensor, with subsets (all but one of the) tensors from
the decomposition. The terms involving T when computing the
gradient of 5 are cost-dominant. Similarly, when computing the
residual error (d) for tensor completion, which is often employed,
e.g., in coordinate descent methods, the terms involving the sparse

tensor are cost-dominant. d = T − Ω ∗ T̃ (�1, . . . , �=), where ∗ is
the Hadamard (pointwise product), the sparse tensor Ω represents

the set of observed entries in the input tensor T and S̃ is the output
tensor obtained by contracting Ω with a network of dense factors.

In general, we de�ne an SpTTN kernel as a contraction of a sparse
tensor with a set of dense tensors resulting in an output with a
dense representation or a sparse tensor with the same sparsity as the
sparse input tensor. Hence, in any SpTTN, a subset of the indices in
the contraction has a �xed/known sparsity pattern (associated with
the input sparse tensor), while the remaining indices iterate only
over dense tensors. We generally assume the dense tensors in the
SpTTN are fairly small (in comparison to the input sparse tensor).

3.1 Loop Nests and Loop Nest Forests

The computation of a tensor contraction generally involves loop
nests of some form. Any loop nest can be represented by an or-
dered tree or forest, each vertex of which is a loop, and its ordered
children are the loop nests contained directly in that loop. Each
leaf corresponds to a contraction term (a pair of tensors contracted
together). For example, the loop nest in Listing 2 is represented by
the tree in Figure 1a. We refer to a tree with a single leaf as a path
graph. A similar representation is used in TACO [31].

The leaves of the loop nest tree de�ne the order in which the
contraction terms are executed. We refer to this order as the con-
traction path. A contraction path for a kernel is valid if we can
obtain the output tensor by executing the contraction terms in the
order speci�ed by it.

Definition 3.1 (Contraction Path). For a contraction of # + 1

tensors, a contraction path is given by a depth-�rst postordering of a

2# +1-node binary tree) where the # +1 leaves are the input tensors,

and each internal node corresponds to the contraction of a pair of

input tensors and/or intermediates, so all non-leaf nodes have exactly

two children. We represent a contraction path by the tree) and an

ordered collection of index set 3-tuples, ! = (!1, . . . , !#), where each

!8 contains the indices of the tensor operands and output at each of

the # internal tree nodes.

Note that while a contraction path is de�ned above based on a
tree, this tree is di�erent tree from a loop nest tree. In a loop nest
tree, each node corresponds to a loop and each leaf is a term in
the contraction path. Hence, a node in the contraction path tree
corresponds to a leaf in the loop nest tree. Figure 5(a) shows a
contraction path tree for an order 4 TTMc kernel.

i

j

k r

l s s

t t t

𝒯 "𝒲

→ 𝒳

𝒳 " 𝒱

→ 𝒴

𝒴 " 𝑈

→ 𝒮

i

j

k

l

t

𝒯 "𝒲

→ 𝒳

i

j

k

t

s

𝒳 " 𝒱

→ 𝒴

i

j

t

s

r

𝒴 " 𝑈

→ 𝒮

𝑖𝑗𝑘𝑙 𝑙𝑡 𝑘𝑠 𝑗𝑟

ijkt

ijst

irst

(a) (b)

Fully

Fused

Figure 5: An order 4 TTMc kernel S8ABC = T8 9:; ·U9A ·V:B ·W;C ,

where (a) represents the contraction path tree ()) with ! =

((8 9:;, ;C, 8 9:C), (8 9:C, :B, 8 9BC), (8 9BC, 9A, 8ABC)), and (b) shows the

path graphs corresponding to the contraction path terms,

fused to obtain a fully fused loop nest tree.

In a valid loop nest forest, all indices in a contraction term should
be loop indices on the path between the corresponding leaf and the
tree root, and the path should contain no additional or repeated
indices. We refer to this order of loop indices as the loop order of
the contraction term. For example, in Figure 5(b), the loop order
of the �rst term, T8 9:; · W;C → X8 9:C , is (8, 9, :, ;, C). If a vertex has
multiple leaves in its subtree, the loop associated with that vertex
contains all the contraction terms in that subtree.

Definition 3.2 (Loop Order). A loop order for a contraction

path (), !), ! = (!1, . . . , !#) is de�ned by an ordered collection

172

Minimum Cost Loop Nests for Contraction of a Sparse Tensor with a Tensor Network SPAA ’24, June 17–21, 2024, Nantes, France

� = (�1, . . . , �#), where each�8 is an ordered collection of the union

of the indices in the 3 index sets contained in !8 .

We say a loop nest tree is fully-fused if no vertex has two con-
secutive children that correspond to the same index. A fully-fused
loop nest and the corresponding tree is obtained by fusion of the
path graphs (loop nests) corresponding to each term in �. In Figure
5(b), the path graphs corresponding to the contraction path terms
are fused to obtain a fully-fused loop nest tree. A loop nest forest is
fully-fused if adding a dummy vertex and connecting it to all roots
in the forest yields a fully-fused loop nest tree.

3.2 Intermediate Tensors

Every contraction term except the last, writes its output to an inter-
mediate tensor (bu�er). Let the term that generates an intermediate
tensor and the term that consumes it be !G and !~ , respectively.
The indices of the intermediate tensor I!G!~ are given by

inds(I!G!~) = (inds(!G) ∩ inds(!~)) \ (, (5)

where (is the set of common ancestors of the two terms in the loop
nest graph.

3.3 Contraction Path and Loop Order

The contraction path a�ects the asymptotic complexity (loop depth)
and memory requirements (intermediate tensor sizes) of the com-
putation. For example, consider the various ways to compute the
TTMc kernel as shown in Figure 1. In one of the chosen contrac-
tions paths, tensors T andV are contracted �rst and the result is
then contracted with U. The computation has a maximum loop
depth of 4 (Figures 1a, 1b and 1c). A di�erent contraction path of
the same kernel, where tensorsU andV are contracted �rst and
then the result is contracted with T , yields a maximum loop depth
of 5 (Figure 1d).

Similarly, for a given contraction path, the ordering of vertices in
the path graphs before fusing them, a�ects the intermediate tensor
sizes and other cost metrics of interest. In the previous example of
the TTMc kernel, consider the iteration graph in Figure 1a and its
fully-fused variant in Figure 1b. Indices 8 , 9 and B are common across
the two trees in the iteration graph. We are able to fuse vertices
8 and 9 but not B (loop order in the �rst path graph is (8, 9, :, B)).
This results in an intermediate tensor of size (in Figure 1b (see
Listing 3). But if the loop order in the �rst path graph is (8, 9, B, :),
we can fuse vertices 8 , 9 and B in the iteration graph and obtain
a fully-fused loop nest tree with an intermediate tensor of size 1
(scalar) (see Figure 1c and its corresponding loop nest in Listing 4).
In the next section, we seek to �nd cost-optimal loop nests for a
given SpTTN kernel, where the cost is de�ned by a cost model, for
example, the intermediate tensor size.

4 FINDING OPTIMAL SPTTN KERNELS

To determine an e�cient loop nest for an SpTTN kernel, we �rst
present an approach to enumerate fully-fused trees and later present
e�cient algorithms to �nd an optimal tree for simple cost metrics.

