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Abstract: Oxygenic photosynthetic organisms use Photosystem II (PSII) to oxidize water and reduce
plastoquinone. Here, we review the mechanisms by which PSII is assembled and turned over in the
model green alga Chlamydomonas reinhardtii. This species has been used to make key discoveries in
PSII research due to its metabolic flexibility and amenability to genetic approaches. PSII subunits
originate from both nuclear and chloroplastic gene products in Chlamydomonas. Nuclear-encoded
PSII subunits are transported into the chloroplast and chloroplast-encoded PSII subunits are
translated in a coordinated mechanism. Active PSII dimers are built from discrete reaction center
complexes in a process facilitated by assembly factors. Phosphorylation of core subunits affects
supercomplex formation and localization within the thylakoid network. Proteolysis primarily
targets the D1 subunit, which when replaced, allows PSII to be reactivated and completes a repair
cycle. While PSII has been extensively studied using Chlamydomonas as a model species, important
questions remain about its assembly and repair and are presented here.

Keywords: Chlamydomonas reinhardtii, Photosystem II, assembly, repair

1. Introduction

In oxygenic photosynthesis, visible light is used to energize electrons stripped from
water. Simultaneously, protons are pumped across a membrane generating proton
motive force. The final products, NADPH and ATP, are used for cellular functions
including the fixation of CO: in the Calvin-Benson Cycle (reviewed in (Blankenship
2021)).

Photosystem II (PSII) is the first component of the photosynthetic electron
transport chain and acts as a water-plastoquinone (PQ) oxidoreductase (see (Shevela et
al. 2021; Redding and Santabarbara 2023)). PSII is a large membrane-bound complex
consisting of approximately 20 unique protein subunits (Shen 2015). Within the PSII
core, the Psso primary chlorophyll-a donor undergoes charge separation upon
photoexcitation. On the donor side of PSII, the hole in the ground state of Peso* is filled
by a redox-active tyrosine, Yz, which is in turn reduced by the Mns«CaOs oxygen-
evolving complex (OEC). Following four one-electron oxidation events, the OEC
catalyzes the formation of Oz from two molecules of water. On the acceptor side of PSII,
the excited electron in Peso* is transferred to a pheophytin, a primary PQ acceptor, Qa,
and then a secondary PQ acceptor, Qs (reviewed in (Lubitz et al. 2019; Vinyard and
Brudvig 2017)).

PSII serves as a model system for multiple scientific fields. Protein biochemists
study PSII to learn how membrane protein complexes assemble and function (see
(Nickelsen and Rengstl 2013; Johnson and Pakrasi 2022)). Bioinorganic chemists have
been intrigued by the multiple metal cofactors in PSII including the OEC (see (Young et
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al. 2015)), cytochrome(s) (see (Chiu and Chu 2022)), and a non-heme iron (see (Miih and
Zouni 2013)). Biophysical chemists and biophysicists use PSII to study visible to
chemical energy conversion and exciton and electron transfer reactions (see (Sirohiwal
and Pantazis 2023)). Molecular biologists have used differentially expressed PSII
subunits to learn about bacterial and plastidal gene regulation (see (Allen 2015)) and
have used PSII to study protein turnover mechanisms (see (Su et al. 2023)). Evolutionary
biologists analyze the changes (or lack of changes) in PSII subunits from cyanobacteria
to plants (see (Oliver et al. 2023)). Geologists recognize the role in PSII as the sole
biological source of Oz from water oxidation (see (Fischer et al. 2016)). PSII’s ability to
efficiently perform this reaction using only light as an energy input inspires synthetic
chemists, materials chemists, and engineers to attempt to replicate this activity (see
(Moore and Brudvig 2011)). This incomplete list illustrates the significant interest in PSII
and its application to multiple research areas.

PSII and other photosynthetic complexes are generally conserved from
cyanobacteria to algae to plants, and researchers in this field use all three groups as
model species. For example, many biophysical studies of PSII have used membrane
preparations from market spinach (Berthold et al. 1981; Greife et al. 2023; Mino and
Asada 2022; Wang et al. 2020). The cyanobacterium Synechocystis sp. PCC 6803 has been
widely used to study mutations in PSII subunits (Debus 2008; Nixon et al. 2010; Williams
1988; Ghosh et al. 2019; Avramov et al. 2020; Russell and Vinyard 2024). This mesophilic
species is naturally transformable and has highly efficient homologous recombination
making it a very practical genetic system (Ikeuchi and Tabata 2001; Vermaas 1996).
Detergent-solubilized PSII core complexes from thermophilic cyanobacteria such as
Thermosynechococcus vulcanus have been used for multiple influential structural studies
(Umena et al. 2011; Guskov et al. 2009; Ferreira et al. 2004) and biophysical studies (Kato
and Noguchi 2022; Noguchi 2015; Sugiura and Boussac 2014; Sugiura and Inoue 1999).
While all this work is valuable, the structures (Nelson and Junge 2015) and assembly
and repair mechanisms (Nickelsen and Rengstl 2013) of PSII are not identical between
oxygenic phototrophs.

