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Abstract—Battery cell imbalance in electric vehicles (EV) has
been extensively investigated in the literature to understand its
origin and mitigation control. However, the correlation between
cell imbalance and EV range deserves further investigation,
which can be critical in designing a balancing controller. To
address this issue, this paper conducts a Monte Carlo simulation
to randomly sample cell parameters with different standard
deviations to analyze their impacts. More specifically, distance
correlation will be utilized to measure the correlation between
battery cell parameters/variations and EV driving range. Fur-
thermore, a nonlinear model predictive controller is developed
to illustrate the efficacy of balancing controls in extending EV
driving range.

I. INTRODUCTION

Highly efficient battery systems are critical to electric ve-
hicles and stationary smart grid applications [1]–[4]. One of
the factors that limit battery performance is cell imbalance.
Specifically, due to manufacturing and operation variations,
battery cells can have different parameters, resulting in state-
of-charge (SOC) imbalance during operations [5]. Such imbal-
ance will in turn reduce the battery range and can potentially
cause safety issues including thermal runaway [6]–[8].

Battery cell imbalance has been studied in literature to
understand its impact on EV range [9], [10]. For example,
[9] studies how the variations of initial SOC would impact
EV range by using a synthetic speed profile. Furthermore,
[10] simulates a simple battery model with heterogeneous
cells, and performs a statistical analysis to understand the
linear relationship between parameter variations and EV range.
Alleviation strategies have also been proposed in literature
to reduce the impact of battery cell imbalance [10]–[14].
However, existing literature has several limitations. First, the
statistical analysis performed in [10] cannot capture nonlinear
correlation between two variables, and since EV is a highly
nonlinear system, the correlation between cell parameters and
EV range can be nonlinear as well. Second, most of the control
strategies proposed in literature are based on either rule-based
control [15], simple feedback control [16], or linear model
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predictive control (MPC) [14], [17]. Exploitation on advanced
control such as nonlinear MPC is not sufficiently studied yet.

To address these limitations, we conduct Monte Carlo
simulation of EV with hundreds of connected battery cells to
analyze how cell parameters and parameter variations impact
EV driving range. Specifically, a real-world driving speed
profile is used as vehicle reference speed, which is tracked by a
detailed EV simulation model [10]. Distance correlation [18],
[19], which can capture nonlinear correlation between two
random variables and has value between 0 and 1, is utilized to
measure the correlation between battery cell parameters and
EV driving range. Moreover, in the first set of simulations, the
battery is assumed to have identical cells, and we vary several
key cell parameters to analyze their impacts. In the second set
of simulations, the battery is assumed to have heterogeneous
cells, each having different cell parameters (such as cell
capacity, internal resistance, etc). Monto Carlo simulation is
conducted to randomly sample those cell parameters with
different standard deviations to analyze the impacts of cell
variation level. Finally, a nonlinear MPC is developed to test
its efficacy in extending EV driving range.

Compared to relevant literature [20]–[23], our work is dif-
ferent as we focus on analyzing nonlinear statistical correlation
between battery cell parameters and EV driving range. Such
quantification can then be insightful for balancing control
design and only those parameters with statistical significance
need to be explicitly addressed by battery management sys-
tems, and hence reducing the control complexity. Compared
to [9] which only included speed profile variation, our work
considers parameter variations at battery cell level. Further-
more, the battery model employed for simulation consists of
over 100 heterogeneous cells, whereas [10] used an overly
simplified battery model that has only 10 cells.

The rest of this paper is organized as follows. Section II
discusses the simulation model of EV, while Section III briefly
presents the necessary information for computing distance
correlation. Section IV provides detailed results on the Monte
Carlo simulation and discusses the impacts of battery cell
parameter variations, and Section V presents the proposed non-
linear MPC balancing control algorithm and its performance.
The paper is concluded in Section VI.



Fig. 1. Battery cell equivalent circuit model.

II. SIMULATION MODEL

A. Battery Dynamics

We consider a battery with P strings connected in parallel,
each with S cells connected in series. The dynamics of cell n
can be represented using an equivalent circuit model (ECM)
[24]–[26], as follows,
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yn = vnoc − vn1 − vn2 − inRn
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where sn is the cell state-of-charge (SOC), vn1 and vn2 are
relaxation voltages representing fast and slow transient dy-
namics, in is the cell current (where positive value indicates
discharging), and yn is the terminal voltage. Furthermore, vnoc
is the open circuit voltage, ηn is the cell coulombic efficiency,
and Cn is the cell Amp-Hour capacity. Finally, Rn

o , Rn
1 , Rn

2 ,
Cn

1 and Cn
2 are resistance and capacitance as shown in Fig.

1. Note that vnoc, Rn
o , Rn

1 , Rn
2 , Cn

1 and Cn
2 are all dependent

on SOC sn and cell temperatures Tn. See [26] for example
of such dependency.

