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Nonasymptotic Pointwise and Worst-Case Bounds

for Classical Spectrum Estimators
Andrew Lamperski , Member, IEEE

Abstract—Spectrum estimation is a fundamental methodology
in the analysis of time-series data, with applications including
medicine, speech analysis, and control design. The asymptotic
theory of spectrum estimation is well-understood, but the theory
is limited when the number of samples is fixed and finite. This
paper gives non-asymptotic error bounds for a broad class of
spectral estimators, both pointwise (at specific frequencies) and
in the worst case over all frequencies. The general method is
used to derive error bounds for the classical Blackman-Tukey,
Bartlett, and Welch estimators. In particular, these are first non-
asymptotic error bounds for Bartlett and Welch estimators.

Index Terms—Time series analysis, machine learning, nonpara-
metric statistics.

I. INTRODUCTION

S
PECTRUM estimation is the problem of estimating the

power spectral density of a random signal from a finite

collection of samples of a time-series. Its applications include

analysis of heart and neural signals, identification of dynamic

systems for control, and speech analysis [1].

The asymptotic theory of spectrum estimation is well-

understood [1], [2]. Here, the behavior of the power spectral

density estimate is characterized as the amount of data tends

to infinity. Additionally, when the estimates are assumed to be

Gaussian, the bias and variance of the estimates are known.

In contrast, the non-asymptotic theory of spectral estimation

is quite limited. The non-asymptotic theory aims to characterize

the error of spectral estimates when the number of samples

is fixed and finite. Existing works on non-asymptotic spectral

analysis are [3], which analyzes smoothed periodogram esti-

mates (not covered by this paper), and [4], [5] which examine

variants of the Blackman-Tukey estimator (similar to Theo-

rem 2 of this paper). Other closely-related works are [6], which

gives a non-asymptotic analysis of regularized Weiner filters,

[7], which derives central limit theorem-type results for the

estimator class from [4], and [8], which builds a variety of

hypothesis tests from the estimator class from [4].

Over the last decade, the theory of non-asymptotic statis-

tical estimation has reached a substantial level of maturity,
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with good introductory texts given by [9], [10]. However, most

work focuses on independent data. For time-series, non-trivial

dependencies exist between the samples, precluding many of

the techniques used for independent data. In the related area of

dynamic system identification, [11], [12], [13], [14], [15], spe-

cialized methods have been developed to bound identification

errors from dependent data.

The main contribution of this paper is a framework for deriv-

ing non-asymptotic error bounds for a broad class of spectrum

estimators. These bounds hold pointwise in frequency and in

the worst-case across all frequencies. We derive specific error

bounds for Blackman-Tukey, Bartlett, and Welch estimators. In

order to get explicit constants for all error bounds, we derive

explicit constants in the classical Hanson-Wright inequality,

which may be of independent interest.

The paper is arranged as follows. The problem and class of

estimators are described in Section II. Section III gives the gen-

eral framework for non-asymptotic error analysis and the errors

of classical estimators are bounded in Section IV. Conclusions

are given in Section VI. All proofs are in the appendices.

Notation: Random variables are denoted in bold, e.g. x.

E[x] is the expected value of x, P(E) is the probability of

event E . If x is a scalar-valued random variable and p≥ 1,

then ‖x‖p = (E [|x|p])1/p. If M is a matrix, then M⊤ is the

transpose, M⋆ is the conjugate transpose, and M is the complex

conjugate. For a vector, x, and p ∈ [1,∞], ‖x‖p is the ℓp norm,

while for a matrix, M , ‖M‖2 denotes the induced 2-norm (i.e.

the maximum singular value), and ‖M‖F denotes the Frobe-

nius norm. A⊗B is the Kronecker product of matrices A and

B. If A and B are Hermitian matrices, then A�B indicates

that B −A is positive semidefinite. 1m×n and 0m×n are the

m× n matrices of ones and zeros, respectively. In is the n× n
identity matrix. N is the set of non-negative integers, Z is the

set of integers, R is the set of real numbers, and C is the set

of complex numbers. diag(x) is the square matrix formed by

placing the entries of a vector x on the diagonal. The trace of a

square matrix, M , is denoted by Tr(M). The ceiling function

is denoted by ⌈·⌉. The modulo operation between two numbers

is denoted by x mod y. In other words, if x= ky + r for k ∈ Z

and r ∈ [0, y), then x mod y = r.

II. PROBLEM SETUP

Let y[k] be a stationary zero-mean R
n-valued discrete-time

stochastic process with respective autocovariance sequence and
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power spectral density give by:

R[k] = E
[

y[i+ k]y[i]⊤
]

Φ(s) =

∞
∑

k=−∞
e−j2πskR[k]

We assume that one of the following conditions holds:

A1) y[k] is Gaussian

A2) There is an impulse response sequence h[k] ∈ R
n×m

such that y[k] =
∑∞

ℓ=−∞ h[k − ℓ]ζ[ℓ], where ζ[k] =
[

ζ1[k] · · · ζm[k]
]⊤

such that for i= 1, . . . ,m and

for k ∈ Z, ζi[k] are independent σ-sub-Gaussian ran-

dom variables.

By σ-sub-Gaussian, we mean that E
[

eλζi[k]
]

≤ e
σ2λ2

2 for all

λ ∈ R. Inequality (24c) from Lemma 7 in Appendix D implies

that σ ≥ 1.

In the case of Assumption A2, we will have

Φ(s) =H(s)H(−s)⊤ =H(s)H(s)⋆, (1)

where H is the discrete-time Fourier transform of h.

Let Φ̂(s) be an estimate of Φ(s) constructed from samples

y[0], . . . ,y[N − 1]. The main goals of this paper are to derive

high-probability bounds on pointwise estimation error:

‖Φ(s)− Φ̂(s)‖2,
for all s ∈

[

− 1
2 ,

1
2

]

and worst-case estimation error:

sup
s∈[− 1

2 ,
1
2 ]
‖Φ(s)− Φ̂(s)‖2.

In both cases, the first step of the analysis is to bound the

pointwise estimation error:

‖Φ(s)− Φ̂(s)‖2 ≤
∥

∥

∥Φ(s)− E

[

Φ̂(s)
]∥

∥

∥

2

+
∥

∥

∥Φ̂(s)− E

[

Φ̂(s)
]∥

∥

∥

2
, (2)

for all s ∈
[

− 1
2 ,

1
2

]

.

The first term on the right of (2) corresponds to the bias of

the estimate, while the second corresponds to the concentration

of the estimate around its expected value.

To get concrete bounds on the bias and concentration terms,

we need to explicitly fix the class of estimators considered.

Let Y =
[

y[0] y[1] · · · y[N − 1]
]

∈ R
n×N . We focus on

estimators of the form

Φ̂(s) =YD(−s)AD(s)Y⊤ (3)

where D(s) = diag
([

1 ej2πs · · · ej2π(N−1)s
])

and A ∈
R

N×N is a symmetric matrix.

III. GENERAL RESULTS

This section gives a collection of error bounds on the class of

estimators defined by (3). In particular, we bound the pointwise

concentration of Φ̂(s) to its mean, the worst-case concentration

of Φ̂(s) to its mean, and the bias of the estimator. The pointwise

concentration bounds can be expressed in terms of A. The

worst-case and bias bounds require different quantities which

can be derived from A.

To prove worst-case bounds, it is helpful to re-write (3) as

Φ̂(s) =

N−1
∑

k=−N+1

e−j2πskYB[k]Y⊤ (4)

where B[k] is defined by:

d[k] =

⎧

⎪

⎨

⎪

⎩

[

Ak,0 · · · AN−1,N−1−k

]⊤
k ≥ 0

[

A0,|k| · · · AN−1−|k|,N−1

]⊤
k < 0

(5a)

B[k] =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

[

0k×(N−k) 0k×k

diag(d[k]) 0(N−k)×k

]

k ≥ 0

[

0(N−|k|)×|k| diag(d[k])

0|k|×|k| 0|k|×(N−|k|)

]

k < 0.

(5b)

In the analysis, we will utilize:

‖B[k]‖2 = ‖d[k]‖∞ (6a)

‖B[k]‖F = ‖d[k]‖2. (6b)

Now we describe the bias. The expected value of spectral

estimators of the form (3) can be expressed as

E

[

Φ̂(s)
]

=

N−1
∑

k=−N+1

e−j2πskb[k]R[k],

where

b[k] =

⎧

⎪

⎨

⎪

⎩

∑N−1
i=k Ai,i−k 0≤ k < N

∑N−1
i=|k| Ai+k,i −N < k < 0

0 |k| ≥N.

(7)

Note that for |k|<N , b[k] can be expressed equivalently as

b[k] = 11×(N−|k|)d[k].
Now the bias can be expressed as:

Φ(s)− E

[

Φ̂(s)
]

=

∞
∑

k=−∞
e−j2πsk(1− b[k])R[k] (8a)

=

N−1
∑

k=−N+1

e−j2πsk(1− b[k])R[k] +
∑

|ℓ|≥N

e−j2πsℓR[ℓ].

(8b)

From (8b), we see that a small bias can only be obtained when

R[k] decays appropriately as |k| →∞. To this end, let

‖R‖1 =
∞
∑

k=−∞
‖R[k]‖2.

We assume that ‖R‖1 <∞. This is a typical assumption

for the convergence of discrete-time Fourier transforms and

holds in many common classes of processes. For example, when

Φ(s) =H(s)H(s)⋆ whereH is a stable rational transfer matrix,

we have that ‖R[k]‖2 ≤ γρ|k| for some constants γ > 0 and

ρ ∈ [0, 1). However, the assumption would fail in the case of

bandlimited spectra such as

Φ(s) =

{

1 |s| ≤W < 1
2

0 |s|>W
.
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Now we describe some specialized notation used to present

our general results on the error of spectral estimators of the form

(3).