Over the past seventy years, the model green alga Chlamydomonas reinhardtii
(hereafter Chlamydomonas) has been used to elucidate many discoveries in
photosynthesis and other fields (see (Goodenough 2023; Dupuis and Merchant 2023)).
As a unicellular eukaryote, Chlamydomonas is a practical model species for studying
chloroplast biology. First, this species can grow photoautotrophically, mixotrophically,
or heterotrophically. This trait allows Chlamydomonas to be studied with genetic
mutations in photosynthesis genes that would be otherwise lethal. In addition,
Chlamydomonas can reproduce asexually or sexually. In the research laboratory, cultures
are typically maintained vegetatively. However, sexual reproduction facilitates genetic
approaches. Because of these features, Chlamydomonas has been and is used to discover
key components and mechanisms of PSII function, assembly, and repair.

Here, we review research studies that have used Chlamydomonas to gain insights
into PSIL. We aim to highlight the influential role of this organism in multiple scientific
fields that all use PSII as a model system. We compile PSII-specific data to facilitate
future studies and bring attention to areas where more research is needed.

2. Discussion
2.1. Architecture of the Chlamydomonas chloroplast

In algae and plants, photosynthesis occurs in the chloroplast. Chlamydomonas cells
develop one cup-shaped chloroplast occupying almost half of the volume of the cell
(Sager and Palade 1957; Gaffal et al. 1995) (Figure 1). The light-dependent
photosynthetic reactions are localized to a network of membranes called thylakoids.
These thylakoids are organized in appressed regions (regularly spaced stacks termed
grana in land plants) and non-appressed regions. In Chlamydomonas, active dimeric PSII
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complexes are organized in appressed thylakoids, and Photosystem I and ATP synthase 97
are localized to non-appressed regions (Vallon et al. 1986; Wietrzynski et al. 2020). 98
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Figure 1. An overview of PSII assembly and organization in Chlamydomonas. (1) 101
Nuclear-encoded PSII subunits, including PsbO, PsbP, and PsbQ), are translated in the 102
cytosol and imported into the chloroplast using the TOC TIC system. (2) These 103
complexes are spatially aligned with the chloroplast translation zone near the pyrenoid. 104
(3) PSII subunits assemble in an organized pathway from reaction center intermediates 105
to mature dimers. (4) Active and phosphorylated PSII dimers are enriched in appressed 106
domains of the thylakoid membranes. (5) PSII assembly and degradation occur in non- 107
appressed domains of the thylakoid membranes. Additional details and references are 108
provided in the text. 109
110

The chloroplast emerged from the endosymbiosis of a cyanobacterium. Over the 111
course of evolution, most of the genetic information from the original cyanobacterial 112
genome was transferred to the host nuclear genome. In Chlamydomonas, only 72 unique 113
protein-encoding genes are retained in the chloroplast genome (Maul et al. 2002). As 114
discussed below, most PSII subunits are chloroplast encoded. The synthesis of 115
chloroplast-encoded photosystem proteins is concentrated at the Translation or T-zone, 116
which is located near the pyrenoid (Uniacke and Zerges 2007, 2009; Sun et al. 2019) 117
(Figure 1). Here, newly synthesized proteins are inserted directly into the membrane 118
(Zhang et al. 1999), which is facilitated by a complex containing Alb3.1 and Alb3.2 119
(Gohre et al. 2006; Ossenbuhl et al. 2004). The Chlamydomonas chloroplast is a complex 120
organelle with multiple sub-organellular structures (Wang et al. 2023b). 121
Nuclear-encoded chloroplast proteins (including Chlamydomonas PSII subunits 122

PsbO, PsbP, PsbQ (Delepelaire 1984), PsbW (Bishop et al. 2003), and PsbX (Sheng et al. 123
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2019) (Figure 2)), are translated in the cytosol (Westhoff et al. 1985), targeted to the 124
chloroplast (Bruce 2000), and then imported across the outer and inner chloroplast 125
membranes using energy from ATP hydrolysis (Theg et al. 1989). Chloroplast protein 126

transport is facilitated by the translocon of the outer membrane (TOC) and translocon of 127
the inner membrane (TIC) protein complexes (Shi and Theg 2013; Ramundo et al. 2020; 128