B. Electric Vehicle Propulsion Model

This section briefly describes the EV propulsion model used
for simulation. Table I lists values for all model parameters
related to EV propulsion systems that are fixed throughout
the Monte Carlo simulation.

a) Vehicle speed control: In this work, the reference
vehicle speed is taken from the TSDC dataset1, provided
by National Renewable Energy Laboratory [27], [28], which
includes global positioning system (GPS) recording at an
interval of 1 second. Fig 2 depicts the reference speed used for
simulation. A PI speed controller is then used to control the
requested battery power output to track the reference speed in
Fig 2. The PI controller gains are fixed in all simulations to
avoid any influence by the vehicle speed controller.

1Available at: https://www.nrel.gov/transportation/secure-transportation-
data/. Accessed Sep. 15, 2021.

TABLE I
PARAMETERS FOR THE SIMULATION MODELS. PARTIALLYDOPTED FROM

[9].

Parameter Unit Physical Meaning Value

m kg Car mass 1500

nw - # of driving wheel 2

R m Effective wheel radius 0.2159

σb rad Bank angle 0

ρ kg/m3 Air density 1.225

Cd - Air drag coefficient 0.389

AF m2 Front area 2

ηD % Propulsion efficiency 100

Td s Propulsion time constant 0.3

B - Magic formula parameter 10

C - Magic formula parameter 1.9

D - Magic formula parameter 1

E - Magic formula parameter 0.97
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Fig. 2. Reference vehicle speed used for simulation.

b) Propulsion system dynamics: The EV propulsion sys-
tems consisting of electric motor, transmission, and final drive
can be modeled as a first order transfer function [9], as follows,

G(s) =
Pw

Pb
=

ηD
Tds+ 1

(2)

Pw = Tω (3)

where Pb is the actual battery power and Pw is the actual
power delivered at the wheel, ηD is the overall propulsion
efficiency, and Td is the propulsion system time constant, T
is the total driving torque as applied to driving wheels, and ω
is the wheel angular speed.



c) Vehicle and wheel dynamics: The vehicle’s longitudi-
nal dynamics can be modeled as follow,

v̇x =
nw

m
Fx − g sinσb −

1

m
Fa (4a)

ω̇ =
1

Iw

(
T

nw
− FxR

)
, (4b)

where m is the vehicle mass, nw is the number of driving
wheels, σb is the road bank angle, Iw is the wheel rotational
inertial, and Fx is the total tire force, as computed by the
following Magic formula [29],

Fx = FzD sin {C arctan [Bsr − E (Bsr − arctan(Bx))]} ,
(5)

with Fz being normal force and sr slip ratio defined as

sr =
ωR− vx

vx
. (6)

Note that R here is the wheel effective radius.
d) Aerodynamic drag force: The aerodynamic drag force

Fa in (5) can be calculated by [30]:

Fa =
1

2
ρCdAF v

2
x, (7)

where ρ is the air mass density, Cd is the aerodynamic drag
coefficient, AF is the effective front area. Note that here the
wind speed is assumed to be 0.

III. PRELIMINARY ON DISTANCE CORRELATION

Distance correlation will be used to measure the relationship
between battery cell parameter variations and EV driving
range. This section briefly presents the definition of distance
correlation, together with the algorithm to compute sample
distance correlation. For more details, please refer to [18],
[19].

Given two random variables X and Y , the distance corre-
lation between X and Y is defined as

dCor2(X,Y ) =
dCov2(X,Y )√

dV ar2(X)dV ar2(Y )
, (8)

where the squared distance covariance dCov2(X,Y ) of X and
Y is defined as

dCov2(X,Y )

= E [∥X −X ′∥ ∥Y − Y ′∥] + E [∥X −X ′∥]E [∥Y − Y ′∥]
− E [∥X −X ′∥ ∥Y − Y ′′∥]− E [∥X −X ′′∥]E [∥Y − Y ′∥]

(9)

and the distance variance of X is given as

dV ar2(X) = dCov2(X,X) (10)

Given N samples Xn and Yn, n = 1, . . . , N of random
variables X and Y , Algorithms 1 and 2 compute the sample
distance correlation between Xn and Yn. In particular, Lines
2-7 calculate pairwise distance between samples, and Lines
10-19 compute sample distance covariance between Xn and
Yn. Algorithm 2 then implements (9) and (10) to compute
sample distance correlation between Xn and Yn.

