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Abstract—One of the major obstacles along the way of electric
vehicles’ (EVs’) wider global adoption is their limited driving
range. Extreme cold or hot environments can further impact the
EV’s range as a significant amount of energy is needed for cabin
and battery temperature regulation while the battery’s power
and energy capacity are also impeded. To overcome this issue,
we present an optimal control strategy based on nonlinear model
predictive control (NMPC) for integrated thermal management
(ITM) of the battery and cabin of EVs, where the proposed
NMPC simultaneously optimizes the EV range and cabin comfort
in real time. Firstly, the components of the designed ITM system
are introduced and control-oriented modeling is done. Secondly,
to demonstrate and validate the benefits of the proposed ITM, an
optimal control problem is defined and dynamic programming
(DP) is employed to find the global optimal solution. Thirdly,
for practical implementation, NMPC-based control strategy is
developed, where the cost function design and weights calibra-
tion are done in comparison with DP global optimal solution.
Weight-tuning results show that our NMPC-based approach can
achieve close driving range maximization as compared to the
DP benchmark while ensuring cabin comfort. The developed
NMPC-based ITM strategy is further illustrated by comparing its
performance to two additional benchmark strategies, i.e., rule-
based control and cabin heating only. Finally, our simulation
results also identify several important factors that impact the
benefits of the proposed NMPC-based ITM, which are used to
summarize the operating conditions under which the proposed
ITM is critically needed.

Index Terms—Model predictive control, electric vehicles, ther-
mal management, cabin comfort.

I. INTRODUCTION

Electric vehicles (EVs) will comprise a significant portion
of the transportation fleet in the foreseeable future, due to the
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financial effect of fluctuating oil prices, the growing public
interest in green and renewable technologies, and regulations
and policies for upcoming fuel economy standards [1]-[8].
For example, California will ban sales of new gasoline-
powered cars by 2035 [9]. However, there are still several
obstacles for widespread adoption of EVs, including the higher
marginal price of EVs relative to conventional vehicles, limited
driving range, degenerated performance in low temperatures,
and safety and stability concerns in high temperatures and
autonomous driving mode, to name a few [1], [10]-[15].

In particular, cold weather conditions have three major ef-
fects on EVs. Firstly, cold weather itself leads to degraded Li-
ion battery performance in terms of lower available energy and
power capacity as well as reduction in battery life. Generally,
the poor performance of Li-ion batteries in cold weather results
from the significant increase of battery internal resistance,
which leads to a strong opposing force on a running battery
[16]. Furthermore, the Li-ion battery cell anode may expe-
rience lithium plating, a dangerous mechanism in low tem-
peratures, which causes a reduction in the energy and power
capabilities of the Li-ion battery and severe battery degradation
[17]. Secondly, the driving range of EVs is also adversely
affected by cold weather due to the restricted regenerative
charging, limited propulsion power, and reduced capacity, etc.
To this end, 13% all-electric-range reduction for a plug-in-
hybrid EV operating at —7 °C ambient temperature, compared
to driving at 0 °C, is reported for a battery hardware-in-the-
loop study conducted at Argonne National Laboratory [18].
Note that nearly 34% and 12% of this range reduction is
due to the restricted regenerative power and increased thermal
resistance, respectively [18]. Thirdly, to mitigate the negative
impact of cold weather, a significant portion of battery energy
is used for the purpose of controlling the cabin and battery
temperatures, resulting in EV range reduction. In addition
to the EV performance degradation, the control design for
EV thermal management becomes more challenging with the
inclusion of cabin temperature regulation and more harsh
environmental circumstances.

Due to the challenges brought on by cold weather conditions
as outlined above, thermal management strategies for EVs
have started to penetrate the market, and extensive research
efforts have been taken on this subject. From a control
engineering standpoint, the literature has addressed the thermal
management of the battery and/or cabin for heating or cooling
using methods such as nonlinear model predictive control



(NMPC) [19]-[26], fuzzy-logic control [27], dynamic pro-
gramming (DP) [28]-[30], and PID control [31], [32], with the
majority of the works being concerned with cooling controls.
For example, [28] proposes an iterative DP-based battery
thermal management strategy for connected and automated
hybrid EVs. References [19], [23], [33] are based on (N)MPC,
where their objective is to minimize the energy consumption
of the thermal management system while satisfying various
constraints. In [21], [22], vehicle connectivity is assumed and
multi-layer MPC is developed to improve the battery energy
efficiency.

In the context of battery and cabin heating, there are a few
prior works [18], [20], [34], [35]. Authors in [20] studied the
battery thermal management of intelligent connected EVs at
low temperatures based on NMPC, where heat pump (HP)
with an electric heater is used to provide heat for the liquid
heating loop for battery temperature regulation. The results
demonstrate that the developed strategy can reduce the heating
time and energy consumption. NMPC is also used for control
of cabin temperature and air quality in EVs equipped with HP
in cold weathers [34]. Rule-based control of battery external
heating for EVs during driving at low temperatures is also
studied in [35], where in this case the driving range of an
EV is compared with the case where maximum heating power
is used as well as with the case when battery is not heated.
Promising improvements are reported in [35].

Despite these progresses, the integrated cabin and battery
thermal management for extreme cold condition has not been
thoroughly investigated in the literature. Specifically, the in-
teraction between the driving range, cabin comfort, and power
consumption of the thermal management (TM) system has
not been fully evaluated, particularly at subzero temperatures.
Note that in the existing works that have similar scope [18],
[35]-[37], the models and the made assumptions in these
works may not accurately reflect the battery performance in
low temperatures, and certain important cabin/battery aspects
are neglected. For example, in [35], the regenerative power loss
is overlooked in the quantification of the range loss, which in
fact is one of the major energy loss sources in below-freezing
conditions [18], [36].

In this paper, we present an NMPC-based integrated thermal
management (ITM) of battery and cabin in cold weather
conditions, with the focus on its effect on the driving range
of EVs and cabin comfort requirements. Our findings show
that there exist important trade-offs among battery perfor-
mance improvement (due to the battery temperature rise), the
cabin comfort requirements, and the power consumption of
the thermal management system. Furthermore, our simulation
results demonstrate that the advantages of an increase in EV
range resulted from battery heating depend on many factors
and circumstances, such as ambient temperature, driving cycle
profile and behavior, control strategies, driving time, etc. The
NMPC’s capability to effectively forecast the future system
trajectories for a sufficiently long time is another important
aspect related to the control design phase.