Liu et al. 2023; Jin et al. 2022) (Figure 1). Interestingly, the TOC and TIC complexes 129
spatially align with the T-zone suggesting a highly coordinated system of protein import 130
and translation in the Chlamydomonas chloroplast (Schottkowski et al. 2012; Sun et al. 131
2021; Willmund et al. 2023). 132

133

134

Figure 2. The PSII C2S2 complex from Chlamydomonas from (PDB ID 6KAC) (Sheng 135

et al. 2019). Nuclear-encoded PSII subunits are shown in shades of purple. 136
137

2.2. Transcription of PSII Subunits in the Chloroplast 138
The chloroplast genome encodes 16 of the 21 PSII subunits in Chlamydomonas 139
(Gallaher et al. 2018) (see Figure 2). The most prevalent chloroplast transcript is psbA 140
which encodes the PSII core subunit D1 (Erickson et al. 1984; Bedbrook et al. 1978). 141
However, little of this psbA mRNA is associated with ribosomes (Minai et al. 2006) 142
indicating tight control of translation initiation. The second most prevalent chloroplast 143
transcript is pshD which encodes the D2 core subunit and is found at levels 144
approximately 5-fold less than psbA (Gallaher et al. 2018). 145
The PSII cytochrome bsse subunit is encoded by two genes, psbE and psbF. As 146
described below, cytochrome bsss plays crucial roles in PSII translation control and 147
assembly. In cyanobacteria (Pakrasi et al. 1988), some algae (Cantrell and Bryant 1988; 148
Cushman et al. 1988), and plants (Herrmann et al. 1984), these genes are organized as 149
part of a psbEFL] operon. Surprisingly, in Chlamydomonas, psbE and psbF are separated 150
and have reverse orientations (Mor et al. 1995; Alizadeh et al. 1994). psbF and psbL 151
remain associated and are co-transcribed (Mor et al. 1995). psb] is co-transcribed as part 152
of a cluster that includes psbD (Liu et al. 1989; Cavaiuolo et al. 2017). 153
In Arabidopsis, a mitochondrial transcription termination factor, mTERF5, controls 154

the transcription of the psbEFL] operon (Ding et al. 2019). This regulatory mechanism is 155
likely not conserved in Chlamydomonas given the differences in gene organization. Why 156
Chlamydomonas evolved this unique cytochrome bsss expression system is not 157
understood. 158
2.3. Translation of PSII Subunits in the Chloroplast — Control by Epistasy of Synthesis 159
The de novo synthesis of specific PSII subunits is regulated by the presence or 160
absence of other PSII subunits through a mechanism termed Control by Epistasy of 161
Synthesis (CES) (reviewed in (Wollman et al. 1999)). Here, we discuss CES in 162

Chlamdyomonas PSII assembly, but this mechanism is more general. In Chlamydomonas, 163
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CES has been observed in the assembly of cytochrome bsf, ATP synthase, ribulose-1,5-
bisphosphate carboxylase/oxygenase (Rubisco), and PSI. It is also involved in the
synthesis of Rubisco in plants and Cox1 in yeast mitochondria (see (Choquet and
Wollman 2023)).

In Chlamydomonas, the presence of the D2 subunit is required for D1 translation
(Erickson et al. 1986; de Vitry et al. 1989). Subsequently, the presence of the D1 subunit is
required for CP47 (psbB) translation (de Vitry et al. 1989). This regulation is based on
negative regulation of each unassembled polypeptide interacting with its own mRNA in
the 5" untranslated region (UTR) (Minali et al. 2006).

Regulation of cytochrome bsso translation in Chlamydomonas is more complicated. In
a ApsbE strain, the translation of D1, D2, CP43, and CP47 was not observed or was
strongly inhibited (Morais et al. 1998). As discussed below, cytochrome bss is a
component of early PSII assembly intermediates. The phenotypes observed in ApsbE
may reflect true CES and/or a defect in the assembly pathway.

2.4. Translation of PSII Subunits in the Chloroplast — Regulatory Elements

In the chloroplast, regulation occurs mostly at the translational level and requires
both cis- and trans-regulating elements (see (Bohne and Nickelsen 2023)). All
characterized cis-regulatory elements are in the 5" UTR of the genes (Mayfield et al.
1987b; Nickelsen et al. 1994; Rochaix et al. 1989). Trans-regulating elements (translational
activators) are crucial components of PSII core subunits’ translational control and are
summarized in Table 1.

Table 1. Trans-regulatory elements of PSII subunit translation in Chlamydomonas.