Algorithm 1: Computing Sample Distance Covariance
Data: Xn and Yn, n = 1, . . . , N
Result: Sample distance covariance dCov2

1 Initialize A, B, C, D to be N ×N matrices; initialize
a and b to be vectors of length N ;

2 for n = 1, . . . , N do
3 for m = 1, . . . , N do
4 A(n,m) = ∥Xn −Xm∥;
5 B(n,m) = ∥Yn − Ym∥;
6 end
7 end
8 Ā← mean of all elements in A;
9 B̄ ← mean of all elements in B;

10 for n = 1, . . . , N do
11 a(n)← the mean of nth row of A;
12 b(n)← the mean of nth row of B;
13 end
14 for n = 1, . . . , N do
15 for m = 1, . . . , N do
16 C(n,m) = A(n,m)− a(n)− a(m) + Ā;
17 D(n,m) = B(n,m)− b(n)− b(m) + B̄;
18 end
19 end
20 dCov2 = 1

N2

∑N
n=1

∑N
m=1 C(n,m)D(n,m);

21 return dCov2

Algorithm 2: Computing Sample Distance Correlation
Data: Xn and Yn, n = 1, . . . , N
Result: Sample distance Correlation dCor2

1 Compute sample distance covariance dCov2 of X and
Y using Algorithm 1 with Xn and Yn, n = 1, . . . , N
as inputs;

2 Compute sample distance variance dV ar2X of X
using Algorithm 1 with Xn and Xn, n = 1, . . . , N as
inputs;

3 Compute sample distance variance dV ar2Y of Y
using Algorithm 1 with Yn and Yn, n = 1, . . . , N as
inputs;

4 dCor2← dCov2/
√
dV ar2X × dV ar2Y ;

5 return dCor2

IV. IMPACTS OF CELL PARAMETERS AND IMBALANCE

This section presents numerical results on the impacts of
battery cell parameters, based on Monte Carlo simulation. In
particular, two sets of simulations are performed. In the first
set of simulations, the EV battery is assumed to have identical
cells, with the cell parameters randomly generated. In the
second set of simulations, the battery is assumed to have 108
heterogeneous cells, with the parameters of cell parameters
being randomly generated. In other words, the first set of
simulations analyzes the impact of battery cell parameters,
while the second set of simulations focuses on the impacts
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Fig. 3. Monte Carlo simulation results with identical cells.

of battery cell imbalance.

A. Results on Identical Cells

In this set of simulations, the EV battery is assumed to have
identical cells. Recall that the cell ECM model (1) includes
several parameters, e.g., cell capacity Cn, internal resistant
Rn

1 , Rn
2 and Rn

o , capacitors Cn
1 and Cn

2 , and cell temperature
Tn. Since it is intuitive that cell capacity Cn would have a
significant impact on EV driving range, its value is fixed in
all simulations.

We first randomly sample values for R1, C1, R2, C2, and
Ro to be within 20%–200% of their respective nominal values.
Fig. 3 (a)-(e) plot their impacts on EV driving range. We
then fixed R1, C1, R2, C2, and Ro to their nominal value,
and randomly sample cell temperature to be within -20oC
and 50oC. Fig. 3 (f) plots the impacts of cell temperature
on EV driving range. It can be seen that when batteries have
identical cells, the temperature has the largest influence on
the EV range. While the cell parameters do influence EV
range, their impacts are relatively small compared to that of
cell temperature. Table II (second column) lists the distance
correlation of the cell parameters and EV driving range. It is
then clear that internal resistant Rn

1 , Rn
2 and Rn

o can impact the
EV range, while the range is almost independent of capacitors
Cn

1 and Cn
2 . This is likely due to the fact that the capacitors

only impact battery transient dynamics, and do not affect the
DC resistance.

B. Results on Heterogeneous Cells

In this set of simulations, the EV battery is assumed to have
heterogeneous cells. For each simulation, we first randomly
generate values for Cn, Rn

1 , Cn
1 , Rn

2 , Cn
2 , and Rn

o with their
nominal values as mean and a randomly sampled variance, run
the simulation, and record the EV range. The whole process
then repeats with another randomly sampled variance.

TABLE II
DISTANCE CORRELATION WHEN CELLS ARE IDENTICAL.

Parameter Identical cells Heterogeneous cells

Cn - 0.906

Rn
1 0.422 0.003

Cn
1 0.007 0.005

Rn
2 0.159 0.001

Cn
2 0.064 0.001

Rn
o 0.205 0.002

Tn 0.741 0.691
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Fig. 4. Monte Carlo simulation results with heterogeneous cells.

Fig. 4 plots the impacts of cell imbalance on EV range.
As can be seen, cell capacity variation seems to have the
largest impact on the EV range. When the cells have 10%
capacity compared to each other, the EV range can decrease
from 420 km to around 340 km. For other parameters, it
appears that there is no strong correlation between the EV
range and the imbalance of internal resistance/capacitor. This
can also be seen from the third column of Table II, where the
cell imbalance of capacities has a distance correlation of 0.906
with EV driving range.

