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ABSTRACT

After a large language model (LLM) is deployed on edge devices,
it is desirable for these devices to learn from user-generated con-
versation data to generate user-specific and personalized responses
in real-time. However, user-generated data usually contains sen-
sitive and private information, and uploading such data to the
cloud for annotation is not preferred if not prohibited. While it is
possible to obtain annotation locally by directly asking users to
provide preferred responses, such annotations have to be sparse to
not affect user experience. In addition, the storage of edge devices
is usually too limited to enable large-scale fine-tuning with full
user-generated data. It remains an open question how to enable
on-device LLM personalization, considering sparse annotation and
limited on-device storage. In this paper, we propose a novel frame-
work to select and store the most representative data online in a
self-supervised way. Such data has a small memory footprint and al-
lows infrequent requests of user annotations for further fine-tuning.
To enhance fine-tuning quality, multiple semantically similar pairs
of question texts and expected responses are generated using the
LLM. Our experiments show that the proposed framework achieves
the best user-specific content-generating capability (accuracy) and
fine-tuning speed (performance) compared with vanilla baselines.
To the best of our knowledge, this is the very first on-device LLM
personalization framework.

1 INTRODUCTION

While most Large Language Models (LLMs) are still deployed in
cloud servers, more and more LLMs (e.g. Llama-3B with param-
eter size of 6GB) are being deployed on edge and mobile devices
such as prompt-driven robots to assist people in daily life [1] and
provide personalized companionship [2] while preserving users’ pri-
vacy. Traditionally, most LLMs are pretrained in high-performance
servers and then deployed in these devices without further training.
However, such a generic model usually falls behind in adapting to
each individual user’s unique needs and habits. It is often desirable
for the deployed LLMs to further learn from real-world input data
(e.g. user- and LLM-generated texts in their interaction), so that
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the LLMs can be personalized and adapted to the user’s immediate
context in real-time. This allows more accurate and context-aware
responses, improving overall effectiveness of the LLMs.

Although LLMs are pre-trained in a self-supervised way through
next-token prediction, existing work has demonstrated that their
fine-tuning must be supervised, where human-written outputs for
task instructions or annotated outputs in a specific task dataset are
given. For on-device personalization, it is usually impractical to
send new data to the cloud for annotation due to data privacy and
security concerns [3]. As such, any annotation has to be done locally
by directly asking users to provide preferred responses during the
user-LLM interaction. Such annotations need to be sparse because
frequent inquires impede the user experience of LLM. Thus, for
on-device LLM personalization, it is desirable to learn from new
streaming data in-situ with as few annotations as possible.

In addition, for on-device personalization, considering limited
hardware resources on the edge, it is necessary to learn from user-
generated data streams without accumulating a large dataset. In
other words, a small data buffer should be used to form each mini-
batch for training. Existing LLM training methods assume that
each mini-batch is independent and identically distributed (iid) by
sampling uniformly at random from each semantic domain [4].
However, it is challenging to maintain the most representative data
in the buffer so that learning from this buffer efficiently derives a
model that is as effective as if the entire data is used. This is due to
two reasons. First, the streaming data collected on edge devices are
usually temporally correlated [5] and result in a correlation within
each mini-batch. There can be a few rounds of uncontroversial dia-
logue sets before switching to those that contain useful information.
Second, there is no easy way to select representative data for each
domain topic such that the data contain rich information in each
domain topic from non-iid streaming data, due to the fact that the
streaming data are unlabeled. If annotations were available for all
the data, we could easily select representative data based on all
the annotations even if the streaming data were non-iid. Without
addressing these challenges, directly learning from temporally cor-
related non-iid mini-batches would result in poor representations
and inefficient personalization.

To tackle the challenges of sparse local annotations and limited
buffer size for on-device LLM personalization, in this paper, we
propose to utilize embedding entropy, domain-related information,
and embedding similarity to measure data quality from different
perspectives in an unsupervised way. For each dialogue set in the
data, the scores measured by the three metrics reflect the quality
of the data regarding the information it contains as well as the
domain it belongs to. Based on the three metrics, we propose a
data replacement policy for the buffer, which always replaces the
data in the buffer that has the lowest scores in these metrics if the
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buffer is full and the new data have higher scores. To provide anno-
tation needed in the fine-tuning, we ask users to provide preferred
responses as annotations for all the data in the buffer. Finally, mul-
tiple semantically similar question-answer pairs can lead to better
model fine-tuning [6]. Therefore, for each dialogue set selected to
store in the buffer, we utilize the LLM to synthesize semantically
similar pairs, also without user supervision.
In summary, the main contributions of the paper include:

e On-device LLM personalization framework. We pro-
pose a framework to form mini-batches of training data for
fine-tuning LLM on the fly from the unlabeled input stream
generated from user-LLM interactions. It only uses a small
data buffer and eliminates the necessity of storing all the
streaming data in the device.

