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Nonasymptotic Pointwise and Worst-Case Bounds
for Classical Spectrum Estimators

Andrew Lamperski

Abstract—Spectrum estimation is a fundamental methodology
in the analysis of time-series data, with applications including
medicine, speech analysis, and control design. The asymptotic
theory of spectrum estimation is well-understood, but the theory
is limited when the number of samples is fixed and finite. This
paper gives non-asymptotic error bounds for a broad class of
spectral estimators, both pointwise (at specific frequencies) and
in the worst case over all frequencies. The general method is
used to derive error bounds for the classical Blackman-Tukey,
Bartlett, and Welch estimators. In particular, these are first non-
asymptotic error bounds for Bartlett and Welch estimators.

Index Terms—Time series analysis, machine learning, nonpara-

metric statistics.

PECTRUM estimation is the problem of estimating the
S power spectral density of a random signal from a finite
collection of samples of a time-series. Its applications include
analysis of heart and neural signals, identification of dynamic
systems for control, and speech analysis [1].

The asymptotic theory of spectrum estimation is well-
understood [1], [2]. Here, the behavior of the power spectral
density estimate is characterized as the amount of data tends
to infinity. Additionally, when the estimates are assumed to be
Gaussian, the bias and variance of the estimates are known.

In contrast, the non-asymptotic theory of spectral estimation
is quite limited. The non-asymptotic theory aims to characterize
the error of spectral estimates when the number of samples
is fixed and finite. Existing works on non-asymptotic spectral
analysis are [3], which analyzes smoothed periodogram esti-
mates (not covered by this paper), and [4], [5] which examine
variants of the Blackman-Tukey estimator (similar to Theo-
rem 2 of this paper). Other closely-related works are [6], which
gives a non-asymptotic analysis of regularized Weiner filters,
[7], which derives central limit theorem-type results for the
estimator class from [4], and [8], which builds a variety of
hypothesis tests from the estimator class from [4].

Over the last decade, the theory of non-asymptotic statis-
tical estimation has reached a substantial level of maturity,
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with good introductory texts given by [9], [10]. However, most
work focuses on independent data. For time-series, non-trivial
dependencies exist between the samples, precluding many of
the techniques used for independent data. In the related area of
dynamic system identification, [11], [12], [13], [14], [15], spe-
cialized methods have been developed to bound identification
errors from dependent data.

The main contribution of this paper is a framework for deriv-
ing non-asymptotic error bounds for a broad class of spectrum
estimators. These bounds hold pointwise in frequency and in
the worst-case across all frequencies. We derive specific error
bounds for Blackman-Tukey, Bartlett, and Welch estimators. In
order to get explicit constants for all error bounds, we derive
explicit constants in the classical Hanson-Wright inequality,
which may be of independent interest.

The paper is arranged as follows. The problem and class of
estimators are described in Section II. Section III gives the gen-
eral framework for non-asymptotic error analysis and the errors
of classical estimators are bounded in Section IV. Conclusions
are given in Section VI. All proofs are in the appendices.

Notation: Random variables are denoted in bold, e.g. x.
E[x] is the expected value of x, P(E) is the probability of
event £. If x is a scalar-valued random variable and p > 1,
then |||, = (E[|x|?])"/?. If M is a matrix, then M is the
transpose, M ™ is the conjugate transpose, and M is the complex
conjugate. For a vector, z, and p € [1, 00], ||z||, is the £, norm,
while for a matrix, M, || M ||2 denotes the induced 2-norm (i.e.
the maximum singular value), and ||M||r denotes the Frobe-
nius norm. A ® B is the Kronecker product of matrices A and
B. If A and B are Hermitian matrices, then A < B indicates
that B — A is positive semidefinite. 1,,x,, and 0,,x, are the
m X n matrices of ones and zeros, respectively. [,, is the n x n
identity matrix. N is the set of non-negative integers, Z is the
set of integers, R is the set of real numbers, and C is the set
of complex numbers. diag(x) is the square matrix formed by
placing the entries of a vector x on the diagonal. The trace of a
square matrix, M, is denoted by Tr(M ). The ceiling function
is denoted by [-]. The modulo operation between two numbers
is denoted by x mod y. In other words, if z = ky + r for k € Z
and r € [0,y), then x mod y = 7.

II. PROBLEM SETUP

Let y[k] be a stationary zero-mean R"-valued discrete-time
stochastic process with respective autocovariance sequence and
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power spectral density give by:

R[k]=E [y[i + kly[i] "]

O(s)= > e PTRR[E]
k=—o00
We assume that one of the following conditions holds:
Al) ylk] is Gaussian
A2) There is an impulse response sequence h[k] € R™*™
such that y[k] =>",° _ hlk — (|¢[¢], where ([k] =
(¢ [K] Cm[lc]]T such that for i =1,...,m and
for k € Z, ¢,[k] are independent o-sub-Gaussian ran-
dom variables. ys
By o-sub-Gaussian, we mean that £ [e)‘ci [k]} < e“5 forall
A € R. Inequality (24c) from Lemma 7 in Appendix D implies
that o > 1.
In the case of Assumption A2, we will have

B(s) = H(s)H(~s)" = H(s)H(s)", 0

where H is the discrete-time Fourier transform of h.

Let <i>(s) be an estimate of ®(s) constructed from samples
v[0],...,¥[N — 1]. The main goals of this paper are to derive
high-probability bounds on pointwise estimation error:

[@(s) — ®(s)[l2,
for all s € [—%, %] and worst-case estimation error:

sup[9(s) = (s)]

1
S€|=3:2

In both cases, the first step of the analysis is to bound the
pointwise estimation error:

[2(s) — @ (s)l2 < [@(s) ~E[@(s)]

+||@(s) - E [@(S)H

; 2

2
forall s e [-1,1].

The first term on the right of (2) corresponds to the bias of
the estimate, while the second corresponds to the concentration
of the estimate around its expected value.

To get concrete bounds on the bias and concentration terms,
we need to explicitly fix the class of estimators considered.
Let Y = [y[0] y[1] y[N —1]] € R"*N. We focus on

estimators of the form
&(s) =YD(—s)AD(s)Y " 3)

where D(s) =diag ([1 /%™ eI?m(N=Ds]) and A€

RNXN is a symmetric matrix.

III. GENERAL RESULTS

This section gives a collection of error bounds on the class of
estimators defined by (3). In particular, we bound the pointwise
concentration of <i>(s) to its mean, the worst-case concentration
of <i>(s) to its mean, and the bias of the estimator. The pointwise
concentration bounds can be expressed in terms of A. The
worst-case and bias bounds require different quantities which
can be derived from A.
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To prove worst-case bounds, it is helpful to re-write (3) as

N-1
> e PTRYBRY T (4)
k=—N+1

where Blk] is defined by:

®(s) =

Ao ANfl,Nflfk:| k>0
dik] = ¢ ¢ T (5a)
_AO,\k| AN717|I<:\,N71} k<0
Ok x (N—k) Ok xk ] >0
diag(d[k On— -
Bk =1L g(d[k]) (N.k)xk (5b)
Ov—ikx k| diag(d[k]) ] k-0
Opexkl  Orx(v—[&))
In the analysis, we will utilize:
| BIF]ll2 = [|d[k][| oo (6a)
| Bkl F = [|d[F]]|2- (6b)

Now we describe the bias. The expected value of spectral
estimators of the form (3) can be expressed as

N-1

> e PRk RIK),

k=—N+1

E [i‘(s)} -

where

SV A 0<k<N

Yh Aipks N <k<0 (7)
0 k| > N.

blk] =

Note that for |k| < N, b[k] can be expressed equivalently as
blk] = Lix (v —|kpdlk]-
Now the bias can be expressed as:

@(s)—E{@(s)} = Y e R bK)RIK  (8a)
k=—o0
N—-1
= Y e HRA—bk)RK + Y e TR,
k=—N+1 le|>N
(8b)

From (8b), we see that a small bias can only be obtained when
RJ[k] decays appropriately as |k| — oo. To this end, let

IRy = > IRk

k=—oc0

We assume that ||R||; < oco. This is a typical assumption
for the convergence of discrete-time Fourier transforms and
holds in many common classes of processes. For example, when
®(s) = H(s)H(s)* where H is a stable rational transfer matrix,
we have that || R[k]|2 < ~vp!*! for some constants v >0 and
p € [0,1). However, the assumption would fail in the case of
bandlimited spectra such as
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Now we describe some specialized notation used to present
our general results on the error of spectral estimators of the form
3.