Our contributions and key advancements are summarized as
follows.

1) A unified, integrated and comprehensive thermal man-

agement problem is formulated, by developing control-
oriented models for each component and comprehen-
sively considering conflicting metrics and constraints.

2) An efficient NMPC-based ITM strategy is developed
to simultaneously optimize EV driving range and cabin
comfort while dealing with system constraints. Dynamic
programming is employed to provide the optimal global
reference to fine tune the cost functional terms in NMPC
for achieving improved performance.

3) Simulations of the proposed NMPC-based ITM strategy,
together with two benchmark control strategies, includ-
ing rule-based control and cabin heating only, are carried
out to demonstrate the effectiveness of the proposed
approach and to identify factors and conditions under
which the proposed ITM is critically needed.

To the best of the authors’ knowledge, this is the first study
that provides modeling of integrated thermal management
of battery and cabin for control purposes with a focus on
comprehensive investigation on the EV driving range and
cabin comfort in cold weather conditions.

The rest of the paper is structured as follows. In Section
II, the proposed ITM system for battery and cabin heating are
introduced with models for major components. The NMPC
problem, together with the investigation of its stage cost design
and calibration, is discussed in Section III, whereas in Section
IV, simulation results are presented with discussions. Finally,
Section V concludes the paper.

II. DESIGN & MODELING

We begin this section with an overview of the operation
conditions of the proposed ITM design for battery and cabin.
Specifically, the coolant cycle of the ITM system (for heating)
under examination is depicted in Fig. 1. First, the coolant
with a flow rate of 7 and a temperature of 7y is heated by
the HP to 7). The heated coolant is then directed to the 3-
way valve, where the controller governs the coolant flow rates
for the cabin and battery branches. The coolant flow for the
cabin heating, whose flow rate is denoted by 1., passes the
heat exchanger (HX) and indirectly heats the inlet air to the
cabin and becomes cooled. The inlet air to the cabin heats
the cabin air and then transfers back to the HX to complete
the cycle. On the battery side, the coolant flowing through the
battery branch heats the battery, whose flow rate is denoted
by 1. The coolant cycle is then completed when the coolant
flow for the cabin and battery is mixed to achieve temperature
T4. We go into further detail about each part of the proposed
integrated battery and cabin thermal management system in the
subsections that follow. The list of notations for the proposed
ITM systems is provided in Table I.

A. Heat pump model

As shown in Fig. 1, the coolant with low temperature T}
is heated by an HP, the heat rate of which is denoted by
Q mp. The coolant then reaches a higher temperature 77 that
is necessary for further circulation of the coolant to heat the
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Fig. 1: Schematics of the integrated battery and cabin thermal
management (heating) system.

TABLE I: Notations for the Proposed ITM

Notation Physical meaning unit
Ty coolant temp. after HP °C
Ty clnt. temp. after heat exch. with battery | °C
T3 clnt. temp. after heat exch. with cabin °C
Ty coolant temp. after mixing °C
Ty battery temp. °C
Ts inlet air to cabin temp. °C
Tea cabin temp. °C
Tep cabin body temp. °C
e cabin branch coolant flow rate %
my battery branch coolant flow rate %
m total coolant flow rate %

Neomp compressor speed rpm

cabin and the battery as will be shown in the subsequent texts.
The governing equations for this heat exchange are:

CiTy = Qup + 1nce(Ty — Th), (1a)
m = my + M, (1b)
where C'y = myenice is the thermal inertia of the heated

coolant, m;,; is the total mass of the coolant in the cycle,
c. is the specific heat capacity of the coolant, and 1 is the
total coolant flow rate. The coolant liquid is G-48 ethylene-
glycol which is a common choice for vehicles thermal loop.
The main advantage of employing HP instead of PTC (positive
temperature coefficient) heaters is that it has a coefficient of
performance (COP) greater than one, thus improving the range
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Fig. 2: COP of the proposed ITM at different ambient tem-
peratures based on to experimental data of reference [40]
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Fig. 3: Heat capacity of the proposed ITM at different ambient
temperatures based on to experimental data of reference [40]

of EVs. Note that HP has already been deployed by EV makers
such as Tesla (e.g., Tesla Model Y) and Nissan (e.g., Nissan
Leaf) [38], [39].

In this paper, we consider ambient temperatures and com-
pressor speeds as variables and assume fixed indoor air re-
circulated percentage and outdoor air velocity. Thus, the heat
provided by HP follows from the definition of the COP, i.e.,

_ QHP(Tamba ncomp)

COPHP(Tamba ncomp) - P . ) (2)

where Q mp is the heat capacity, P, is the electric power
consumption of the HP mostly from compressor, and CO Py p
stands for the coefficient of performance of the HP cycle.
In this regard, we take the compressor speed, ncomp, into
consideration as another control variable. After ngom, is
decided upon and T, is known, the experimental data studied



in [40] can be utilized to calculate the HP’s electrical power
consumption. In [40] the performance of an EV’s HP is
evaluated experimentally in cold climate conditions where the
results are summarized in Figs. 2 and 3. In these two figures,
COP and heat capacity of the EV’s HP are shown at various
ambient temperature and compressor speeds. According to
the findings of [40], at a fixed ambient temperature, fixed
indoor air recirculated percentage, fixed outdoor air velocity
and fixed inlet air flow rate, COP and heat capacity change
linearly w.r.t compressor speed so one can easily interpolate
the performance of the HP based on the experimental data.
Interested readers are referred to [40] for more details on the
experiments resulting in quantifying the HP performance.