e Quality metrics for data selection. We propose a data
replacement policy guided by three quality metrics to main-
tain the most representative data in the buffer for on-device
LLM fine-tuning. Annotation is not needed in the data re-
placement process.

¢ Data synthesis for labeled pairs. We propose to use the
LLM model to generate additional data that are semantically
similar to the selected data to enhance fine-tuning quality.

As this is the first work for on-device LLM personalization, no
state-of-the-art is available, and we constructed a few vanilla base-
lines for comparison. Experimental results on multiple datasets
of varying temporal correlation including ALPACA [7], DOLLY
[8], MedDialog [9], Prosocial-Dialog [10], OPENORCA [11], and
Empathetic-Dialog [12] show that the proposed framework achieves
up to 38% higher ROUGE-1 than the baselines and at the same time
greatly improves the learning speed.

TABLE 1: Three example domains and their lexicons.

Domain Example Lexicons

Tg Admin dose vial inhale inject ml pills ingredient
% Anatomy Pelvis arm sinus breast chest lymph tonsil
g Drug ACOVA ACTONEL CARTIA EMGEL

g  Fear bunker cartridge cautionary chasm cleave
'*3 Surprise amazingly hilarious lucky merriment

E Trust advocate alliance canons cohesion

K GloVeTW26 extreme potential activity impact movement
© GloveCC41 symptomatic thrombosis fibrillation

O GloVeTW75 nyquil benadryl midol pepto midol ritalin

2 BACKGROUND AND RELATED WORK
2.1 Background

2.1.1  Text Domain. Text domain usually refers to either the text
topic like medical conversation or the embedding lexicon dictio-
nary such as GloVe embedding dictionary. The lexicons related to
certain text domains are organized as TABLE 1 shown. The medical,
emotion and GloVe are three domains. In each domain, high-level
lexicons such as fear and drug are used to index the detailed lexicons
shown in Example Lexicons in TABLE 1.
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2.1.2  Text Embedding. Text embedding involves converting text
data into machine-readable numeric data. The quality of this em-
bedding can influence subsequent text learning tasks and is also
intrinsically linked to alignment—a crucial aspect of NLP [13]. A
prevalent embedding method assigns unique indices to words based
on their position within a comprehensive vocabulary dictionary.
Consequently, the same word, regardless of its occurrence in dif-
ferent text data, can be represented consistently using its unique
index. In this work, we adopt an embedding technique using a pre-
trained transformer model. This model not only captures semantic
information but also offers superior alignment capabilities.

2.2 Related Work

2.2.1  LLM Personalization. LLM personalization employs fine-tune
the model to enhance its capability of text-understanding and text-
generating in specific domains. While existing works concentrate
more on scaling up the LLM to enable its comprehensive capabilities,
some efforts [14] have been made to fine-tune LLM using relative
small dataset with high quality. However, all these works still in-
volve large-scale computation and high-intensive neural network
training with the overwhelming dataset size regarding on-device
learning, and they assume that each mini-batch can be formed by
sampling from the dataset. But when learning from streaming data,
data is collected sequentially as it is. Random sampling from the
entire input stream to create iid mini-batches is infeasible since
it requires to store all the data, which is unavailable for device
storage and computationally intractable for device computational
resources. Therefore, an approach to form mini-batches on-the-fly
while including the most representative data in each mini-batch is
needed to enable efficient on-device LLM learning.

2.2.2  Data Selection in Streaming and Continual Learning. There
are several supervised streaming and continual learning models
that can learn from a stream of data [15]. To overcome the problem
of catastrophic forgetting of previously seen data, a data buffer is
usually needed to store previous data for rehearsal [16]. However
these works cannot handle text input with user-specific semantic
domains due to the lack of semantic level data processing and
evaluation of these works. Efficiently evaluating input text data and
selecting the most representative text which can shape the LLM
towards user-specific text generation on devices have not been
explored and studied.