Define constants cj, co, and cs by

1
Assumption Al) = ¢; =2, ¢ = 33 c3=1 (9a)
Assumption A2) = ¢; =4, =271 ¢3=0. (9b)
Let [|®P]|eo = SUPye[ 1 4] |®(s)]|2. We assume that
A 272

@]l < oc.
For e > 0 and ¢ € (0, 1) the following quantities will be used
in the error bounds below:

4 2 2

ale) = ax{%”g'w,%”f”m} (10a)
—1 2n

5(5):M (10b)
C2

M(e)=inf{ MeN| Y ||IR[k ||2<7 (10c)

|k|>M

Note that when || R[k]||2 <~p!*! for all k, we can bound
R og( L=p)e
Nr(e) < max { 0, & =)

The following theorem gives sufficient conditions for achiev-

ing low estimation error with high probability. It is proved in

Appendix B. R
Theorem 1: Define «, (3, and M as in (10). For all € > 0 and
all 6 € (0,1),
1 11
D I AT AT 2 a(€)B3(9), then for all s € [—1, 5]
we have
i (Hq%(s) —E [&(s)] H2 >e) <6,
2) Let g > [|All, > |43 g > | Bk 12, and g > || B[k |2

for all |k| < N. Assume that there is a number
N <N such that B[k]=0 for |k|>N. If 1>

ale/2) (1og(51\72) + 6(5/2)) then

P sup || ®(s) —E {@(s)} H >e| <.

se[-4.4] i
3) Assume that b[k] € [0,1] for all k€ Z. If bk] >1—
for |k| < M(e) then

o -2

2HRH

<e.
2

sup
s€[~$.3]

4) If the conditions of both 1) and 3) are satisfied, then for

all s € [—3, 3] we have

P

5) If the conditions of both 2) and 3) are satisfied then

s)H2 > 26) <.

P sup
sE[—%,%]

’é(s) - <I>(8)H2 >2¢ | <.

4275

The following corollary gives alternative ways of expressing
the error bounds from Theorem 1. Itis proved in Appendix B-E.

Corollary 1:
1) Let{(A) = max{[|Alls, |A|%}. Forall s € [, 1], and
all 6 € (0,1), the following holds with probability at least

35 a0

< ¢ ®] o max{g(A

-
), VE(A)B()}

2) Let g > [|All2, > ||All%. g > ||B[k]||2, and g > IIB[’@JH%
for all |k| < N. Assume that there is a number N <
N such that B[k]=0 for |k|>N. Set B(N,0)
log(5N?) + 3 (g) Then for all § € (0,1), the following
bound holds with probability at least 1 — §:

|#-=2]]

s2c§<b||oomax{gé<zv,6>, géuv,a)}

3) Assume that there are constants v > 0 and p € [0, 1) such
that | R[k]||2 < 'yp““' for all k € Z and assume that b[k] =
0 for all |k| > N, where N < N. Then

N-1

- 2p

fo-efa]l <0 5 noumon 228
k=—N+1

4) Define g as in part 2) and assume that B[k] = 0 for |k| >
N[ -E[#]| <b and

oo

a := 2c3 max {gB(N,é), gB(N, 5)} <1
Then with probability at least 1 — §

|o-a] < al| @ +b
e} 1—a
Remark 1: In the Blackman-Tukey, Bartlett, and Welch al-
gorithms discussed below, the number N < N is a tunable
parameter that can be used to specify a trade-off between bias
and variance. In each of these algorithms, we will have g =

O(N/N), so the probabilistic error bound from part 2) scales

as O ( Nloe N ) in each of these cases. In particular, the

N

bound from part 2) increases monotonically with N, while the
bound from part 3) typically decreases monotonically with N.
In the next section, we will give explicit bounds for the Bartlett
estimator, and show how to optimize over N to give a total
error bound of ||® — ®||, = O(N~'/3), ignoring logarithmic
factors. Similar bounds are likely possible for Blackman-Tukey
and Welch estimators, but these will depend on the specific
window functions used for these methods.

Remark 2: To use the bounds from Corollary 1 in practice, we
need some assumptions about the decay of the autocovariance,
we can bound the bias, as in part 3). (See the next paragraph for
more details.) These assumptions could be obtained from do-
main knowledge, such as time constant estimates or prior noise
characterizations. Then, part 4) can be used to derive bounds
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on the total worst-case error just from the bound on the bias,
b, the estimated spectrum, ®, and the term a, which scales like

O < N /N ) . As discussed in Remark 1, the truncation param-

eter, N, can typically be tuned to optimize the resulting bound.
Unfortunately, it is not possible to estimate the autocovari-

ance decay parameters, v and p, without some assumptions.

Indeed, consider the pathological autocovariance sequence

2 k=0
Rk]={1 k=+D
0 k¢{-D,0,D},

which could be obtained by running white noise through the
filter with impulse response h[k] = §[k] + 6[k — D], where -]
is the Kronecker delta. This signal would be indistinguishable
from white noise when the data set has size N < D, and so
the decay constants from part 3) would artificially appear to be
v =2 and p = 0. In reality, the constants would need to satisfy
P > 1.

Remark 3: In numerical experiments in Section V, we see that
the bounds for Gaussian variables are rather conservative (1-2
orders of magnitude greater than true error), while the bounds
for sub-Gaussian variables are highly conservative (5-8 orders
of magnitude than true error). Decreasing the gap between
Gaussian and sub-Gaussian bounds would require improving
the constants in the Hanson-Wright inequality, which is outside
of the scope of this paper.

In contrast, the bounds obtained from asymptotic analysis are
comparatively tight, often on the same order of magnitude of the
true error. See, e.g. Section 5.7 of [16]. While these asymptotic
bounds are less conservative, they rely on unquantified ap-
proximations. Specifically, they utilize asymptotic distributions
without quantifying the error induced by approximating the
distribution with its asymptotic distribution.

The existing asymptotic results indicate that more precise,
frequency-dependent bounds that depend on fewer assumptions
should be obtainable. For scalar signals, the asymptotic variance
scales with ®(s)? for smoothed periodograms [16] and the
Blackman-Tukey method [2]. The bounds in [16], for example,
just rely on bounds of various moments and cumulants, rather
than assumptions of Gaussian or sub-Gaussian distributions. In
contrast, the non-asymptotic bounds from part 1) of Theorem
1 and part 1) of Corollary 1 are the same across frequency. The
asymptotic results indicate it may be possible to obtain more
precise error bounds that depend on the specific value of ®(s)
at frequency s. Furthermore, it may be possible to relax the
Gaussian/sub-Gaussian assumptions, though this would require
a fundamentally different proof approach.

