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Abstract. 
 

Single-molecule fluorescence resonance energy transfer (FRET) experiments are commonly used 
to study the dynamics of molecular machines. While in vivo molecular processes oHen break 
5me-reversal symmetry, the temporal direc5onality of cyclically opera5ng molecular machines 
is oHen not evident from single-molecule FRET trajectories, especially in the most common 2-
color FRET studies.  Solving a more quan5ta5ve problem of es5ma5ng the energy 
dissipa5on/entropy produc5on by a molecular machine from single-molecule data is even more 
challenging. Here we present a cri5cal assessment of several prac5cal methods of doing so, 
including Markov-model-based methods and a model-free approach based on an informa5on-
theore5cal measure of entropy produc5on that quan5fies how (sta5s5cally) dissimilar observed 
photon sequences are from their 5me reverses. The Markov model approach is computa5onally 
feasible and may outperform model free approaches, but its performance strongly depends on 
how well the assumed model approximates the true microscopic dynamics. Markov models are 
also not guaranteed to give a lower bound on dissipa5on.  On the other hand, model-free, 
informa5on-theore5cal methods systema5cally underes5mate entropy produc5on at low 
photoemission rates, and long memory effects in the photon sequences make these methods 
demanding computa5onally.  There is no clear winner among the approaches studied here, and 
all methods deserve to belong to a comprehensive data analysis toolkit. 
 
 

* makarov@cm.utexas.edu 

  



1. Introduc(on 
Single-molecule experiments, par5cularly single-molecule fluorescence resonance 

energy transfer, or FRET (see, e.g., refs.1-9), and single-molecule force spectroscopy (see, e.g., 
refs.10-13) are some of the most promising tools for probing mechanis5c details about the 
func5on of molecular machines. Yet the temporal direc5onality, which is a key property of life, is 
rarely evident when life is probed at molecular scales14 where the randomness induced by 
thermal fluctua5ons dominates over direc5onal mo5on. In some cases, such as direct 
observa5on of a molecular motor walking along its track, the direc5onality of mo5on is evident, 
but in many other cases where machines operate cyclically (e.g. enzyma5c turnover) this has 
proven to be a tremendous experimental challenge15-17. 
 In parallel, the same ques5on has been raised in the field of stochas5c 
thermodynamics(see, e.g., refs.18-30). The root of the difficulty is that true microscopic 
informa5on is rarely accessible to measurements. Rather, one observes low-dimensional 
projec5ons of high-dimensional dynamics, and irreversibility is oHen hidden by such 
projec5ons31-33. In response, numerous new methods have been proposed for inferring 
thermodynamic signatures of irreversibility from “par5al” observa5ons18, 19, 22, 23, 34-37.  More 
specifically, such studies usually seek to es5mate the entropy produc5on rate:  unlike an 
equilibrium system, a “machine” of any kind dissipates heat into its surroundings thereby 
increasing the surroundings’ entropy. Thus, the entropy produc5on rate offers a physical 
measure of irreversibility. At the same 5me, this quan5ty is also an informa5on-theore5cal 
measure of irreversibility, as it is related to the rela5ve probabili5es of the forward and 5me-
reversed paths taken by the machine38, 39.  In par5cular, a forward and 5me-reversed path are 
equally probable for an equilibrium system.  

Here we ask how well one can differen5ate between 5me-symmetric and 5me-
asymmetric dynamics of a molecular system based on a stream of photons emi\ed by it, as in 
FRET studies. We focus on the case of “fast” molecular processes, where the lack of 5mescale 
separa5on between the photoemission process and the observed dynamics necessitates 
photon-by-photon analysis4, 40-52. We compare two types of approaches to this problem. One is 
based on (hidden) Markov modeling of the system combined with maximum-likelihood 
inference of model parameters. The other is a “model free approach” based on es5ma5ng 
rela5ve probabili5es of the forward and 5me-reversed photon sequences. In comparing the two 
methods, we are mostly concerned with ques5ons of principle rather than with sta5s5cal errors 
of the methods. In par5cular, we wish to compare the rela5ve performance of the two methods 
in the hypothe5c limit of infinite amount of data: in this case the Markov-model-based method 
will recover the exact entropy produc5on if the topology of the assumed dynamic model 
coincides with that of the “true” one, even in the limit where the photons emi\ed by the 
system are sparse; in contrast, its performance can be considerably poorer if a “wrong” Markov 
model is assumed. On the other hand, the second method does not rely on any knowledge 
about the true dynamics of the system, but its performance depends significantly, and non-
trivially, on the photocount rate. For the Markov-model-based method, sta5s5cal errors may 
further lead to overes5ma5on of the entropy produc5on or even to erroneous inference of 
direc5onality for a system that, in reality, obeys detail balance.  Overall, there is no clear winner: 
we argue that both types of approaches should be included in a comprehensive toolkit. 
 