B. Cabin heat exchanger (HX) and cabin dynamics

It is generally difficult to model the thermal dynamics of
a vehicle cabin, especially if it includes an HVAC system, as
there are many factors and variables to take into consideration
[34]. The model should be sufficiently detailed to correctly
forecast the cabin’s thermal behaviors. In the meantime, a
low-complexity, control-oriented model is favored due to real-
time computation constraints. In this regard, we follow the
developments in [34], [41] for modeling the inlet air to cabin
heat exchange as well as the cabin air dynamics. As previously
mentioned, the coolant flow rate for the cabin branch, m.,
passes through an HX with high temperature 7 to heat the
inlet air to cabin and exits the HX with low temperature 75.
The heated inlet air with high temperature 7§ enters the cabin
with flow rate 1, heats the cabin air with temperature T,,,
reaches the cabin temperature, and then exits the cabin. As
a result, the following two equations can be used to model
the heat exchange between the coolant and the cabin inlet air
loop:

Cng = chC(Tl — Tg) — GHx(Tg — 1}3)7
CGTG = Cama(Tca - TG) + GHX(TB - TG);

(3a)
(3b)

where (3a) models the heat exchange for the coolant flow in
the cabin branch HX and (3b) characterizes the heat exchange
for the inlet air to cabin mass. In these two equations, C3 =
Meint,cCc 18 the thermal inertia of the coolant in the cabin
branch, m.ns, . stands for the cabin branch coolant mass, Cs =
mgyC, 1S the thermal inertia of the inlet air to cabin, m, is
the inlet air mass, c, is the specific heat capacity of air, and
G g x 1s the heat transfer coefficient between the inlet air and
the coolant.

For modeling the various elements of cabin components,
it should be noted that the cabin air — the most important
element for the thermal management task — has interaction
with the inlet air to the cabin, the cabin body, cabin shell and
interior, the passengers, and solar radiation, etc. The inlet air
to the cabin serves as the primary heating element of the cabin
components. For modeling the cabin dynamics, we consider
the following second order model [41], [42] with the cabin air

temperature and cabin body temperature as state variables:

CcaTca = 7;naca(,-_FG - Tca) + Qmet + achcb(ch - Tca);
(4a)

chch - _achcb(ch - Tca) + Qsol + aabAab(Ta - ch)a
(4b)

where (4a) represents the cabin air temperature dynamics,
and (4b) represents the vehicle body temperature dynamics.
Equation 4a summarizes the most important factors that affect
the cabin air temperature, including the inlet air to cabin
(the first term on the right), Qmet that accounts for the
metabolic heat from the passengers, and the heat exchange
with other components such as cabin shell, window, and wall
(as represented by the last term and denoted by heat exchange
with cabin body). In Equation 4a, o, is the lumped heat
transfer coefficient per unit area, A is the heat transfer
surface area between the cabin air and cabin body, T, is
the cabin body temperature, and lastly C., = mc.c, is the
cabin air thermal inertia with m,, being the cabin air mass.
In Equation 4b, the first term on the right side accounts for
the heat transfer from cabin air to the cabin body; the second
term accounts for the heat absorbed by the sun; and the last
term accounts for the heat transfer between the ambient air
and the cabin body. Here Cy, = mpcep is the cabin body
thermal inertia with m,; being the cabin body mass and c.,
being the specific heat capacity of the cabin body.

C. Pump model

According to Fig. 1, the pump is positioned after the 3-way
valve that mixes the coolant flow from the battery and cabin
before it reaches HP. The fluid’s mixing temperatures can be
determined as

1 . .
T, = E(mbTQ + 1 T3). @)

The pump is tasked to maintain the desired flow rate by
performing mechanical work to the coolant. The power con-
sumption of the pump is represented by:

Ppump,m _ L . Appumpm
T]'m 7]7” pC
where Ppymp,m is the mechanical power, 7, is the power
conversion rate of the pump, p. is the coolant density, Appump
is the pressure drop of the pump, which is related to the mass
flow rate of the coolant according to follows [20]:

. (6)

Poump =

APpump = 0.92711 + 0.5861m — 0.143. (7)

D. Electrothermal battery model and battery pack

The battery cell used to construct the battery pack is
modeled using the popular Equivalent Circuit Model (ECM)
[8], [16], [43]-[45]. As shown in Fig. 4, V,. denotes the
open-circuit voltage of the cell; R, is the ohmic resistance;
R, and C, are the polarization resistance and capacitance
respectively. Furthermore, ¢ is the current with positive value
for discharge and V' denotes the output voltage (or terminal
voltage) of the cell. V, is the voltage drop on R, and V, is
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Fig. 5: Open circuit voltage values with respect to SOC.

the polarization voltage on R,. The dynamics of the R — C
pair can be represented by:

vV, i
_RPCP " EP’ (8)

‘./1) =
and the terminal voltage of the battery is

V=Voe —iR, = Vp. ©)]
In order to maintain the model’s accuracy, it is crucial to take
into account the variation of the open circuit voltage V. with
respect to state-of-charge (SOC) [43]. Similarly, according to
[16], variations of the ohmic resistance, polarization resistance
and capacitance with respect to both battery temperature and
SOC are also considered. The battery cell SOC dynamics is
specified by Coulomb counting as follows.

T

e T

(10)
where C\¢; is the cell capacity in Ah.

We assume that the battery pack is grouped by identical
cells with similar initial SOC in our simulations, with .S cells
in series and P cells in parallel. Since the dynamic response
of the RC circuit has almost reached steady state after a brief
period of time, it can be assumed that the current flowing

Rpaci (ONM)

Fig. 6: Internal resistance of the battery pack with respect to
SOC and battery temperature.

through the polarization resistor is equal to the overall current
[35]. Hence one can write

Rpact = S(Ro + Rp), (11a)
Z‘pack = P’L, (11b)
Voc,pack: = S%cv (llc)

where Rp,qck; tpack and Vo pack are the overall ohmic resis-
tance of the battery pack, current of the battery pack and open
circuit voltage of the battery pack, respectively. The internal
resistance and the open circuit voltage of the battery pack
used in our simulations correspond to the behaviors depicted
in Figs. 5 and 6.

Furthermore, the battery pack SOC is the averaged SOC
across the battery cells, which equals to, with the identical
cell assumption, each battery cell’s SOC. According to [1],
[18], [36], the battery capacity is also dependent on the battery
temperature, and we use the data from [1] to quantify the
available percentage of battery capacity relative to the capacity
at 25°C' versus battery temperature, as shown in Fig. 7.