IV. ERROR BOUNDS FOR SPECIFIC CLASSICAL
SPECTRUM ESTIMATORS

This section shows how to analyze periodograms, Blackman-
Tukey estimators, Bartlett estimators, and Welch estimators in
terms of the general result from 1. In particular, high prob-
ability error bounds are obtained in the case of Blackman-
Tukey, Bartlett, and Welch estimators. For periodograms, the

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

bias is bounded, but high-probability bounds cannot be ob-
tained, consistent with classical calculations on the variance of
periodograms. (See [1].)

The definitions of the various estimators follows the presen-
tation from [1], and it is shown how each estimator can be
expressed in the form of (3). This leads to a unified approach
to error analysis. All of the propositions and theorems of this
section are proved in Appendix C.

A. Periodograms

The standard biased autocovariance sequence estimate is de-
fined by

A FTL iyl - KT 0sk<N
RIE =S £ N yli+klyli]T -N<k<0 (1D
0 |k| > N
The corresponding periodogram is given by
N+1
d(s) = Z e IR R [k].
k=—N+1

In this case, <i>(s) can be expressed in the form of (3) with
A= %leN, the scaled matrix of ones. Here we have ||Al|2 =
I|A]| = 1. As a result, the conditions of Theorem 1 Part 1) on
pointwise error cannot be met for £ > 1. Similarly, the condi-
tions of Part 2) cannot be met. So, the most we can bound using
Theorem 1 is the bias:

Proposition 1: Let M(e) be defined in (10). If N >
201(IBl: hen

<e.
2

sup
36[—%,%}

o) o]

The unbiased autocovariance sequence estimate is given by:

. N|k\szYH yli—kT 0<k<N
R[k| = N—Ik\ Zisz yli+KylilT —N<k<0
0 |k| > N
The unbiased! periodogram estimate is
N-1 ' )
B(s)= Y e PTIR[E] =YD(—s)AD(s)Y ",
—k=—N+1
where A is a Toeplitz matrix given by:
1 1 1
N N-1 1
1 1 1
a-|TTow o
11 1
1 2 N

In this unbiased case,

1 T 1
1< ——1 Al —=1 < ||Al2 < |A|F,
—(m le) <m le)_n o < |14]1#

I'The autocovarience sequence estimate is unbiased in this case. However,
the periodogram itself is biased since we are not measuring correlations more
than IV steps apart.
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for all values of V. As a result, the conditions of Theorem 1
Part 1) on pointwise error cannot be met for £ > 1. Similarly,
the conditions of Part 2) cannot be met. Again, all we can bound
is the bias:

Proposition 2: Let M be defined in (10). If N > M (€), then

)} HQ se

bup
SG[ 315

B. Blackman-Tukey Estimators

Let R[k] be the biased autocovariance sequence estimate
from (11). For M < N and a window function w : Z — R de-
fine the Blackman-Tukey estimate by:

M—-1

Z e_ﬂ”kw[k]f{[k]

k=—M+1

O(s) =

In this case, & can be expressed as in (3), where A is a Toeplitz
matrix defined by:

wl0] w[—M + 1] 0 i

1 .
A= lwM -1 [—M +1]
0wy wlo]

12)

For symmetry of A, we must have w[k] = w[—k].

For many common windows, such as the rectangular,
Bartlett, Hann, Hamming, and Blackman windows, the entries
satisfy wli] € [0,1] fori=—M 4+ 1,..., M — 1. Under these
assumptions, the theorem below gives sufficient conditions for
the Blackman-Tukey method to give low error with high proba-
bility. The bounds on ||®(s) — ®(s)]|2 are omitted, as they are
direct consequences of parts 4) and 5) of Theorem 1.

Theorem 2: Define a(e), 3(5), and M (e) as in (10).

1) If 5555 > a(e)B(6), then for all s € [—1, 1] we have
i (Hq%(s) _E {i’(s)} H2 > e) <.
2) If 77— > a(e/2) (log(5M?) + 5(6/2)) then
P sup || ®(s) —E {i(s)} H >e| <6.
s€[~3$.3] 2
3) I M>N(e), N>R -y > DAL for
k| < M (€), and wlk] € [0,1] for |k| > M (e), then
sup B(s) —E|®(s)||| <e.
56[ 1 ‘ |: :|H2

2M—1
N 9
|k|)w[k]/N. See the proof for more

In the notation of Theorem 1 and Corollary 1, g =
N =M, and b[k] = (N —
details.

Remark 4: A set of non-asymptotic worst-case spectral error
bounds were obtained in Theorems 4.1 and 4.2 of [4]. These
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correspond to the special case of the Blackman-Tukey estimate
when w is defined from a kernel. These results appear a bit
different from Theorem 2 since [4] uses different assumptions
and bounds the error using a different norm.

Another related non-asymptotic worst-case bound is
achieved in Theorem 6 of [5]. The estimator in this paper is a
truncated periodogram which can be shown to be a specialized
type of Blackman-Tukey estimator.

C. Bartlett Estimators
For the Bartlett estimator, assume that N = LM, where L
and M are positive integers. The Bartlett estimator is given by:
M—1
yi(s) = Z eIk [iM + K]
k=0

- ¥

The Bartlett estimator can be represented in the form of (3)
where A is the block diagonal matrix:

fori=0,...,L—1

Tarxm

A==

N 13)

Tarxm

where there are L blocks of size M x M .
Theorem 3: Define «(¢), 5(0), and M (¢€), as in (10).

D) If & > a(e)B(5), then for all s € [—1, 1] we have
i 202

#(Jac - o] > ) <o
a(e/2) (log(5M?) + B(6/2)) then

—E[(i)

N
2) It N>

P sup || B(s) —E [i(s)} H >e| <6
SG[ i 1] 2
3) 1f M > 2MOIRL hen

sup
s€[~3.3]

- fe]], <

2

In the notation of Theorem 1 and Corollary 1, g = %, N =
M, and b[k] =1 — |k|/M. See the proof for more details.

In the special case that || R[k]||z < vp!*! for all k, the bias has
a more explicit bound given by:

~E[0]],

2w ( P 1 ) M 1
< =4y ——+ p" =0M™).
et P\ G T, ()
The bias bound can be combined with the high-probability
bound from Corollary 1, part 2 to show that

|® — ®||oc = O(V/M/N + M~!

with high probability, where 0 suppresses logarithmic factors.
Optimizing over M leads to M = O(N'/3), leading to an over-
all error bound of O(N~1/3).

sup
SE[ PRl
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D. Welch Estimators

For the Welch estimator, assume that N = (S — 1)K + M
for positive integers S, K, and M. Let v € RM be a window
function. The Welch estimator is defined by:

M—1

yi(s) = Z eﬂ'mkmy[ﬂ( +k] fori=0,...,8—1
— 2
= (14a)
R 1 S—1
®(s) = 5 ; yi(s)yi(s)” (14b)

In this case ®(s) can be expressed in the form of (3) with A
a sum of block-diagonal matrices:

T, Oir xik

.
== )
Slivllz = O(N—iK—M)x(N—iK—M)
15)
Theorem 4: Define a(e), 3(8), and M () as in (10).
D If ﬁ > a(€)B(0), then for all s € [—1, 1] we have
(o0 ov] > =
2) If 1+§M > a(e/2) (log(5M?) 4+ 5(6/2)) then
P sup  ||®(s) —E ['i’(s)”’ >e| <6
2

SG[*%,%]

3) If M> M(e and for all [k < M(e) we have
ZMfl v[i—|k|]v[i] >1— then

€
i=[k] —Tloll3 2| B[l

sup ‘@(s) —-E [&’(s)} H <e.
se[-1.1] 2
In the notation of Theorem 1 and Corollary 1, g = l+;% s

N =M, and b[k] = (N — |k|)w[k]/N. See the proof for more

details. In typical applications, the ratio r = £ is fixed with r >

K
1. A commonly used value is » = 2. In this case, g < W =

O(N/N), as in Remark 1.