PSII Subunit

Affected Translation Factor Mechanism References
(Danon and
Binds to A-rich region in the psbA 5" UTR; required for| Mayfield 1991;
RB47 .
D1 synthesis Yohn et al. 1998a;
Yohn et al. 1998b)
(Danon and
RB60 Protein disulfide isomerase that redox regulates RB47 Mayﬁeld 199.1;
Kim and Mayfield
1997)
psbA (D1) TBA1 Oxidoreductase that facilitates binding of RB47 to psbA] (Somanchi et al.
transcript 2005)
. . (Barnes et al. 2004;
RB55 Observed to bind psbA mRNA but not characterized Yohn et al. 1996)
Binds to psbA 5" UTR; essential for D1 synthesis; (Ossenbuhl et al.
subunit of chloroplast pyruvate dehydrogenase 2002; Bohne et al.
RBP63 . .
complex that becomes a translational regulator upon | 2013; Neusius et
acetylation al. 2022)
CrHCF173 Homolog of Arabidopsis HCF173; affects D1 (Kafri et al. 2023)
accumulation
NAC1 (Kuchka et al.
Promotes psbD translation at a step that is likely after 1988;
AC115 initiation Rattanachaikunso
psbD (D2) pon et al. 1999)
(Kuchka et al.
NAC2 Promotes psbD stability by binding to its 5 UTR 1989; Nickelsen et

al. 1994)
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Binds to U-rich region of psbD 5" UTR; forms a complex (stenbuhl and
. . Nickelsen 2000;
with NAC2 to control psbD mRNA stability and
RBP40 (RB38) o _ Barnes et al. 2004;
initiation; also observed to bind psbA mRNA although
this interaction may not be specific Schwarz et al.
y p 2007)
Promotes psbB mRNA stability by interacting with its [(Monod et al. 1992;
B (CP47 1
psbB (CP47) Mbb 5 UTR; also affects psbH mRNA maturation Vaistij et al. 2000)
TBC1 (Rochaix et al.
1989; Z d
1BC2 Facilitates psbC translation by binding to its 5* UTR fc?éhaeiigf; 9‘?
psbC (CP43) TBC3 Zerges 1997)
- (Cavaiuolo et al.
MBCI Stabilizes psbC mRNA 2017)

Clearly, translational control of chloroplast encoded PSII subunits is extensive.
Table 1 is very likely incomplete, and more research is needed in this area. While trans-
regulatory elements are discussed here for Chlamydomonas, similar regulation is present
in plants (see (Zoschke and Bock 2018)). In contrast to the chloroplast, cyanobacteria
generally control PSII expression at the transcriptional level (see (Wilde and Hihara
2016)).

2.5. Assembly of Protein Subunits and Cofactors

PSII subunits form discrete subcomplexes before assembling into monomeric then
dimeric reaction centers (illustrated in Figure 1). First, D2 binds cytochrome bssy subunits
PsbE and PsbF. D1 is then translated and binds with other subunits. The binding of the
D1 subcomplex to D2-cytochrome bsso leads to the formation of the first reaction center
(RC) complex. In Chlamydomonas, One-Helix Protein 2 (OHP2) stabilizes D1 during its
translation by promoting chlorophyll association (Wang et al. 2023a). Another assembly
factor, RBD1, promotes D1 stabilization (Calderon et al. 2023; Calderon et al. 2013) and is
also involved in the delivery and/or reduction of the non-heme iron ion near the stromal
surface of PSII (Garcia-Cerdan et al. 2019). Next, CP47 is translated and binds to create
the RC47 complex. The binding of CP43, facilitated by the assembly factor LPA2
(Spaniol et al. 2022; Cecchin et al. 2021), low molecular weight subunits, and extrinsic
subunits forms monomeric PSII.

After the PSII core is assembled, the OEC is assembled from Mn?+, Ca?, and water
in a stepwise process termed photo-assembly (reviewed in (Oliver et al. 2022)). Here,
metal ions and water molecules bind to the apo-OEC PSII protein. Light-driven
oxidation events lead to higher valent Mn ions and the OEC cluster spontaneously
assembles in situ. This process has mostly been studied in plants and cyanobacteria, but
some groups have conducted experiments on Chlamydomonas whole cells (Rova et al.
1996) or isolated membranes (Vinyard et al. 2016). The kinetics and efficiency of OEC
photo-assembly are similar among these organisms suggesting a conserved mechanism
(Rova et al. 1996; Vinyard et al. 2016).