For modeling the thermal behavior of the battery, the battery
pack is considered as a lumped mass with specific heat capac-
ity cp, mass of my and temperature 73. The battery is heated
by the coolant which enters the battery from one side with high
temperature 73 (see Fig. 1), circulates around the battery and
exits from the other side of the battery with cooled temperature
T5. Therefore, one can write the differential equation for the
battery temperature as:

CoTy = Rpackinger + muce(TL — Tz) — ha(Tu — Ty). (12)

Here C} = ¢ymy is the thermal inertia of the battery, and the
first term on the right hand side considers the internal heat
generation of the battery. The second term in (12) accounts
for the heat from the coolant to the battery, and the third
term is the heat transfer rate between battery and the ambient
air, where T, is the ambient air and h, is the heat transfer
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TABLE II: Parameters for the Proposed ITM Model.

S, P cali) | clik] mom[AR] | melkg] hy[ ] ha[ %] Meint k9]
96, 3 840 2433 185 50 500 15 15
mb[kg] Cb[kgiK} npump pc[%] Tnclnt,b[kg] mclnt,c[kg} GHX [%} CakgiK
250 1130 0.95 1114 11.75 3.25 400 1008
ma [kTg]; mg [kg} Meq [kg] Qmet [W] Qsol [W] Qep [m%] Qab [m%] {Ab7 Acb}[mQ] Aab [m2]
0.125,0.129 4.25 400 200 30 500 {3,5} 8

TABLE III: Component modeling in the literature and their differences with our proposed model.

References
components [19] | [20] | [22] | [24] | [25] | [27] | [29] | [30] | [32] | [33] | [34] | [35] | [41] | Ours
HP or AC loop v v v v v v
Battery v v v v v v v v v v v v
Pump v v v v v v v
Cabin air v v v v v v
Cabin HX v v v v v
Cabin body v v v v v
Traction power v v v v v v v v
Liquid heating v v v v v v
E. Battery power demand
o 1 oo o* The traction power demand for vehicle’s movement can be
S 0.95r o’ written as [22]:
& o
*(5‘0_97 .o.. Ptrac: veh(Fr+Fa+MVveh); (14)
o o’ where Vien, Vyen, M, are vehicle speed, vehicle acceleration,
p 08T o and vehicle mass, respectively. The following formulas are
_:>0.75 F e used to compute the rolling (F,) and aerodynamic (Fj)
g o7l ¢ resistance forces:
2065 , F. =C,Mg, (15a)
§ ool Fo=05p, AsCqV,2y,, (15b)
0_55“ ‘ ‘ ‘ ‘ | where C). and Cy are, respectively, the rolling resistance and
-20 -10 0 10 20 30 aerodynamic drag coefficients, A is the vehicle frontal area,
T, (°C) and p,, is the air density. Combining the HP consumed power

b

Fig. 7: Relative capacity with respect to temperature.

coefficient between the ambient air and the battery pack.
Furthermore, according to the energy balance equation for
the coolant, one can obtain the following thermal dynamic
equation for coolant temperature:

CoTy = 1yee(Ty — Ty) — hy Ap(Ty — Tj). (13)

In this equation, Cy = Mmgine pCc i the thermal inertia of the
coolant mass that heats the battery and mn:, denotes the
mass of the coolant around the battery. The first term on the
right hand side characterizes the energy balance of the coolant
and the second term accounts for the heat loss of the coolant
when it transfers heat with the battery, where h; is the heat
transfer coefficient per unit area and A; is size of the heat
transfer surface area.

and electric pump power (6), the total thermal power required
is

PTM = Pelec + Ppump- (16)
Therefore, the total battery power can be denoted as
Ptot = PTM + Ptraca (17)

and the battery pack current can be subsequently calculated
by

2
Voc,pack‘ - \/Voc,pack
2Rpack

Remark IL.1. Maximizing the driving range of an EV is
equivalent to maximizing the SOC at the end of its trip, which
can be achieved by minimizing the current ipqc, drawn from
the battery at each time step and/or increasing the battery
capacity by increasing battery temperature. According to (10),
(17) and (18), battery current minimization can be achieved by

- 4Rpackptot

(18)

Z.pack' =



the following: 1) enabling battery charging from regenerative
power by increasing battery temperature to charge-permitted
value; 2) decreasing Ryqci by increasing battery temperature
to optimal value; and 3) decreasing Py, by decreasing Pryy.
Therefore, to maximize EV range for a short-term horizon,
one can either increase battery temperature to optimal value,
and/or decrease the thermal management power Pr);.

Table II lists all the parameters for the proposed ITM model.
The differences between our proposed model for ITM of
battery and cabin and other models found in related works
for TM of battery and cabin are highlighted in Table III.

III. NONLINEAR MPC FORMULATION

In this section, we formulate the NMPC problem for the
proposed ITM of battery and cabin heating, and investigate its
cost function design and calibration. Recall that the governing
equations of the ITM system are described in the previous
section. Herein, we compactly denote the continuous-time
nonlinear dynamics of the ITM system as follows

&= fe(z,u,p), (19)
where the nonlinear continuous function f.(.) is the equations
defined as (1)-(18), and the state vector x, control input vector
u, and measured disturbance p are defined as follows

T = [SOO, Tb>T3aTl;T2>T67Tca>ch]T7

(20)
b= Pirac.

u = [mw mb, ncomp]Ta

Consequently, the finite receding-horizon optimal control
problem at each time step is defined as follows:

mm V(zo,u mln Z )+ Vi(z(N)) (2la)
s.t. 2(0) = g, (k+1) = fa(z(k), u(k)) (21b)
LTmin Sl‘(k’) < Traz, k:07;N (21C)

9Imin < g(u(k)) < Imax k= O, .. .,N — 1. (Zld)