4.1 Enumeration of Loop Nests

We seek to �nd cost-optimal loop nests for a given SpTTN kernel
by enumerating only fully-fused loop nest forests and restrict our

attention to dense multidimensional bu�ers (intermediate tensors).
We decouple the enumeration into two steps: (1) enumeration of
valid contraction paths for a given set of tensors and (2) enumer-
ation of loop orders in the path graphs for a given contraction
path.

4.1.1 Enumeration of Contraction Paths.

Let the number of input tensors in the SpTTN be =. To enumerate
contraction paths, we employ a function to pick and contract all
combinations of two tensors from the list of input tensors. We
then recurse over a new list constructed by replacing each pair of
contracted tensors with the contraction output. This approach has
been studied in the context of �nding an optimal contraction path
for dense tensor networks [47]. The cost can be analyzed by the
recurrence relation,) (=) =

(=
2

)

·) (= − 1) and) (2) = 1 (when there
are two tensors to contract). The number of valid contraction paths

for = tensors is $
(

(=!)2

=·2=

)

.

In [24], dynamic programming is used to �nd the cost-optimal
contraction path (tree) given a �xed order of dense tensors to be
contracted. This approach is analogous and complementary to our
work of �nding a cost-optimal loop nest tree for a given contraction
path, which we present in Section 4.2.

4.1.2 Enumeration of Loop Orders for a Given Contraction Path.

For a given contraction path, we construct a path graph for each
term by picking a loop order for that term. The path graphs are
then fused to obtain a fully fused loop nest tree. Each choice of loop
order yields a di�erent fused loop nest.

Let the set of indices in the 8th term be �8 . The set of indices in
the SpTTN is given by � =

⋃=−1
8=1 �8 . We do an exhaustive search by

enumerating all loop orders independently for each path graph and
then considering all possible combinations of these orders. Since
we do not allow any repeated indices in our path graphs, the loop
nests generated in such an enumeration are unique and span all the
possible loop nests for a given contraction path. The cardinality of
this exhaustive search is given by

∏=−1
8=1 |�8 |!. We later restrict the

search to only those loop orders that are consistent with the order
of the indices of the sparse tensor, so if a term involves : sparse
indices, the number of possible orders for the term is only |�8 |!/:!.

4.1.3 Upper Bound on Loop Nests.

For a given SpTTN, the number of loop nests we enumerate has
an upper bound given by the product of the number of contraction
paths and the number of loop orders for a given contraction path, i.e.,

$
(

(=!)2 ·
∏=−1

8=1 |�8 |!
=·2=

)

. In the following section, we present a dynamic

programming algorithm to prune the search space for loop order
enumeration.

4.2 Algorithm to Find Cost-Optimal Loop Nests

Enumeration enables autotuning, but for analytic metrics of per-
formance such as bu�er size, more e�cient search schemes are
possible. Di�erent contraction paths yield di�erent fully-fused loop
nests, hence we focus our attention to enumeration and search
of loop nests for a particular contraction path. In TCE [20, 35],
dynamic programming is used to �nd the cost-optimal loop nest
for dense tensor contractions, with one of the cost metrics being
the intermediate tensor size. Our e�cient search algorithm also

173

SPAA ’24, June 17–21, 2024, Nantes, France Raghavendra Kanakagiri and Edgar Solomonik

employs dynamic programming, after decoupling order of terms
from the tree structure. Given a �xed contraction path order (or a
subsequence of the terms, which de�nes a subproblem), we seek to
�nd a loop nest tree that minimizes a chosen cost metric.

We introduce a peeling primitive for fully fused loop nests to
formally de�ne the tree structure. Peeling a fully fused loop nest
removes the �rst outermost loop nest. In a fully-fused loop nest,
the outermost loop should iterate over an index that appears in the
�rst contraction, and include within it all subsequent contractions
in the contraction path order until one does not include the index.

Definition 4.1 (Peeling of Loop Order). Given loop order

� = (�1, . . . , �#), choose A ∈ {1, . . . , # } to be the largest such that

�1 [1] = �2 [1] = · · · = �A [1]. Peeling � yields two loop orders

�(1) = (�1 [2 :], . . . , �A [2 :]) and �(2) = (�A+1, . . . , �#) (where

�G [2 :] denotes the subsequence of all elements in �G except the �rst

element and is omitted if �G has size 1).

The loop nest tree or forest can then be constructed from the rep-
resentation � = (�1, . . . , �#) by peeling � iteratively and adding
vertices for the two resulting loop orders (if not empty).

Definition 4.2 (Fully-fused Loop Nest Forest). Given an loop

order � = (�1, . . . , �=), the corresponding fully-fused loop nest forest

F (�) = (+ , �) is constructed as follows. Initialize + as one vertex

corresponding to loop index �1 [1], then apply peeling iteratively. At

each peeling step, add vertices to+ for�(1) and�(2) (unless they are

zero-sized) connecting �(1) to the vertex representing � and �(2) to

its parent (if any).

To work with analyzing loop nest forests, it also helps to think
about the e�ect of peeling the loop order on the loop nest tree
associated with the loop order.

Definition 4.3 (Peeling of Fully-fused Loop Nest Tree).

Given a loop nest loop order � for contraction path (), !) and the

corresponding fully-fused loop nest tree F (�) = (+ , �), peeling re-

moves the root vertex (index A) of the tree. If the root has : children,

the resulting independent subtrees are associated with loop orders

� (1) , . . . , � (:) , each of which computes a contraction path for distinct

subsets of terms ! (1) , . . . , ! (:) ⊆ !̂, where !̂ is de�ned by removing

the index A from all index sets in !. The contraction path tree for the

8th loop order,) (8) , is given by removing all vertices from) except

those corresponding to terms computed in ! (8) and their children

(inputs).

4.2.1 General Cost Function.

In general, the execution time of a particular fully-fused loop nest
treemay depend on architecture or data sparsity in ways that are im-
practical to fully model and require enumeration and execution. On
the other hand, for a simple cost function, e.g., computational cost1

or intermediate bu�er size, the search space can be explored more
systematically and e�ciently. However, more sophisticated cost
functions, which take into account metrics such as cache-e�ciency
or parallelizability are also of clear interest. We now de�ne a class of
functions which we can optimize e�ciently, requiring separability
of cost according to the structure of the loop nest tree.

1Since the same contraction path is being considered, all fully-fused loop nest trees
have the same asymptotic complexity in tensor size, but order and fusion have an
a�ect on lower-order cost terms.

Definition 4.4 (Tree-separable Cost Function). Consider a

loop nest order � for a contraction path (), !). Let � (1) , . . . , � (:)

be the loop nest orders for subtrees obtained after peeling root A of

tree F (�) and () (8) , ! (8)) be the corresponding contraction path for

each � (8) . A cost function 5i,⊕ for this loop nest is tree-separable if it

satis�es,

5i,⊕ (), !,�) = i),!,A

(

5i,⊕ ()
(1) , ! (1) , � (1)) ⊕ · · · ⊕

5i,⊕ ()
(:) , ! (:) , � (:))

)

,

where i),!,A : '+ → '+ is nondecreasing and ⊕ is an associative

semigroup operator on '+ that is nondecreasing in both variables. If

F (�) is a forest, 5i,⊕ (), !,�) is given by combining the costs of the

independent trees with ⊕.