Define constants c1, c2, and c3 by

Assumption A1) =⇒ c1 = 2, c2 =
1

32
, c3 = 1 (9a)

Assumption A2) =⇒ c1 = 4, c2 = 2−19, c3 = σ. (9b)

Let ‖Φ‖∞ = sups∈[− 1
2 ,

1
2 ]
‖Φ(s)‖2. We assume that

‖Φ‖∞ <∞.

For ǫ > 0 and δ ∈ (0, 1) the following quantities will be used

in the error bounds below:

α(ǫ) = max

{

c43‖Φ‖2∞
ǫ2

,
c23‖Φ‖∞

ǫ

}

(10a)

β(δ) =
log
(

δ−1102nc1
)

c2
(10b)

M̂(ǫ) = inf

⎧

⎨

⎩

M̃ ∈ N

∣

∣

∣

∣

∣

∣

∑

|k|≥M̃

‖R[k]‖2 ≤
ǫ

2

⎫

⎬

⎭

. (10c)

Note that when ‖R[k]‖2 ≤ γρ|k| for all k, we can bound

M̂(ǫ)≤max

{

0,
log( (1−ρ)ǫ

2γ )
log ρ

}

.

The following theorem gives sufficient conditions for achiev-

ing low estimation error with high probability. It is proved in

Appendix B.

Theorem 1: Define α, β, and M̂ as in (10). For all ǫ > 0 and

all δ ∈ (0, 1),
1) If 1

max{‖A‖2,‖A‖2
F
} ≥ α(ǫ)β(δ), then for all s ∈

[

− 1
2 ,

1
2

]

we have

P

(∥

∥

∥Φ̂(s)− E

[

Φ̂(s)
]∥

∥

∥

2
> ǫ
)

≤ δ.

2) Let g ≥ ‖A‖2, ≥ ‖A‖2F , g ≥ ‖B[k]‖2, and g ≥ ‖B[k]‖2F
for all |k|<N . Assume that there is a number

N̂ ≤N such that B[k] = 0 for |k| ≥ N̂ . If 1
g ≥

α(ǫ/2)
(

log(5N̂2) + β(δ/2)
)

then

P

⎛

⎝ sup
s∈[− 1

2 ,
1
2 ]

∥

∥

∥Φ̂(s)− E

[

Φ̂(s)
]∥

∥

∥

2
> ǫ

⎞

⎠≤ δ.

3) Assume that b[k] ∈ [0, 1] for all k ∈ Z. If b[k]≥ 1−
ǫ

2‖R‖1
for |k|< M̂(ǫ), then

sup
s∈[− 1

2 ,
1
2 ]

∥

∥

∥
Φ(s)− E

[

Φ̂(s)
]∥

∥

∥

2
≤ ǫ.

4) If the conditions of both 1) and 3) are satisfied, then for

all s ∈
[

− 1
2 ,

1
2

]

we have

P

(∥

∥

∥Φ̂(s)− Φ(s)
∥

∥

∥

2
> 2ǫ

)

≤ δ.

5) If the conditions of both 2) and 3) are satisfied then

P

⎛

⎝ sup
s∈[− 1

2 ,
1
2 ]

∥

∥

∥
Φ̂(s)− Φ(s)

∥

∥

∥

2
> 2ǫ

⎞

⎠≤ δ.

The following corollary gives alternative ways of expressing

the error bounds from Theorem 1. It is proved in Appendix B–E.

Corollary 1:

1) Let ξ(A) = max{‖A‖2, ‖A‖2F }. For all s ∈
[

− 1
2 ,

1
2

]

, and

all δ ∈ (0, 1), the following holds with probability at least

1− δ:
∥

∥

∥Φ̂(s)− E

[

Φ̂(s)
]∥

∥

∥

2

≤ c23‖Φ‖∞ max{ξ(A)β(δ),
√

ξ(A)β(δ)}

2) Let g ≥ ‖A‖2, ≥ ‖A‖2F , g ≥ ‖B[k]‖2, and g ≥ ‖B[k]‖2F
for all |k|<N . Assume that there is a number N̂ ≤
N such that B[k] = 0 for |k| ≥ N̂ . Set β̂(N̂ , δ̂) =
log(5N̂2) + β

(

δ
2

)

. Then for all δ ∈ (0, 1), the following

bound holds with probability at least 1− δ:
∥

∥

∥Φ̂− E

[

Φ̂
]∥

∥

∥

∞

≤ 2c23‖Φ‖∞ max

{

gβ̂(N̂ , δ),

√

gβ̂(N̂ , δ)

}

3) Assume that there are constants γ > 0 and ρ ∈ [0, 1) such

that ‖R[k]‖2 ≤ γρ|k| for all k ∈ Z and assume that b[k] =
0 for all |k| ≥ N̂ , where N̂ ≤N . Then

∥

∥

∥
Φ− E

[

Φ̂
]∥

∥

∥

∞
≤ γ

N̂−1
∑

k=−N̂+1

|1− b[k]|ρ|k| + 2γρN̂

1− ρ

4) Define g as in part 2) and assume that B[k] = 0 for |k| ≥
N̂ . If

∥

∥

∥Φ− E

[

Φ̂
]∥

∥

∥

∞
≤ b, and

a := 2c23 max

{

gβ̂(N̂ , δ),

√

gβ̂(N̂ , δ)

}

< 1.

Then with probability at least 1− δ

∥

∥

∥Φ̂− Φ
∥

∥

∥

∞
≤ a‖Φ̂‖∞ + b

1− a

Remark 1: In the Blackman-Tukey, Bartlett, and Welch al-

gorithms discussed below, the number N̂ ≤N is a tunable

parameter that can be used to specify a trade-off between bias

and variance. In each of these algorithms, we will have g =
O(N̂/N), so the probabilistic error bound from part 2) scales

as O

(
√

N̂ log N̂
N

)

in each of these cases. In particular, the

bound from part 2) increases monotonically with N̂ , while the

bound from part 3) typically decreases monotonically with N̂ .

In the next section, we will give explicit bounds for the Bartlett

estimator, and show how to optimize over N̂ to give a total

error bound of ‖Φ̂− Φ‖∞ = Õ(N−1/3), ignoring logarithmic

factors. Similar bounds are likely possible for Blackman-Tukey

and Welch estimators, but these will depend on the specific

window functions used for these methods.

Remark 2: To use the bounds from Corollary 1 in practice, we

need some assumptions about the decay of the autocovariance,

we can bound the bias, as in part 3). (See the next paragraph for

more details.) These assumptions could be obtained from do-

main knowledge, such as time constant estimates or prior noise

characterizations. Then, part 4) can be used to derive bounds
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on the total worst-case error just from the bound on the bias,

b, the estimated spectrum, Φ̂, and the term a, which scales like

Õ

(

√

N̂/N

)

. As discussed in Remark 1, the truncation param-

eter, N̂ , can typically be tuned to optimize the resulting bound.

Unfortunately, it is not possible to estimate the autocovari-

ance decay parameters, γ and ρ, without some assumptions.

Indeed, consider the pathological autocovariance sequence

R[k] =

⎧

⎪

⎨

⎪

⎩

2 k = 0

1 k =±D

0 k /∈ {−D, 0, D},
which could be obtained by running white noise through the

filter with impulse response h[k] = δ[k] + δ[k −D], where δ[·]
is the Kronecker delta. This signal would be indistinguishable

from white noise when the data set has size N <D, and so

the decay constants from part 3) would artificially appear to be

γ = 2 and ρ= 0. In reality, the constants would need to satisfy

γρD ≥ 1.

Remark 3: In numerical experiments in Section V, we see that

the bounds for Gaussian variables are rather conservative (1-2

orders of magnitude greater than true error), while the bounds

for sub-Gaussian variables are highly conservative (5-8 orders

of magnitude than true error). Decreasing the gap between

Gaussian and sub-Gaussian bounds would require improving

the constants in the Hanson-Wright inequality, which is outside

of the scope of this paper.

In contrast, the bounds obtained from asymptotic analysis are

comparatively tight, often on the same order of magnitude of the

true error. See, e.g. Section 5.7 of [16]. While these asymptotic

bounds are less conservative, they rely on unquantified ap-

proximations. Specifically, they utilize asymptotic distributions

without quantifying the error induced by approximating the

distribution with its asymptotic distribution.

The existing asymptotic results indicate that more precise,

frequency-dependent bounds that depend on fewer assumptions

should be obtainable. For scalar signals, the asymptotic variance

scales with Φ(s)2 for smoothed periodograms [16] and the

Blackman-Tukey method [2]. The bounds in [16], for example,

just rely on bounds of various moments and cumulants, rather

than assumptions of Gaussian or sub-Gaussian distributions. In

contrast, the non-asymptotic bounds from part 1) of Theorem

1 and part 1) of Corollary 1 are the same across frequency. The

asymptotic results indicate it may be possible to obtain more

precise error bounds that depend on the specific value of Φ(s)
at frequency s. Furthermore, it may be possible to relax the

Gaussian/sub-Gaussian assumptions, though this would require

a fundamentally different proof approach.

IV. ERROR BOUNDS FOR SPECIFIC CLASSICAL

SPECTRUM ESTIMATORS

This section shows how to analyze periodograms, Blackman-

Tukey estimators, Bartlett estimators, and Welch estimators in

terms of the general result from 1. In particular, high prob-

ability error bounds are obtained in the case of Blackman-

Tukey, Bartlett, and Welch estimators. For periodograms, the

bias is bounded, but high-probability bounds cannot be ob-

tained, consistent with classical calculations on the variance of

periodograms. (See [1].)

The definitions of the various estimators follows the presen-

tation from [1], and it is shown how each estimator can be

expressed in the form of (3). This leads to a unified approach

to error analysis. All of the propositions and theorems of this

section are proved in Appendix C.

A. Periodograms

The standard biased autocovariance sequence estimate is de-

fined by

R̂[k] =

⎧

⎪

⎨

⎪

⎩

1
N

∑N−1
i=k y[i]y[i− k]⊤ 0≤ k < N

1
N

∑N−1
i=−k y[i+ k]y[i]⊤ −N < k < 0

0 |k| ≥N

(11)

The corresponding periodogram is given by

Φ̂(s) =

N+1
∑

k=−N+1

e−j2πskR̂[k].