In the above constrained optimal control problem (also denoted
as V(xg)), N is the prediction horizon, x is the initial state,
fa(.) is the discretized version of f.(.) with proper sampling
time T, Zpmin and x,,4, are the lower and upper bound values
of the states and g,,;, and gpq. are the lower and upper
bound values of the constraint function for control inputs.
Specifically, the lower and upper bounds of the states in (21)
are defined as:

Tmin = [07 Ty, To, To, Ta, T, T, Ta]Ta

. (22)
Tmas = [1, 35, 70, 70, 70, 70, 25, 257,

where T, presents the ambient temperature and all the temper-
atures are in Celsius degrees. The input constraints are defined
bY Gmin < g(u) = [u(1),u(2),u(3), u(1) + u(2)]" < gmax,
where gin and gn,q, are given by:

Gmin = [0, 0,0, 017, gmaz = [0.2, 0.2, 6000, 0.2]7. (23)

0-775 NMPC, N = 20
~ * NMPC, N =40
0.77 NMPC, N = 80
=—NMPC, N = 160
0.765 — P

3

55 56 57 58 59 60
time (min)
Fig. 8: Comparison of NMPC with cost function of (24a) and
DP solution of (24).

A. NMPC stage cost selection

By regulating the temperatures of the passenger cabin and
battery, the eventual goal is to simultaneously improve the EV
range and satisfy the cabin heating requirements. For achieving
this goal, the stage cost I(z(k), u(k)) of the defined NMPC
problem (21) should be carefully selected. In this subsection,
the DP technique, which provides a global optimal solution
to an optimal control problem, is exploited to provide insights
for designing the stage cost function. We first focus on the
range maximization issue only, followed by the discussion on
the cabin heating requirements in the next subsection.

We first apply DP to solve the following optimal control
problem

min
u

— 21(N) = —SOC(N)
st (21b), (21¢), (21d)

(24a)
(24b)
with Ty = 4.5s.

Remark III.1. The solutions to (24) obtained by DP will
provide the global optimal state and control trajectories for
the range maximization of the EV during the specified driving
times. Compared to the optimal control problem (21) for
NMPC, the horizon N for (24) is much longer and the cost
function (24a) is highly nonlinear. Therefore, (24) is imprac-
tical for real-time control. Nevertheless, as shown below,
the solution of (24) will provide very beneficial insights to
design a cost function for NMPC that is suitable for real-time
computation, while at the same time incurs minimum control
performance loss as compared to (24).

To demonstrate that the cost function (24a) for DP cannot
be directly used for NMPC (21), we simulate NMPC with
cost function (24a) for various prediction horizon N, and
compare their results to the DP. As plotted in the Fig. 8, it
is clear that with a short prediction horizon that is suitable
for real-time implementation, the positive impact of increasing
battery temperature cannot be predicted, especially when the
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Fig. 9: DP solution of (24) for 4 different driving times, N =

200, 400, 800, 1600.

trip is long. In addition, even with a long prediction horizon
of N = 160, the advantages of battery heating in terms
of range saving were only partially anticipated (in practice
this long prediction horizon cannot be incorporated due to
the cumbersome computational resources requirements). For
other shorter horizons, the NMPC instead completely shuts off
the battery heating to maximize the short-term battery SOC
leading to a reduction of the EV range for medium to long-
term driving times.

The optimization problem solved by DP will consider the
maximization of range as the only objective function. To
investigate the impact of driving time, four horizons are
considered, namely, N = 200, 400, 800, 1600, corresponding
to 15, 30, 60, 120 minutes of driving, respectively, representing
short, medium, long and very long driving times. Furthermore,
Fig. 9 shows the corresponding DP solution with an ambient
temperature of —10°C', based on which the following obser-
vations can be made:

1) According to Fig. 9, the optimal compressor speed and
battery coolant flow rate, as determined by the DP
solver, would result in heat being sent to the battery to
increase battery temperature. Therefore, battery heating
can contribute to EV range maximization. However,
one can also observe from Fig. 9 that the optimal
compressor speed is never at its maximum. This means
the thermal management power (most of which is caused
by the HP compressor) is not negligible so the optimal
solution tries to strike a good trade-off between the
energy consumption of the battery due to the thermal
management system and the resulting energy saving of
the battery due to the increased battery temperature.

2) According to Fig. 9, when the trip duration is longer,
a more aggressive battery heating strategy is required.
However, in practice, the trip information is usually not
available beforehand. Therefore, we consider the worst
case temperature and an average trip time to design the

stage cost [ for all scenarios.
Based on these observations, we define the following stage
cost [ for (21) to balance the battery heating, the thermal
management power consumption term, and the cabin comfort:

—Teasp)?, (25)

where the first term penalizes the TM power, second term
penalizes the deviation of battery temperature from its set
point, and the last term penalizes the deviation of the cabin
temperature from its set point; o, o are the corresponding
weights to express the trade-off between each terms. The
set point temperature for cabin can be set by the passenger
based on its own comfort, for current paper we choose
Tea,sp = 20°C as a reasonable comforting temperature in a
cold weather. For the battery, this temperature is also set to
Ty,sp = 20°C where the internal resistance is nearly at its
minimum, according to Fig. 6. In addition, this temperature is
a good operating temperature for battery considering its life
time.

Z(JC, u) = PTM + al(Tb - 11()7Sp)2 + QQ(T(:(L

Remark IIL.2. We refer to the stage cost (25) as an indirect
stage cost for simultaneously maximizing the EV range and
satisfaction of the cabin heating requirements. In other words,
to account for EV range maximization, the indirect approach
uses battery temperature tracking plus the TM power penal-
ization terms, while a direct approach will formulate the cost
function similar to (24a) for the DP approach, since the latter
directly relates to EV driving range and would lead to battery
temperature optimization. See Remark II.1.