 
2. Model.  

We consider an !-state molecular system (illustrated in Figure 1, leH), with its dynamics 
governed by the master equa5on of the form (see, e.g., refs.53-56)  
 

!"
!# = #$.     (1) 

 
Here % = ('(1), … , '(!))$   is the vector of occupa5on probabili5es for each of the states and 
, is the matrix of transi5on rate coefficients, with -%& , . ≠ 0, being the transi5on rate from 0 to 
., and with -%% = −∑ -&%&'% 	 being the escape rate from the state ..  
 The system is assumed to be in a steady state, with the vector of steady-state 
probabili5es %(( sa5sfying 
 #%(( = 0.    (2) 
When the system sa5sfies the detailed balance condi5on,  
 -%&'(((0) = -&%'(((.),  (3) 
its dynamics are 5me-reversible, and the steady-state probabili5es are related to the free 
energies associated with each state. We are, however, par5cularly interested in molecular 
systems that violate detailed balance, such that the vector %((	describes a nonequilibrium 
steady state sa5sfying Eq. 2 but not Eq. 3.  
 For such a nonequilibrium system, our goal is to quan5fy the degree to which it deviates 
from equilibrium; from a thermodynamic standpoint, this is usually accomplished by 
considering the average entropy produc5on per unit 5me, which is related to the heat 
dissipated by the system, and which, for the system at hand, is given by the known expression38, 

39: 

5 ≡ 〈89/8;〉 = ∑ [-%&'(((0) −%)& -&%'(((.)] log
*!"
*"!
.			 (4) 

From an informa5on-theore5cal standpoint, the entropy produc5on is given by the Kullback-
Leibler (KL) divergence between the probability of the forward path (i.e. the state of the system 
.(;) as a func5on of 5me) and its 5me reverse:  

 〈89/8;〉 = lim
+→-

.
/ 〈log

0[%(3)]
0[%(/63)]〉0[%(3)] ,   (5)  

where the average is performed over the ensemble of forward paths.  Eq. 4 can be derived from 
Eq. 5. Moreover, the elements of the kine5c matrix K can be evaluated, and thus the entropy 
produc5on can be computed, from a long trajectory .(;) (or from many short trajectories) if 
such trajectories can be observed. 
 The difficulty in es5ma5ng the entropy produc5on arises from the fact that the 
instantaneous microscopic state . of the system is not measurable at every 5me, or, some5mes, 
is not measurable precisely at all14, 22, 23, 34. Here we envisage a single-molecule fluorescence 
resonance energy transfer (FRET) experiment, a common technique of probing molecular states 
of the system, which are encoded in the colors of photons emi\ed by the molecule. We start 
with a simplified – and usually unrealis5c – model of !-color FRET, where there is a one-to-one 
correspondence between the color of the photon emi\ed and the state of the molecule. In this 
case, the uncertainty in the knowledge of the state comes en5rely from the fact that the state 
of the system is unknown during the dark 5me periods in between the photons. We then 



consider more realis5c scenarios, where there are fewer photon colors than microscopic states 
and/or where, in each, a mix of photons of each color is emi\ed. It turns out that both of these 
cases can be described using the same formalism. In all of these cases we do not consider, 
explicitly, the physics of photoexcita5on57, 58; instead we make the following two assump5ons: 
(i) the emi\ed photons obey Poisson sta5s5cs; this assump5on is reasonable when the 
photoexcita5on rate is much higher than the emission rate. (ii) The emission rate E of the 
photons of all possible colors is independent of the state of the molecule; this assump5on is 
reasonable for FRET experiments, in which this emission rate is determined by the excita5on 
rate of the donor probe.  
 
3. Es(ma(ng entropy produc(on when photon colors unambiguously report on the molecular 
states.  

FRET experiments differen5ate between molecular states according to their FRET 
efficiencies. For example, in a two-color FRET experiment, a mix of photons of two colors is 
observed in each molecular state, with the state of the system determining the frac5ons of 
photons of each color. That is, the photon color itself does not iden5fy the molecular state, and 
mul5ple photons must be seen before the molecular state can be even guessed. This means 
that if the molecule leaves the state before it emits a sufficient number of photons, 
iden5fica5on of that state is challenging. Ideally, one wants the FRET efficiencies (equal to the 
probabili5es of detec5ng the acceptor photon in FRET) to be as different as possible for 
different states. Here we consider the extreme (and usually unrealis5c) case where the color of 
the photons emi\ed in each state is unique to that state. For a two-color FRET experiment 
performed on a two-state molecular system that would imply that the FRET efficiencies in the 
two states are 0 and 1. For a molecule with ! states we assume that ! colors are available to 
iden5fy, unambiguously, each of the states.  In this case we label both molecular states and 
photon colors with the same discrete index ..  

Of course, in prac5ce the complexity of the experiment increases dras5cally with the 
number of FRET dyes and thus colors. Moreover, each state may emit photons of “wrong 
colors”, and experimental effects59 such as cross-talk add to the complexity. This situa5on, 
considered in the next sec5on, can be described by introducing a matrix of probabili5es F&%  that 
a photon of color 0 is observed when the molecule is in state ., as illustrated in Fig. 3, right.  This 
descrip5on also covers the most common case where the number of colors available is smaller 
than the number of states. Sec5on 4 provides a general theory for such a case; the present case 
corresponds to a diagonal matrix F&%  – ideally, of course, one should strive to keep F&%  as close 
to diagonal as possible.    