3 PROPOSED WORK

In this section, we first provide an overview of our framework. We
then delve into the details, starting from the three metrics we have
found to benefit most for the data selection in LLM personalization,
and demonstrate how they collaborate with the data buffer to select
data. After that, we demonstrate the data synthesis method we use
to augment the selected data and explain the reason to use that.

3.1 Framework Overview

In our framework, we assume the atomic unit of data selection is a
dialogue set, which contains a pair of question and answer during
user-LLM interaction.

As shown in Figure 1, the proposed framework has three stages.
The first stage selects data to store in the data buffer based on
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Figure 1: Overview of the framework. Fine-tune LLMs using
data from data selection and following data generating.

certain quality metrics, and the selected data will be annotated by
the user. The second stage takes the selected (and annotated) data
and synthesizes additional data using the LLM. And finally, the
selected and synthesized data together will be used for fine-tuning.
In the discussion below, we focus on the first two stages where our
framework resides.

Specifically, with details discussed in Section 3.2, in the first
stage, the proposed framework takes each dialogue set in the input
streaming data from user-LLM interaction on-the-fly, calculate the
quality metrics, and discard the data or update the data buffer based
on the metrics. Considering the resource limitation, only a small
data buffer is used to maintain the highest quality data. We will
inquire user about the expected response as annotation for each
selected dialogue set.

With details discussed in Section 3.3, in the second stage, each
selected dialogue set in the buffer is sent to the LLM for generation
of additional dialogue sets that are semantically similar. We use
the user annotation to replace the LLM generated response in the
selected dialogue set. A pre-stored and fixed prompt is given to in-
struct the LLM for data generation. For the generated dialogue sets,
a sanity check is made to make sure that their semantic similarity
with the original dialogue set is above a user-specified threshold.

3.2 Data Selection by Quality Scores

Each dialogue set’s quality is captured by scores from three metrics.
Each of them measures the quality of data from different perspec-
tives as detailed below.

Metric 1: Entropy of Embedding. Entropy of embedding (EOE)
comes from the idea of Shannon’s Entropy [17], where higher en-
tropy means more features to learn. For each input T, EOE aims to
qualify and measure the information of embedding vector E= (1)
generated by an end-to-end embedding function f(-). The embed-
ding vector E= [e1, ez, .. .,eq] where ¢; is the embedding of the
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it" token in the input and q is the length of the embedding. EOE(-)
can then be defined as:

=2, Plei) log ple:)
log(n)

where p(e;) represents the probability distribution of e;, and n
is the number of tokens in T. The term p(e;) log p(e;) represents
the contribution of each token’s embedding to the overall entropy.
The normalization by log(n) adjusts for the effect of the sequence
length, ensuring that entropy is comparable across sequences of
different lengths.

Metric 2: Domain Specific Score. While EOE measures the
amount of information the input data contains, it cannot provide
assessment regarding how much the information can be related
to certain domains. As shown in TABLE 1, the domain of medical,
emotion, and GloVe embedding can include distinct lexicons. The
value of a dialogue set with respect to a particular domain can then
be indicated by the token overlapping between the dialogue set and
the common lexicons in each domain. Note that this would require
a pre-stored dictionary containing common lexicons of domains of
interests in the device, which can be easily constructed. Given a
dialogue set T containing n tokens, and a collection of lexicon set
L={l,l,...,In} from m different domains, the Domain Specific
Score (DSS) can be calculated as:

EOE(E;) = 1)

DSS(T, L) = % > [Tk @)

n
i=1

where it measures the ratio of tokens in T belonging to every do-
main lexicons and output the mean of all ratios across all the do-
mains. As domain can be highly important when adapting LLM to
different tasks, the texts in different domains should not be com-
pared to each other purely using EOE, and the text in the same
domain should be evaluated together.