In this case, Φ̂(s) can be expressed in the form of (3) with

A= 1
N 1N×N , the scaled matrix of ones. Here we have ‖A‖2 =

‖A‖F = 1. As a result, the conditions of Theorem 1 Part 1) on

pointwise error cannot be met for ξ ≥ 1. Similarly, the condi-

tions of Part 2) cannot be met. So, the most we can bound using

Theorem 1 is the bias:

Proposition 1: Let M̂(ǫ) be defined in (10). If N ≥
2M̂(ǫ)‖R‖1

ǫ , then

sup
s∈[− 1

2 ,
1
2 ]

∥

∥

∥Φ(s)− E

[

Φ̂(s)
]∥

∥

∥

2
≤ ǫ.

The unbiased autocovariance sequence estimate is given by:

R̃[k] =

⎧

⎪

⎨

⎪

⎩

1
N−|k|

∑N−1
i=k y[i]y[i− k]⊤ 0≤ k < N

1
N−|k|

∑N1

i=−k y[i+ k]y[i]⊤ −N < k < 0

0 |k| ≥N

The unbiased1 periodogram estimate is

Φ̂(s) =

N−1
∑

−k=−N+1

e−j2πskR̃[k] =YD(−s)AD(s)Y⊤,

where A is a Toeplitz matrix given by:

A=

⎡

⎢

⎢

⎢

⎣

1
N

1
N−1 · · · 1

1
1

N−1
1
N · · · 1

2
...

...
...

1
1

1
2 · · · 1

N

⎤

⎥

⎥

⎥

⎦

In this unbiased case,

1≤
(

1√
N

1N×1

)⊤
A

(

1√
N

1N×1

)

≤ ‖A‖2 ≤ ‖A‖F ,

1The autocovarience sequence estimate is unbiased in this case. However,
the periodogram itself is biased since we are not measuring correlations more
than N steps apart.
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for all values of N . As a result, the conditions of Theorem 1

Part 1) on pointwise error cannot be met for ξ ≥ 1. Similarly,

the conditions of Part 2) cannot be met. Again, all we can bound

is the bias:

Proposition 2: Let M̂ be defined in (10). If N ≥ M̂(ǫ), then

sup
s∈[− 1

2 ,
1
2 ]

∥

∥

∥Φ(s)− E

[

Φ̂(s)
]∥

∥

∥

2
≤ ǫ.

B. Blackman-Tukey Estimators

Let R̂[k] be the biased autocovariance sequence estimate

from (11). For M ≤N and a window function w : Z→ R de-

fine the Blackman-Tukey estimate by:

Φ̂(s) =
M−1
∑

k=−M+1

e−j2πskw[k]R̂[k]

In this case, Φ̂ can be expressed as in (3), where A is a Toeplitz

matrix defined by:

A=
1

N

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

w[0] · · · w[−M + 1] 0
...

. . .

w[M − 1]
. . . w[−M + 1]

. . .
...

0 w[M − 1] · · · w[0]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(12)

For symmetry of A, we must have w[k] = w[−k].
For many common windows, such as the rectangular,

Bartlett, Hann, Hamming, and Blackman windows, the entries

satisfy w[i] ∈ [0, 1] for i=−M + 1, . . . ,M − 1. Under these

assumptions, the theorem below gives sufficient conditions for

the Blackman-Tukey method to give low error with high proba-

bility. The bounds on ‖Φ̂(s)− Φ(s)‖2 are omitted, as they are

direct consequences of parts 4) and 5) of Theorem 1.

Theorem 2: Define α(ǫ), β(δ), and M̂(ǫ) as in (10).

1) If N
2M−1 ≥ α(ǫ)β(δ), then for all s ∈

[

− 1
2 ,

1
2

]

we have

P

(∥

∥

∥Φ̂(s)− E

[

Φ̂(s)
]∥

∥

∥

2
> ǫ
)

≤ δ.

2) If N
2M−1 ≥ α(ǫ/2)

(

log(5M2) + β(δ/2)
)

then

P

⎛

⎝ sup
s∈[− 1

2 ,
1
2 ]

∥

∥

∥Φ̂(s)− E

[

Φ̂(s)
]∥

∥

∥

2
> ǫ

⎞

⎠≤ δ.

3) If M ≥ M̂(ǫ), N ≥ 2M̂(ǫ)‖R‖1

ǫ , w[k]≥ 1− ǫ
2‖R‖1

1− |k|
N

for

|k|< M̂(ǫ), and w[k] ∈ [0, 1] for |k| ≥ M̂(ǫ), then

sup
s∈[− 1

2 ,
1
2 ]

∥

∥

∥Φ(s)− E

[

Φ̂(s)
]∥

∥

∥

2
≤ ǫ.

In the notation of Theorem 1 and Corollary 1, g = 2M−1
N ,

N̂ =M , and b[k] = (N − |k|)w[k]/N . See the proof for more

details.

Remark 4: A set of non-asymptotic worst-case spectral error

bounds were obtained in Theorems 4.1 and 4.2 of [4]. These

correspond to the special case of the Blackman-Tukey estimate

when w is defined from a kernel. These results appear a bit

different from Theorem 2 since [4] uses different assumptions

and bounds the error using a different norm.

Another related non-asymptotic worst-case bound is

achieved in Theorem 6 of [5]. The estimator in this paper is a

truncated periodogram which can be shown to be a specialized

type of Blackman-Tukey estimator.

C. Bartlett Estimators

For the Bartlett estimator, assume that N = LM , where L
and M are positive integers. The Bartlett estimator is given by:

ŷi(s) =

M−1
∑

k=0

e−j2πsky[iM + k] for i= 0, . . . , L− 1

Φ̂(s) =
1

N

L−1
∑

i=0

ŷi(s)ŷi(s)
⋆

The Bartlett estimator can be represented in the form of (3)

where A is the block diagonal matrix:

A=
1

N

⎡

⎢

⎣

1M×M

. . .

1M×M

⎤

⎥

⎦
(13)

where there are L blocks of size M ×M .

Theorem 3: Define α(ǫ), β(δ), and M̂(ǫ), as in (10).

1) If N
M ≥ α(ǫ)β(δ), then for all s ∈

[

− 1
2 ,

1
2

]

we have

P

(∥

∥

∥
Φ̂(s)− E

[

Φ̂(s)
]∥

∥

∥

2
> ǫ
)

≤ δ.

2) If N
M ≥ α(ǫ/2)

(

log(5M2) + β(δ/2)
)

then

P

⎛

⎝ sup
s∈[− 1

2 ,
1
2 ]

∥

∥

∥Φ̂(s)− E

[

Φ̂(s)
]∥

∥

∥

2
> ǫ

⎞

⎠≤ δ.

3) If M ≥ 2M̂(ǫ)‖R‖1

ǫ , then

sup
s∈[− 1

2 ,
1
2 ]

∥

∥

∥Φ(s)− E

[

Φ̂(s)
]∥

∥

∥

2
≤ ǫ.

In the notation of Theorem 1 and Corollary 1, g = M
N , N̂ =

M , and b[k] = 1− |k|/M . See the proof for more details.

In the special case that ‖R[k]‖2 ≤ γρ|k| for all k, the bias has

a more explicit bound given by:

sup
s∈[− 1

2 ,
1
2 ]

∥

∥

∥Φ(s)− E

[

Φ̂(s)
]∥

∥

∥

2

≤ 2γρ

(1− ρ)2M
+ 2γ

(

ρ2

(1− ρ)2
+

1

1− ρ

)

ρM =O(M−1).

The bias bound can be combined with the high-probability

bound from Corollary 1, part 2 to show that

‖Φ̂− Φ‖∞ = Õ(
√

M/N +M−1)

with high probability, where Õ suppresses logarithmic factors.

Optimizing over M leads to M =O(N1/3), leading to an over-

all error bound of O(N−1/3).
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D. Welch Estimators

For the Welch estimator, assume that N = (S − 1)K +M
for positive integers S, K, and M . Let v ∈ R

M be a window

function. The Welch estimator is defined by:

ŷi(s) =

M−1
∑

k=0

e−j2πsk v[k]

‖v‖2
y[iK + k] for i= 0, . . . , S − 1

(14a)

Φ̂(s) =
1

S

S−1
∑

i=0

ŷi(s)ŷi(s)
⋆ (14b)

In this case Φ(s) can be expressed in the form of (3) with A
a sum of block-diagonal matrices:

A=
1

S‖v‖22

S−1
∑

i=0

⎡

⎣

0iK×iK

vv⊤

0(N−iK−M)×(N−iK−M)

⎤

⎦.

(15)

Theorem 4: Define α(ǫ), β(δ), and M̂(ǫ) as in (10).

1) If S
1+2M

K

≥ α(ǫ)β(δ), then for all s ∈
[

− 1
2 ,

1
2

]

we have

P

(∥

∥

∥Φ̂(s)− E

[

Φ̂(s)
]∥

∥

∥

2
> ǫ
)

≤ δ.

2) If S
1+2M

K

≥ α(ǫ/2)
(

log(5M2) + β(δ/2)
)

then

P

⎛

⎝ sup
s∈[− 1

2 ,
1
2 ]

∥

∥

∥Φ̂(s)− E

[

Φ̂(s)
]∥

∥

∥

2
> ǫ

⎞

⎠≤ δ.

3) If M ≥ M̂(ǫ) and for all |k|< M̂(ǫ) we have
∑M−1

i=|k|
v[i−|k|]v[i]

‖v‖2
2

≥ 1− ǫ
2‖R‖1

, then

sup
s∈[− 1

2 ,
1
2 ]

∥

∥

∥Φ(s)− E

[

Φ̂(s)
]∥

∥

∥

2
≤ ǫ.

In the notation of Theorem 1 and Corollary 1, g =
1+2M

K

S ,

N̂ =M , and b[k] = (N − |k|)w[k]/N . See the proof for more

details. In typical applications, the ratio r = M
K is fixed with r >

1. A commonly used value is r = 2. In this case, g ≤ M(1+2r)
N =

O(N̂/N), as in Remark 1.