Observa5on of photons will yield a sequence of photon colors .., .7, … , .8  detected at 
5mes ;., ;7, … , ;9 , where the 5me sequence ;., ;7, ;:, …  is drawn from a Poisson process, with 
the average number of photons emi\ed per unit 5me equal to E. Given such a sequence, one 
may a\empt es5ma5ng the entropy produc5on of the process using equa5on Eq. 5, but with 
photon sequences replacing the true microscopic states of the system.  In par5cular, we 
consider two es5mates:  

 

〈
;(
;3〉3% = lim

9→-
53%
(9)
	, 53%

(96.)
=

<
(96.) 〈log

0[%#,3#,%$,3$,…,%%,3%]
0[%%,?,%%&#,3%63%&#,…,%#,3%]

〉0[%#,?,%$,3$,…,%%,3%], (6)  



 

〈
;(
;3〉% = lim

9→-
5%
(9)
	, 5%

(96.)
=

<
(96.) 〈log

0[%#,%$,…,%%]
0[%%,%%&#,,…,%#]

〉0[%#,%$,…,%%] . (7)  

 
Here '[.., ;., .7, ;7, … , .9, ;9] is the joint probability of observing a photon of color .. at 5me ;., 
etc. (more precisely, this is a probability density with respect to the con5nuous variables 
;.…	;9). Note that, because of transla5onal invariance, it only depends on the differences 
between photon arrival 5mes, and so one can arbitrarily set ;. = 0 to indicate that the clock 
starts with the observa5on of the first photon. Similarly, '[.., .7, … , .9] is the joint probability to 
observe the sequence of photon colors appearing in the argument of this func5on.  

Since for a long photon sequence its total 5me, G = ;9 − ;. ≈ (I − 1)/E is essen5ally a 
determinis5c func5on of I, the inverse of this 5me appears instead of the factor 1/G in the 
above two equa5ons.  Finally, the quan55es 53%

(9) and 5%
(9) can be regarded as the I-th Markov 

order es5mates of the entropy produc5on. In par5cular, we have 5%
(@)

= 5%
(9) for any J ≥ I if 

the photon sequence is a true I-th order Markov process (that is, if the probability of observing 
a photon of a certain color only depends on the colors of the previous I photons). If, however, 

the photon sequence is an infinite-order Markov process then we expect  5%
(9) to be I-

dependent for any I.   
We emphasize that, since a photon sequence emi\ed by the system does not provide 

complete microscopic informa5on about the system’s true trajectory, Eqs. 6 and 7 are not 
expected, in general, to be equivalent to Eq. 5; instead one hopes to use them to recover a 
lower bound on the true entropy produc5on19.  Eq. 7, as compared to Eq. 6, further discards 
temporal informa5on about the photons and simply considers the KL divergence between 
photon sequences. We note that the sequence of emission 5mes ;., ;7, … , ;9 in our model 
obeys a Poisson process and is therefore 5me reversible, but the molecular states .., .7, …  (and 
thus the observed photon colors) are, in general, not sta5s5cally independent of the emission 

5mes.  We then expect, based on the log sum inequality60, that  〈
;(
;3〉% ≤ 〈

;(
;3〉3%. In fact, it turns 

out that the two es5mates are nearly iden5cal except when the inter-photon 5me E6. is 
comparable to or is longer than the inherent 5mescale of the system’s dynamics (Appendix A), a 
regime where, clearly, the number of photons emi\ed is insufficient to report on the inherent 
dynamics in ques5on. Because most of the data presented here are far away from this low-
emission-rate regime, we will ignore the differences between Eqs. 6 and 7 and will use the 
simpler Eq. 7 to es5mate the entropy produc5on using this method. 

In prac5ce, es5ma5ng Eq. 6 or 7 from the data is a daun5ng task because the sequence 
of photons emi\ed by the system, unlike the dynamics of the system itself, is not generally 
described by a Markov process. But in the par5cular scenario considered here, with the photon 
color faithfully repor5ng on the molecular state, the sequence of photon colors .., .7… , .9, … is 
in fact a discrete-5me Markov process. Indeed, suppose that, at ; = 0, a photon of color . has 
been observed. Then the state of the system is also known to be . with certainty, and, since the 
system is Markovian, this state completely determines the probability of any future observa5on 
performed on the system.  The (condi5onal) probability that the next photon will be of color 0 
and will be observed between 5mes ; and ; + 8; is the product of the probability 
E8; exp(−E;) to see the next photon within that 5me window, regardless of its color, 5mes the 



condi5onal probability '(0, ;|., 0) = (RA3)&%  that the system is in state 0 at the moment the 
photon is emi\ed. For the purpose of evalua5ng Eq. 7, in par5cular, we need the probability 
'(0|.) that the photon of color 0 is emi\ed aHer a photon of color ., which is given by 

'(0|.) = ∫ (RA3)&%R6<3E8;
-
? 			 (8)   

The condi5onal probabili5es '(0|.) now completely determine the Markov chain of the photon 
colors. As a result, Eq. 7 is easily evaluated to give  

〈
;(
;3〉% = 5%

(.)
= E∑ '(0|.)'(((.) log

0B0C.D
0B.C0D%,& 		,   (9) 

where the steady-state probabili5es of observa5on of photons of different colors are the 
solu5ons of the eigenvalue problem ∑ '(0|.)'(((.) = '(((0)% . Note that, without the factor E, 
equal to the inverse mean inter-photon 5me, Eq. 9 would give the es5mated average entropy 
produc5on per observed photon. 
 As an example, let us give an explicit expression for the entropy produc5on thus 
es5mated for the case where the molecular system in ques5on can be modeled as a 3-state 
cycle (Fig. 1, right).  The system undergoes transi5ons in the clockwise direc5on with a rate TE  
and in the counterclockwise direc5on with a rate TF. It emits photons at a constant rate E; the 
probability of emimng the photon of color 0 while in state . is generally specified by a parameter 
F&%, as discussed below, but in the present case only the photons of “true color” are emi\ed, 
and thus we have F%& = U%&, where U%&  is Kronecker’s delta. 