This de�nition is quite general as i is parameterized by the con-
traction path, and so could be de�ned at each loop level with full
information of the indices/terms involved in the nested loops it
contains. At the same time, we observe that 5 can be evaluated
on � recursively, as i does not depend on all of �, but only the
contraction path and the root vertex of F (�). We could also al-
low the same parameterization for ⊕ without overhead in search
complexity, but do not do so for simplicity and due to lack of need.

4.2.2 Maximum Bu�er Size.

We now provide a tree-separable cost function to compute the
maximum dimension of the intermediate tensors/bu�ers produced
in the execution of a fully fused loop nest. We interchangeably use
the terms intermediate tensor and bu�er.

Definition 4.5 (Cost Function for Maximum Buffer Dimen-

sion). Consider a fully fused loop nest tree F (�) for loop order �

with contraction path (), !), where) = (+ , �). Let � (1) , . . . , � (:)

be the loop nest orders for subtrees obtained after peeling F (�) and

() (8) , ! (8)) be the corresponding contraction path for each � (8) . Let

/ ⊆ � be the set of edges in the contraction path (oriented towards the

root) connecting a node that corresponds to a term !D ∈ �
(8) to an-

other, !E ∈ �
(9) with 8 ≠ 9 . The maximum bu�er dimension used in

the fully fused loop nest is given by 5i,max (), !,�) where 5i,max is a

tree-separable cost function de�ned as i),!,A (G) = max(d (), !, A), G),

with d (), !, A) = max(!D ,!E) ∈/,!D=(1, 2, 3) | 3 |.

The above function is tree-separable since i),!,A andmax satisfy
the properties in De�nition 4.4 and because / (and consequently i)
depends only on) , !, A and not on the rest of �. This metric accu-
rately computes the maximum bu�er dimension passed through the
root loop nest (d (), !)), since the size of any bu�er used in the fully
fused loop nest tree is determined by the indices not yet iterated
over (Equation 5), namely those in 3. Further, since ⊕ is a max
operator, the maximum bu�er dimension needed within any inner
loops is also considered by 5 in a recursive manner. This model
can be modi�ed to account for bu�er size instead of dimension, by
changing A (�) to be the product of the dimensions of the indices
in 3.

4.2.3 Total Number of Cache Misses.

To compute cost as the total number of cache misses for a given con-
traction path, we consider a simple cache model where the cache

can hold # subtensors of size �� , where � is the tensor dimension

174

Minimum Cost Loop Nests for Contraction of a Sparse Tensor with a Tensor Network SPAA ’24, June 17–21, 2024, Nantes, France

size and # < � . For example, if � = 1 and if the same column or
row of a matrix is accessed consecutively, we assume the column
or row is kept in cache. We then model the number of cache misses
incurred within each loop, by taking into any misses in contained
(inner) loops and counting the number of tensors (inputs and out-
puts/intermediates computed) that are indexed by the loop index
of this loop and still have at least � other indices that need to be

iterated over. For each such tensor, at least �� distinct data from
this tensor is loaded in each iteration of the loop, which incurs 1
cache miss. Note that each cache miss in this model is associated
with moving �� tensor data between memory and cache.

Definition 4.6 (Cost Function for Total Number of Cache

Misses). Consider a fully fused loop nest tree F (�) for loop order �

with contraction path (), !). Given a cache of size �� , the number of

cache misses is modeled by 5i,+ (), !,�), where 5i,+ is a tree-separable

cost function de�ned using i),!,A (G) = � (A) (g (), !, A) + G), where

� (A) is the dimension of the root index A and

g (), !, A) =| (|,

(={E : E ∈ (E1, E2, E3) = !D ,∀!D ∈ !,

s.t. A ∈ E and |E | > �}.

Again, it is easy to check that the de�ned cost function is tree-
separable by properties ofi),!,A and +. The cost function accurately
captures the proposed cache miss model by multiplying the number
of cache misses incurred in any loop iteration or its sub-loops by the
number of loop iterations. This model can be extended to consider
other cache sizes, sparsity, multiple levels of cache, and cache line
size.

Algorithm 1 provides a fast search algorithm to �nd a cost opti-
mal order for tree-separable cost functions. In the pseudocode of
the algorithm, for brevity, we use notation such as) \ !1 to denote
the tree obtained by removing the vertex in the contraction tree
) associated with the contraction term !1. We also use [G,.] to
describe an item or list G being prepended to list . .

We now provide a proof of correctness and show how the sub-
problems of Algorithm 1 can be memoized to reduce its complexity.
For both, it is helpful to enumerate the subproblems (calls to func-
tion ORDER) in terms of

(1) the subsequence of terms included in the subproblem (size
of) and !),

(2) the set of indices excluded from the terms (already iterated
over), we refer to this set as (.

We use induction on the size of these subproblems to prove correct-
ness.

Theorem 4.7 (Proof of Correctness of Algorithm 1). Con-

sider a contraction path (), !) and a tree-separable cost function 5

speci�ed by i),! and ⊕. ORDER(), !, i),!,A) (Algorithm 1) returns

two loop orders, � and �, for (), !), so that � has minimal cost

(5i,⊕ (), !,�)) among all loop orders for (), !) and � has minimal

cost among all loop orders for (), !) that yield a loop nest tree F (�)

with a di�erent root than F (�).

Proof. We prove the theorem statement by induction on the
size of !. If there are no indices/terms remaining (! = ∅), only
the null order is valid. By inductive hypothesis, we assume the

Algorithm 1 Algorithm to �nd cost-optimal loop order for terms
in a given contraction path

Global Input: Loop nest cost function 5 specified for

contraction path (), !) via parameterized scalar function

i and binary operator ⊕.

Input: A contraction path (), !), with ! = (!1, . . . , !#), where

each !8 is a 3-tuple of index sets and) is a binary

contraction tree.

Output: Two loop orders, � and �, for (), !), so that �

has minimal cost (5i,⊕ (), !,�)) among all loop orders for

(), !) and � has minimal cost among all loop orders for

(), !) that yield a loop nest tree F(�) with a different

root than F(�).

1: procedure ORDER(), !)

2: X� ←∞; X� ←∞; �← ∅; � ← ∅

3: if ! = ∅ then

4: return (∅, ∅)

5: if ![1] = ∅ then

6: return ORDER() \ !1, ! \ !1, i) \!1,!\!1)

7: (D, E, F) = !1
8: for @ ∈ D ∪ E ∪ F do

9: X� ←∞; � ← ∅

10: : ← max
:∈1,...,# , s.t. @∈!1,· · · ,@∈!:

:

11: for B ← 1 to : do

12: Let () (-) , ! (-)) be the contraction path

restricted to the terms !1, . . . , !B with index @

removed.

13: Let () (.) , ! (.)) be the contraction path restricted

to the terms !B+1, . . . , !# .

14: (�(-) ,★) ← ORDER() (-) , ! (-))

15: (�̄(.) , �̄ (.)) ← ORDER() (.) , ! (.))

16: ⊲ If . tree has @ as root index, the resulting

tree would be treated as not fully fused, so

take second best tree.

17: if �̄
(.)
1
[1] = @ then

18: �(.) ← �̄ (.)

19: else

20: �(.) ← �̄(.)

21: ⊲ Compute cost of loop order.

22: X ← i) ,!,@

(

5i,⊕ ()
(-) , ! (-) , �(-))

)

⊕

5i,⊕ ()
(.) , ! (.) , �(.))

23: ⊲ Update lowest cost loop orders

24: if X < X� then

25: � ← [[@,�
(-)
1
], . . . [@,�

(-)
B], �(.)]