V. NUMERICAL STUDIES

Here we show two applications of the bounds from this
paper to simulated stochastic processes. In all cases, the Welch
algorithm with Hann window was used.

Example 1: We consider a scalar signal of the form

1 =
1_ 2 Zpé IC[k - q
P

where ([k] are scalar-valued IID random variables with mean
zero and variance 1 and p = 0.3. In this case, the corresponding
autocovariance is exactly R[k] = pl¥! for all k. We simulated
the case that {[k] are Gaussian and also when ([k] is uniform
over [f\/?j, \/ﬂ , which is v/3-sub-Gaussian. As can be seen,
the bound for the Gaussian process, is somewhat conservative,
while the sub-Gaussian processes is quite conservative. The

ylk] =
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—— Maximum Error
Worst-Case Bound (6 =0.1)
——- Bias Bound

103 4

102 4

10! 4

100 4

1071 4

100 10! 102 10° 10° 10°
Data Blocks (Hann Window, M =16, K= 8)

(a) Scalar Gaussian Process

108 e —— Maximum Error
............... Worst-Case Bound (6 =0.1)
............ -=~- Bias Bound
w4 T

104

102 4

100 -

100 100 102 10° 10° 10°
Data Blocks (Hann Window, M =16, K= 8)

(b) Scalar Sub-Gaussian Process

Fig. 1. Error of the Welch method for Example 1. The number of data
blocks corresponds to S. The blue line shows the maximum error over a
linearly spaced grid of [0,.5] of size 101, the black dotted line shows the
total worst-case error from parts 2) and 3) Corollary 1, and the red dashed
line shows exact bias.

reason for the conservatism of the sub-Gaussian process is the
large constant factor arising from the sub-Gaussian Hanson-
Wright inequality.

Example 2: The next example shows the results for a process
of the form y[k] =>",2 __ hlk — {]¢[¢] where, ([{] € R? are
IID Gaussians with zero mean and identity covariance,

D k=0

hlk] =< CA*=1B Ek>1

0 k<0

and

03 0 1 0 0
Y I
0 0 1 00
C=11 0 D=0 1 0
0 1 0 0 1

In this case || R[k]||2 < vp!*! forany p € (0.3, 1) and sufficiently
large . Specifically, if P is a positive definite matrix with
condition number x > 0 such that AT PA < sz, and X =
AXAT + BBT is the observability Gramian, then

y=max {|CXC" + DD,
+HIXCTIR) }.

valel. (1220
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105 4

—— Maximum Error
----- Worst-Case Bound (6 =0.1)
—-=-- Bias Bound

104 4

103 4

102 4

10! 4

100 4

10714

100 100 102 10° 10° 105
Data Blocks (Hann Window, M =512, K= 256)

Fig. 2. The error of the 3-dimensional signal. For details on the lines, see
Fig 1. The only difference is now the red dashed line is an upper bound on
the bias, rather than an exact bias.

Then an upper bound on the bias can be computed explicitly
from Corollary 1.

As can be seen in Fig. 2, the bounds are a bit conservative,
as in the scalar case.

VI. CONCLUSION

This paper gives a method for deriving non-asymptotic er-
ror bounds for a class of spectrum estimators. This method is
used to derive error bounds for a variety of classical estima-
tors. Many avenues for future work remain. Window-dependent
bias-variance trade-offs can be formulated for the Welch and
Blackman-Tukey estimators. Errors induced by preprocessing
steps such as centering, normalization, and detrending could
be quantified. More precise, frequency-dependent error bounds
may be possible, in analogy with asymptotic results, and the
Gaussian/sub-Gaussian assumptions could potentially be re-
laxed. The bounds from the paper could be utilized to bound
errors in estimating ®~!(s), which is particularly useful for
network identification [17] and system identification [18].

APPENDIX A
CONCENTRATION FOR TIME-SERIES DATA MATRICES

This section presents an intermediate result that is used to
prove the probabilistic bounds in Theorem 1.

Lemma 1: Let J € CV*N_ Assume that either J € RY*¥ or
J is Hermitian. Let Y = [y[0] y[N = 1]] e RN be a
matrix of data satisfying either Assumption A1) or Assumption
A2). For all e >0

P(|YJYT —E[YJYT]|,>¢)

omn . 62 €
<100 (eomin e e e )
where c1, co, and c3 are defined in (9).

To prove Lemma 1, we first derive concentration results for
the scalar random variables u* Y JY T v, with [|[ul|z = [|v][2 = 1.
These bounds are obtained by decoupling the dependent data
and then using the Hanson-Wright inequality. Some specialized
results for the case of Gaussian data are utilized to achieve
tighter constant factors.
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A. Preliminary Results for the Scalarized Problem

Let u,v € C" be such that [jul|; =1, [[v]|2 =1, and let y =
[ylo]" y[N —1]T] " be the vertical stack of the data.

Lemma 2: The scalarized random variable, v*YJY Tv
satisfies

wYJY o=y (JT® (vu"))y
where [|JT ® (vu*)[l2 = IIJllz and [|[J7 @ (vu*)|[p = ||| p-
Proof: The alternate formula for the variable follows from

direct calculation:
N-1

WYY =Y (wy[p])Jpq(yle] Tv)

p,q=0
N-1

= Z Y[Q]T (Jp,qvu”) y(p]

p,q=0
TJTe (vu")) y

The norm properties follow from direct calculation as well:

177 ® (vu*) |2 = | [lllvu*[l2 = [|17]]2
and
7" ® =Tr (JJT @ uww*vu*)
=Tr((J ®u JT®u )
=Tr ((J7]) & (1))
=111
[
Let
RO R[] RI-N +1
Rl R[] RI-N +2
R=E[yy']=| . ‘
RIN—1] R[N -2 R[0).

The matrix R will be utilized to express the correlated data
vectors in terms of contributions of independent random vari-
ables. The following bound will be utilized to analyze the
concentration of these decoupled vectors.

Lemma 3: The matrix R satisfies || R||2 < ||P||co-

Proof: Since R is real-valued, symmetric, and positive
semidefinite

IB|l>= sup = R:
llzll2=1
where the supremum ranges over complex-valued unit vectors.

Let z = [z[0]* 2[N —1]*]" € C"N be a unit vector
with z[k] € C™. Identify z with a discrete-time signal by setting
z[k] =0fork < 0and k > N.Let Z(s) be the Fourier transform
of the signal, z. Then convolution rule and Plancharel theorem

imply:

SRi= S elR*RIk (200
k4=—o00
f/ﬁ 5(s) D (s)3(s)ds
<|[®fo
Thus, ||R2 < [|®[oc. O
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B. Special Results for the Gaussian Case

The following lemma is a specialized version of the Hanson-
Wright inequality for Gaussian random variables. See Exercise
2.17 of [9].