 
Figure 1. Le$: the general model of dynamics assumed here is described by the kine8c coefficients !'( represen8ng 
transi8on probabili8es (per unit 8me) from a discrete "	state to a state $. Right: an example of an energy dissipa8ng 
cycle when the forward rate %) is different from the backward rate. The dynamics of the cycle are monitored by 
observing the photons emiDed by the system. In each state, the arrival 8mes of the photons obey a Poisson 
process with an emission rate & (that is, quantum effects such as photon an8bunching are neglected57, 61). The 
probability that a photon has color $ when emiDed while the molecule is in the state " is given by ''(, and so the 
total emission rate for color 1 in state 1 is given by &'**, for color 2 in state 1 is given by &'+*, etc. 



 
In this case the true entropy produc5on (Eq. 4) is given by 

〈89/8;〉 = (TE − TF) log
G,
G-

 , (10) 

whereas Eqs. 7-9 give the following es5mate: 
 

〈
89

8;
〉%

=
E

E7 + 3(TF
7 + TE

7 + TEE + TFE + TFTE)
W(TF

7 + TE
7 + TFE + TFTE)ln

TF
7 + TE

7 + TFE + TFTE
TF
7 + TE

7 + TEE + TFTE

+ (TF
7 + TE

7 + TEE + TFTE)ln
TF
7 + TE

7 + TEE + TFTE
TF
7 + TE

7 + TFE + TFTE
Y 

 (11) 
 
Inspec5ng Eq. 11 we find that: 

lim
H→?

〈
;(
;3〉% = 0.	(12) 

Thus the es5mated entropy produc5on vanishes in the limit of low emission rate, an intui5vely 
expected result, as the photons emi\ed by the molecule become sta5s5cally independent in 
this case. On the other hand, in the limit E ≫ TF , TE   many photons will be emi\ed while the 
molecule resides in one state (with the average residence 5me being (TF + TE)6.), and thus 
the state of the molecule is directly measurable with a high temporal resolu5on (~E6.), much 
higher than the 5me associated with the molecular dynamics. In this case, we expect the 
es5mate of Eq. 11 to approach the true entropy produc5on, and indeed, we find from Eq. 11 
that 

lim
H→-

〈
;(
;3〉% = 〈

;(
;3〉 = (TE − TF) log

G,
G-

.   (13)   

The es5mated entropy produc5on increases monotonically with increasing emission rate (Fig. 
2).    
 
4. More realis(c scenarios: No one-to-one correspondence between photon colors and states. 

We now discuss the more realis5c case, where there is no one-to-one correspondence 
between the emi\ed colors and the molecular states, but rather each state can be characterized 
by a set of probabili5es of emimng photons of different colors. Specifically, we assume that 
while in state . the molecule will emit a color 0 with a probability F&%, with F%%  being the 
probability of emimng the “true” (or dominant) color associated with the state (Fig. 1, right). 
The matrix \ has the property F.% + F7% + F:% = 1 assuming no dark molecular states. This 
matrix \ may be viewed as a “recoloring matrix”: if we first imagine the idealized scenario of 
the previous sec5on, in which each molecular state .	produces photons of the true color 
associated with ., then the ac5on of \ is to recolor those, randomly,  into colors 1, 2, and 3  
according to the probabili5es  F.% , F7% , F:%. 

The (common) scenario where there are fewer FRET colors than states, such as the two-
color FRET, can also be described by this formalism. If, for example, color 1 corresponds to the 
donor photon color and color 2 to the acceptor photon color then we have F:: = F:7 = F:. =
0	 (i.e. no 3rd color photons are present). Moreover, the quan5ty 



 

 ]% =
I$!

I$!JI#!
= F7%  (14) 

 
is the usual FRET efficiency61 associated with the state ..  
 A key (and somewhat counterintui5ve) observa5on that will be cri5cal for the following 
discussion is that, unlike the original photon stream before recoloring, the sequence of  
observed “recolored” photons is generally non-Markov. Intui5vely, this occurs because the color 
of the photon no longer faithfully reports on the state, and so accoun5ng for photons beyond 
the most recently emi\ed one can give more informa5on on the current state of the system. 
Because of the non-Markovianity, Eq. 7 can no longer be reduced to the much simpler Eq. 9. 
Nevertheless, we can view Eq. 9 as a Markov approxima>on to Eq. 7. It is poten5ally a useful 
approxima5on in prac5ce, since the condi5onal probabili5es '(0|.) = '(0, .)/'(.) are easily 
es5mated from photon sequences; here '(0, .)	is the frac5on of pairs where photon 0 is 
preceded by photon . in the stream of photons, and '(.) is the frac5on of .-colored photons in 
the stream. In contrast, es5ma5on of the probabili5es of long photon sequences, as in Eq. 7, is 
demanding computa5onally and requires much larger amounts of data62. To examine the quality 
of this approxima5on, we note that these joint probabili5es can be wri\en in the form 
  