V. NUMERICAL STUDIES

Here we show two applications of the bounds from this

paper to simulated stochastic processes. In all cases, the Welch

algorithm with Hann window was used.

Example 1: We consider a scalar signal of the form

y[k] =
1

1− ρ2

∞
∑

ℓ=1

ρℓ−1ζ[k − ℓ]

where ζ[k] are scalar-valued IID random variables with mean

zero and variance 1 and ρ= 0.3. In this case, the corresponding

autocovariance is exactly R[k] = ρ|k| for all k. We simulated

the case that ζ[k] are Gaussian and also when ζ[k] is uniform

over
[

−
√
3,
√
3
]

, which is
√
3-sub-Gaussian. As can be seen,

the bound for the Gaussian process, is somewhat conservative,

while the sub-Gaussian processes is quite conservative. The

100 101 102 103 104 105

Data Blocks (Hann Window, M= 16, K= 8)

10−1

100

101

102

103

Maximum Error

Worst-Case Bound (δ= 0.1)

Bias Bound

(a) Scalar Gaussian Process

100 101 102 103 104 105

Data Blocks (Hann Window, M= 16, K= 8)

100

102

104

106

108 Maximum Error

Worst-Case Bound (δ= 0.1)

Bias Bound

(b) Scalar Sub-Gaussian Process

Fig. 1. Error of the Welch method for Example 1. The number of data
blocks corresponds to S. The blue line shows the maximum error over a
linearly spaced grid of [0, .5] of size 101, the black dotted line shows the
total worst-case error from parts 2) and 3) Corollary 1, and the red dashed
line shows exact bias.

reason for the conservatism of the sub-Gaussian process is the

large constant factor arising from the sub-Gaussian Hanson-

Wright inequality.

Example 2: The next example shows the results for a process

of the form y[k] =
∑∞

ℓ=−∞ h[k − ℓ]ζ[ℓ] where, ζ[ℓ] ∈ R
3 are

IID Gaussians with zero mean and identity covariance,

h[k] =

⎧

⎪

⎨

⎪

⎩

D k = 0

CAk−1B k ≥ 1

0 k < 0

and

A=

[

0.3 0
1 0.3

]

B =

[

1 0 0
0 1 0

]

C =

⎡

⎣

0 0
1 0
0 1

⎤

⎦ D =

⎡

⎣

1 0 0
0 1 0
0 0 1

⎤

⎦ .

In this case ‖R[k]‖2 ≤ γρ|k| for any ρ ∈ (0.3, 1) and sufficiently

large γ. Specifically, if P is a positive definite matrix with

condition number κ > 0 such that A⊤PA� ρ2P , and X =
AXA⊤ +BB⊤ is the observability Gramian, then

γ =max
{

‖CXC⊤ +DD⊤‖2,
√
κ‖C‖2

(‖BD‖2
ρ

+ ‖XC⊤‖2
)}

.
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100 101 102 103 104 105

Data Blocks (Hann Window, M= 512, K= 256)

10−1

100

101

102

103

104

105

Maximum Error

Worst-Case Bound (δ= 0.1)

Bias Bound

Fig. 2. The error of the 3-dimensional signal. For details on the lines, see
Fig 1. The only difference is now the red dashed line is an upper bound on
the bias, rather than an exact bias.

Then an upper bound on the bias can be computed explicitly

from Corollary 1.

As can be seen in Fig. 2, the bounds are a bit conservative,

as in the scalar case.

VI. CONCLUSION

This paper gives a method for deriving non-asymptotic er-

ror bounds for a class of spectrum estimators. This method is

used to derive error bounds for a variety of classical estima-

tors. Many avenues for future work remain. Window-dependent

bias-variance trade-offs can be formulated for the Welch and

Blackman-Tukey estimators. Errors induced by preprocessing

steps such as centering, normalization, and detrending could

be quantified. More precise, frequency-dependent error bounds

may be possible, in analogy with asymptotic results, and the

Gaussian/sub-Gaussian assumptions could potentially be re-

laxed. The bounds from the paper could be utilized to bound

errors in estimating Φ−1(s), which is particularly useful for

network identification [17] and system identification [18].

APPENDIX A

CONCENTRATION FOR TIME-SERIES DATA MATRICES

This section presents an intermediate result that is used to

prove the probabilistic bounds in Theorem 1.

Lemma 1: Let J ∈ C
N×N . Assume that either J ∈ R

N×N or

J is Hermitian. Let Y =
[

y[0] · · · y[N − 1]
]

∈ R
n×N be a

matrix of data satisfying either Assumption A1) or Assumption

A2). For all ǫ > 0

P
(∥

∥YJY⊤ − E
[

YJY⊤]∥
∥

2
> ǫ
)

≤ 102nc1 exp

(

−c2 min

{

ǫ2

c42‖J‖2F ‖Φ‖2∞
,

ǫ

c23‖J‖2‖Φ‖∞

})

,

where c1, c2, and c3 are defined in (9).

To prove Lemma 1, we first derive concentration results for

the scalar random variables u⋆YJY⊤v, with ‖u‖2 = ‖v‖2 = 1.

These bounds are obtained by decoupling the dependent data

and then using the Hanson-Wright inequality. Some specialized

results for the case of Gaussian data are utilized to achieve

tighter constant factors.

A. Preliminary Results for the Scalarized Problem

Let u, v ∈ C
n be such that ‖u‖2 = 1, ‖v‖2 = 1, and let y =

[

y[0]⊤ · · · y[N − 1]⊤
]⊤

be the vertical stack of the data.

Lemma 2: The scalarized random variable, u⋆YJY⊤v
satisfies

u⋆YJY⊤v = y⊤ (J⊤ ⊗ (vu⋆)
)

y

where ‖J⊤ ⊗ (vu⋆)‖2 = ‖J‖2 and ‖J⊤ ⊗ (vu⋆)‖F = ‖J‖F .

Proof: The alternate formula for the variable follows from

direct calculation:

u⋆YJY⋆v =

N−1
∑

p,q=0

(u⋆y[p])Jp,q(y[q]
⊤v)

=

N−1
∑

p,q=0

y[q]⊤ (Jp,qvu
⋆)y[p]

= y⊤ (J⊤ ⊗ (vu⋆)
)

y

The norm properties follow from direct calculation as well:

‖J⊤ ⊗ (vu⋆)‖2 = ‖J⊤‖2‖vu⋆‖2 = ‖J‖2
and

‖J⊤ ⊗ (vu⋆)‖2F =Tr
(

JJ⊤ ⊗ uv⋆vu⋆
)

=Tr
(

(J ⊗ u)(J⊤ ⊗ u⋆)
)

=Tr
(

(J⊤J)⊗ (1)
)

= ‖J‖2F .

Let

R= E
[

yy⊤]=

⎡

⎢

⎢

⎢

⎣

R[0] R[−1] · · · R[−N + 1]
R[1] R[0] · · · R[−N + 2]

...
...

...

R[N − 1] R[N − 2] · · · R[0].

⎤

⎥

⎥

⎥

⎦

The matrix R will be utilized to express the correlated data

vectors in terms of contributions of independent random vari-

ables. The following bound will be utilized to analyze the

concentration of these decoupled vectors.

Lemma 3: The matrix R satisfies ‖R‖2 ≤ ‖Φ‖∞.

Proof: Since R is real-valued, symmetric, and positive

semidefinite

‖R‖2 = sup
‖z‖2=1

z⊤Rz

where the supremum ranges over complex-valued unit vectors.

Let z =
[

z[0]⋆ · · · z[N − 1]⋆
]⋆ ∈ C

nN be a unit vector

with z[k] ∈ C
n. Identify z with a discrete-time signal by setting

z[k] = 0 for k < 0 and k ≥N . Let ẑ(s) be the Fourier transform

of the signal, z. Then convolution rule and Plancharel theorem

imply:

z⋆Rz =
∞
∑

k,ℓ=−∞
z[k]⋆R[k − ℓ]z[ℓ]

=

∫ 1
2

− 1
2

ẑ(s)⋆Φ(s)ẑ(s)ds

≤ ‖Φ‖∞
Thus, ‖R‖2 ≤ ‖Φ‖∞.
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B. Special Results for the Gaussian Case

The following lemma is a specialized version of the Hanson-

Wright inequality for Gaussian random variables. See Exercise

2.17 of [9].

Lemma 4: Let A ∈ C
n×n. Assume that either A ∈ R

n×n or

A is Hermitian. If x is a Gaussian random vector with mean

0n×1 and covariance In, then for all ǫ≥ 0:

P
(

x⊤Ax− E
[

x⊤Ax
]

> ǫ
)

≤ exp

(

−1

8
min

{

ǫ2

‖A‖2F
,

ǫ

‖A‖2

})

.

Proof: Let B = 1
2 (A+A⊤). Then under either assumption

about A, B is a real symmetric matrix such that x⊤Ax=
x⊤Bx, ‖B‖2 ≤ ‖A‖2, and ‖B‖F ≤ ‖A‖F .

Let V be an orthogonal matrix such that B = V diag(λ)V ⊤,

where λ=
[

λ1 · · · λn

]⊤
are the eigenvalues of B. Let y =

V ⊤x so that

x⊤Ax= x⊤Bx=

n
∑

i=1

λiy
2
i .

Now yi are independent Gaussian random variables with mean

0 and variance 1.

Since ‖B‖F = ‖λ‖2 and ‖B‖2 = ‖λ‖∞, it follows that

x⊤Ax is (2‖B‖F , 4‖B‖2)-sub-exponential. Due to the in-

equalities, it must also be (2‖A‖F , 4‖A‖2)-sub-exponential.

The result then follows from Proposition 2.9 of [9].

Lemma 5: Let Assumption A1) hold, so that y is a zero-

mean Gaussian process. Let J ∈ C
N×N , u ∈ C

n, v ∈ C
n be

unit vectors such that one of the following conditions holds:

1) J ∈ R
N×N , u ∈ R

n, and v ∈ R
n or

2) J is Hermitian and u= v.