Lemma 4: Let A € C™*™. Assume that either A € R™*™ or
A is Hermitian. If x is a Gaussian random vector with mean
0,,%1 and covariance I,,, then for all € > 0:

P (XTAX —E [XTAX] > e)

<e < 1m'n{ e ¢ })
<exp | —-mi , .
8 A% 1All2

Proof: Let B= (A + A"). Then under either assumption
about A, B is a real symmetric matrix such that x| Ax =
x' Bx, ||B||2 < [|All2, and || B]| 7 < || Al| .

Let V be an orthogonal matrix such that B = Vdiag(\)V' T,
where \ = [)\1
V Tx so that

)\n} T are the eigenvalues of B. Lety =

x'Ax=x"Bx = Z \iy?.
i=1

Now y; are independent Gaussian random variables with mean
0 and variance 1.

Since ||B|lr =||All2 and [|Bll2 = ||A|lco, it follows that
x ' Ax is (2||B||r,4| B||2)-sub-exponential. Due to the in-
equalities, it must also be (2||A| s, 4||A||2)-sub-exponential.
The result then follows from Proposition 2.9 of [9]. O

Lemma 5: Let Assumption Al) hold, so that y is a zero-
mean Gaussian process. Let J € CN*N_ 4 € C", v € C" be
unit vectors such that one of the following conditions holds:

1) JeRNXN 4 R, and v € R or

2) J is Hermitian and v = v.

Then, for any € > 0 the following bound holds:

P(uYJY v —E[WYJY 0] >¢)

con(- o s )
<ex —— , .
8 ITIE N2 [1]2]12l

Proof: If y is a Gaussian process then y is identically dis-
tributed to Gx where x is a Gaussian random vector with
mean 0 and covariance I and GGT = R. Sothen w*YJY Tv =
y ' (JT @ (vu*))y is identically distributed to

x'GT(J" @ (vu*))Gx.

So, to apply Lemma 4, we need to bound the norms. First we
have

|67 (T @ ()G, < IG2EITT © (vu*)]l:
= 7112l 2]l2
< 1 1l2l|®f]2- (16)
To bound the Frobenius norm, note that R < ||®||o./ so that
16T (T ® (vur))a
=Tr ((J7 ® (vu")R(J @ (w*))R
<@l Tr (7 @ (vu*))(J @ (uv*))R)
<@)ETr (V7 @ (vu"))(J @ (uwv)))
= 171l (17
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The result now follows by applying Lemma 4 with A=
GT(J" ® (vu*))G. Note that if .J, u, and v are real, then so is
A. Similarly, if .J is Hermitian and v = v, then A is Hermitian.

J

C. A Special Result for the Sub-Gaussian Case

Lemma 6: Let Assumption A2) hold. Let J € CN*V 4 ¢
C™, v € C™ be unit vectors such that one of the following condi-
tions holds:

1) JeRN*N 4 eR™, and v € R" or

2) J is Hermitian and u = v.

Then, for any € > 0 the following bound holds:

P(uYJY v —E [W'YJY 0] > )

€2 €
< 2exp (—2_15 min{ , }) .
| IIEN2l1% o2 T]2/1® e

Proof: For all T > 1 let

= Y hlk— ¢l
=T
Yr = [yr[0] yr[N —1]]
&1 (s) =Y D(—s)AD(s)Y -
Y, = [yrl0]" yo[N—1]7]"

ET =E [XTX;} :

Setting
=TT T
h[T] h|-T]
G =
hIN —1+1T] h[N —1—T]

gives that Y= GTQT and so R, = GTG}—.

Note that

h[T +1] h[—T —1]
Gry1= : Gr :
hN — 14T +1] hN —1-T—1]

It follows that Ry < Rp, . Furthermore, limr_,o, By = R.
Thus, Lemma 3 implies that |G7 |3 = || Rrll2 < [|P]|co-
Consider the scalar random variable
* T, T(qT *
wYrJYpv=y, (J @ (vu"))y,
= CrGr(J T @ (vut))Grdy.

We can bound the deviation of this scalar random variable from
its mean via the Hanson-Wright inequality with A = G/ (J T ®
(vu*))Gr. Similar to (16) and (17), we have

IG7(JT @ (vu*))Grll < [|]]|2]| @]l

IG7(JT @ (vu*))Gr|[ < | T]17]12]1%

Additionally, if J, u, and v are real, then A is real. If J is
Hermitian and v = v, then A is also Hermitian.
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From Lemma 7 in Appendix D, we have that ||C;[k]|y, :=
b<2¢ for all ¢ and k. Thus, Theorem 5 of Appendix D
implies that

P(u*YrJY v —E [WYrJY 0] > )

2
€ €
<2exp (—2_15 min { , })
AITNENIZ " o2 T12]|Pllo

Now since limr_,, Y7 =Y, the result holds by dominated
convergence. [

D. Proof of Lemma 1

The previous two lemmas imply that there are constants c,
¢cs, cg defined by:

Assumption A1) = ¢4 =1, cg=1

Assumption A2) = ¢4 = 2, cg=0
such that
P(uwYJY v —E[uYJY] > e)

< cqexp (—05 min {

€2 }
csll TNl 2||J|| 9] oo hs)

under corresponding assumptions about J, u, and v.

We complete the proof of Lemma 1 by a covering argument,
similar to the proof of Theorem 6.5 of [9]. For any § > 0, the
Euclidean ball of dimension n can be covered by a collection
of at most (14 2)" balls with radius . (See Example 5.8 of
[9].) LetC,, = {w1, ..., wq, } be the centers of such a covering
with ||w;|l2 <1 and 6 = % so that @, < 10™.

For compact notation, let S:=YJY " — E [YJYT].

Covering for Real J: When J is real, S is also real. In
this case
sup u' Sv
lullz<1[lvll2<1

1S]l2 =

where the supremum ranges over vectors u,v € R” with Eu-

clidean norm at most 1. Given any u, v € R™ with norm at most

1, there are vectors @ and 9 in C,, such that ||u — ||z < 2 and
—dll, < 2

o —0ll2 < 3.

u'Sv=(i+ (u—1)" S+ (v—17)))
=" St+(u—1a)"So+0"S(w—10)+ (u—

4 4
<o+ (g + 57 ) 1Sk <750 + 3l

@) TS(v - 0)

9

The first inequality follows from the Cauchy-Schwartz inequal-
ity and submultiplicativity of the induced norm.
Maximizing the expression above on both sides leads to:

1
ISl < max @' St 4 =||S|la = ||S|l2 <2 max @' So.
W,0€C, 2 ,0€C

4281

The proof is completed in this case via a union bound:
P(||S]l2>¢) <P ( max @' St > 6/2>

U, 0€C,
< X

w,0€Cy

<10%"¢, exp —C—Bmin 1 22 53 € .
4 I INENRNE " gl 2Pl

The final inequality arises because C, x C, has at most
102" elements.

Covering for Hermitian J: When J is Hermitian, S is
Hermitian as well. In this case

P (a'Sb > ¢€/2)

ISll2 = sup |u*Sul
lull2<1

where the supremum ranges over the unit ball of C™. The unit
ball of C" can be identified with the unit ball of R?": If u =
v+ jw with v and w real vectors, we have that ||u||2 < 1 if and

only if H[ H <1.