26: X� ← X

27: if X� < X� then

28: X� ← X�; � ← �; X� ← X�; �← �

29: else if X� < X� then

30: X� ← X�; � ← �

31: return (�, �)

theorem statement holds for any subsequence of terms in ! and the
associated part of) with any subset of indices removed from all
terms in ! (the set of indices already iterated over contains (). If
the theorem statement does not hold, there must exist some order
�′ for (), !) with 5i,⊕ (), !,�

′) < 5i,⊕ (), !,�). Let A be the root

of the �rst tree in F (�′), � (1) be the �rst tree in the forest F (�′),

and � (2) be the remainder of the forest, with and () (1) , ! (1)) and

() (2) , ! (2)) being the associated contraction paths. Since 5i,⊕ is

175

SPAA ’24, June 17–21, 2024, Nantes, France Raghavendra Kanakagiri and Edgar Solomonik

separable, we have that

5i,⊕ (), !,�
′) =i),!,A (5i,⊕ ()

(1) , ! (1) , � (1)))

⊕ 5i,⊕ ()
(2) , ! (2) , � (2)) .

Since () (1) , ! (1)) and () (2) , ! (2)) are contained and smaller (as
de�ned in our inductive hypothesis) than (), !), Algorithm 1, when
considering root vertex A , would return the minimal cost loop order
for both subproblems. Further, the cost of �′ would be computed
correctly on line 22 of the Algorithm. Since the algorithm instead
found � to have a lower cost, we have derived a contradiction.
Given optimality of �, its trivial to check that the given optimality
condition for � is maintained. □

We now consider the execution cost of Algorithm 1, with the cost
of each subproblem memoized. For # ordered terms and< total

indices, there are $ ((<!)#) loop orders (loop nests). Algorithm 1
needs to consider all subsequences of the # terms and all subsets
of the< indices, yielding$ (# 2

2
<) subproblems. Each subproblem

considers all choices of root index and pre�xes of terms that contain
that index to iterate over. Thus the cost per subproblem is $ (<#)
and the overall complexity of the algorithm is $ (# 3

2
<<).

5 SPTTN-CYCLOPS FRAMEWORK

We build a runtime framework for SpTTN kernels, which searches
for cost-optimal loop nests using the methodology/algorithm intro-
duced in Section 4 and executes the resulting loop nests. Speci�cally,
the framework �rst considers all contraction paths with optimal
asymptotic complexity. For each contraction path, we restrict loop
orders to those in which the indices of the sparse tensor are iterated
over in the order in which they are stored in the CSF tree. We select
the minimum cost loop nest among these using Algorithm 1. If the
framework cannot �nd a loop nest that �ts within the constraints
set by the cost model, it iterates over the contraction paths with
suboptimal asymptotic complexity until it �nds a loop nest that
adheres to the constraints. While the framework may use di�erent
cost functions and employ autotuning, in the experiments, we use
a tree-decomposable cost metric that selects the loop nest with the
maximum number of independent dense loops with bounded bu�er
dimension. This choice is made to use BLAS kernels as much as
possible while maintaining a bounded amount of storage.

5.1 Algorithm to Generate and Execute Loop
Nests

Given a fully fused loop nest tree, in Algorithm 2 we present a run-
time algorithm to generate loop nests and execute the contractions.
We represent the tree with a sequence of terms (leaves) and a list
per term representing the loop order (vertices). This representation
is su�cient for the algorithm to infer the structure of a fully fused
loop nest tree. We use Algorithm 2 in two stages. In the �rst stage,
we preprocess the fully fused loop nest tree and add hooks to (1)
generate nested loops for the dense indices using metaprogram-
ming, (2) identify independent dense loops that can be o�oaded to
BLAS like kernels. We also allocate memory for the intermediate
tensors in this stage. In the second stage, we compute the kernel
by executing the preprocessed fully fused loop nest tree. We check
for hooks in Line 2 and o�oad the computation accordingly.

Algorithm 2 Algorithm to generate loop nests

Input: Sequence of terms that represent the

contraction path. Each term is a set of three

tensors, inp1, inp2 and op.

Input: Depth initially set to 0.

Output: Loop nest to compute the given kernel.

1: procedure LOOP_NEST(sequence_of_terms,

depth)

2: if depth = |sequence_of_terms[0] .idx_order| then

3: C ← sequence_of_terms[0]

4: contract(C .inp1, C .inp2, C .op)

5: idx← sequence_of_terms[0] .idx_order[depth]

6: buf_terms← ∅

7: for 2 ∈ sequence_of_terms do

8: if idx = 2.idx_order[depth] then

9: buf_terms← buf_terms ∪ 2

10: else

11: if |buf_terms| ≥ 1 then

12: for 8 ← 1, |buf_terms| do

13: 1 ← buf_terms[8]

14: reset← True

15: for 9 ← 8 + 1, buf_terms do

16: if 1.op = buf_terms[9] .inp1 or

1.op = buf_terms[9] .inp2 then

17: reset← False

18: if reset = True then

19: 1.op← 0

20: ⊲ generate a loop for idx

21: LOOP_NEST(buf_terms, depth + 1)

22: buf_terms← ∅

23: idx← 2.idx_order[depth]

24: if |buf_terms| ≥ 1 then

25: ⊲ generate a loop for idx

26: LOOP_NEST(buf_terms, depth + 1)

5.2 Data Distribution

We leverage CTF’s [57] data distribution strategy, which uses a
cyclic data layout on multidimensional processor grids to achieve
load balance and scalability for sparse tensor computations. We
continue to hold the main sparse tensor in the same layout for
the entire duration of the execution. Each dimension of the tensor
is distributed across the processor grid in a cyclic fashion. We
redistribute the dense tensors, including the output tensor (if it
is dense), along the dimensions it shares with the sparse tensor.
Let {81, . . . , 8A } be the indices of a dense tensor D with dimensions
�1 × . . . × �A . Assume a single index of D, 8: , is shared with the
sparse tensor. Let the processor grid be %1× . . .×%= and assume 8: is
mapped to % 9 . Then, � is partially replicated so that all processors
@1, . . . , @ 9 with a �xed index @ 9 own all elements of D, or which
8: ≡ @ 9 mod % 9 . Note that in tensor decomposition and completion
algorithms these replicated dimensions are often relatively small.
Each processor can now perform local kernel computation without
any further data exchange. After the computation we reduce the
output tensor and redistribute it to its original mapping on the
processor grid.

176

Minimum Cost Loop Nests for Contraction of a Sparse Tensor with a Tensor Network SPAA ’24, June 17–21, 2024, Nantes, France

𝒯 "𝒲

→ 𝒳

𝒳 " 𝒱

→ 𝒴

𝒴 " 𝑈

→ 𝒮

Independent
Independent

Independent

BLAS BLAS
BLAS

1 2 3

Metaprogramming

i

j

k r

l

t

s

t

s

t

1 T_c s f = CSF (T_8 9:;)
2 for (i , T_ i) i n T_c s f :
3 for (j , T _ i j) i n T_i :
4 Y = 0 / / r e s e t i n t e rm e d i a t e t e n s o r
5 for (k , T _ i j k) i n T _ i j :
6 X = 0 / / r e s e t i n t e rme d i a t e t e n s o r
7 for l i n T_ i j k :
8 xAXPY (T , t _ i j k l , W [l , :] , 1 , X , 1)
9 xGER (T , S , 1 , X , 1 , V [k , :] , 1 , Y , T) }
10 for r in range (R) : / / dense loop
11 xAXPY ((S ∗ T) , Y , U [j , r] , 1 , S [i , r , : , :] , 1)

Figure 6: Loop nest for an order 4 TTMc kernel. Loop A of contraction 3 is not via recursion but is generated as a loop by

metaprogramming. Contractions 1 and 3 are o�loaded to BLAS-1, and contraction 2 is o�loaded to a BLAS-2 kernel.