Then, for any ǫ > 0 the following bound holds:

P
(

u⋆YJY⊤v − E
[

u⋆YJY⊤v
]

> ǫ
)

≤ exp

(

−1

8
min

{

ǫ2

‖J‖2F ‖Φ‖2∞
,

ǫ

‖J‖2‖Φ‖∞

})

.

Proof: If y is a Gaussian process then y is identically dis-

tributed to Gx where x is a Gaussian random vector with

mean 0 and covariance I and GG⊤ =R. So then u⋆YJY⊤v =
y⊤(J⊤ ⊗ (vu⋆))y is identically distributed to

x⊤G⊤(J⊤ ⊗ (vu⋆))Gx.

So, to apply Lemma 4, we need to bound the norms. First we

have
∥

∥G⊤(J⊤ ⊗ (vu⋆))G
∥

∥

2
≤ ‖G1/2‖22‖(J⊤ ⊗ (vu⋆))‖2
= ‖J‖2‖R‖2
≤ ‖J‖2‖Φ‖2. (16)

To bound the Frobenius norm, note that R� ‖Φ‖∞I so that
∥

∥G⊤(J⊤ ⊗ (vu⋆))G
∥

∥

2

F

=Tr
(

(J⊤ ⊗ (vu⋆))R(J ⊗ (uv⋆))R
)

≤ ‖Φ‖∞Tr
(

(J⊤ ⊗ (vu⋆))(J ⊗ (uv⋆))R
)

≤ ‖Φ‖2∞Tr
(

(J⊤ ⊗ (vu⋆))(J ⊗ (uv⋆))
)

= ‖J‖2F ‖Φ‖2∞. (17)

The result now follows by applying Lemma 4 with A=
G⊤(J⊤ ⊗ (vu⋆))G. Note that if J , u, and v are real, then so is

A. Similarly, if J is Hermitian and u= v, then A is Hermitian.

C. A Special Result for the Sub-Gaussian Case

Lemma 6: Let Assumption A2) hold. Let J ∈ C
N×N , u ∈

C
n, v ∈ C

n be unit vectors such that one of the following condi-

tions holds:

1) J ∈ R
N×N , u ∈ R

n, and v ∈ R
n or

2) J is Hermitian and u= v.

Then, for any ǫ > 0 the following bound holds:

P
(

u⋆YJY⊤v − E
[

u⋆YJY⊤v
]

> ǫ
)

≤ 2 exp

(

−2−15 min

{

ǫ2

σ4‖J‖2F ‖Φ‖2∞
,

ǫ

σ2‖J‖2‖Φ‖∞

})

.

Proof: For all T ≥ 1 let

yT [k] =

T
∑

ℓ=−T

h[k − ℓ]ζ[ℓ]

YT =
[

yT [0] · · · yT [N − 1]
]

Φ̂T (s) =YTD(−s)AD(s)Y⊤
T

y
T
=
[

yT [0]
⊤ · · · yT [N − 1]⊤

]⊤

RT = E

[

y
T
y⊤
T

]

.

Setting

ζ
T
=
[

ζ[−T ]⊤ · · · ζ[T ]⊤
]⊤

GT =

⎡

⎢

⎣

h[T ] · · · h[−T ]
...

h[N − 1 + T ] · · · h[N − 1− T ]

⎤

⎥

⎦

gives that y
T
=GT ζT

and so RT =GTG
⊤
T .

Note that

GT+1 =

⎡

⎢

⎣

⎡

⎢

⎣

h[T + 1]
...

h[N − 1 + T + 1]

⎤

⎥

⎦
GT

⎡

⎢

⎣

h[−T − 1]
...

h[N − 1− T − 1]

⎤

⎥

⎦

⎤

⎥

⎦
.

It follows that RT �RT+1. Furthermore, limT→∞ RT =R.

Thus, Lemma 3 implies that ‖GT ‖22 = ‖RT ‖2 ≤ ‖Φ‖∞.

Consider the scalar random variable

u⋆YTJY
⊤
T v = y⊤

T
(J⊤ ⊗ (vu⋆))y

T

= ζ⊤
TG

⊤
T (J

⊤ ⊗ (vu⋆))GT ζT .

We can bound the deviation of this scalar random variable from

its mean via the Hanson-Wright inequality with A=G⊤
T (J

⊤ ⊗
(vu⋆))GT . Similar to (16) and (17), we have

‖G⊤
T (J

⊤ ⊗ (vu⋆))GT ‖2 ≤ ‖J‖2‖Φ‖∞
‖G⊤

T (J
⊤ ⊗ (vu⋆))GT ‖2F ≤ ‖J‖2F ‖Φ‖2∞.

Additionally, if J , u, and v are real, then A is real. If J is

Hermitian and u= v, then A is also Hermitian.
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From Lemma 7 in Appendix D, we have that ‖ζi[k]‖ψ2
:=

b≤ 2σ for all i and k. Thus, Theorem 5 of Appendix D

implies that

P
(

u⋆YTJY
⊤
T v − E

[

u⋆YTJY
⊤
T v
]

> ǫ
)

≤ 2 exp

(

−2−15 min

{

ǫ2

σ4‖J‖2F ‖Φ‖2∞
,

ǫ

σ2‖J‖2‖Φ‖∞

})

.

Now since limT→∞ YT =Y, the result holds by dominated

convergence.

D. Proof of Lemma 1

The previous two lemmas imply that there are constants c4,

c5, c6 defined by:

Assumption A1) =⇒ c4 = 1, c5 =
1

8
, c6 = 1

Assumption A2) =⇒ c4 = 2, c5 = 2−15, c6 = σ

such that

P
(

u⋆YJY⊤v − E [u⋆YJYv]> ǫ
)

≤ c4 exp

(

−c5 min

{

ǫ2

c46‖J‖2F ‖Φ‖2∞
,

ǫ

c26‖J‖2‖Φ‖∞

})

,

(18)

under corresponding assumptions about J , u, and v.

We complete the proof of Lemma 1 by a covering argument,

similar to the proof of Theorem 6.5 of [9]. For any δ > 0, the

Euclidean ball of dimension n can be covered by a collection

of at most
(

1 + 2
δ

)n
balls with radius δ. (See Example 5.8 of

[9].) Let Cn = {w1, . . . , wQn
} be the centers of such a covering

with ‖wi‖2 ≤ 1 and δ = 2
9 so that Qn ≤ 10n.

For compact notation, let S :=YJY⊤ − E
[

YJY⊤].
Covering for Real J: When J is real, S is also real. In

this case

‖S‖2 = sup
‖u‖2≤1,‖v‖2≤1

u⊤Sv

where the supremum ranges over vectors u, v ∈ R
n with Eu-

clidean norm at most 1. Given any u, v ∈ R
n with norm at most

1, there are vectors û and v̂ in Cn such that ‖u− û‖2 ≤ 2
9 and

‖v − v̂‖2 ≤ 2
9 .

u⊤Sv = (û+ (u− û))
⊤
S (v̂ + (v − v̂)))

= û⊤Sv̂ + (u− û)⊤Sv̂ + û⊤S(v − v̂) + (u− û)⊤S(v − v̂)

≤ û⊤Sv̂ +

(

4

9
+

4

81

)

‖S‖2 ≤ û⊤Sv̂ +
1

2
‖S‖2.

The first inequality follows from the Cauchy-Schwartz inequal-

ity and submultiplicativity of the induced norm.

Maximizing the expression above on both sides leads to:

‖S‖2 ≤ max
û,v̂∈Cn

û⊤Sv̂ +
1

2
‖S‖2 =⇒ ‖S‖2 ≤ 2 max

û,v̂∈Cn

û⊤Sv̂.

The proof is completed in this case via a union bound:

P (‖S‖2 > ǫ)≤ P

(

max
û,v̂∈Cn

û⊤Sv̂ > ǫ/2

)

≤
∑

û,v̂∈Cn

P
(

û⊤Sv̂ > ǫ/2
)

≤ 102nc4 exp

(

−c5
4
min

{

ǫ2

c46‖J‖2F ‖Φ‖2∞
,

ǫ

c26‖J‖2‖Φ‖∞

})

.

The final inequality arises because Cn × Cn has at most

102n elements.

Covering for Hermitian J: When J is Hermitian, S is

Hermitian as well. In this case

‖S‖2 = sup
‖u‖2≤1

|u⋆Su|

where the supremum ranges over the unit ball of Cn. The unit

ball of Cn can be identified with the unit ball of R2n: If u=
v + jw with v and w real vectors, we have that ‖u‖2 ≤ 1 if and

only if

∥

∥

∥

[

v⊤ w⊤]⊤
∥

∥

∥

2
≤ 1.

Let C2n be the centers of a 2
9 -covering of the unit ball of R2n

and define a 2
9 -covering of the unit ball of Cn by:

Ĉn =
{

v + jw
∣

∣

∣

[

v⊤ w⊤]⊤ ∈ C2n
}

.

Since C2n has at most 102n elements, Ĉn also has at most

102n elements.

Similar to the real case, we have that for all ‖u‖2 ≤ 1, there

exists û ∈ Ĉn such that ‖u− û‖2 ≤ 2
9 . Then we have:

|u⋆Su|=
∣

∣(û+ (u− û))
⋆
S (û+ (u− û)))

∣

∣

≤ |û⋆Sû|+ 1

2
‖S‖2.

After maximizing both sides and re-arranging, we get ‖S‖2 ≤
2maxû∈Ĉn

|û⋆Sû|.
The proof is completed in this case by a union bound

argument:

P (‖S‖2 > ǫ)≤ P

(

max
û∈Ĉn

|û⋆Sû|> ǫ/2

)

≤
∑

û∈Ĉn

P (|û⋆Sû|> ǫ/2)

≤
∑

û∈Ĉn

(P (û⋆Sû > ǫ/2) + P (û⋆(−S)û > ǫ/2))

≤ 2 · 102nc4e
− c5

4 min

{

ǫ2

c4
6
‖J‖2

F
‖Φ‖2∞

, ǫ

c2
6
‖J‖2‖Φ‖∞

}

.