Let Co,, be the centers of a %-covering of the unit ball of R?"

and define a %—covering of the unit ball of C" by:

wT]T GCQn}.

Cp = {v —|—jw‘ [UT

Since Cs, has at most 102" elements, én also has at most
102" elements.

Similar to the real case, we have that for all ||ul|s <1, there
exists @ € C,, such that |ju — |y < 2. Then we have:

[u*Su| = |(@+ (u—a))" S (i + (u—a)))|
AR |
< [ + 5 S]]
After maximizing both sides and re-arranging, we get ||S||2 <
2max, s [0Sl

The proof is completed in this case by a union bound
argument:

P(||S|2>¢) <P <mag< " S| > e/2>

n

< Y P(ja*Si| > €/2)

0€Cn
< Y (P(a*Se > €¢/2) + P (0" (—S)i > €/2))
el
—glmin{ < £ }
<2.10%¢ue BIITET2IZ " T2 1%l |

APPENDIX B
PROOF OF THEOREM 1

We prove parts 1), 2), 3), and 5). The proof of 4) is omitted,
since it is similar to the proof of 5).
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A. Proof of 1)

Note that ®(s) =YJY T where J = D(s)*AD(s). Since
D(s) is unitary, we have || J||s = || Al and || J|| p = || A|| r- Since
A€ RV*N is symmetric, .J is Hermitian and so Lemma 1
implies that

]ll.>)

IP(H(i)(s)

e

—co min{ T S 5
< 102n616 SIIANE NP5,

-E [(i’(s

e
’c§||AH2H<I>Hm}

_ c2 min 2 e
< 10%"cie ™Al lAlR) 12l " gl elos f

The right side is at most § if and only if m >¢&.
’ F

B. Proof of 2)

For this proof, let M(s) = ®(s) — E {@( )] and C[k] =
YBIE]YT —E[YB[K]Y "] so that (4) implies
N-1
M(s)= Y e *"FClh).
=—N+1

Here we also used that B[k] = 0 for |k| > N.
Note that the quantity we must bound can be expressed as
(M| = supygj< 1 [|M(s)]]2.

[Mlloo =~ sup

lull=1,]s|<3

|[w*M(s)ul

where u ranges over unit vectors in C”.

To eliminate the supremum over s, we will use a covering
argument. Fix a covering of [—3, 1] with intervals of length
7r11\72 , which correspond to balls of radius 27&2. Let C: denote
the corresponding centers of the intervals. Note that C can be
chosen to have at most 1+ 7N2 elements.

For any s € [~1, 1], there is an 3 € C such that |s — § <

Then we can bound:

2m N2
[IM(s) 2
= [M(3) +M(s) = M(3)[2
< IM(3) 2 + [IM(s) — M(3)]|2

=|[M(3)|2 + Z (e—j27rsk _ e—jzﬂgk) C[K]
|k|<N 9
< HM(é)HQ + Z !e_jQ‘ﬂ'sk e—JZﬂ'sk’ ||C ||2
|k|<N
<[IM(3)|l2 + 2m|s — 8] > [K[IC[K]|l2
|k|<N

< IM(3)ll2 + 27]s — 3] (Hllax IClk |2> > i

li|<N
< IM(3)]|2 + 27|s — §| N (max IIC[k]Ilz>
|k|<N

< IM(3)|l2 + max || C[k]||2.
|k|<N
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The final inequality follows from the choice of s.
Taking suprema over s shows that

[M[[oe < max [M(8)[|2 + max [[C[k]]2.
3eC |k|<N

Thus, we can use a union bounding argument to show:

P (Ml > €)
<P (max IM(3)]2 > 6) P <max IC[K]|l2 > 6)
seC 2 V 2

|k|<N
<> P (MG > 5)+ > P(ICKIL>5). (19
seC

|k|<N

So, to make the overall sum at most ¢, it suffices that each
individual summation is at most §,/2.

The first sum on the right of (19) can be bounded using part
1), the assumption that g > max{||A||2, [|A[|%}, and the fact
that |C| <1+ 7N? <5N2:

> P(IMG) > 5)

seC

-2 min{ T <? Fovan-ame }
~ >
S 5N2102ncle 9 e[ @15 " 2e5 1P lloo .

To make the right side at most 0/2, it suffices to have

a(e/2) (10g(58%) + 8(5/2)).

To bound the second sum on the right of (19), recall
that g > || B[k]||> and g > || B[k ]”F for |k| < N. Since B[k] €
RN*N and there are 2N — 1 < 2N terms in the sum, Lemma 1
implies that

> P(Ick:>5)

|k|<N
N 9 —2 min{ c2 5
<2N10“"cie * Tz,

1>
;>

- _€
2c§\\<1>||oo}

To make the right side at most 4/2, it suffices to
have 1> a(e/2) (1og(2z\7)+ ﬂ(6/2)), which is true if

1> a(e/2) (1og(51\72) + 6(5/2)>-

C. Proof of 3)

Since b[k] € [O 1] and blk] > 1 — gpjr, it follows that
|1 —b[k]| < STRTY RH Using the triangle inequality followed by
the conditions on b[k] gives:

H@(s)—E[é(s)]HQS i |1 — blk] ||| RIK] |2
> ||R 2+ Y IRA,

- 2IIRII
|k|< M le|> N1

€

<

NN e
O |
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D. Proof of 5)

Maximizing both sides of the triangle inequality from (2)
gives

sup [[0(s) ~ B(s)2 < sup ||0(s) ~ E [$(s)]|
11 2
SE[—§7§] Se[—§7§
+ sup ||B(s) { }H :
sel-44]
Assuming  the  conditions of 3) implies that
SuPse[—%,;] ‘fI)(s) —-E {@(s)} H2 <e surely.  So, if

the left side is greater than 2¢, we must have that
SUP e[ 1 1] H(I)(S) —-E {@(s)} H2 >e¢, which holds with
probability at most § because the conditions of 2) are also
assumed. O

E. Proof of Corollary 1

The first two parts are a direct consequence of Theorem 1
and the inverse formula o (t) = c3||®||oc max {¢t 1,7 1/2}.
The third part bounds the bias in the important special case that
the autocovariance decays geometrically, and is found by direct
calculation.

Using a and b as defined in part 4 gives

&2 <o+ ]e-=]2]|
2)
<b+ al|®lo
<b+a (9]l + H@ - q>H )
The result now follows by re-arranging. U
APPENDIX C

PROOFS FOR SPECIFIC ESTIMATORS

For all the specific estimators, we utilize Theorem 1. To this
end, we derive upper bounds on [|A|2, ||Al|%, || B[k]||2, and
| B[k]||% and derive sufficient conditions on b[k] to achieve the
desired bias.