Metric 3: In-Domain Dissimilarity. While DSS calculates the
general overlapping between T and all domain lexicons, it is impor-
tant to evaluate how much value T brings to the domain it overlaps
most with, i.e., the dominant domain. The dominant domain can
be obtained as:

Domyg = argmax |T N [;] 3)

l;el

When a dialogue set is stored in the buffer, we also store its domi-
nant domain and its embedding. When a new dialogue set is con-
sidered, we identify all the dialogue sets already in the buffer that
have the same dominant domain as the new set, and compute the
dissimilarity between them, which will reflect the amount of new
information that can be brought by the new set to the dominant
domain. Specifically, the In-Domain Dissimilarity (IDD) can be
calculated by cosine embedding similarity:

R
S 1 S oo
IDD(EB) = - > (1= cos(E, L, )) )
i=1

where Ei)om is the embedding vector of the it" dialogue set in
the buffer B that has the same dominant domain as T, and R is the

total number of such dialogue sets in B. cos(ﬁ, Eb ) is the cosine
omg
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similarity between E and E’D , calculated as:
omg

I
cos(ﬁ El ) = —E . EDomd
CPomaT B IEL |

Domg

®)

Note that we store the embedding of all the selected dialogue sets
in the buffer, so that they do not need to be re-computed each time
a new dialogue set is being evaluated.

Quality Score Based Data Selection. When a new dialogue set
arrives and the buffer is full, we need to decide whether this new
set needs to be discarded, or to replace a dialogue set already in the
buffer. If the latter, we also need to decide which set in the buffer
needs to be replaced. In our framework, for each new input dialogue
set T, its EOE, DSS, and IDD scores will be computed and compared
with these scores of all the data in the buffer. If all the three metrics
of T are higher than a dialogue set already in the buffer, then we
use T to replace it. Note that if there are more than one options to
replace, we will randomly select one. Users will then be asked to
provide annotation to this new dialogue set, for example, by asking
“Do you think my response is acceptable and if not what would be
an ideal response?’ If users provided an alternative response that is
preferred, the dialog set will be updated using the user provided
content before being placed into the buffer.

Finally, from the definition of the three metrics and the replace-
ment policy, it is easy to see that for each new dialogue set, our
data selection policy has a linear complexity with respect to the
size of the buffer.

3.3 Data Synthesis

The selected data in the buffer can capture features unique to the
user. However, when such data are used in LLM fine-tuning, the
limited size can confine the effectiveness. To address this prob-
lem, inspired by the observation that multiple semantically similar
question-answer pairs can lead to better model fine-tuning[6], we
deploy a self-generated instruction strategy to generate additional
data.

Specifically, each dialogue set (i.e., “original” dialogue set) in the
buffer will be sent to the LLM to generate similar ones, by giving
the following prompt “Please refine and generate a text semantically
similar to the following text block, no need to answer it, no need to
explain, use [ ] to hold your generated response: ” followed by the
original dialogue set. We run this multiple times to generate several
additional sets for each original one. To avoid complicating the data
replacement, the data synthesis process will only occur right before
the fine-tuning starts each time.

However, sometimes we find that the dialogue sets generated by
LLM, even though the prompt instructs it to generate semantically
similar ones, still differ from the original dialogue set significantly,
if measured by ROUGE-1. As such, we add a sanity check for each
generated dialogue set, and if ROUGE-1 between it and original set
is above a threshold, it will be discarded.

4 EXPERIMENTAL EVALUATION
4.1 Experimental Setup

We first explain the datasets used in the experiments, the settings
under different experiments, and baselines.
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Datasets. To show the generalization capability of our frame-
work, we use multiple and diverse datasets, including ALPACA [7],
DOLLY [8], MedDialog [9], Prosocial-Dialog [10], OPENORCA [11],
and Empathetic-Dialog [12], to evaluate the proposed framework.
These datasets reflect different temporal correlation scenarios in
the input data stream: ALPACA, DOLLY and OPENORCA contain
diversified dialogue sets not bounded to a single domain, and the
input data streams formed on them have little temporal correlation.
While the other three ones are domain-specific, and thus the data
streams are highly temporal correlated. All these datasets are fully
annotated. However, our framework only uses annotations for the
data selected to finetune the LLM; and the fully annotated dataset
is used in the evaluation.

Default Experimental Setting. We use a pre-trained Llama-3B
[18], one of the most popular on-device LLM, as the model embed-
ded on devices. For each dataset, we randomly choose 10% of the
data to simulate input data stream and run our framework on it for
model fine-tuning, and the remaining 90% is reserved for evaluation
of the fine-tuned mode. For every 800 dialogue sets received in the
input stream, we will start the fine-tuning process with 100 epochs
using optimizer AdamW. The buffer will not be cleared after the
fine-tuning, and the data selection continues after the fine-tuning
is done. We obtain input text embedding from Llama-3B last hidden
layer during its inference. Unless otherwise mentioned, in data
synthesis each dialogue set in the buffer is sent to LLM to generate
three additional sets. With the selected and synthesized data, we
fine-tune Llama-3B using Low-Rank Adaptation (LoRA) [19], a pa-
rameter efficient fine-tune technique. Unless otherwise specified,
the batch size is 128 with fixed learning rate of 0.0003. For LoRA
settings, the trainable layers are the QKV layers (q_proj, k_proj,
v_proj) and attention output layer (o_proj), max sequence length
is 512, LoRA rank r is 8, loRA metrics scaling facotr alpha is 16,
and LoRA dropout rate is 0.05. For consistency, when we use the
fine-tuned model to generate text for evaluation, the temperature ¢
is set to 0.5 for all experiments.