'′(0) = ∑ F&K'(((_)K  (15) 
and  
 'L(0, .) = ∑ F&MF%K'(`, _)M,K =	∑ F&MF%K'(`|_)'(((_)M,K .    (16) 
 
Or, wri\en in matrix form, a′ = \a\$, where a and a′ are the matrices whose elements are 
the joint probabili5es '(0, .) and '′(0, .). The primes in these expressions are used to emphasize 
that these probabili5es are associated with the recolored photon stream and are different from 
those evaluated for the photon stream described in Sec5on 3 where each state emits a single 
unique color. Using Eq. 8, Eq. 9 can now be adapted to describe the Markovian es5mate 
(indicated by the subscript “m”):  
 

〈
;(
;3〉@ = 5%

(.)
= E∑ '′(., 0) log

0.(%|&)
0.(&|%)%,& .   (17)  

 
We now consider the cases of 3-color and 2-color FRET separately. 
Three color FRET: the number of colors is s5ll the same as the number of observed states, but in 
each state the molecule can emit photons of “wrong” colors, with specified probabili5es. As an 
example, consider the recoloring matrix of the form: 

\ = b

1 − ' '/2 '/2

'/2 1 − ' '/2

'/2 '/2 1 − '

d,  (18) 

where the photon of the “true color” is emi\ed with a probability 1 − ' while photons of the 
two wrong colors are emi\ed with probabili5es equal to '/2. For ' → 0 this model is iden5cal 
to the one considered in the previous sec5on, with color completely iden5fying a molecular 
state. For the model of Fig. 1, the Markovian es5mate for the entropy produc5on, Eq. 17, is then 
evaluated to give:    



〈
89

8;
〉@ =

E

3[E7 + 3(TF
7 + TE

7 + TEE + TFE + TFTE)]
×	

g[−((−2 + ')'E7) + 3(TF
7 + TE(E + TE) + TF(−((−2 + ')'E) +

TE))] log
(67J0)0<$6:G-$J:G-((67J0)0<6G,)6:G,(<JG,)
(67J0)0<$6:G-$J:(67J0)0<G,6:G,$6:G-(<JG,)

+ [−((−2 + ')'E7) + 3(TF
7 + TF(E +

TE) + TE(−((−2 + ')'E) + TE))] log
(67J0)0<$6:G-$J:(67J0)0<G,6:G,$6:G-(<JG,)
(67J0)0<$6:G-$J:G-((67J0)0<6G,)6:G,(<JG,)

h  (19) 

 
 

 
Figure 2. Entropy produc8on es8mates (divided by the true entropy produc8on, Eq. 10) for a 3-color FRET 
experiment measuring the dynamics of a 3-state cycle depicted in Fig. 1, right.  The model parameters are %) =
2%/, and the emission rate  & is measured is in dimensionless units set by %/.   The parameter * quan8fies the 
probability that a photon of a “wrong” color is emiDed (see Eq. 18). For * = 0 the photon color unambiguously 
reports on the state of the molecule at the moment when the photon is emiDed. Solid lines show the es8mates 
5%
(.) obtained from the Markovian es8mator (Eq. 19), while open markers show the es8mates 5%

(-)
	using the 

sequence probabili8es, Eq. 27 (that is, non-Markov effects are fully taken into account). The dashed line shows the 
results for a two-color photon FRET experiment performed on the same system. In this experiment, state 1 emits 
photons of color 1 with probability '** = 0.9 and color 2 with probability '+* = 0.1; state 2 emits photons of color 
2 with probability '++ = 0.9 and color 1 with probability '*+ = 0.1; state 3 emits photons of color 1 and 2 with 
equal probabili8es, '*0 = '+0 = 0.5. See text for further details. The Markov es8mator 5%

(.)
	gives zero entropy 

produc8on in this case; the es8mate shown is the result of using Eq. 27.     
 
 
An interes5ng feature of Eq. 19 is that the es5mated entropy produc5on is a nonmonotonic 

func5on of the emission rate E. In fact, it can be verified that lim
<→-

〈
;(
;3〉@ = 0	for any finite value 

of ', while lim
<→-

〈
;(
;3〉@ = (TE − TF) log TE/TF (cf. Eq. 13) for ' = 0. Thus an op5mal value of the 

emission rate exists, where the Markov approxima5on gives the most accurate es5mate of the 
entropy produc5on. This behavior has to do with the fact that, as the inter-photon 5me E6. 
decreases, longer strings of photons are correlated, requiring longer memory to be considered 
to improve entropy produc5on es5mates. Note that this finding is general, as we observe 
similar behavior for more complicated models exhibi5ng non-Markovian dynamics, see Sec5on 
8.     
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Two-color FRET. To use the formalism described above, we will assume that the molecule can 
only emit photons of colors 1 (call it donor) and 2 (acceptor). Then the recoloring matrix has a 
row of zeros and can be wri\en in the form: 

 

\ = b
1 − F7. 1 − F77 1 − F7:
F7. F77 F7:
0 0 0

d,  (20) 

 
where the second row contains the FRET efficiencies for each state. The Markovian es5mate of 

the entropy produc5on,  〈
;(
;3〉@, can then be obtained using Eqs. 15-17 and 20, as before. 