A. Proof of Proposition 1 on Biased Periodograms

For all |k| < N, we have b[k| = |k| € [0,1]. Then b[k] >

1 — gy, if and only if |k| < 2HRH So to have b[k] > 1 —
sy, for all k| < M (€), it suffices to have M (¢) < 2&6” .0

B. Proof of Proposition 2 on Unbiased Periodograms

For all |k| < N, we have blk] = 1. So to have b[k] > 1 —

sy for all [k| < M (e) it suffices that N > M (e). O

C. Proof of Theorem 2 on Blackman-Tukey Estimators

GV and ||Alf3 <

To prove 1) it suffices to show || Az < =

(2M—1)
N . .
Since A is symmetric, the induced norm can be expressed as

[All2 = sup|ju,<1 |uT Au|, where the supremum ranges over

4283

real-valued vectors with norm at most 1. Given any vector u €
RYN, we have

M—1 N-1
u' NAu=w[0ju" u+ Z + wli]) ulk —
k=i

So, if |lu]|2 < 1, it follows that

M—-1N-1
" NAu| <1+2 > > [ulk — ]| |ulk]
=1 k=i
M—-1N-1
<14 303 (Julk — il + |ulk]?)
=1 k=1
<142(M—1)

The bound on || Al|2 follows by dividing by N.
The Frobenius norm can be bounded as:

M—-1

N AR =Y wkP(N -
=—M+1
M—1

< >

k=—M+1

[k])

— k) < N@2M —1)

The upper bound on the Frobenius norm follows by dividing
by N2, and 1) is proved.

Now we prove 2). We have that B[k] = 0 for |k| < M, so set
N=M.

Direct calculation gives:

lwlk]] _ 1

B =—< =

1B = <
o _ Jwk]P(N — k) _ 1

1Bl 3 = " <
So, we can take g = 2M=L.
Now we prove 3). Note that

e
0 |k| > M.

So, if 0 < w[k] < 1, we have 0

< bk < 1 as well. Furthermore,
for |k| < M, we have that b[k] > 1 —

2HRH if and only if
_e
L~ opa

[£]
-5

wlk] > (20)

To ensure that (20) can be satisfied with |w[k]| < 1, the right
side must be bounded above by 1, which occurs if and only if

|k| < ZHRH Thus, if M(e) < 2HJ§€H , the bias bound from 3)
will be achieved as long as (20) holds for || < M and w(k] €

[0,1] for |k| > M (e). 0

D. Proof of Theorem 3 on Bartlett Estimators

Part 1) follows because ||Als=|A|% =%

N by direct
calculation.
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Now we prove 2). We have N = M. For |k| < M direct
calculation gives

1
1Bl =+
N-—Lkl 1
2
1B = =7 < 1
J\l

So, we can take g = &
Now we prove 3). For |k| < M we have

LK) K]
LM M’
Let € = gz We see that blk] > 1 — éifand only if |k| < Mé.

So, to ensure that b[k] > 1 — éforall k[ < M, it suffices to have
M(e) < Me. O

blk] =

E. Proof of Theorem 4 on Welch Estimators

and

First we prove 1). It suffices to show that || A2 < H; K
1+2
1Al <
Without loss of generality, assume that ||v||» = 1. Indeed, the
normalization in (14a) implies that the window v/||v||2 leads to
the same estimator as v.

For k=0,. [?}—1 let Z,={i€{0,...,5 —1}}i
mod [M] = k} The sum in (15) can be re- grouped to give:
[4]-1 Oik xik
TED 3 S I
k=0 €Ty O(N i —M)x(N—iK—M)
FiR
= > G @
k=0

The matrices, C, are block diagonal with blocks either
vv ! or zero matrices. Indeed, if p < q are both in Zj, then
gK — pK > M, and the vv T blocks in the pth and gth matrices
in the original sum from (15) have size M x M. As a result,
there is no overlap in the non-zero portions of these matrices.
Now, since v is a unit vector, we have that ||Cy||2 < 1. So, the
triangle inequality implies that || SA||z < [4£]. The bound on
[|Al]2 follows by dividing by S.

To bound | A%, first note that we can rewrite:

.
S—1 Oin1 0iK><1
SA= Z v v
i=0 | Owv—ix—nmyx1]| |Ov—irx—nx1
As a result, we have that
ISA|E =S
2
S—2 S—1 Oprcx1 Ogrx1

+22 Z v v

p=0g=p+1 \ |O(N_px—M)x1 O(N—gK—M)x1

covns (4]0

The inequality follows because the vectors in the inner products
are all unit vectors, and so the inner products have magnitude
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at most 1 by the Cauchy-Schwartz inequality. Furthermore, if
q> [%] ,then g iK' — pK > M, and so the non-zero portions of
the corresponding vectors have no overlap. As a result, at most
[2£] — 1 terms in the inner sum can be non-zero. The bound
on || A||% follows by dividing by S? and simplifying.

Now we prove 2). First note that N = M. We will show that
|B[K]|l2 < & and ||B[ /|3 < & for |k| < M. Thus, in this case,
we can take g = 1+SK .

To bound || B[k]||2, we first analyze the diagonal of SA. Each

entry on the diagonal is of the form

llvllz2=1
SApp= Y vli? < 1, (22)
i€Jp
where 7, C {0,..., M — 1}.

Now, for any p#q, positive semidefiniteness implies
that (SA, )% < (SA,,)(SA;,) <1. It now follows that
|B[K]||2 <  for all |k| < M.

To bound || B[k]||%, symmetry of A combined with (5) and
(6) gives for |k| < M:

< (SA“)(SAz [kl i—[k])
i:\k\

(22) ¥

< ZSA“

i=[k|

N—-1
<Y S84 =8.
=0

Dividing both sides by S? gives || B[k]||% < +.
Now we prove 3). To state the conditions for the original v,
we do not assume that v is normalized, but assume that v[k] > 0.

So, in this case

M—1 vfi—|k[]o]i]
o) = 4 2=tk g IR <M
0 k| > M.

So, it suffices to have M > M (e) and for |k| < M (e) to have

Mf ofi — [kllefi] e
2 -
L 2[Rl
O
APPENDIX D

TRACKING CONSTANTS IN CONCENTRATION BOUNDS

The goal of this appendix is to derive explicit expressions
arising in the concentration bounds used in the paper. In partic-
ular, an explicit bound for the constant in the Hanson-Wright
inequality is derlved

Let ¢o(x) = e* — 1 and define the 1-Orlicz norm by:

/|, = inf {t> O‘E [ex /e 1} < 1}.
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Lemma 7: Let x be a scalar zero-mean random variable.
o If ||x||, <D, then

P(|x|>t) <2 /% >0 (23a)
E [x*F] <2 2’%! VE>0  (23b)
[ M <M wAeR  (230)
E[ ’“] <2020%)Fkl VE>0 (23d)
1
E [exp (\(x* — E[x]))] <exp((46%)*A) VA< 5
(23e)
o IfIE[ ] <e 6h forall)\GR then
Ax? 1
E 22 < 1 24
{exp(202>} < = YA €[0,1) (24a)
Iy, < \/§0 <% (24b)
E [x*] <o? (24c)

Proof: Inequality (23a) follows from Proposition 2.5.2 of
[10].

For (23b), the inequality is trivial at £ =0. For k> 1, we
have:

ey
(23a) [ t%
< 2/ exp 0 dt
0
s:i oo
=+ 2kb2k/ e *sF s
0

= 2%k !

A similar calculation for (23b) is done in the proof of Proposi-
tion 2.5.2 in [10]. We separate the even moments, since a tighter
bound can be obtained in this case.