The binding of the extrinsic subunits PsbO, PsbP, and PsbQ occurs late in the
assembly process. (Note that the terms OEE1, OEE2, and OEES3, respectively, have also
been used for these proteins (de Vitry et al. 1989; Mayfield et al. 1987a; Mayfield et al.
1987b).) PsbO is required for oxygen evolution and photoautotrophic growth in
Chlamydomonas and acts by stabilizing the OEC (Mayfield et al. 1987a). This subunit is
conserved in cyanobacteria, algae, and plants (Popelkova and Yocum 2011). PsbP and
PsbQ enhance oxygen evolution activity by promoting the binding of Ca?* in the OEC
and chloride near the OEC (Rova et al. 1994). These subunits are conserved in algae and
plants (Enami et al. 2008). Mature PSII in cyanobacteria contains PsbO, PsbU, PsbV, and
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PsbQ (Gisriel et al. 2022; Umena et al. 2011). The cyanobacterial PsbP homolog is an 225
assembly intermediate (Knoppova et al. 2016) and not a component of the mature 226
complex. 227

PSII reaction centers form supercomplexes with light-harvesting complex (LHC) 228
antenna proteins (see (Redding and Santabarbara 2023)) (Figure 2). In Chlamydomonas, 229
the major complexes mature as trimers and are encoded by a family of nine genes 230
(LHCBM1-9) with high sequence homology (Minagawa and Takahashi 2004). In 231
addition, CP26 and CP29 subunits associate to control the linkage between the PSII core 232
and LHC antenna proteins. Single and double mutants of CP26 and CP29 show 233
impaired photosynthesis and photoprotection (Cazzaniga et al. 2020). The PSII subunit 234
PsbZ (also known as Ycf9) is also involved in supercomplex assembly, particularly 235
under stress conditions (Swiatek et al. 2001). 236
2.6. PSII Phosphorylation and Dephosphorylation 237

In the chloroplast but not in cyanobacteria, phosphorylation of PSII subunits and 238
associated antennae plays a role in supercomplex formation and PSII migration within 239
the thylakoid network. These properties affect both protein complex turnover and state 240
transitions (Delosme et al. 1996) (reviewed in (Tikkanen and Aro 2012)). In plants, the 241
STNS kinase phosphorylates PSII core subunits including D1 (Vainonen et al. 2005; 242

Bonardi et al. 2005) which can be dephosphorylated by the PBCP phosphatase (Samol et 243
al. 2012). In plants, the STN7 kinase phosphorylates LHCs (Bellafiore et al. 2005) (and to 244
a lesser extent, PSII core subunits (Tikkanen et al. 2008)) which can be dephosphorylated 245

by the PPH1/TAP38 phosphatase (Shapiguzov et al. 2010; Pribil et al. 2010). 246

The situation in Chlamydomonas is more complicated. The Chlamydomonas PSII 247
subunits CP43, D2, and PsbH, but not D1, undergo phosphorylation at their N-termini 248
(de Vitry et al. 1991). The Chlamydomonas ortholog of STNS, STL1, has not been fully 249
characterized but is likely to be the PSII core kinase. The phosphorylation of PSII 250
subunits is independent of state transitions, and the specific trigger remains unknown 251
(Lemeille et al. 2010). Chlamydomonas LHCs are phosphorylated by the STT7 kinase 252

(Depege et al. 2003). Unlike plants which have distinct phosphatases for PSII subunits 253
and LHCs, the Chlamydomonas phosphatases CrPPH1 and CrPBCP can dephosphorylate 254

both PSII and LHC (Cariti et al. 2020). 255

We note that PSII phosphorylation and dephosphorylation mechanisms increase in 256
specificity over evolutionary time. These processes are absent in cyanobacteria. Algae 257
use specialized kinases but redundant phosphatases. Plants use specialized kinases and 258
phosphatases. 259
2.7. Proteolysis of the D1 Subunit 260

PSII in Chlamydomonas is undergoing frequent damage and repair. When PSII is 261
isolated from Chlamydomonas cultures grown under optimal conditions, the observed 262
manganese content is lower than expected suggesting that up to 20% of centers are in 263
damaged or assembly states (Terentyev et al. 2019; Terentyev et al. 2020). The PSII D1 264
subunit is most prone to oxidative damage and is rapidly turned over. In Chlamydomonas 265
under saturating light conditions, the half-life of D1 is as short as 20 minutes (Reisman 266
and Ohad 1986). While D1 repair is costly in terms of ATP equivalents (Murata and 267
Nishiyama 2018), replacing only this single subunit is more efficient than degrading and 268
reassembling the entire PSII reaction center. D2 turns over at a slightly slower, but 269
significantly rapid rate under high light conditions (Schuster et al. 1988). 270

The D1 degradation process is well understood in plants where soluble DEG 271

proteases clip loops and the FtsH proteases degrade the resulting fragments. Arabidopsis 272
DEG2 clips a stromal D1 loop to generate ~23 kDa and ~10 kDa fragments (Haussuhl et 273
al. 2001), although D1 is still degraded in the absence of this protease (Huesgen et al. 274
2006). DEG1 clips a lumenal loop or loops to generate ~16 kDa and ~5 kDa fragments 275
(Kapri-Pardes et al. 2007). DEG5 and DEGS8 form a complex and DEGS clips a lumenal 276