�

APPENDIX B

PROOF OF THEOREM 1

We prove parts 1), 2), 3), and 5). The proof of 4) is omitted,

since it is similar to the proof of 5).
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A. Proof of 1)

Note that Φ̂(s) =YJY⊤ where J =D(s)⋆AD(s). Since

D(s) is unitary, we have ‖J‖2 = ‖A‖ and ‖J‖F = ‖A‖F . Since

A ∈ R
N×N is symmetric, J is Hermitian and so Lemma 1

implies that

P

(∥

∥

∥
Φ̂(s)− E

[

Φ̂(s)
]∥

∥

∥

2
> ǫ
)

≤ 102nc1e
−c2 min

{

ǫ2

c42‖A‖2
F

‖Φ‖2∞
, ǫ

c23‖A‖2‖Φ‖∞

}

≤ 102nc1e
− c2

max{‖A‖2,‖A‖2
F

}
min

{

ǫ2

c43‖Φ‖2∞
, ǫ

c23‖Φ‖∞

}

.

The right side is at most δ if and only if 1
max{‖A‖2,‖A‖2

F
} ≥ ξ.

B. Proof of 2)

For this proof, let M(s) = Φ̂(s)− E

[

Φ̂(s)
]

and C[k] =

YB[k]Y⊤ − E
[

YB[k]Y⊤] so that (4) implies

M(s) =
N̂−1
∑

k=−N̂+1

e−j2πskC[k].

Here we also used that B[k] = 0 for |k| ≥ N̂ .

Note that the quantity we must bound can be expressed as

‖M‖∞ = sup|s|≤ 1
2
‖M(s)‖2.

‖M‖∞ = sup
‖u‖=1,|s|≤ 1

2

|u⋆M(s)u|

where u ranges over unit vectors in C
n.

To eliminate the supremum over s, we will use a covering

argument. Fix a covering of
[

− 1
2 ,

1
2

]

with intervals of length
1

πN̂2
, which correspond to balls of radius 1

2πN̂2
. Let Ĉ denote

the corresponding centers of the intervals. Note that Ĉ can be

chosen to have at most 1 + πN̂2 elements.

For any s ∈
[

− 1
2 ,

1
2

]

, there is an ŝ ∈ Ĉ such that |s− ŝ| ≤
1

2πN̂2
. Then we can bound:

‖M(s)‖2
= ‖M(ŝ) +M(s)−M(ŝ)‖2
≤ ‖M(ŝ)‖2 + ‖M(s)−M(ŝ)‖2

= ‖M(ŝ)‖2 +

∥

∥

∥

∥

∥

∥

∑

|k|<N̂

(

e−j2πsk − e−j2πŝk
)

C[k]

∥

∥

∥

∥

∥

∥

2

≤ ‖M(ŝ)‖2 +
∑

|k|<N̂

∣

∣e−j2πsk − e−j2πŝk
∣

∣ ‖C[k]‖2

≤ ‖M(ŝ)‖2 + 2π|s− ŝ|
∑

|k|<N̂

|k|‖C[k]‖2

≤ ‖M(ŝ)‖2 + 2π|s− ŝ|
(

max
|k|<N̂

‖C[k]‖2
)

∑

|i|<N̂

|i|

≤ ‖M(ŝ)‖2 + 2π|s− ŝ|N̂2

(

max
|k|<N̂

‖C[k]‖2
)

≤ ‖M(ŝ)‖2 + max
|k|<N̂

‖C[k]‖2.

The final inequality follows from the choice of ŝ.

Taking suprema over s shows that

‖M‖∞ ≤max
ŝ∈Ĉ

‖M(ŝ)‖2 + max
|k|<N̂

‖C[k]‖2.

Thus, we can use a union bounding argument to show:

P (‖M‖∞ > ǫ)

≤ P

(

max
ŝ∈Ĉ

‖M(ŝ)‖2 >
ǫ

2

)

+ P

(

max
|k|<N̂

‖C[k]‖2 >
ǫ

2

)

≤
∑

ŝ∈Ĉ

P

(

‖M(ŝ)‖2 >
ǫ

2

)

+
∑

|k|<N̂

P

(

‖C[k]‖2 >
ǫ

2

)

. (19)

So, to make the overall sum at most δ, it suffices that each

individual summation is at most δ/2.

The first sum on the right of (19) can be bounded using part

1), the assumption that g ≥max{‖A‖2, ‖A‖2F }, and the fact

that |Ĉ| ≤ 1 + πN̂2 ≤ 5N̂2:

∑

ŝ∈Ĉ

P

(

‖M(ŝ)‖2 >
ǫ

2

)

≤ 5N̂2102nc1e
− c2

g
min

{

ǫ2

4c43‖Φ‖2∞
, ǫ

2c23‖Φ‖∞

}

.

To make the right side at most δ/2, it suffices to have 1
g ≥

α(ǫ/2)
(

log(5N̂2) + β(δ/2)
)

.

To bound the second sum on the right of (19), recall

that g ≥ ‖B[k]‖2 and g ≥ ‖B[k]‖2F for |k|< N̂ . Since B[k] ∈
R

N×N and there are 2N̂ − 1< 2N̂ terms in the sum, Lemma 1

implies that

∑

|k|<N̂

P

(

‖C[k]‖2 >
ǫ

2

)

≤ 2N̂102nc1e
− c2

g
min

{

ǫ2

4c43‖Φ‖2∞
, ǫ

2c23‖Φ‖∞

}

To make the right side at most δ/2, it suffices to

have 1
g ≥ α(ǫ/2)

(

log(2N̂) + β(δ/2)
)

, which is true if

1
g ≥ α(ǫ/2)

(

log(5N̂2) + β(δ/2)
)

.

C. Proof of 3)

Since b[k] ∈ [0, 1] and b[k]≥ 1− ǫ
2‖R‖1

, it follows that

|1− b[k]| ≤ ǫ
2‖R‖1

. Using the triangle inequality followed by

the conditions on b[k] gives:

∥

∥

∥Φ(s)− E

[

Φ̂(s)
]∥

∥

∥

2
≤

∞
∑

k=−∞
|1− b[k]|‖R[k]‖2

≤ ǫ

2‖R‖1
∑

|k|<M̂

‖R[k]‖2 +
∑

|ℓ|≥M̂

‖R[ℓ]‖2

≤ ǫ

2
+

ǫ

2
.
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D. Proof of 5)

Maximizing both sides of the triangle inequality from (2)

gives

sup
s∈[− 1

2 ,
1
2 ]
‖Φ(s)− Φ̂(s)‖2 ≤ sup

s∈[− 1
2 ,

1
2 ]

∥

∥

∥
Φ(s)− E

[

Φ̂(s)
]∥

∥

∥

2

+ sup
s∈[− 1

2 ,
1
2 ]

∥

∥

∥Φ̂(s)− E

[

Φ̂(s)
]∥

∥

∥

2
.

Assuming the conditions of 3) implies that

sups∈[− 1
2 ,

1
2 ]

∥

∥

∥Φ(s)− E

[

Φ̂(s)
]∥

∥

∥

2
≤ ǫ surely. So, if

the left side is greater than 2ǫ, we must have that

sups∈[− 1
2 ,

1
2 ]

∥

∥

∥Φ(s)− E

[

Φ̂(s)
]∥

∥

∥

2
> ǫ, which holds with

probability at most δ because the conditions of 2) are also

assumed. �

E. Proof of Corollary 1

The first two parts are a direct consequence of Theorem 1

and the inverse formula α−1(t) = c23‖Φ‖∞ max
{

t−1, t−1/2
}

.

The third part bounds the bias in the important special case that

the autocovariance decays geometrically, and is found by direct

calculation.

Using a and b as defined in part 4 gives
∥

∥

∥Φ̂− Φ
∥

∥

∥

∞
≤ b+

∥

∥

∥Φ̂− E

[

Φ̂
]∥

∥

∥

∞
2)

≤ b+ a‖Φ‖∞
≤ b+ a

(

‖Φ̂‖∞ +
∥

∥

∥
Φ− Φ̂

∥

∥

∥

∞

)

The result now follows by re-arranging. �

APPENDIX C

PROOFS FOR SPECIFIC ESTIMATORS

For all the specific estimators, we utilize Theorem 1. To this

end, we derive upper bounds on ‖A‖2, ‖A‖2F , ‖B[k]‖2, and

‖B[k]‖2F and derive sufficient conditions on b[k] to achieve the

desired bias.

A. Proof of Proposition 1 on Biased Periodograms

For all |k|<N , we have b[k] = 1− |k|
N ∈ [0, 1]. Then b[k]≥

1− ǫ
2‖R‖1

if and only if |k| ≤ ǫN
2‖R‖1

. So, to have b[k]≥ 1−
ǫ

2‖R‖1
for all |k|< M̂(ǫ), it suffices to have M̂(ǫ)≤ Nǫ

2‖R‖1
.�

B. Proof of Proposition 2 on Unbiased Periodograms

For all |k|<N , we have b[k] = 1. So to have b[k]≥ 1−
ǫ

2‖R‖1
for all |k|< M̂(ǫ) it suffices that N ≥ M̂(ǫ). �

C. Proof of Theorem 2 on Blackman-Tukey Estimators

To prove 1) it suffices to show ‖A‖2 ≤ (2M−1)
N and ‖A‖2F ≤

(2M−1)
N .

Since A is symmetric, the induced norm can be expressed as

‖A‖2 = sup‖u‖2≤1 |u⊤Au|, where the supremum ranges over

real-valued vectors with norm at most 1. Given any vector u ∈
R

N , we have

u⊤NAu= w[0]u⊤u+
M−1
∑

i=1

(w[−i] + w[i])
N−1
∑

k=i

u[k − i]u[k].