B. Stage cost weight tuning

Now that we have designed a stage cost function (25) for
NMPC (21), let’s focus on the weight-tuning of oy and as to
best address range improvement of the EV and to fulfill cabin
heating requirements. As already mentioned in the previous
section, different driving times can lead to different battery
heating strategies, however, travel information is not usually
accessible prior to the EV operation. In this regard, weight-
tuning is carried out for a medium to long EV driving time
in the worst case temperature (i.e., —20°C’). Note that in the
simulation results presented in Section IV, we will show that
this strategy works reasonably well for other driving times and
conditions as well. We do the fine tuning of the weights in the
following two steps.

a) Step 1: Let us define the following optimal control
problem

N-1

min Y (Tea(k) = Teassp)® = BSOC(N)  (260)
k=0

s.t. (21b), (21c), (21d), (26b)

which will then be solved by a DP solver. In other words, the
optimal control problem (26) considers both the cabin heating
requirement and the EV driving range in the cost function, with
[ being a tuning parameter to balance these two objectives. In
this step, we optimize over [ to find the best trade-off between
the range and the cabin heating requirements. The results are
shown in Fig. 10, where the final SOC relates to the EV driving
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range and the cabin comfort is measured by the normalized
cabin set point violation calculated by Z;‘:; 01073 (Thg sp —
T.q(k))? with Ty being the final simulation time. Note that
in Fig. 10, the points that are selected as reference points
are marked with an ellipse and they represent an acceptable
trade-off between the EV driving range and cabin comfort.
The points on the left of the regions, although offer good
satisfaction of the cabin heating requirements, suffer a lower
EV range. The points on the right, however, give a better EV
range but have worse cabin set point violations.

b) Step 2: Now that an acceptable trade-off has been
identified using DP-based global solution, we will next find a
good tuning for oy and ay in the NMPC cost function (25)
such that the NMPC can achieve the similar trade-off as DP.
This is done by a grid search over various combinations of
and as. The results are shown in Fig. 11, where the trade-offs
between the range of EV and the normalized cabin set point
violation by NMPC are shown with blue asterisks. Note that
the reference DP points selected in Fig. 10 are also plotted in
Fig. 11. Therefore, any weight combination within the marked
region of Fig. 11 can achieve a similar optimal trade-off as DP,
and hence provide an acceptable trade-off.

Remark IIL.3. The control goal, stage cost design, and
weight-tuning procedure of our work is different with other
related works concerning the thermal management of EVs
for heating as follows. In [20] for the NMPC stage cost
battery set point term and total thermal power terms are
included but cabin heating requirement is neglected. In [35]
the objective of the control is maximize the range, however
again, cabin comfort requirements are not addressed. In [27]
although the thermal management goal is to regulate the
battery temperature for increasing its lifetime while satisfying
cabin heating requirements, no discussion regarding the trade-
off between this two competing objective as well as optimality
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loss is done. In [34] the objective is to address the cabin com-
fort requirements in the cold weather conditions but battery
thermal management is neglected.

C. Other considerations

When designing NMPC, another important consideration
is the prediction horizon. While limited by the real-time
computation capability, one may want to choose the longest
prediction horizon that the microprocessor can handle. In
addition to bringing the applied optimum control closer to
the DP solution, a longer time horizon for NMPC offers an
additional benefit. That is, provided that an accurate forecast
of future speeds is known, future traction power demand can
be determined as well, and hence allowing for the planning
of most optimal strategies. However, uncertainty in the long-
term velocity predictions also prevents the incorporation of the
long horizons for NMPC. To this end, the prediction horizon is
chosen in a way to meet the computational capabilities on one
hand, and on the other hand, necessary weight-tuning of the
stage cost terms is done, as discussed above, to compensate
for the short-sightedness of the NMPC.

Another practical consideration that should be taken into
account while applying the control input is battery safety and
longevity. To this end, when the optimal control input is calcu-
lated at each time step, certain criteria have to be checked first
to determine whether or not certain corrections are needed.
A procedure for checking and correcting the control input,
especially considering battery safety and longevity criteria, is
shown in Procedure 1. Briefly speaking, firstly, as shown in
Line 13-23 and Line 25-35, the Li-ion cell’s terminal voltage
must be checked to ensure it is within a particular temperature-
dependent range during charge and discharge, denoted by
the symbols Vi cn and Viyt disch, respectively. Secondly,
as shown in Line 31-34 and Line 36-39, during the EV
operation, charging the battery by the regenerative power is



forbidden below a specific battery temperature (usually 0° C')
to prevent battery degradation and decrease plating. In this
regard, if the battery voltage or the regenerative charging
criterion impose limit on the power output of the battery,
resulting in a compromise between addressing the thermal
management power demand and the traction power demand,
priority should be given to the traction power demand. As
a result, a separate controller overrides the NMPC control
strategy and prioritizes the traction power, and the remaining
power is assigned to the TM system, as shown in Line 20-23.
(In practice, the TM power consumption is mostly dominated
by the compressor power, so the power allocation task in the
Procedure 1 is shown for the compressor only without the

pump).

Remark II1.4. The reason for not using PID to control the
proposed ITM or having it as a baseline is that our system
is a MIMO system, making PID control design difficult. The
system takes 1y, ™., and compressor speed Ncomyp as inputs,
and has battery temperature (Ty,) and cabin temperature (T.,)
as outputs. Designing PID controllers for MIMO system is not
trivial, especially considering the fact that each input has an
effect on all the outputs and cannot be decoupled from other
inputs. One possible way to design PID is to use two set-
point tracking controllers, where one determines the amount
of heat rate to battery and the other determines the heat rate to
cabin. In this way, each PID controller commands one control
input to track one system output, and the two PID controllers
can calculate their control command independently. However,
after PID controllers issue their respective commands, which
are the heat rates to battery and cabin, one needs to obtain
the actuator commands (i.e., ™y, M, and Neomp) for the
system to implement. This can only be done by either a rule-
based “inverse thermal model”, or by defining an optimization
problem with decision variables being 1y, 1., and Neomp and
the objective function to minimize the difference between the
PID-commanded and predicted heat rates. The PID design
with rule-based inverse model and optimization thus will not
have the benefits of a conventional PID design due to the
optimization step involved. This results from the fact that in
our MIMO control problem, each output cannot be associated
exclusively with one input, and input and state constraints
are also present in our problem. It is worth noting that
designing several PID for MIMO systems is also challenging
in the industrial setting. For example, similar MIMO thermal
systems exist in industry applications (e.g. engine thermal
management) and practitioners are moving towards MPC
controllers instead of multiple PID controllers [46].