Plants 2023, 12, x FOR PEER REVIEW 8 0of 19

loop to generate ~16 kDa and ~18 kDa fragments (Sun et al. 2007). In cyanobacteria, DEG 277

proteases are not required for D1 degradation, but do protect cells from heat and light 278
stresses (Barker et al. 2006) 279

FtsH is essential for D1 degradation in Chlamydomonas. In a Chlamydomonas FtsH 280
mutant strain exposed to light, D1 fragments of ~23 kDa, ~16 kDa, and ~6 kDa 281

accumulate (Figure 3) (Malnoé et al. 2014). However, it is not known which proteases are 282
responsible for these fragments. The Chlamydomonas genome encodes 12 DEG proteases 283

with predicted active protease domains and up to seven are predicted to be localized to 284
the chloroplast (Schroda and de Vitry 2023). DEG1C (Theis et al. 2019) and DEG9 285
(unpublished) are active proteases localized to the chloroplast stroma but are not 286
involved in PSII repair or biogenesis. DEG8 and DEGS are colocalized to the pyrenoid 287
tubules (thylakoids) (Wang et al. 2023b) but have not been further characterized. The 288
identity of the specific protease(s) involved in processing D1 before FtsH remains 289
unknown. 290
C WT WTLC ftsh1-1 ftsh1-1LC
Time (h) 105153-10.5153-10.5153-10.5153
(8] S A e e ——
Full D1 - --- - -
probed with
a-D1 DE- loop R I e - -
D1 DE-loop
fragments o 23kD
Full D1 e
probed with
a-D1 SESSidessrnsnsTeEn
D1 16 kD
fragments
.....-“.qﬁ kD 201
Figure 3. Discrete D1 fragments accumulate in Chlamydomonas in an FtsH mutant 292

(Malnoé et al. 2014). Note the appearance of ~23, 16-20 kDa, and 6-10 kDa fragments in 293
the lower panels. (WT: wild type; LC: chloroplast translation inhibitors lincomycin and 294

chloramphenicol added; ftsh1-1: mutant with defective FtsH protease due to a FtsH1- 295
R420C mutation; OEE2: loading control probing PsbP.) Reproduced by permission of 296
Oxford University Press. 297

298

Intriguingly, a 23 kDa D1 fragment is also accumulated in a Chlamydomonas double 299
mutant of FtsH and RBD1 in darkness. In this situation, D1 degradation is not the result 300
of photodamage and instead may be induced by a conformational change from the lack 301

of RBD1 (Calderon et al. 2023). 302
2.8. PSII Repair 303

Following D1 damage, CP43 dissociates from the PSII reaction center, which makes 304
D1 more accessible to proteolysis (de Vitry et al. 1989). A new D1 polypeptide is 305
synthesized and inserted, and CP43 rebinds (reviewed in (Theis and Schroda 2016)). 306
This process occurs in non-appressed regions of the thylakoids. In Chlamydomonas, the 307
factor TEF30 facilitates D1 insertion and/or CP43 binding during repair of monomeric 308
PSII (Muranaka et al. 2015). Another factor, REP27 (homologous to LPA1 in plants), is 309
also involved in D1 insertion during PSII repair (Park et al. 2007; Dewez et al. 2009). 310

3. Conclusions 311
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As shown here, Chlamydomonas has remained an important tool for studying PSII

from the 1980s to the present. The studies reviewed here have provided deeper insights
into biochemical and evolutionary processes:

PSII assembly in Chlamydomonas provides an excellent model system for the
evolution and interplay between nuclear and organellar genomes.

The CES mechanism well studied in PSII assembly in Chlamydomonas is applicable to
multiple protein complexes in the chloroplast and other systems.

Analogously, the extensive translational control of PSII subunits in the
Chlamydomonas chloroplast has revealed gene regulation strategies.

The PSII phosphorylation, dephosphorylation, and degradation pathways in
Chlamydomonas show intermediate mechanisms between cyanobacteria and plants
thus providing insights into evolution of photosynthetic organisms.

4. Remaining Questions

While Chlamydomonas has clearly contributed much to our understanding of PSII

assembly and repair, key questions remain unanswered. These include:

1.

What are the molecular mechanisms that allow chloroplast protein import and
chloroplast protein synthesis to be coordinated?

Why are the genes that encode cytochrome bsss separated in the Chlamydomonas
chloroplast genome?

What is the full suite of regulatory elements that control translation of PSII subunits
in the chloroplast?

What are the specific triggers for PSII core subunit phosphorylation and
dephosphorylation?

Which protease(s) degrades D1 into fragments before FtsH processing?