So, if ‖u‖2 ≤ 1, it follows that

|u⊤NAu| ≤ 1 + 2

M−1
∑

i=1

N−1
∑

k=i

|u[k − i]||u[k]|

≤ 1 +
M−1
∑

i=1

N−1
∑

k=i

(

|u[k − i]|2 + |u[k]|2
)

≤ 1 + 2(M − 1)

The bound on ‖A‖2 follows by dividing by N .

The Frobenius norm can be bounded as:

N2‖A‖2F =

M−1
∑

k=−M+1

w[k]2(N − |k|)

≤
M−1
∑

k=−M+1

(N − |k|)≤N(2M − 1)

The upper bound on the Frobenius norm follows by dividing

by N2, and 1) is proved.

Now we prove 2). We have that B[k] = 0 for |k| ≤M , so set

N̂ =M .

Direct calculation gives:

‖B[k]‖2 =
|w[k]|
N

≤ 1

N

‖B[k]‖2F =
|w[k]|2(N − |k|)

N2
≤ 1

N
.

So, we can take g = 2M−1
N .

Now we prove 3). Note that

b[k] =

{

(N−|k|)w[k]
N |k|<M

0 |k| ≥M.

So, if 0≤ w[k]≤ 1, we have 0≤ b[k]≤ 1 as well. Furthermore,

for |k|<M , we have that b[k]≥ 1− ǫ
2‖R‖1

if and only if

w[k]≥
1− ǫ

2‖R‖1

1− |k|
N

. (20)

To ensure that (20) can be satisfied with |w[k]| ≤ 1, the right

side must be bounded above by 1, which occurs if and only if

|k| ≤ Nǫ
2‖R‖1

. Thus, if M̂(ǫ)≤ Nǫ
2‖R‖1

, the bias bound from 3)

will be achieved as long as (20) holds for |k|< M̂ and w[k] ∈
[0, 1] for |k| ≥ M̂(ǫ). �

D. Proof of Theorem 3 on Bartlett Estimators

Part 1) follows because ‖A‖2 = ‖A‖2F = M
N , by direct

calculation.
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Now we prove 2). We have N̂ =M . For |k|<M direct

calculation gives

‖B[k]‖2 =
1

N

‖B[k]‖2F =
N − L|k|

N2
≤ 1

N
.

So, we can take g = M
N .

Now we prove 3). For |k|<M we have

b[k] =
L(M − |k|)

LM
= 1− |k|

M
.

Let ǫ̂= ǫ
2‖R‖1

. We see that b[k]≥ 1− ǫ̂ if and only if |k| ≤Mǫ̂.

So, to ensure that b[k]≥ 1− ǫ̂ for all |k|< M̂ , it suffices to have

M̂(ǫ)≤Mǫ̂. �

E. Proof of Theorem 4 on Welch Estimators

First we prove 1). It suffices to show that ‖A‖2 ≤ 1+2M
K

S and

‖A‖2F ≤ 1+2M
K

S .

Without loss of generality, assume that ‖v‖2 = 1. Indeed, the

normalization in (14a) implies that the window v/‖v‖2 leads to

the same estimator as v.

For k = 0, . . . ,
⌈

M
K

⌉

− 1, let Ik = {i ∈ {0, . . . , S − 1}|i
mod

⌈

M
K

⌉

= k
}

. The sum in (15) can be re-grouped to give:

SA=

⌈M
K ⌉−1
∑

k=0

∑

i∈Ik

⎡

⎣

0iK×iK

vv⊤

0(N−iK−M)×(N−iK−M)

⎤

⎦

=:

⌈M
K ⌉−1
∑

k=0

Ck (21)

The matrices, Ck, are block diagonal with blocks either

vv⊤ or zero matrices. Indeed, if p < q are both in Ik, then

qK − pK ≥M , and the vv⊤ blocks in the pth and qth matrices

in the original sum from (15) have size M ×M . As a result,

there is no overlap in the non-zero portions of these matrices.

Now, since v is a unit vector, we have that ‖Ck‖2 ≤ 1. So, the

triangle inequality implies that ‖SA‖2 ≤
⌈

M
K

⌉

. The bound on

‖A‖2 follows by dividing by S.

To bound ‖A‖2F , first note that we can rewrite:

SA=

S−1
∑

i=0

⎡

⎣

0iK×1

v
0(N−iK−M)×1

⎤

⎦

⎡

⎣

0iK×1

v
0(N−iK−M)×1

⎤

⎦

⊤

As a result, we have that

‖SA‖2F = S

+ 2

S−2
∑

p=0

S−1
∑

q=p+1

⎛

⎜

⎝

⎡

⎣

0pK×1

v
0(N−pK−M)×1

⎤

⎦

⊤ ⎡

⎣

0qK×1

v
0(N−qK−M)×1

⎤

⎦

⎞

⎟

⎠

2

≤ S + 2(S − 1)

(⌈

M

K

⌉

− 1

)

.

The inequality follows because the vectors in the inner products

are all unit vectors, and so the inner products have magnitude

at most 1 by the Cauchy-Schwartz inequality. Furthermore, if

q ≥
⌈

M
K

⌉

, then qK − pK ≥M , and so the non-zero portions of

the corresponding vectors have no overlap. As a result, at most
⌈

M
K

⌉

− 1 terms in the inner sum can be non-zero. The bound

on ‖A‖2F follows by dividing by S2 and simplifying.

Now we prove 2). First note that N̂ =M . We will show that

‖B[k]‖2 ≤ 1
S and ‖B[k]‖2F ≤ 1

S for |k|<M . Thus, in this case,

we can take g =
1+2M

K

S .

To bound ‖B[k]‖2, we first analyze the diagonal of SA. Each

entry on the diagonal is of the form

SAp,p =
∑

i∈Jp

v[i]2
‖v‖2=1

≤ 1, (22)

where Jp ⊂ {0, . . . ,M − 1}.

Now, for any p �= q, positive semidefiniteness implies

that (SAp,q)
2 ≤ (SAp,p)(SAq,q)≤ 1. It now follows that

‖B[k]‖2 ≤ 1
S for all |k|<M .

To bound ‖B[k]‖2F , symmetry of A combined with (5) and

(6) gives for |k|<M :

‖SB[k]‖2F =

N−1
∑

i=|k|
(SAi,i−|k|)

2

SA	0

≤
N−1
∑

i=|k|
(SAi,i)(SAi−|k|,i−|k|)

(22)

≤
N−1
∑

i=|k|
SAi,i

≤
N−1
∑

i=0

SAi,i = S.

Dividing both sides by S2 gives ‖B[k]‖2F ≤ 1
S .

Now we prove 3). To state the conditions for the original v,

we do not assume that v is normalized, but assume that v[k]≥ 0.

So, in this case

b[k] =

{

∑M−1
i=|k|

v[i−|k|]v[i]
‖v‖2

2
|k|<M

0 |k| ≥M.

So, it suffices to have M ≥ M̂(ǫ) and for |k|< M̂(ǫ) to have

M−1
∑

i=|k|

v[i− |k|]v[i]
‖v‖22

≥ 1− ǫ

2‖R‖1

�

APPENDIX D

TRACKING CONSTANTS IN CONCENTRATION BOUNDS

The goal of this appendix is to derive explicit expressions

arising in the concentration bounds used in the paper. In partic-

ular, an explicit bound for the constant in the Hanson-Wright

inequality is derived.

Let ψ2(x) = ex
2 − 1 and define the ψ2-Orlicz norm by:

‖x‖ψ2
= inf

{

t > 0
∣

∣

∣
E

[

ex
2/t2 − 1

]

≤ 1
}

.
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Lemma 7: Let x be a scalar zero-mean random variable.

• If ‖x‖ψ2
≤ b, then

P (|x|> t)≤ 2e−t2/b2 ∀t≥ 0 (23a)

E
[

x2k
]

≤ 2b2kk! ∀k ≥ 0 (23b)

E
[

eλx
]

≤ e4λ
2b2 ∀λ ∈ R (23c)

E

[

(

x2 − E[x2]
)k
]

≤ 2(2b2)kk! ∀k ≥ 0 (23d)

E
[

exp
(

λ(x2 − E[x2])
)]

≤ exp((4b2)2λ2) ∀|λ|≤ 1

4b2
(23e)

• If E
[

eλx
]

≤ e
λ2σ2

2 for all λ ∈ R, then

E

[

exp

(

λx2

2σ2

)]

≤ 1√
1− λ

∀λ ∈ [0, 1) (24a)

‖x‖ψ2
≤
√

8

3
σ ≤ 2σ (24b)

E
[

x2
]

≤ σ2 (24c)

Proof: Inequality (23a) follows from Proposition 2.5.2 of

[10].

For (23b), the inequality is trivial at k = 0. For k ≥ 1, we

have:

E
[

x2k
]

=

∫ ∞

0

P
(

x2k > t
)

dt

=

∫ ∞

0

P

(

|x|> t
1
2k

)

dt

(23a)

≤ 2

∫ ∞

0

exp

(

− t
1
k

b2

)

dt

s= t
1
k

b2= 2kb2k
∫ ∞

0

e−ssk−1ds

= 2b2kk!

A similar calculation for (23b) is done in the proof of Proposi-

tion 2.5.2 in [10]. We separate the even moments, since a tighter

bound can be obtained in this case.

To prove (23c), we follow the methodology from the proof

of Proposition 2.5.2 in [10]. For |λ| ≤ 1√
2b

we have:

E

[

eλ
2
x
2
]

= 1 +

∞
∑

k=1

λ2k

k!
E[x2k]

(23b)

≤ 1 + 2

∞
∑

k=1

λ2kb2k

= 1 + 2
λ2b2

1− λ2b2

≤ 1 + 4λ2b2 ≤ e4λ
2b2

Then using ex ≤ x+ ex
2

, which holds for all x, we have that

(23c) holds for |λ| ≤ 1√
2b

.

For |λ|> 1√
2b

, we use that

λx=

(√
2x

b

)

(

λb√
2

)

≤ x2

b2
+

λ2b2

4
.

So, in this case we also have

E
[

eλx
]

≤ 2e
λ2b2

4 ≤ e4λ
2b2 .