Finally, we assume all cells are different only by tempera-
ture Tn, and all the other parameters are fixed at their nominal
values. For each simulation, we first randomly generate values
for Tn with its nominal values as mean and a randomly
sampled variance, run the simulation, and record the EV range.
The whole process then repeats with another randomly sam-
pled variance. The third column of Table II clearly indicates a
strong correlation between cell temperature imbalance on EV
driving range.

C. Additional Discussion

From these results, it is clear that Cn and Tn are the most
important factors of EV driving range. When their nominal



value changes, even if there is no imbalance among cells,
the EV driving range will be significantly changing as well.
Moreover, even when their values are fixed, as long as there
is an imbalance among cells, the EV range will be impacted.
For example, by only exposing battery cells to different
temperatures, EV driving range can be greatly decreased. On
the other hand, for internal resistances Rn

1 , Rn
2 , and Rn

o , only
their nominal value has a moderate impact on EV range, and
the cell imbalance on these parameters does not have any
implication on EV range. More specifically, connecting cells
with larger internal resistance with cells with smaller internal
resistance will not impact EV driving range, as long as the
effective resistance is the same. Finally, for internal capacitors
Cn

1 and Cn
2 , neither their nominal value nor their variance has

any impact on EV driving range.

V. NMPC-BASED BALANCING CONTROL

In this section, we present a case study of using nonlinear
model predictive control (NMPC) to perform battery cell
balancing control. According to the discussion above, we only
consider the cells to have imbalance on capacity Cn and
assume that all the other parameters are at their nominal
values.

A. NMPC-based Balancing Control
We consider the case that the battery is discharged under

normal conditions and will stop discharge when the pack
terminal voltage is lower than a cut-off voltage or pack SOC
becomes 0. To extend the discharge time of the battery pack,
it is necessary to add an appropriate balancing current to make
all the cells’ terminal voltage reach the cut-off voltage or SOC
become 0 at the same time [8], [14]. To find a suitable bal-
ance current, here we use nonlinear model predictive control
(NMPC). Similar to [14], the NMPC is set to track the SOC
of all cells to follow a reference generated by using a nominal
battery cell model. The optimal control problem (OCP) solved
by MPC at each time step is shown as follows.

min J =

p∑
j=1

W1(s
n
k+j − srk+j)

2 +W2u
2
k (11a)

s.t. Ik =
pk

yk−1
(11b)

N∑
n=1

yn ≥ Vmin (11c)

umin ≤ un
k ≤ umax (11d)

N∑
n=1

un
k = 0, (11e)

where p is the prediction horizon, W1 is the weight for output
tracking error, W2 is weight for manipulated variable, uk here
is the balancing current. Because our strategy in this report
is dissipative balancing, the balancing current only transfers
charge from one cell to another. Therefore, the sum of the
balanced current needs to be equal to 0, which is reflected by
the last constraint.

Fig. 5. SOC of each cell with MPC-based balancing (p=5) v.s. without
balancing.

Fig. 6. Battery pack power with MPC-based balancing (p=5) v.s. without
balancing.

B. Simulation Result

In this section, we will use simulations to find the effective-
ness of NMPC on the battery system. A real driving cycle,
i.e., FTP cycle, will be used as the driver requested power
command to the battery. Furthermore, we randomly generated
Cn to be within 10% deviation from the nominal values. To
reduce simulation time, we consider a simple case of 5 cells
connected in series, and we set the NMPC prediction horizon
to p = 5.

Fig. 5 compares the SOC of each cell for the cases with
and without NMPC balancing control. Fig. 6 compares the
battery pack power for the cases with and without NMPC
balancing control. As can be seen, though the battery pack
provides similar traction power with and without balancing
control, the cell SOCs with NMPC balancing control present
lower variation, and hence the battery operation window is
longer. In fact, without balancing control, the battery pack



stops operation after 2,781 seconds, while with balancing
control, the battery operation time is 2,814 seconds. In other
words, the range of battery operation is extended by 1%.

VI. CONCLUSION

This paper performed a statistical study to understand the
correlation between battery cell imbalance and electric vehicle
(EV) driving range, which can be critical in designing a bal-
ancing controller. In particular, a Monte Carlo simulation was
conducted to randomly sample cell parameters with different
standard deviations to analyze their impacts. Compared to
existing work, a realistic battery model with 100 cells was
used to conduct the simulation. Moreover, distance correlation
was utilized to measure the nonlinear correlation between
battery cell parameters/variations and EV driving range. Fur-
thermore, a nonlinear model predictive controller (NMPC) was
developed to illustrate the efficacy of balancing controls in
extending EV driving range. Future work includes (1) further
investigation of the NMPC-based balancing control to utilize
all energy potential stored in EV battery packs, (2) application
in other domains such as renewable energy [31], [32], as well
as (3) design of power converter circuit for balancing [1], [33]
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