Without doing explicit calcula5ons, however, it is easy to see14 that 〈
;(
;3〉@ = 0. Indeed, a 

sufficiently long Markovian sequence of two colors, (e.g. 1222121…)  is 5me-reversible as it 
always obeys detailed balance (i.e., there is the same number of 12 and 21 pairs in the 
sequence).  Does this result imply that two-color FRET is incapable to discern the 5me-arrow of 
a molecular machine opera5ng in nonequilibrium steady state? No, but it implies that non-
Markov effects in the photon color sequence must be considered when evalua5ng Eq. 7, and 
that Eq. 9 is not useful as an entropy-produc5on es5mate for two-color FRET experiments.  
 
5. Evalua(ng entropy produc(on from sequence probabili(es.  

It is clear from the above discussion that unless – unrealis5cally – the colors of photons 
emi\ed by the molecule in each microscopic state are different, non-Markov effects in the 
photon sequences are important when evalua5ng the entropy produc5on using Eqs. 6 or 7. 
Evalua5on of probabili5es of long (large I) sequences of photons in Eqs. 6-7 is demanding 
computa5onally and requires very long trajectories. If the underlying dynamics (i.e. the values 
of TE  and TF) are known, however, compu5ng Eqs. 6 and 7 becomes a much easier task. Of 
course, this is not useful in prac5ce, as once TE  and TF are known, the exact value of the 
entropy produc5on is also known (Eq. 10), and Eqs. 6-7 are unnecessary. But such es5mates are 
useful for learning what kind of informa5on about molecular dynamics is accessible, in principle, 
from the sequences of photons emi\ed by molecules.  
 To evaluate Eq. 6 (or Eq. 7) numerically, consider a sequence of I photons emi\ed by 
the system in its steady state. The probability of observing a sequence of photons with colors 
.., .7, … , .9 detected within infinitesimal 5me intervals (;., ;. + 8;.), (;7, ;7 + 8;7), … , (;9, ;9 +
8;9), is given by   
 
'[.., ;., .7, ;7, … , .9, ;9]8;.8;7…8;9 =
E9	F%%&%iR

A(3%63%&#)j&%&%&#
R6<(3%63%&#)8;9 …	F%$&$iR

A(3$63#)j&$&#
R6<(3$63#)8;7F%#&#'(((0.)8;.  

,  (21) 
where summa5on is assumed over all repeated indices (i.e., 0., … , 09)	.	Note that this quan5ty is 
the likelihood func5on, which plays a key role in FRET-based hidden-Markov models41, 63 further 
discussed below.  Note also that, in view of 5me-transla5onal invariance of photon sequences,  
'[.., ;., .7, ;7, … , .9, ;9] = '[.., 0, .7, ;7 − ;., … , .9, ;9 − ;.]  only depends on the 5me 
differences ;7 − ;., ;: − ;7, … . Introducing new diagonal matrices k(%) 
l&K
(%)
= F%&U&K 	,	(22)  



where U	is Kronecker’s delta, we can rewrite the sequence probability density in a compact 
form as 
'[.., ;., .7, ;7, … , .9, ;9] = E9R6<(3%63#)m	k(%%)RA(3%63%&#)…k(%$)RA(3$63#)k(%#)$OO,  (23) 
where m = (1…1) is the N-dimensional vector with all of its components equal to 1. The 
probability density of the 5me-reversed sequence is, similarly,  
'[.9, ;9, .96., ;96., … , .., ;.] = E9R6<(3%63#)m	k(%#)RA3# …k(%%&#)RA(3%63%&#)k(%%)$OO, (24) 
and, therefore,  
 

log
0[%#,3#,%$,3$,…,%%,3%]

0[%%,3%,%%&#,3%&#,…,%#,3#]
	 = log

P	R(!%)S3(4%&4%&#)…R(!$)S3(4$&4#)R(!#)"55
P	R(!#)S3(4$&4#)…R(!%&#)S3(4%&4%&#)R(!%)"55

			 (25) 

 
We assume that a sufficiently long sequence of photons has a “self-averaging” property18, 19, 

and thus 〈
;(
;3〉3%  can be es5mated as  

 

;9 〈
;(
;3〉3% ≈	  log

P	R(!%)S3(4%&4%&#)…R(!$)S3(4$&4#)R(!#)"55
P	R(!#)S3(4$&4#)…R(!%&#)S3(4%&4%&#)R(!%)"55

			(26) 

 
for a sufficiently long sequence of photons, or as an average of Eq. 26 performed over mul5ple 
sufficiently-long sampled I-photon sequences. This procedure is numerically efficient since it 
only involves matrix mul5plica5on.  

Eq. 7 can be es5mated similarly to give    

;9 〈
;(
;3〉% ≈	  log

P	R(!%)TR(!%&#)…TR(!#)"55
P	R(#)TR(!$)…TR(!%)"55

,			(27) 

where n is the matrix with elements n&% = '(0|.). 
 As seen from Fig. 2, the entropy produc5on es5mates that include non-Markov effects 
are significantly greater than those evaluated using the Markov approxima5on. Moreover, such 
es5mates also show nonzero entropy produc5on for the two-color FRET case, where the 
Markov approxima5on fails to differen5ate between reversible and irreversible dynamics. 
Unfortunately, Eqs. 26 and 27 cannot be used as prac5cal entropy produc5on es5mators, as 
they require knowledge of the underlying dynamics of the system.  They do, however, show the 
theore5cal limit of what frac5on of true entropy produc5on can be recovered in principle from 
Eqs. 6-7 if a prac5cal algorithm is available for this task. In the next sec5on, we discuss one 
proposal for such an algorithm. 
 