The final inequality follows because e
15
4 λ2b2 ≥ e

15
8 > 2.

Inequality (23d) is trivial at k = 0, so assume that k ≥ 1. The

triangle inequality, followed by (23b) gives

‖x2 − E[x2]‖k ≤ ‖x2‖k + ‖E[x2]‖k
= ‖x2‖k + E[x2]

≤ b2
(

(2k!)1/k + 2
)

.

For k = 1, . . . , 5 it can be checked that (2k!)1/k ≥ 2. For k ≥ 6,

the Stirling bound k!≥ (k/e)k implies (2k!)1/k ≥ 2.

So, for all k ≥ 1 we have

‖x2 − E[x2]‖k ≤ 2b2(2k!)1/k.

Raising both sides to the kth power proves (23d).

To show (23e), note that for all |λ| ≤ 1
4b2 , we have

E
[

exp
(

λ(x2 − E[x2])
)]

= 1 +

∞
∑

k=2

λk

k!
E
[

(x2 − E[x2])k
]

(23d)

≤ 1 + 2

∞
∑

k=2

(

2λb2
)k

= 1 + 2
(2λb2)2

1− 2λb2

≤ 1 + 4(2λb2)2 ≤ exp(4(2λb2)2).

Inequality (24a) is proved in Appendix A of [9].

For (24b), set λ= 3
4 so that 1√

1−λ
= 2. Set t=

√

8
3σ, so that

(24a) implies that E
[

ex
2/t2

]

≤ 2. Thus (24b) holds.

To prove (24c), note that

E
[

eλx
]

= 1 + λ2

(

E[x2]

2
+O(λ)

)

≤ e
σ2λ2

2

= 1 + λ2

(

σ2

2
+O(λ2)

)

When λ �= 0, re-arranging gives E
[

x2
]

≤ σ2 +O(λ). Taking

the limit λ→ 0 proves (24c).

Lemma 8: Let xi be independent zero-mean sub-Gaussian

random variables with E
[

eλxi
]

≤ e
λ2σ2

2 for all i= 1, . . . , n. If

x=
[

x1 · · · xn

]⊤
, then the covariance is a diagonal matrix

that satisfies

E
[

xx⊤]� σ2In.

Proof: Diagonality is immediate because E[xixj ] = 0 for i �=
j. Then the bound on the diagonal follows from (24c).

A random variable, x is (ν, α)-subexponential if for all |λ|<
1
α , the following bound holds:

E [exp (λ(x− E[x]))]≤ e
λ2ν2

2 .

(Here, α is just a number, not to be confused with the specific

quantity used for the bounds, α(ǫ), defined in (10).)
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For all t≥ 0, a (ν, α)-subexponential random variable

satisfies:

P (x− E[x]> t)≤ exp

(

−1

2
min

{

t2

ν2
,
t

α

})

(25)

See Proposition 2.9 of [9].

Lemma 9: Let xi be independent scalar-valued zero-mean

random variables such that ‖xi‖ψ2
≤ b for all i= 1, . . . , n, and

let a=
[

a1 · · · an
]⊤ ∈ R

n.

E

[

eλa
⊤
x

]

≤ e4λ
2b2‖a‖2

2 (26a)

P

(

n
∑

i=1

ai(x
2
i − E[x2

i ])> t

)

≤ exp

(

− 1

64
min

{

t2

b4‖a‖22
,

t

b2‖a‖∞

})

(26b)

Proof: To prove (26a), we use independence and (23c):

E

[

eλa
⊤
x

]

=

n
∏

i=1

E
[

eλaixi
]

(23c)

≤ e4λ
2b2

∑n
i=1 a2

i

Now we prove (26b). Without loss of generality, as-

sume that ai �= 0, since the terms with ai = 0 can be

dropped from the sum. Inequality (23e) shows that x2
i are

all (4
√
2b2, 4b2)-subexponential. It follows that aix

2
i are all

(4
√
2b2|ai|, 4b2|ai|)-subexponential. Direct calculation using

independence shows that if |λ| ≤ 1
4b2‖a‖∞

, then

E

[

exp

(

λ

n
∑

i=1

aix
2
i

)]

≤ exp
(

(4b2‖a‖2)2λ2
)

.

Thus
∑n

i=1 aix
2
i is (4

√
2b2‖a‖2, 4b2‖a‖∞)-subexponential.

Inequality (26b) follows from (25) after noting that

min

{

t2

32b4‖a‖22
,

t

4b2‖a‖∞

}

≥ 1

32
min

{

t2

b4‖a‖22
,

t

b2‖a‖∞

}

.

The following is the Hanson-Wright inequality stated with

an explicit constant.

Theorem 5: Let A ∈ C
n×n and assume that either A ∈ R

n×n

or A is Hermitian. Let xi independent zero-mean scalar-valued

random variables with ‖xi‖ψ2
≤ b for i= 1, . . . , n. Let x=

[

x1 · · · xn

]⊤
. For all t≥ 0,

P
(

x⊤Ax− E
[

x⊤Ax
]

> ǫ
)

≤ 2 exp

(

− 1

2048
min

{

ǫ2

b4‖A‖2F
,

ǫ

b2‖A‖2

})

(27)

Proof: We sketch a variation of the proof of the Hanson-

Wright inequality from [10], [19], and make the associated

constants explicit.

Similar to the proof of Lemma 4, let B = 1
2 (A+A⊤) so that

B is a real symmetric matrix with x⊤Ax= x⊤Bx, ‖B‖2 ≤
‖A‖2, and ‖B‖F ≤ ‖A‖F .

First the probability is bounded in terms of the diagonal and

off-diagonal terms:

P
(

x⊤Ax− E
[

x⊤Ax
]

> ǫ
)

≤ P

(

n
∑

i=1

Bii(x
2
i − E[x2

i ])> ǫ/2

)

(28a)

+ P

⎛

⎝

∑

i �=j

Bijxixj > ǫ/2

⎞

⎠ . (28b)

If a=
[

B11 · · · Bnn

]

, we have that ‖a‖2 ≤ ‖B‖F ≤ ‖A‖F
and ‖a‖∞ ≤ ‖B‖2 ≤ ‖A‖2. So (26b) implies that

P

(

n
∑

i=1

Bii(x
2
i − E[x2

i ])> ǫ/2

)

≤ exp

(

− 1

256
min

{

ǫ2

b4‖A‖2F
,

ǫ

b2‖A‖2

})

.

We will show that the off-diagonal term,
∑

i �=j Bijxixj ,

is (16b2‖B‖F , 16b2‖B‖2)-sub-exponential, and thus

(16b2‖A‖F , 16b2‖A‖2)-sub-exponential. Then (25) implies:

P

⎛

⎝

∑

i�=j

Bijxixj > ǫ/2

⎞

⎠

≤ exp

(

−1

2
min

{

(ǫ/2)
2

256b4‖A‖2F
,

(ǫ/2)

16b2‖A‖2

})

≤ exp

(

− 1

2048
min

{

ǫ2

b4‖A‖2F
,

ǫ

b2‖A‖2

})

.

So we have

P
(

x⊤Ax− E
[

x⊤Ax
]

> ǫ
)

≤ 2 exp

(

− 1

2048
min

{

ǫ2

b4‖A‖2F
,

ǫ

b2‖A‖2

})

.

What remains is to prove that
∑

i�=j Bijxixj is sub-

exponential. Let δi be IID Bernoulli random variables

with P(δi = 1) = 1
2 . Let δ =

[

δ1 · · · δn
]⊤

and set

Bδ = diag(δ)Bdiag(1n×1 − δ). Then

∑

i�=j

Bijxixj = 4Eδ[x
⊤Bδx],

where Eδ corresponds to averaging over δ while keeping x

fixed.

Let x′ be identically distributed to x and independent of x.

Then x⊤Bδx is identically distributed to x⊤Bδx
′. So, we have

E

⎡

⎣exp

⎛

⎝λ
∑

i �=j

Bijxixj

⎞

⎠

⎤

⎦= E
[

exp
(

4λEδ

[

x⊤Bδx
])]

Jensen

≤ E
[

exp
(

4λx⊤Bδx
)]

= E
[

exp
(

4λx⊤Bδx
′)]

(26a)

≤ E
[

exp
(

16b2λ2‖Bδx
′‖22
)]
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Let g ∈ R
n be a mean-zero Gaussian vectors with identity

covariance independent of x′, and δ.

E
[

exp
(

16b2λ2‖Bδx
′‖22
)] μ:=

√
32bλ

= E

[

exp

(

1

2
μ2‖Bδx

′‖22
)]

= E
[

exp
(

μg⊤Bδx
′)]

(26a)

≤ E
[

exp
(

4μ2b2‖B⊤
δ g‖22

)]

= E
[

exp
(

128λ2b4‖B⊤
δ g‖22

)]

.

Now let w =Vg where V is an orthogonal matrix such that

VBδB
⊤
δ V⊤ = diag(s21, . . . , s

2
n), where s1, . . . , sn are the sin-

gular values of Bδ . Then w is also normally distributed with

mean 0 and covariance I . Let Ew denote expectation with

respect to w while holding the other variables fixed.

Now if |λ| ≤ 1
16b2‖B‖2

we have 128λ2b4s2i ≤ 1
2 , since s2i ≤

‖Bδ‖22 ≤ ‖B‖22. In this case we have

E
[

exp
(

64λ2b4‖B⊤
δ g‖22

)]

= E

[

n
∏

i=1

Ew

[

exp
(

128λ2b4s2iw
2
i

)]

]

= E

[

n
∏

i=1

1
√

1− 128λ2b4s2i

]

≤ E

[

n
∏

i=1

exp
(

128λ2b4s2i
)

]

‖Bδ‖F≤‖B‖F

≤ e128λ
2b4‖B‖2

F .

The first inequality follows because 1√
1−x

≤ ex for all

x ∈ [0, 1/2]. It follows that the off-diagonal term is

(16b2‖B‖F , 16b2‖B‖2)-sub-exponential.
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