As for the data selection buffer design, for efficient memory
operations, we divide it into bins of equal size and each bin is
able to hold the text of one dialog set, its domain as well as its
embedding. Considering that the maximum dialogue set is of length
1,024 tokens (512 tokens x2) and the embedding is a floating point
vector of length 4,096 for Llama-32B, the bin size is set to 22KB. In
the experiments, we will explore the impact of the buffer size. To
make sure that our framework can be applied to the various edge
devices, we explore buffer sizes from 32 bins (704KB) to 512 bins
(11MB). To efficiently evaluate our framework, we use compact,
150 watt, single-slot A10 GPU, which is much smaller than 300
watt double-width A100 GPU. A10 is compatible to fit into robotics
applications.

ROUGE-1 as Evaluation Metric. After the LLM model is fine-
tuned using our framework, for each dialogue set in the test set,
we feed the same user question to the model and collect the re-
sponse generated. The quality of the data can then be evaluated
by measuring the overlapping between the generated responses
and the responses in the test dialogue set under the same question,
which can be captured by ROUGE-1. ROUGE-1 is commonly used
in natural language processing to measure the overlap of unigrams
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(a) ALPACA

(d) Empathetic-Dialog

(b) DOLLY

(¢) OPENORCA
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(c) Prosocial-Dialog

(f) MedDialog

Figure 2: The learning curve of our proposed framework, Random Replace, FIFO Replace, and K-Center with buffer size 281KB
on datasets (a) ALPACA (b) DOLLY (c) Prosocial-Dialog (d) Empathetic-Dialog (¢€) OPENORCA (f) MedDialog.

(single words) between the machine-generated summary and a ref-
erence summary in terms of F-1 score [20]. A higher ROUGE-1 score
suggests that the generated text is more similar to the reference
text.

TABLE 2: ROUGE-1 of different methods on six datasets
with data buffer 2816KB

Random FIFO K-Center Ours

ALPACA 0.2457 0.2013 0.2384 0.3736
DOLLY 0.2417 0.1976 0.2403 0.3465
Prosocial 0.2375 0.2190 0.2147 0.3062
Empathetic 0.2352 0.1902 0.2098 0.3260
OPENORCA 0.2286 0.1833 0.2048 0.2813
MedDialog 0.2465 0.2074 0.2204 0.3429

Baselines. As this is the first work on on-device LLM personal-
ization, we do not have state-of-the-art for comparison. As such,
we construct a few vanilla baselines. Random Replace is recently
used for continual learning [21]. It selects data uniformly at random
from new data to replace the ones already in the buffer. FIFO Replace
is also recently employed for continual learning [21]. It replaces
the oldest data in the buffer with new data. K-Center is a SOTA
active learning approach [22] which selects the most representa-
tive data by performing k-center clustering in the features space.
While not directly used in LLM personalization, these works also
do not require labeling information and seemingly simple, and have
demonstrated superior performance in maintaining image data for
continual learning. In addition, to demonstrate the importance to
consider all the three metrics EOE, DSS and IDD, we will perform
ablation study on additional three baselines, each only using one
of the three for data selection. For fair comparison, for all of these
methods we used the same data synthesis based on the selected
data as used in our framework.

4.2 Results

We start with comparing the ROUGE-1 of Random Replace (Ran-
dom), FIFO Replace (FIFO), and K-Center on all the datasets using
buffer size 128 bins (2816 KB). The results are presented in TABLE 2.
From the table we can see that our method outperforms all the
baselines by a significant margin, indicating that its superiority in
both weak and strong temporal correlation settings. The results also
show that the most competitive baseline is the seemingly simple,
yet surprisingly effective approach random replace. These results
match the results in [23] for image classification tasks, where a
random replacement policy outperforms elaborately designed ap-
proaches.