IV. SIMULATION RESULTS

In this section, the simulation results of the proposed
ITM system for battery and cabin heating are presented. The
traction power parameters in Equation 15 are adopted from
[21]. It is worth noting that each step of NMPC computation
and implementation takes about 0.09 second’, well below the

'As measured in a standard PC with 2.6 GHZ CPU and 16 GB of RAM.

Procedure 1: Nonlinear MPC implementation of the
integrated thermal management of battery and cabin
heating

1 for k =1:kpinq do

2 Current state as initial condition: xg = z(k)
3 Traction power data for time steps k: k+ N — 1:
Ptrac,N = [Ptrac(o)a cee 7Pt7‘ac(N - 1)]T;
4 Maximum traction power allowed in the horizon:
v2 (2o (1
Ptrac,maw = 4(RU:;in(to((;)(wz))(l))) - PTM,ma;z
5 for i =1: N do
6 if Pt’r’ac,N(i) > Ptrac,ma:z: then
7 ‘ Ptrac,N(i) = Ptrac,maw;
8 end
9 end
10 Solve (21) and obtain the optimal input control:
u®(:,1) < NMPC(zp);
11 Given (Pirqc(0),u°(z0,1),20), calculate the
current based on: ipqcr < (18);
12 Vpack =
Voc,pack (‘TO(]-)) - Z‘pack]%pack (‘TO(Q)a xO(l)),
13 if &% < Viut,discn then
14 Vpack — Svcut,disch;
|| ek < ey
16 Ptot,maa: = packipack:;
17 pP= min(Ptot,maaca Ptrac,N(O));
18 Premain = Ptot,max - D
19 Using (2):
Pelec — min(Premain7 Pelec(uo(gv 1)7 Ta);
20 if P.je. # Pelec(uo(?), 1),T,) then
21 Solve for n¢omyp such that:
Pelec - %{%
2 u®(3,1) < Neomps
23 end
24 end
25 if % > Veut,cn, then
26 if 2o(2) > 0 then
27 ‘/pack — S‘/cut,ch;
28 ipack ¢ g, e ) ey
29 Ptot,max = packipack;
30 p= Ptot,maz - Pelec(uo(?), 1)3 Ta);
31 else
32 Vpack < Voc,pack (370(1)),
33 D= *Pelec(u0(37 1), Ta);
34 end
35 end
36 if 20(2) <0 and p+ Pue.(u’(3,1),T,) <0
then
37 pP=- elec(u0(37 l)aTa);
38 Vpack — Voc,pack(l'()(l));
39 end
40 2(k+1) = fa(xo,u’(:,1),p)
41 end




TABLE IV: NMPC simulation parameters

{oq, a2t rrm Ts [s] N
{90,180} 4.5 20

{a1, @2} eavin | Veut,diseh (V] | Veut,en [V]
(0,50} 2.5 4.25

considered discretization time step, i.e., Ts = 4.5 seconds,
for the dynamics of the ITM system. It is also worth noting
that this sampling time is reasonable to use due to slow
dynamics of the TM system (e.g., see [21], [33]) although
some fast-varying parameter such as vehicle’s acceleration,
velocity, and traction power are needed to calculate the states
of TM system. More specifically, we take the average of
the fast-varying parameters between each time step and use
that value for the next time step control signal calculations.
Comparing Ts = 4.5s with the cases with shorter time steps
(e.g. Ts = 0.5s) our results didn’t show any difference;
but longer time-steps will result in more efficient NMPC
implementation due to fewer number of optimization variables.

Three different control strategies are implemented and
compared. In the first strategy, NMPC (21) with stage cost
(25) is applied with {ay, a2} set to be {90,180} according
to the weight-tuning discussion in the previous section.
This control strategy is denoted as “NMPC-ITM” since the
NMPC will simultaneously optimize both EV range and
cabin comfort. In the second strategy, NMPC (21) with stage
cost (25) is simulated with {oy, s} set to be {0,50}. In
other words, NMPC will fulfill the cabin heating requirement
only, without heating the battery. This strategy is denoted as
“NMPC-cabin”. The third strategy is a rule-based strategy
that follows a simple logic [22]. In this strategy, when the
battery or cabin temperatures are below their set poins,
the compressor is set to its maximum speed. Furthermore,
the flow rates for battery and cabin branches are divided
according to a pre-selected ratio, which is calibrated by trial-
and-error to deliver the best trade-off between the range and
cabin heating requirements. When both battery temperature
and cabin temperature are above their set points, the thermal
management system is turned off. Such a rule-based control
strategy is summarized below

it T, < T}
[0.15,0.05, 60007 1 10 < Foeor and
Tca < Tca,sp;
0,0.05,60007 L 7o = Th.sp and
Upp = ) ) Tea < Tea,sp; (27)
if T, < Ty d
[0.2,0,6000]” 10Ty <Tpsp an
Tea > Tca,sp;
O’ O’ 500 T7 else.
[

Table IV lists all the parameters for the three control strate-
gies, i.e., NMPC-ITM, NMPC-cabin, and rule-based. Please
also note that we did not include the DP method solution for
comparison as it is computationally cumbersome to carry out
DP for our extensive simulations considering the number of
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Fig. 12: SOC, cabin temperature and battery temperature vs
time for a mixed driving cycle of HWFET and UDDS using
3 different control strategies. In comparison with the two
other strategies, NMPC-ITM can extend the EV range while
satisfying the cabin comfort requirements.

states of the system. In addition the main focus of this work
is to compare the performances of the NMPC-based control
strategies with a rule based strategy where all can be applied
in practice, but DP cannot be applied in practice.