5.3 Example SpTTN Execution

In Figure 6, we show a fully fused loop nest for the order 4 TTMc
kernel, S(8, A , B, C) =

∑

9,:,; T (8, 9, :, ;) · U(9, A) · V(:, B) · W(;, C).

6 RELATEDWORK

General tensor algebra compilers: TACO [31] and COMET [62]
consist of Domain Speci�c Language (DSL) compilers to generate
kernels for both sparse and dense tensors. The default schedules
of these frameworks are unfactorized and can be suboptimal for
SpTTN kernels.

SparseLNR [16] and ReACT [71] extend TACO and COMET, re-
spectively, with kernel distribution/fusion to support the factorize-
and-fuse approach. The contraction path and loop orders for these
loop nests are user-speci�ed. Our main contribution is in fully
enumerating the space of loop nests and �nding a cost-optimal
schedule automatically. Furthermore, in our evaluation (in Section
7), we show that SpTTN-Cyclops outperforms SparseLNR by orders
of magnitude. For example, across various input tensors considered,
SpTTN-Cyclops outperforms SparseLNR by 1.3x to 3.4x and 4x to
110.5x on MTTKRP and TTMc kernels, respectively.
Auto-scheduler: Tensor Contraction Engine (TCE) [6] automat-
ically generates sequence of tensor contractions that minimize
intermediate tensor sizes. It primarily focuses on dense tensor oper-
ations that are common in quantum chemistry computations. The
dynamic programming approach in TCE [20, 35] adopts a bottom-
up approach i.e., to �nd an optimal loop structure, the subtrees of
the loop nest tree are evaluated �rst and memoized. Subsequently,
at the root node, various loop structures including the possibility of
fusing the subtrees are evaluated to pick the optimal loop structure.
Furthermore, in TCE, the tree is partitioned into sub-problems by
identifying a set of cut-points. There can be multiple cut-points at
a given level. In SpTTN-Cyclops, at any given iteration, we split
the problem into two sub-problems, i.e., only the �rst cut-point is
considered, and the cost of the sub-problems is memoized. So a
subproblem is a choice for the root index and pre�xes of terms that
contain that index to iterate over. This approach of SpTTN-Cyclops
reduces the cost (for �nding an optimal loop nest) when compared
to choosing an index for each subtree at a given level and translates
into better search complexity.

Protocolized Concrete Index Notation (CIN-P) [1], proposes an
automated scheduler that enumerates every schedule of minimum
depth and relies on the kernel being small. CIN-P focuses solely on
asymptotic costs and CIN-P for TACO discards schedules involving

intermediate tensors of more than one dimension. SpTTN-Cyclops
on the other hand tunes over both contraction path and loop order-
ings. WACO [64] co-optimizes the format and schedule of sparse
tensor kernels using a sparse convolutional neural network tomodel
and predict the runtime performance based on the sparsity patterns,
formats, and schedules. SparseAuto [15] prunes the search space of
schedules for sparse tensor contractions based on both time and
intermediate tensor memory requirements. It uses Satis�ability
Module Theory (SMT) solvers to pick the smallest number of pos-
sible schedules based on user-de�ned constraints. In CoNST [50],
the authors use a constraint-based approach with a Z3 SMT solver
to optimize schedules for sparse tensor contractions.

Inspector-executor models incorporated in the compiler
transformation frameworks such as Sparse Polyhedral Framework
(SPF) [60, 61] enable optimization of sparse computations. In [70],
the authors extend SPF to generate optimized sparse tensor codes.
They focus on kernels that handle multiple sparse tensors and not
SpTTN kernels.
General distributed-memory frameworks: DISTAL [66]
extends TACO to target distributed systems. SpDISTAL [67] adopts
single-node transformations of TACO and extends DISTAL with
new constructs for describing distributions of sparse tensors.
SpDISTAL inherits the limitations of TACO in terms of �nding an
optimal code path for SpTTN kernels. Also, our framework provides
automatic distributed memory parallelization without any user
intervention. Deinsum [72] provides automatic distributed-memory
parallelization of operations on dense tensors. TiledArray [9, 10] is
a distributed-memory framework for block-sparse tensors.
Specialized library implementation for SpTTN ker-

nels: SPLATT [56] provides an optimized implementation of
MTTKRP on shared and distributed memory systems. GigaTensor
[26] implements MTTKRP as a series of Hadamard products and
uses the MapReduce paradigm. A parallel algorithm for TTMc
which leverages multiple CSF representations is proposed in [54].
Parallel Tensor Infrastructure (ParTI!) [37] is a library for sparse
tensor operations (including MTTKRP) and tensor decompositions
on multicore CPU and GPU architectures. In [39], as part of ParTI!,
the authors propose techniques to reorder the sparse tensor to
improve the performance of MTTKRP.

7 EVALUATION

All results are collected on the Stampede2 supercomputer. Each
node has an Intel Xeon Phi 7250 CPU (“Knights Landing”) with

177

SPAA ’24, June 17–21, 2024, Nantes, France Raghavendra Kanakagiri and Edgar Solomonik

REFERENCES
[1] Peter Ahrens, Fredrik Kjolstad, and Saman Amarasinghe. 2022. Autoscheduling

for Sparse Tensor Algebra with an Asymptotic Cost Model. In Proceedings of the
43rd ACM SIGPLAN International Conference on Programming Language Design
and Implementation (San Diego, CA, USA) (PLDI 2022). Association for Comput-
ing Machinery, New York, NY, USA, 269–285. https://doi.org/10.1145/3519939.
3523442

[2] Brett W. Bader and Tamara G. Kolda. 2008. E�cient MATLAB Computations
with Sparse and Factored Tensors. SIAM Journal on Scienti�c Computing 30, 1
(2008), 205–231. https://doi.org/10.1137/060676489

[3] G. Ballard, N. Knight, and K. Rouse. 2018. Communication Lower Bounds for Ma-
tricized Tensor Times Khatri-Rao Product. In 2018 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE Computer Society, Los Alamitos,
CA, USA, 557–567. https://doi.org/10.1109/IPDPS.2018.00065

[4] Grey Ballard and Kathryn Rouse. 2020. General Memory-Independent Lower
Bound for MTTKRP. In Proceedings of the 2020 SIAM Conference on Parallel
Processing for Scienti�c Computing (PP). SIAM, 1–11. https://doi.org/10.1137/1.
9781611976137.1

[5] Manya Bansal, Olivia Hsu, Kunle Olukotun, and Fredrik Kjolstad. 2023. Mosaic:
An Interoperable Compiler for Tensor Algebra. Proc. ACM Program. Lang. 7,
PLDI, Article 122 (jun 2023), 26 pages. https://doi.org/10.1145/3591236

[6] G. Baumgartner, A. Auer, D.E. Bernholdt, A. Bibireata, V. Choppella, D. Cociorva,
Xiaoyang Gao, R.J. Harrison, S. Hirata, S. Krishnamoorthy, S. Krishnan, Chi
chung Lam, Qingda Lu, M. Nooijen, R.M. Pitzer, J. Ramanujam, P. Sadayappan,
and A. Sibiryakov. 2005. Synthesis of High-Performance Parallel Programs for a
Class of ab Initio Quantum Chemistry Models. Proc. IEEE 93, 2 (2005), 276–292.
https://doi.org/10.1109/JPROC.2004.840311

[7] L Susan Blackford, Antoine Petitet, Roldan Pozo, Karin Remington, R Clint
Whaley, James Demmel, Jack Dongarra, Iain Du�, Sven Hammarling, Greg Henry,
et al. 2002. An updated set of basic linear algebra subprograms (BLAS). ACM
Trans. Math. Software 28, 2 (2002), 135–151.