To prove (23c), we follow the methodology from the proof
of Proposition 2.5.2 in [10]. For |\| < ﬁ we have:

A%x? — A% 2k
k=1
(23b)

< 142 Z \2kp2k

k=1

A2p2

1 — \2p2
<14 4022 < Y

=1+2

Then using e” < x + e,
1
(23c¢) holds for A < oA
For |\| > fb’ we use that

x— (f) (2yx 2

which holds for all x, we have that
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So, in this case we also have

A2p2 2,2
E [e)‘x] <271 <MV

The final inequality follows because e **°0* > % > 2.
Inequality (23d) is trivial at k£ = 0, so assume that k> 1.The
triangle inequality, followed by (23b) gives

I1* = BBk < l1x? [l + Bl
= [|%?||x + E[x*]
<6 (21" +2).
For k = 1,...,5 it can be checked that (2k!)'/* > 2. For k > 6,

the Stirling bound k! > (k/e)* implies (2k!)1/* > 2.
So, for all k¥ > 1 we have

%% — E[x?]||, < 20%(2k)Y/*.

Raising both sides to the kth power proves (23d).
To show (23e), note that for all |\| < ﬁ, we have

E [exp ()\(x2 — E[X2]))] =1+ Z —

(2<3d) 1+2 Z (2202)"
k=2
(2\b%)2
1 —2\2
<1+ 4(200%)2 < exp(4(200%)?).

=142

Inequality (24a) is proved in Appendix A of [9].
For (24b), set A = so that \/7 =2.Sett =

(24a) implies that E |e* i < 2. Thus (24b) holds.
To prove (24c), note that

E[eM] =1+ A2 (E[f] + O(A))

o222

<e 2
_1+A2(2 +O(/\2)>

When \ # 0, re-arranging gives E [x?] < o2 + O(\). Taking
the limit A — O proves (24c). O

Lemma 8: Let x; be 1ndependent zero-mean sub-Gaussian
,n If

, then the covariance is a dlagonal matrix

70 so that

random variables with E [ ’\xl] < e foralli = 1,.
X = [Xl Xn]

that satisfies

E [XXT] < O‘QIn.

Proof: Diagonality is immediate because E[x;x;] = 0 for ¢ #
7. Then the bound on the diagonal follows from (24c). |

A random variable, x is (v, )-subexponential if for all |A| <
é, the following bound holds:

22,2

Elexp(A(x —E[x]))] <e 2~

(Here, «v is just a number, not to be confused with the specific
quantity used for the bounds, «(e), defined in (10).)
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For all t>0, a (v, a)-subexponential random variable
satisfies:

P (x — E[x] > t) < exp (_; min { r t}) (25)

2«

See Proposition 2.9 of [9].
Lemma 9: Let x; be independent scalar-valued zero-mean

random variables such that ||x;||4, <bforalli=1,...,n,and
let a = [a1 an] ! € R™.
E |:e/\aTx:| < 64)\2b2|\a|\§ (26a)
P <Z a;(x? — E[x?]) > t)
i=1
1 t2 t
<exp (— min { , }) (26b)
64 a3’ b*llall

Proof: To prove (26a), we use independence and (23c):

i=1 "

E |:e)\aTx] _ HE [ekaixi} (QSBC)

i=1

€4>\2b2 n a2

Now we prove (26b). Without loss of generality, as-
sume that a; #0, since the terms with a; =0 can be
dropped from the sum. Inequality (23e) shows that x? are
all (4+/2b%,4b?)-subexponential. It follows that a;x? are all
(4v/20%|a;|, 4b|a;])-subexponential. Direct calculation using

independence shows that if || < W, then

E

exp <)\Z amf)] < exp ((46%[|al|2)*A?) .
i=1

Thus > 7, a;x? is (4v/2b?||al|2, 4b%||a]|« )-subexponential.
Inequality (26b) follows from (25) after noting that

) t2 t N 12 t
min — MINS ——5, 75— (-
3204(al3” 4b%||all J 32 biall3” b?(|allw

J

The following is the Hanson-Wright inequality stated with
an explicit constant.

Theorem 5: Let A € C™*"™ and assume that either A € R"*"

or A is Hermitian. Let x; independent zero-mean scalar-valued

random variables with |x;||y, <b for i=1,...,n. Let x =

[x; -+ x,| .Forallt>0,

P (XTAX —E [XTAX] > 6)

1 €2 €
<92 — i 27
= eXp( 2048m1“{b4||A||%’b2||A||2}> @7

Proof: We sketch a variation of the proof of the Hanson-
Wright inequality from [10], [19], and make the associated
constants explicit.

Similar to the proof of Lemma 4, let B = (A + AT) so that
B is a real symmetric matrix with x' Ax =x " Bx, || Bl <
| All2, and | Bl < || Alls.
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First the probability is bounded in terms of the diagonal and
off-diagonal terms:

P (xTAx —-E [XTAX] > e)

<P (Zn: Bii(x} — E[x}]) > 5/2> (28a)

+P ZBinin >6/2
i#]

(28b)

Ifa=[By Bun]. we have that all2 < || Bl < | All»
and [|al|sc < ||Bll2 < ||Al|2. So (26b) implies that

P (Z Bii(x? — E[x2]) > e/2>

- 1 . €2 €

exp | ——— min .
=P Tame M AT A

We will show that the off-diagonal term, Zz £ Bjxix;,

is  (16b%||B||r, 16b%|| B||2)-sub-exponential, ~ and  thus
(16b°|| A|| , 16b%|| A||2)-sub-exponential. Then (25) implies:

P ZBinixj > 6/2

i#j
L (¢/2)” (¢/2)
< _
=P ( g { 25654 A|2.” 1602[| A

<e ! min ¢ €
X — .
=P\ " 2048 BAAIZ B2 Al

So we have

P (XTAX —E [XTAX] > e)

< 2exp <1min{62 E}) .
- 2048 P AlIE " B (IA]l2
What remains is to prove that ). £ B;jx;x; is sub-
exponential. Let §; be IID Bernoulli random variables
with P&, =1)=1. Let &= 5n] "
B;s = diag(d)Bdiag(1,x1 — d). Then

and set

Z Binin = 4E5 [XTng],

i#]
where Es corresponds to averaging over § while keeping x
fixed.

Let x’ be identically distributed to x and independent of x.
Then x ' Bsx is identically distributed to x " Bsx'. So, we have

E exp )‘ZBinin
i#£]
Jensen

< E [exp (4)\XTB(;X)]
=K [exp (4)\XTB5X/)]

(26a) 212 12
< E [exp (16b°X?(| Bsx'[[3)]

=E [exp (4\Es [XTB5X])]
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Let g € R™ be a mean-zero Gaussian vectors with identity
covariance independent of x’, and 4.

:=/32bA 1
B [oxp (106237 B 1)) 27 [exp 571 1) |

=E [exp (ugTBax’)]

(2611) 212 T 2
< E [exp (4p°0°|| Bs gl|3) ]

=E [exp (128)\70*||B; g|3)] -

Now let w = Vg where V is an orthogonal matrix such that

VBsBy VT =diag(s?, ...

,s2), where s1, ..., s, are the sin-

gular values of Bs. Then w is also normally distributed with
mean 0 and covariance I. Let E,, denote expectation with
respect to w while holding the other variables fixed.

Now if || <

L 2042 o1 2
16578 Ve have 128\*b*s7 < 3, since s7 <

| Bsl|2 < || B||3. In this case we have

The first inequality follows because

E [exp (64A2b4||3;g||g)]

—E | Ew [exp (128)\2b*s7w?)]
Li=1
- .
= E T A 1aoN0149
[ n
<E Hexp (128/\2b4512)
Li=1
HBaHF<§||BHF o1283%0%||B||%

Tl—x <e* for all

x€[0,1/2]. Tt follows that the off-diagonal term is
(16b%||B|| , 16b2|| B||2)-sub-exponential. O
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