With these questions and others, Chlamydomonas will continue to be a practical and
powerful system for PSII research.
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	1. Introduction
	In oxygenic photosynthesis, visible light is used to energize electrons stripped from water. Simultaneously, protons are pumped across a membrane generating proton motive force. The final products, NADPH and ATP, are used for cellular functions includ...
	Photosystem II (PSII) is the first component of the photosynthetic electron transport chain and acts as a water-plastoquinone (PQ) oxidoreductase (see (Shevela et al. 2021; Redding and Santabarbara 2023)). PSII is a large membrane-bound complex consis...
	PSII serves as a model system for multiple scientific fields. Protein biochemists study PSII to learn how membrane protein complexes assemble and function (see (Nickelsen and Rengstl 2013; Johnson and Pakrasi 2022)). Bioinorganic chemists have been in...
	PSII and other photosynthetic complexes are generally conserved from cyanobacteria to algae to plants, and researchers in this field use all three groups as model species. For example, many biophysical studies of PSII have used membrane preparations f...
	Over the past seventy years, the model green alga Chlamydomonas reinhardtii (hereafter Chlamydomonas) has been used to elucidate many discoveries in photosynthesis and other fields (see (Goodenough 2023; Dupuis and Merchant 2023)). As a unicellular eu...
	Here, we review research studies that have used Chlamydomonas to gain insights into PSII. We aim to highlight the influential role of this organism in multiple scientific fields that all use PSII as a model system. We compile PSII-specific data to fac...

	2. Discussion
	2.1. Architecture of the Chlamydomonas chloroplast
	In algae and plants, photosynthesis occurs in the chloroplast. Chlamydomonas cells develop one cup-shaped chloroplast occupying almost half of the volume of the cell (Sager and Palade 1957; Gaffal et al. 1995) (Figure 1). The light-dependent photosynt...
	Figure 1. An overview of PSII assembly and organization in Chlamydomonas. ① Nuclear-encoded PSII subunits, including PsbO, PsbP, and PsbQ, are translated in the cytosol and imported into the chloroplast using the TOC TIC system. ② These complexes are ...
	The chloroplast emerged from the endosymbiosis of a cyanobacterium. Over the course of evolution, most of the genetic information from the original cyanobacterial genome was transferred to the host nuclear genome. In Chlamydomonas, only 72 unique prot...
	Nuclear-encoded chloroplast proteins (including Chlamydomonas PSII subunits PsbO, PsbP, PsbQ (Delepelaire 1984), PsbW (Bishop et al. 2003), and PsbX (Sheng et al. 2019) (Figure 2)), are translated in the cytosol (Westhoff et al. 1985), targeted to the...
	Figure 2. The PSII C2S2 complex from Chlamydomonas from (PDB ID 6KAC) (Sheng et al. 2019). Nuclear-encoded PSII subunits are shown in shades of purple.

	2.2. Transcription of PSII Subunits in the Chloroplast
	The chloroplast genome encodes 16 of the 21 PSII subunits in Chlamydomonas (Gallaher et al. 2018) (see Figure 2). The most prevalent chloroplast transcript is psbA which encodes the PSII core subunit D1 (Erickson et al. 1984; Bedbrook et al. 1978). Ho...
	The PSII cytochrome b559 subunit is encoded by two genes, psbE and psbF. As described below, cytochrome b559 plays crucial roles in PSII translation control and assembly. In cyanobacteria (Pakrasi et al. 1988), some algae (Cantrell and Bryant 1988; Cu...
	In Arabidopsis, a mitochondrial transcription termination factor, mTERF5, controls the transcription of the psbEFLJ operon (Ding et al. 2019). This regulatory mechanism is likely not conserved in Chlamydomonas given the differences in gene organizatio...

	2.3. Translation of PSII Subunits in the Chloroplast – Control by Epistasy of Synthesis
	The de novo synthesis of specific PSII subunits is regulated by the presence or absence of other PSII subunits through a mechanism termed Control by Epistasy of Synthesis (CES) (reviewed in (Wollman et al. 1999)). Here, we discuss CES in Chlamdyomonas...
	In Chlamydomonas, the presence of the D2 subunit is required for D1 translation (Erickson et al. 1986; de Vitry et al. 1989). Subsequently, the presence of the D1 subunit is required for CP47 (psbB) translation (de Vitry et al. 1989). This regulation ...
	Regulation of cytochrome b559 translation in Chlamydomonas is more complicated. In a psbE strain, the translation of D1, D2, CP43, and CP47 was not observed or was strongly inhibited (Morais et al. 1998). As discussed below, cytochrome b559 is a comp...

	2.4. Translation of PSII Subunits in the Chloroplast – Regulatory Elements
	In the chloroplast, regulation occurs mostly at the translational level and requires both cis- and trans-regulating elements (see (Bohne and Nickelsen 2023)). All characterized cis-regulatory elements are in the 5( UTR of the genes (Mayfield et al. 19...
	Clearly, translational control of chloroplast encoded PSII subunits is extensive. Table 1 is very likely incomplete, and more research is needed in this area. While trans-regulatory elements are discussed here for Chlamydomonas, similar regulation is ...