[8] Zachary Blanco, Bangtian Liu, and Maryam Mehri Dehnavi. 2018. CSTF: Large-
Scale Sparse Tensor Factorizations on Distributed Platforms. In Proceedings of
the 47th International Conference on Parallel Processing (Eugene, OR, USA) (ICPP
2018). Association for Computing Machinery, New York, NY, USA, Article 21,
10 pages. https://doi.org/10.1145/3225058.3225133

[9] Justus A. Calvin, Cannada A. Lewis, and Edward F. Valeev. 2015. Scalable Task-
Based Algorithm forMultiplication of Block-Rank-SparseMatrices. In Proceedings
of the 5thWorkshop on Irregular Applications: Architectures and Algorithms (Austin,
Texas) (IAˆ3 ’15). Association for Computing Machinery, New York, NY, USA,
Article 4, 8 pages. https://doi.org/10.1145/2833179.2833186

[10] Justus A. Calvin and Edward F. Valeev. 2023. TiledArray: A general-purpose scal-
able block-sparse tensor framework. https://github.com/valeevgroup/tiledarray

[11] John Canny and Huasha Zhao. 2013. Big Data Analytics with Small Foot-
print: Squaring the Cloud. In Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (Chicago, Illinois, USA)
(KDD ’13). Association for Computing Machinery, New York, NY, USA, 95–103.
https://doi.org/10.1145/2487575.2487677

[12] Xiaochun Cao, Xingxing Wei, Yahong Han, and Dongdai Lin. 2014. Robust face
clustering via tensor decomposition. IEEE transactions on cybernetics 45, 11 (2014),
2546–2557.

[13] Jee Choi, Xing Liu, Shaden Smith, and Tyler Simon. 2018. Blocking Optimization
Techniques for Sparse Tensor Computation. In 2018 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). 568–577. https://doi.org/10.1109/
IPDPS.2018.00066

[14] Joon Hee Choi and S. Vishwanathan. 2014. DFacTo: Distributed Factor-
ization of Tensors. In Advances in Neural Information Processing Systems,
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger (Eds.),
Vol. 27. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2014/�le/
d5cfead94f5350c12c322b5b664544c1-Paper.pdf

[15] Adhitha Dias, Logan Anderson, Kirshanthan Sundararajah, Artem Pelenitsyn,
and Milind Kulkarni. 2024. SparseAuto: An Auto-Scheduler for Sparse Tensor
Computations Using Recursive LoopNest Restructuring. arXiv:2311.09549 [cs.PL]

[16] Adhitha Dias, Kirshanthan Sundararajah, Charitha Saumya, and Milind Kulkarni.
2022. SparseLNR: Accelerating Sparse Tensor Computations Using Loop Nest
Restructuring. In Proceedings of the 36th ACM International Conference on Super-
computing (Virtual Event) (ICS ’22). Association for Computing Machinery, New
York, NY, USA, Article 15, 14 pages. https://doi.org/10.1145/3524059.3532386

[17] Evgeny Epifanovsky, Michael Wormit, Tomasz Kuś, Arie Landau, Dmitry Zuev,
Kirill Khistyaev, Prashant Manohar, Ilya Kaliman, Andreas Dreuw, and Anna I.
Krylov. 2013. New implementation of high-level correlated methods using a gen-
eral block-tensor library for high-performance electronic structure calculations.
Journal of Computational Chemistry (2013).

[18] Matthew Fishman, Steven R. White, and E. Miles Stoudenmire. 2022. The ITensor
Software Library for Tensor Network Calculations. SciPost Phys. Codebases (2022),
4. https://doi.org/10.21468/SciPostPhysCodeb.4

[19] Jianhua Gao, Weixing Ji, Fangli Chang, Shiyu Han, Bingxin Wei, Zeming Liu,
and Yizhuo Wang. 2022. A Systematic Survey of General Sparse Matrix-Matrix
Multiplication. Comput. Surveys (nov 2022). https://doi.org/10.1145/3571157

[20] Xiaoyang Gao, Sriram Krishnamoorthy, Swarup Kumar Sahoo, Chi-Chung Lam,
Gerald Baumgartner, J. Ramanujam, and P. Sadayappan. 2007. E�cient search-
space pruning for integrated fusion and tiling transformations: Research Articles.
Concurr. Comput. : Pract. Exper. 19, 18 (dec 2007), 2425–2443.

[21] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal Crago, Aamer
Jaleel, Edgar Solomonik, Joel Emer, and Christopher W. Fletcher. 2019. ExTensor:
An Accelerator for Sparse Tensor Algebra. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture (Columbus, OH, USA)
(MICRO ’52). Association for ComputingMachinery, New York, NY, USA, 319–333.
https://doi.org/10.1145/3352460.3358275

[22] So Hirata. 2003. Tensor Contraction Engine: Abstraction and Automated Parallel
Implementation of Con�guration-Interaction, Coupled-Cluster, and Many-Body
Perturbation Theories. The Journal of Physical Chemistry A 107, 46 (2003), 9887–
9897.

[23] Edward Hutter and Edgar Solomonik. 2023. Application Performance Model-
ing via Tensor Completion. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (<conf-loc>,
<city>Denver</city>, <state>CO</state>, <country>USA</country>, </conf-
loc>) (SC ’23). Association for Computing Machinery, New York, NY, USA, Article
65, 14 pages. https://doi.org/10.1145/3581784.3607069

[24] Cameron Ibrahim, Danylo Lykov, Zichang He, Yuri Alexeev, and Ilya Safro. 2022.
Constructing Optimal Contraction Trees for Tensor Network Quantum Circuit
Simulation. In 2022 IEEE High Performance Extreme Computing Conference (HPEC).
1–8. https://doi.org/10.1109/HPEC55821.2022.9926353

[25] Inah Jeon, Evangelos E. Papalexakis, U Kang, and Christos Faloutsos. 2015.
HaTen2: Billion-scale tensor decompositions. In 2015 IEEE 31st International
Conference on Data Engineering. 1047–1058. https://doi.org/10.1/109/ICDE.2015.
7113355

[26] U. Kang, Evangelos Papalexakis, Abhay Harpale, and Christos Faloutsos. 2012.
GigaTensor: Scaling Tensor Analysis up by 100 Times - Algorithms and Dis-
coveries. In Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (Beijing, China) (KDD ’12). Association for
Computing Machinery, New York, NY, USA, 316–324. https://doi.org/10.1145/
2339530.2339583

[27] Daniel Kats and Frederick R Manby. 2013. Sparse tensor framework for imple-
mentation of general local correlation methods. The Journal of Chemical Physics
138, 14 (2013), 144101.