6. Es(ma(ng entropy produc(on using compression algorithms.  

Compression algorithms can be used to es5mate the “informa5on” content in a long 
string o, represen5ng, e.g., an English text or a 5me series64. This approach, in the context of 
single-molecule dynamics, has been used to evaluate the predictability (i.e., Markovianity) of 
single-molecule trajectories65-68.  A compression algorithm uses the string to build a “dic5onary” 
that is then used to construct a shorter representa5on of the string.  The basic idea of detec5ng 
5me asymmetry using such an algorithm is that 5me asymmetry causes the string o to be less 
compressible when a\emp5ng to compress it using a dic5onary built from the 5me reverse of 
o.   



More specifically, entropy produc5on is propor5onal to the KL divergence between the 
forward path of the system (here, sequence of photons) and its 5me reverse, see Eqs. 5-7. To 
es5mate this quan5ty using a compression algorithm, we use the method developed by Ro et. 
al69, which in turn builds on the Ziv-Merhav algorithm70. This method is based on compu5ng the 
cross-parsing complexity between two strings (i.e. sequences of photon colors in our case). The 
cross-parsing complexity of a sample string o using a string p as a dic5onary, denoted q(o	||	p),  
is the least number of phrases from p needed to en5rely encode o. For example, if o = 123133 
and p = 1233, then o can be expressed as three phrases from p: 123, 1, and 33. Thus, 
q(o	||	p) = 3. Given two long, independent sequences o. and o7 of photon colors, each of 
length !, the KL divergence between sequences of photon colors (Eq. 7) is es5mated as69 
 

r*U(o|oI) =
log!

!
[q(o.||o7

I) − q(o.||o7)], 

where o7
I  represents the 5me reversal of o7. 

 
 
7. Maximum likelihood es(mators (MLE) of entropy produc(on.  

The entropy produc5on es5mators discussed so far did not require, in principle, any 
knowledge of the underlying dynamics of the molecular system, as they a\empt to evaluate the 
photon sequence probabili5es required by Eqs. 6-7 directly. The method described in Sec5on 5, 
of course, did require the knowledge of the rate matrix K, but only as a prac>cal shortcut to 
evalua5ng the probabili5es of very long photon sequences: in principle, given sufficient 
sta5s5cs and computer power Eqs. 6-7 could be evaluated directly without any knowledge of K. 
Hidden Markov models (HMMs), which currently belong to the standard toolkit of FRET 
experiments, offer an en5rely different approach17, 40-42, 44, 45, 63, 71-73.  These approaches fall into 
two broad classes. The first uses binning to obtain quan55es such as FRET efficiencies as a 
func5on of 5me. This requires that the inter-photon 5me E6. is far shorter than the 5mescales 
of the dynamics of interest. See refs.17, 74, 75 for a recent survey and discussion of such methods. 
The second approach uses individual photon arrival 5mes and colors to infer the kine5c 
parameters of the system and is par5cularly suitable for studying fast molecular phenomena 
such as transi5on paths4, 7, 49. Examples of this approach include the Schröder-Grubmüller52  and 
the Gopich-Szabo methods40, 63,  H2MM1, 41, 42, and Bayesian inference methods from the Presse 
group44, 45.  A central quan5ty in these single-photon approaches is a likelihood func5on 
evaluated from photon sequences (see below). The Gopich-Szabo method and the H2MM 
maximize this func5on to determine the op5mal model parameters. Bayesian non-parametric 
approaches44, 45  go beyond this and sample the posterior probabili5es in the model and 
parameter space, albeit at increased computa5onal expense. Here we limit our discussion to 
the maximum likelihood method applied to individual photon sequences, resul5ng in an 
entropy es5mator that we will refer to as the “maximum likelihood es5mator” or MLE.      

In the maximum likelihood method, for a given photon sequence the probability	of	Eq.	
21,		
	
'[.., ;., .7, ;7, … , .9, ;9] ≡ 	v(#, .., ;., .7, ;7, … , .9, ;9), (28)  
 