	2.5. Assembly of Protein Subunits and Cofactors
	PSII subunits form discrete subcomplexes before assembling into monomeric then dimeric reaction centers (illustrated in Figure 1). First, D2 binds cytochrome b559 subunits PsbE and PsbF. D1 is then translated and binds with other subunits. The binding...
	After the PSII core is assembled, the OEC is assembled from Mn2+, Ca2+, and water in a stepwise process termed photo-assembly (reviewed in (Oliver et al. 2022)). Here, metal ions and water molecules bind to the apo-OEC PSII protein. Light-driven oxida...
	The binding of the extrinsic subunits PsbO, PsbP, and PsbQ occurs late in the assembly process. (Note that the terms OEE1, OEE2, and OEE3, respectively, have also been used for these proteins (de Vitry et al. 1989; Mayfield et al. 1987a; Mayfield et a...
	PSII reaction centers form supercomplexes with light-harvesting complex (LHC) antenna proteins (see (Redding and Santabarbara 2023)) (Figure 2). In Chlamydomonas, the major complexes mature as trimers and are encoded by a family of nine genes (LHCBM1-...

	2.6. PSII Phosphorylation and Dephosphorylation
	In the chloroplast but not in cyanobacteria, phosphorylation of PSII subunits and associated antennae plays a role in supercomplex formation and PSII migration within the thylakoid network. These properties affect both protein complex turnover and sta...
	The situation in Chlamydomonas is more complicated. The Chlamydomonas PSII subunits CP43, D2, and PsbH, but not D1, undergo phosphorylation at their N-termini (de Vitry et al. 1991). The Chlamydomonas ortholog of STN8, STL1, has not been fully charact...
	We note that PSII phosphorylation and dephosphorylation mechanisms increase in specificity over evolutionary time. These processes are absent in cyanobacteria. Algae use specialized kinases but redundant phosphatases. Plants use specialized kinases an...
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	PSII in Chlamydomonas is undergoing frequent damage and repair. When PSII is isolated from Chlamydomonas cultures grown under optimal conditions, the observed manganese content is lower than expected suggesting that up to 20% of centers are in damaged...
	The D1 degradation process is well understood in plants where soluble DEG proteases clip loops and the FtsH proteases degrade the resulting fragments. Arabidopsis DEG2 clips a stromal D1 loop to generate ~23 kDa and ~10 kDa fragments (Haussuhl et al. ...
	FtsH is essential for D1 degradation in Chlamydomonas. In a Chlamydomonas FtsH mutant strain exposed to light, D1 fragments of ~23 kDa, ~16 kDa, and ~6 kDa accumulate (Figure 3) (Malnoë et al. 2014). However, it is not known which proteases are respon...
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	2.8. PSII Repair
	Following D1 damage, CP43 dissociates from the PSII reaction center, which makes D1 more accessible to proteolysis (de Vitry et al. 1989). A new D1 polypeptide is synthesized and inserted, and CP43 rebinds (reviewed in (Theis and Schroda 2016)). This ...


	3. Conclusions
	As shown here, Chlamydomonas has remained an important tool for studying PSII from the 1980s to the present. The studies reviewed here have provided deeper insights into biochemical and evolutionary processes:
	• PSII assembly in Chlamydomonas provides an excellent model system for the evolution and interplay between nuclear and organellar genomes.
	• The CES mechanism well studied in PSII assembly in Chlamydomonas is applicable to multiple protein complexes in the chloroplast and other systems.
	• Analogously, the extensive translational control of PSII subunits in the Chlamydomonas chloroplast has revealed gene regulation strategies.
	• The PSII phosphorylation, dephosphorylation, and degradation pathways in Chlamydomonas show intermediate mechanisms between cyanobacteria and plants thus providing insights into evolution of photosynthetic organisms.

	4. Remaining Questions
	While Chlamydomonas has clearly contributed much to our understanding of PSII assembly and repair, key questions remain unanswered. These include:
	1. What are the molecular mechanisms that allow chloroplast protein import and chloroplast protein synthesis to be coordinated?
	2. Why are the genes that encode cytochrome b559 separated in the Chlamydomonas chloroplast genome?
	3. What is the full suite of regulatory elements that control translation of PSII subunits in the chloroplast?
	4. What are the specific triggers for PSII core subunit phosphorylation and dephosphorylation?
	5. Which protease(s) degrades D1 into fragments before FtsH processing?
	With these questions and others, Chlamydomonas will continue to be a practical and powerful system for PSII research.
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