[28] Oguz Kaya and Bora Uçar. 2015. Scalable sparse tensor decompositions in dis-
tributed memory systems. In SC ’15: Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis. 1–11.
https://doi.org/10.1145/2807591.2807624

[29] Venera Khoromskaia and Boris N Khoromskij. 2018. Tensor numerical methods
in quantum chemistry. In Tensor Numerical Methods in Quantum Chemistry. De
Gruyter.

[30] Henk A. L. Kiers. 2000. Towards a standardized notation and terminology in
multiway analysis. Journal of Chemometrics 14, 3 (2000), 105–122. https://doi.
org/10.1002/1099-128X(200005/06)14:3<105::AID-CEM582>3.0.CO;2-I

[31] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amaras-
inghe. 2017. The Tensor Algebra Compiler. Proc. ACM Program. Lang. 1, OOPSLA,
Article 77 (oct 2017), 29 pages. https://doi.org/10.1145/3133901

[32] Penporn Koanantakool, Ariful Azad, Aydin Buluç, Dmitriy Morozov, Sang-Yun
Oh, Leonid Oliker, and Katherine Yelick. 2016. Communication-Avoiding Parallel
Sparse-Dense Matrix-Matrix Multiplication. In 2016 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). 842–853. https://doi.org/10.1109/
IPDPS.2016.117

[33] Tamara G. Kolda and Brett W. Bader. 2009. Tensor Decompositions and Applica-
tions. SIAM Rev. 51, 3 (2009), 455–500. https://doi.org/10.1137/07070111X

[34] Nadia Kreimer, Aaron Stanton, and Mauricio D Sacchi. 2013. Tensor comple-
tion based on nuclear norm minimization for 5D seismic data reconstruction.
Geophysics 78, 6 (2013), V273–V284.

[35] Chi-Chung Lam, Daniel Cociorva, Gerald Baumgartner, and P. Sadayappan. 2000.
Optimization of Memory Usage Requirement for a Class of Loops Implementing
Multi-dimensional Integrals. In Languages and Compilers for Parallel Computing,
Larry Carter and Jeanne Ferrante (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 350–364.

[36] Jiajia Li, Jee Choi, Ioakeim Perros, Jimeng Sun, and Richard Vuduc. 2017. Model-
Driven Sparse CP Decomposition for Higher-Order Tensors. In 2017 IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS). 1048–1057.
https://doi.org/10.1109/IPDPS.2017.80

[37] Jiajia Li, Yuchen Ma, and Richard Vuduc. 2018. ParTI! : A Parallel Tensor Infras-
tructure for multicore CPUs and GPUs. http://parti-project.org Last updated:
Jan 2020.

[38] Jiajia Li, Yuchen Ma, Chenggang Yan, and Richard Vuduc. 2016. Optimizing
Sparse Tensor Times Matrix on Multi-core and Many-Core Architectures. In 2016
6th Workshop on Irregular Applications: Architecture and Algorithms (IAˆ3). 26–33.

180

Minimum Cost Loop Nests for Contraction of a Sparse Tensor with a Tensor Network SPAA ’24, June 17–21, 2024, Nantes, France

https://doi.org/10.1109/IA3.2016.010
[39] Jiajia Li, Bora Uçar, Ümit V. Çatalyürek, Jimeng Sun, Kevin Barker, and Richard

Vuduc. 2019. E�cient and E�ective Sparse Tensor Reordering. In Proceedings
of the ACM International Conference on Supercomputing (Phoenix, Arizona) (ICS
’19). Association for Computing Machinery, New York, NY, USA, 227–237. https:
//doi.org/10.1145/3330345.3330366

[40] Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping Ye. 2013. Tensor
Completion for Estimating Missing Values in Visual Data. IEEE Transactions
on Pattern Analysis and Machine Intelligence 35, 1 (2013), 208–220. https:
//doi.org/10.1109/TPAMI.2012.39

[41] Jiawen Liu, Jie Ren, Roberto Gioiosa, Dong Li, and Jiajia Li. 2021. Sparta:
High-Performance, Element-Wise Sparse Tensor Contraction on Heterogeneous
Memory. In Proceedings of the 26th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (Virtual Event, Republic of Korea) (PPoPP
’21). Association for Computing Machinery, New York, NY, USA, 318–333.
https://doi.org/10.1145/3437801.3441581

[42] Igor L Markov and Yaoyun Shi. 2008. Simulating quantum computation by
contracting tensor networks. SIAM J. Comput. 38, 3 (2008), 963–981.

[43] Israt Nisa, Aravind Sukumaran-Rajam, Sureyya Emre Kurt, Changwan Hong, and
P. Sadayappan. 2018. Sampled Dense Matrix Multiplication for High-Performance
Machine Learning. In 2018 IEEE 25th International Conference on High Performance
Computing (HiPC). 32–41. https://doi.org/10.1109/HiPC.2018.00013

[44] Sejoon Oh, Namyong Park, Sael Lee, and U Kang. 2018. Scalable Tucker
Factorization for Sparse Tensors - Algorithms and Discoveries. In 2018 IEEE
34th International Conference on Data Engineering (ICDE). 1120–1131. https:
//doi.org/10.1109/ICDE.2018.00104

[45] Román Orús. 2014. Advances on tensor network theory: symmetries, fermions,
entanglement, and holography. The European Physical Journal B 87, 11 (2014),
1–18.

[46] Ioakeim Perros, Robert Chen, Richard Vuduc, and Jimeng Sun. 2015. Sparse
hierarchical tucker factorization and its application to healthcare. In Data Mining
(ICDM), 2015 IEEE International Conference on. IEEE, 943–948.

[47] Robert N. C. Pfeifer, Jutho Haegeman, and Frank Verstraete. 2014. Faster identi-
�cation of optimal contraction sequences for tensor networks. Phys. Rev. E 90
(Sep 2014), 033315. Issue 3. https://doi.org/10.1103/PhysRevE.90.033315

[48] Eric T. Phipps and Tamara G. Kolda. 2019. Software for Sparse Tensor De-
composition on Emerging Computing Architectures. SIAM Journal on Scien-
ti�c Computing 41, 3 (2019), C269–C290. https://doi.org/10.1137/18M1210691
arXiv:https://doi.org/10.1137/18M1210691

[49] Roman Poya, Antonio J. Gil, and Rogelio Ortigosa. 2017. A high performance data
parallel tensor contraction framework: Application to coupled electro-mechanics.
Computer Physics Communications (2017). https://doi.org/10.1016/j.cpc.2017.02.
016

[50] Saurabh Raje, Yufan Xu, Atanas Rountev, Edward F. Valeev, and Saday Sa-
dayappan. 2024. CoNST: Code Generator for Sparse Tensor Networks.
arXiv:2401.04836 [cs.PL]

[51] Navjot Singh, Zecheng Zhang, Xiaoxiao Wu, Naijing Zhang, Siyuan Zhang, and
Edgar Solomonik. 2022. Distributed-memory tensor completion for generalized
loss functions in python using new sparse tensor kernels. J. Parallel and Distrib.
Comput. 169 (2022), 269–285. https://doi.org/10.1016/j.jpdc.2022.07.005

[52] Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu, and
George Karypis. 2017. FROSTT: The Formidable Repository of Open Sparse Tensors
and Tools. http://frostt.io/

[53] Shaden Smith and George Karypis. 2015. Tensor-Matrix Products with a Com-
pressed Sparse Tensor. In Proceedings of the 5th Workshop on Irregular Appli-
cations: Architectures and Algorithms (Austin, Texas) (IAˆ3 ’15). Association
for Computing Machinery, New York, NY, USA, Article 5, 7 pages. https:
//doi.org/10.1145/2833179.2833183

[54] Shaden Smith and George Karypis. 2017. Accelerating the Tucker Decomposition
with Compressed Sparse Tensors. In Euro-Par 2017: Parallel Processing, Francisco F.
Rivera, Tomás F. Pena, and José C. Cabaleiro (Eds.). Springer International Pub-
lishing, Cham, 653–668.