A. Comparisons for range and cabin comfort

In the first set of results, the three control strategies de-
scribed above are compared with an ambient temperature of
T, = —10°C. A mixed driving cycle of HWFET and UDDS
is used for this simulation. The state initial condition vector is
set to be x9 = [0.9, —10, 10, —10, —10, —10, —10, —10]7,
i.e., the initial SOC is 90% and the initial temperatures are
equilibrium with the ambient air. The simulation is terminated
whenever the battery pack SOC drops below 0.1. The plot in
Fig. 12(a) shows that the NMPC-ITM offers the best range
with an increase of more than 2 hr driving time w.r.t the
NMPC-cabin and more than 1 hr w.r.t the rule-based strategy.
Additionally, since the weights are selected to provide optimal
trade-off between driving range and cabin comfort, NMPC-
ITM is able to address the cabin heating requirements by
rapidly increasing the cabin temperature to around 15°C in
a short time and then smoothly converging to the set point
temperature. See Fig. 12(b). The rule-based strategy also offers
a better range w.r.t. the NMPC-cabin by increasing the battery
temperature for higher efficiency. See Fig. 12(c). However, in
this situation, the cabin temperature is fluctuating around the
set point as a result of repetitive open/close switching of 3-way
valve to adjust the cabin branch flow rate ..

Next, we extend the simulation for two more ambient
temperatures, i.e., { —20, 0°C'}. Furthermore, to investigate the
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Fig. 13: Range and cabin set point violations under various
impacting conditions. NMPC-ITM outperforms the other two
strategies in various conditions considering these two metrics.

effect of driving cycle profile, HWFET and USDDS will be
simulated separately (as opposed to being combined in Fig.
12). The results are plotted in Fig. 13, where the normalized
cabin set point violation is calculated by sz: 0 T%(Tcwp —
T.a(k))?. By comparing the NMPC-ITM and NMPC-cabin
together, it can be seen that the developed NMPC for ITM
of battery and cabin heating has superior performance in all
circumstances compared to the case when only cabin heating
is performed. Noting that the accumulated cabin set point
violation is normalized with the driving duration, the NMPC-
cabin has a higher normalized cabin set point violation than the
NMPC-ITM, despite the fact that cabin temperature reaches its
set point more quickly. It is also worth noting that for NMPC-
cabin, when the ambient temperature is —10 or —20°C, the
range of the EV for HWFET is greater than that of UDDS. The
rationale is that in these extremely cold weather circumstances,
driving intensity results in higher internal heat generation
rate, which causes the battery temperature to increase more
quickly and extends the EV range. For ambient temperatures
0 and —10°C, better range and fulfillment of the cabin
heating requirements are provided by the NMPC-ITM w.r.t the
rule-based strategy. However, for an extremely cold weather
condition, i.e., ambient temperature of —20°C/, a slight range
advantage can be seen for the rule-based strategy, with a high
price of sacrificing the cabin heating requirements.

B. Quantifying the benefits of NMPC-ITM in comparison with
NMPC-cabin

The level of effectiveness of the proposed ITM system for
heating (NMPC-ITM) is compared to the case where only
cabin heating is allowed (NMPC-cabin). Recall that in Fig. 9
and its corresponding discussion, we noted that battery heating
is necessary for any driving period in order to extend EV
range. However, the degree of range increase still remains

unknown. In this regard, this investigation focuses on three
critical factors in realizing the advantages of battery heating,
i.e., driving time, driving behavior, and ambient temperature.
To quantify the level of effectiveness of the NMPC-ITM
against NMPC-cabin, we define ASOC (k) = SOCimm(k) —
SOC.apin(k), where SOCirm(k) is the SOC of the EV at time
step k using the NMPC-ITM as the TM system and SO Capin
is the same for NMPC-cabin. The variation of ASOC (k) w.r.t.
several impact factors are shown in Fig. 14. For the ambient
temperature of 0°C, since regenerative charging, as one of
the most important factors in range extension, is enabled for
both control strategies, the benefits of battery heating is not
prominent compared to other ambient temperatures. However,
when HWFET is used as the driving profile and when the
trip is long, the SOC difference becomes significant, reaching
to more than 3 %. When the ambient temperature drops,
the importance of the battery heating becomes more obvious.
For example, for an ambient temperature of —10°C' for both
HWFET and UDDS driving cycle profiles, the benefits of
battery heating are very significant for driving times more than
80 minutes.

Note that at the ambient temperature of —10°C, the benefits
of NMPC-ITM for shorter driving time is greater for the
case of UDDS driving cycle than the HWFET cycle. This
can be explained by Fig. 15. As can be seen, for both
UDDS and HWFET driving cycles the battery temperature
follows a similar trajectory using for NMPC-ITM. However,
for NMPC-cabin, due to the higher intensity of the driving
for HWFET profile and therefore higher internal heat gener-
ation, the battery temperature increases faster in the case of
HWEFET than the case of UDDS driving profile. As a result,
regenerative charging is enabled sooner in HWFET and the
internal resistance of the battery pack in each time step is
also lower than in the UDDS case. Similar reasoning can be
made for explaining the other cases with different ambient
temperatures in Fig. 14 by considering the effect of internal
resistance, regenerative charging and TM efficiency.

V. CONCLUSION

In this paper, we considered the problem of integrated
battery and cabin heating for electric vehicles (EV) in cold
conditions. An NMPC-based integrated thermal management
(ITM) strategy for battery and cabin was developed to si-
multaneously optimize EV driving range and cabin comfort.
Exhaustive modeling of different components of the ITM
system were done. Since in NMPC a finite-horizon optimal
control problem is solved at each time step where the optimal
control trajectory is not necessarily the global optimal, a
practical approach for the stage cost design and weight-tuning
of the NMPC problem in comparison with the DP solution
was developed to achieve driving range maximization while
ensuring the cabin comfort. The developed NMPC-based ITM
strategy was illustrated by comparing its performance to two
additional benchmark strategies, i.e., rule-based control and
cabin heating only. Numerical results showed the superiority
of the proposed NMPC-based ITM strategy in comparison
with the benchmarks. Finally, the impacts of several impor-
tant factors, including the ambient temperature, driving cycle
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Fig. 15: Battery temperature for NMPC-ITM and NMPC-cabin
under HWFET and UDDS driving profiles.

profile and behavior, and driving time, were also analyzed to
summarize the operating conditions under which the proposed
ITM is critically needed.

Future work will focus on improving the NMPC-based
control strategies, e.g. by incorporating practical ways for
having longer prediction horizons. Comparison with other
benchmark control approaches will also be included in our
future work.
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