TABLE 3: ROUGE-1 based on MedDialog with different
buffer sizes.

Buffer Size (KB)  Ours Random FIFO K-Center
176 0.3040 0.2281 0.2383 0.2160
352 0.3447 0.2455 0.2304 0.2175
704 0.3353 0.2536 0.2389 0.2080
1408 0.3353 0.2791 0.2417 0.2204
2816 0.3940 0.2638 0.2309 0.2073
5632 0.3944 0.2748 0.2381 0.2167
11264 0.4215 0.2834 0.2315 0.2122

Next, as a very important profiling tool for on-device learning,
we evaluate the learning curve of the proposed framework and
the baselines on these datasets. The learning curve represents how
well the LLM can be fine-tuned to generate user-specific text with
respect to the number of input dialogue sets seen as the data streams
in. The same buffer size is used. The results are depicted in Figure 2
(a)-(f), respectively. From all the figures, we can clearly see that the
ROUGE-1 of the proposed framework consistently increases with
the increase of seen data, while the ROUGE-1 of the baselines only
demonstrate minor improvement.

In addition, we evaluate the impact of buffer size on the perfor-
mance of the proposed framework. The model is trained on the
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MedDialog dataset. The number of bins in the buffer is in {8, 16, 32,
64, 128, 256, 512} corresponding to a buffer size of {176KB, 353KB,
704KB, 1408KB, 2816KB, 5632KB, 11264KB} respectively. The cor-
responding learning rate is scaled to {2, 3, 4, 5, 7, 10, 14} X 1073,
roughly following a learning rate o Vbatch size scaling scheme.
The proposed framework consistently outperforms the baselines un-
der different buffer sizes. As shown in TABLE 3, under the different
buffer sizes, the ROUGE-1 by the proposed framework maintains
a clear margin over the baselines. Besides, the margin becomes
larger as the buffer size increases. This is because a larger buffer
size provides the framework a better opportunity to select more
high quality data, and the framework can leverage this opportunity
to maintain richer quality data for learning, while the baselines
cannot. Also, the proposed framework achieves higher ROUGE-1
when the buffer size becomes larger. This is because a larger buffer
size provides a larger batch size, which naturally benefits the LLM
fine-tuning.

TABLE 4: ROUGE-1 of our framework and the baselines
using only one of the three metrics EOE, DSS or IDD on six
datasets with buffer size 2816KB.

EOE DSS IDD Ours

ALPACA 0.2821 0.2726 0.2950 0.3736
DOLLY 0.2782 0.2633 0.2247 0.3465
Prosocial 0.2617 0.2441 0.2324 0.3062
Empathetic 0.2661 0.2726 0.2707 0.3260
OPENORCA 0.2468 0.2362 0.2468 0.2813
MedDialog 0.2608 0.2726 0.2931 0.3429

Finally, we perform two ablation studies. The first one is to
demonstrate the advantage of simultaneously considering all the
three quality metrics EOE, DSS and IDD, we modify our framework
to use only one of them for data replacement, those only considering
one of them. The results on all six datasets are presented in TABLE 4.
From the table we can see that simultaneously considering all the
metrics always achieves the highest ROUGE-1.

Figure 3: ROUGE-1/training time on MedDialog dataset with
different number of dialogue sets generated from each origi-
nal set in the buffer.

The second study shows the relationship between the number
of additional sets generated during data synthesis for each original
dialogue set in the buffer and ROUGE-1/training time per epoch.
From Figure 3 we can see that the maximum gain in ROUGE-1 can be
attained when six additional sets are generated, while the training
time consistently increases. Generating more then six dialogue
sets will not further boost the performance, but would cost more
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time to fine-tune the model. For the sake of balanced efficiency
and preference , as mentioned in the experimental setup, in all the
experiments we generated three additional dialogue sets.

5 CONCLUSION

In this paper, we present a novel framework for on-device person-
alization of a large language model (LLM) on edge devices. Our
approach addresses privacy concerns by selecting and storing rep-
resentative data locally in a self-supervised manner. In addition,
it uses semantically similar pairs of question texts and expected
responses generated by LLM to enhance on-device learning perfor-
mance. Our framework minimizes the need for frequent user anno-
tations, and overcomes the challenge of sparse on-device storage.
Experimental results show that our framework achieves superior
user-specific content generation accuracy and fine-tuning speed
compared to vanilla baselines. This paper marks the first on-device
LLM personalization framework.
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