[55] Shaden Smith, Jongsoo Park, and George Karypis. 2016. An Exploration of
Optimization Algorithms for High Performance Tensor Completion. In SC ’16:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 359–371. https://doi.org/10.1109/SC.2016.30

[56] Shaden Smith, Niranjay Ravindran, Nicholas D. Sidiropoulos, and George Karypis.
2015. SPLATT: E�cient and Parallel Sparse Tensor-Matrix Multiplication. In
2015 IEEE International Parallel and Distributed Processing Symposium. 61–70.
https://doi.org/10.1109/IPDPS.2015.27

[57] Edgar Solomonik, Devin Matthews, Je� R Hammond, John F Stanton, and James
Demmel. 2014. A massively parallel tensor contraction framework for coupled-
cluster computations. J. Parallel and Distrib. Comput. 74, 12 (2014), 3176–3190.

[58] Paul Springer and Paolo Bientinesi. 2018. Design of a High-Performance GEMM-
like Tensor–Tensor Multiplication. ACM Trans. Math. Softw. 44, 3, Article 28 (Jan
2018), 29 pages. https://doi.org/10.1145/3157733

[59] Nitish Srivastava, Hanchen Jin, Shaden Smith, Hongbo Rong, David Albonesi,
and Zhiru Zhang. 2020. Tensaurus: A versatile accelerator for mixed sparse-dense
tensor computations. In 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 689–702.

[60] Michelle Mills Strout, Mary Hall, and Catherine Olschanowsky. 2018. The Sparse
Polyhedral Framework: Composing Compiler-Generated Inspector-Executor
Code. Proc. IEEE 106, 11 (2018), 1921–1934. https://doi.org/10.1109/JPROC.2018.
2857721

[61] Michelle Mills Strout, Alan LaMielle, Larry Carter, Jeanne Ferrante, Barbara
Kreaseck, and Catherine Olschanowsky. 2016. An approach for code generation
in the Sparse Polyhedral Framework. Parallel Comput. 53 (2016), 32–57. https:
//doi.org/10.1016/j.parco.2016.02.004

[62] Ruiqin Tian, Luanzheng Guo, Jiajia Li, Bin Ren, and Gokcen Kestor. 2021. A
High Performance Sparse Tensor Algebra Compiler in MLIR. In 2021 IEEE/ACM
7th Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC). 27–38.
https://doi.org/10.1109/LLVMHPC54804.2021.00009

[63] L. R. Tucker. 1966c. Some mathematical notes on three-mode factor analysis.
Psychometrika 31 (1966c), 279–311.

[64] Jaeyeon Won, Charith Mendis, Joel S. Emer, and Saman Amarasinghe. 2023.
WACO: Learning Workload-Aware Co-optimization of the Format and Schedule
of a Sparse Tensor Program. In Proceedings of the 28th ACM International Confer-
ence on Architectural Support for Programming Languages and Operating Systems,
Volume 2 (Vancouver, BC, Canada) (ASPLOS 2023). Association for ComputingMa-
chinery, New York, NY, USA, 920–934. https://doi.org/10.1145/3575693.3575742

[65] Qingcheng Xiao, Size Zheng, Bingzhe Wu, Pengcheng Xu, Xuehai Qian, and
Yun Liang. 2021. Hasco: Towards agile hardware and software co-design for
tensor computation. In 2021 ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 1055–1068.

[66] Rohan Yadav, Alex Aiken, and Fredrik Kjolstad. 2022. DISTAL: The Distributed
Tensor Algebra Compiler. In Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation (San Diego,
CA, USA) (PLDI 2022). Association for Computing Machinery, New York, NY,
USA, 286–300. https://doi.org/10.1145/3519939.3523437

[67] Rohan Yadav, Alex Aiken, and Fredrik Kjolstad. 2022. SpDISTAL: Compiling
Distributed Sparse Tensor Computations. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis
(Dallas, Texas) (SC ’22). IEEE Press, Article 59, 15 pages.

[68] Wangdong Yang, Kenli Li, and Keqin Li. 2019. A Pipeline Computing Method
of SpTV for Three-Order Tensors on CPU and GPU. ACM Trans. Knowl. Discov.
Data 13, 6, Article 63 (nov 2019), 27 pages. https://doi.org/10.1145/3363575

[69] Longhao Yuan, Qibin Zhao, and Jianting Cao. 2018. High-Order Tensor Com-
pletion for Data Recovery via Sparse Tensor-Train Optimization. In 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP).
1258–1262. https://doi.org/10.1109/ICASSP.2018.8462592

[70] Tuowen Zhao, Tobi Popoola, Mary Hall, Catherine Olschanowsky, and Michelle
Strout. 2022. Polyhedral Speci�cation and Code Generation of Sparse Tensor
Contraction with Co-Iteration. ACM Trans. Archit. Code Optim. 20, 1, Article 16
(dec 2022), 26 pages. https://doi.org/10.1145/3566054

[71] Tong Zhou, Ruiqin Tian, Rizwan A. Ashraf, Roberto Gioiosa, Gokcen Kestor, and
Vivek Sarkar. 2023. ReACT: Redundancy-Aware Code Generation for Tensor Ex-
pressions. In Proceedings of the International Conference on Parallel Architectures
and Compilation Techniques (Chicago, Illinois) (PACT ’22). Association for Com-
puting Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3559009.
3569685

[72] Alexandros Nikolaos Ziogas, Grzegorz Kwasniewski, Tal Ben-Nun, Timo Schnei-
der, and Torsten Hoe�er. 2022. Deinsum: Practically I/O Optimal Multi-Linear
Algebra. In Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis (Dallas, Texas) (SC ’22). IEEE Press,
Article 25, 15 pages.

181

	Abstract
	1 Introduction
	2 Background
	2.1 Tensor Notation
	2.2 Tensor Sparsity and Sparse Storage
	2.3 Tensor Decomposition and Completion Algorithms
	2.4 Computation of Tensor Kernels in Decomposition and Completion Algorithms

	3 SpTTN Kernels
	3.1 Loop Nests and Loop Nest Forests
	3.2 Intermediate Tensors
	3.3 Contraction Path and Loop Order

	4 Finding Optimal SpTTN Kernels
	4.1 Enumeration of Loop Nests
	4.2 Algorithm to Find Cost-Optimal Loop Nests

	5 SpTTN-Cyclops Framework
	5.1 Algorithm to Generate and Execute Loop Nests
	5.2 Data Distribution
	5.3 Example SpTTN Execution

	6 Related Work
	7 Evaluation
	8 Conclusion and Future Work
	Acknowledgments
	References