is the likelihood func5on that is to be maximized with respect to the matrix K of the rate 
coefficients (and possibly photon count rates and other model parameters). Once the op5mal K 
is found, the entropy produc5on can be es5mated directly from Eq. 4. Importantly, the structure 
of the matrix K is determined by the topology of the assumed kine5c scheme (Fig. 1), which is 
usually postulated beforehand. In general, there is no guarantee that the assumed model in 
correct; the situa5on is further complicated by the fact that it may be impossible, in principle, to 
differen5ate among different equivalent models (possibly of comparable complexity) based on 
the available data76. 
 In principle, for an infinitely long sequence of photons and for any given topology of the 
assumed Markov model (cf. Fig. 1, leH) the likelihood func5on is expected to be the delta 
func5on (or possibly a sum of delta func5ons) with respect to the model parameters71, 77, 78. 
Thus if the topology of the kine5c scheme is known ahead of 5me, the maximum likelihood 
method can, in principle, give the exact entropy produc5on, regardless of the photon count  
rate E (i.e. even in the limit where many molecular transi5ons take place in between 
consecu5ve photoemission events). Therefore, unlike all other methods considered here so far, 
MLE’s performance is not limited by the photon count rate. In prac5ce, of course, we expect 
that sta5s5cal errors will strongly affect the performance of the method at low photon counts71.  
 One important consequence of such sta5s5cal errors is that, for an equilibrium system 
obeying detailed balance (i.e. with zero entropy produc5on), they will generally bias the MLE 
toward predic>ng posi>ve entropy produc>on, simply because Eq. 4 always yields a nonnega5ve 
number. That is, if K sa5sfies detailed balance exactly, Eq. 4 will give zero entropy produc5on, 
but any sta5s5cal errors in the entries of the matrix K can only increase this value (an excep5on 
is the case of linear model topology, where detailed balance is always sa5sfied regardless of the 
rate coefficients). This complicates differen5a5ng equilibrium from nonequilibrium systems 
using MLE approaches.  
 Another fundamental limita5on of the MLE method is that its performance depends (in 
an unpredictable way) on the assumed (and generally unknown) topology of the Markov kine5c 
scheme.  For example, consider two 3-state kine5c schemes shown in Fig. 3. If the linear 
scheme (Fig. 3, right) is assumed as the underlying Markov model, it will automa5cally sa5sfy 
detailed balance, and the MLE method will always predict zero entropy produc5on, even if the 
true dynamics involves a dissipa5ve cycle (Fig. 3, leH).  

 
Figure 3. Two 3-state kine8c models: the one on the le$ may represent a dissipa8ve cycle with nonzero entropy 
produc8on, while the one on the right always sa8sfies detailed balance and has zero entropy produc8on.   
 
The consequences of assuming an incorrect Markov model for MLE es5ma5on of entropy 
produc5on will be further explored in the next Sec5on. Bayesian non-parametric approaches, 
which simultaneously sample both in the parameter space and the model space (see, e.g., 
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refs.44, 45, 79) are a poten5ally promising way to overcome this problem, but they come at high 
computa5onal cost and will not be considered here. In prac5ce, physical, chemical, or structural 
insight, along with Bayesian criteria for model selec5on that take model complexity into 
account80, 81,  may guide one toward be\er hidden Markov models of the observable process.   
 
8. Maximum likelihood vs. “histogram” es(mators vs compression algorithms: a case study.  

Here we compare the performance of different entropy produc5on es5mators using the 
toy model of a 3-state single-file random walk shown in Figure 4. The model involves two 
par5cles that can occupy 3 possible sites, with no more than one par5cle occupying each site. 
Therefore, a par5cle can hop onto another site only when that site is unoccupied. Of the two 
par5cles (gray and red in Fig. 4) only one (red) is observed. Thus the observer sees the red 
par5cle hopping between 3 sites, similarly to Fig. 1, right, and Fig. 3, leH.  More precisely, we 
will assume that the system is probed via 3-color FRET that can differen5ate between the red 
par5cle occupying each of the 3 sites (Fig. 1, right). Moreover, we assume the 3-color FRET 
setup of Sec5on 3, where the color of the photon uniquely iden5fies the corresponding site. 
Unlike the example of Sec5on 3, however, the hopping dynamics of the observed par5cle are 
inherently non-Markov (in fact, infinite-order Markov)37, 65. 
 We consider two scenarios: in the first (Fig. 4, leH) both random walkers are driven, 
stepping clockwise (counterclockwise) with rates TJ(T6) when the transi5on leads to an 
unoccupied site. In the second (Fig. 4, right), only the observed par5cle is driven (with the rates 
TJ and T6 for clockwise and counterclockwise steps), while the unobserved gray par5cle has 
equal rates T? for stepping in either direc5on.  
 

 
Figure 4. Con8nuous-8me single-file random walk, in which two random walkers can each occupy one of the 3 
sites, with at most one walker occupying each site. Only one of the two walkers (red par8cle) is observed. The 
“microscopic” Markov process describing the system contains 6 states arranged on a ring. Le$: when both walkers 
are driven, each makes transi8ons in clockwise and counterclockwise direc8ons with rates %6 and %7, whenever 
such transi8ons lead to an unoccupied site.  Right: the observed walker is driven (with rates %6 and %7 for 
clockwise and counterclockwise transi8ons), but the unobserved walker has no preference as to go clockwise or 
counterclockwise (transi8on rate %8 in either direc8on). The 6 microscopic states (enumerated 1’,2’,…6’)  are not 
observable directly. Rather, coarse states including pairs of microscopic states (e.g. coarse state 1 consists of states 
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2’ and 3’) are observed, as indicated by rectangles. A Markovian approxima8on to this random walk assumes that 
the transi8ons between states 1-3 happen with rates  %) and %/ in the clockwise and counterclockwise direc8ons, 
as in Fig. 1, right.    
 
 
As illustrated in Fig. 4, each of the scenarios can be described using an underlying microscopic 
Markov model with 6 states37, 65, 82, 83, where a coarse-grained state with a known loca5on of the 
observed par5cle consists of two microscopic states corresponding to the two possible posi5ons 
of the unobserved par5cle. The microscopic states form a ring, with the transi5on rates 
indicated in Fig. 4.  The exact entropy produc5on for both models is then readily es5mated 
using Eq. 4:  
 
5V = (TJ − T6) log(TJ/T6)  (29) 
 
for the case where both par5cles are driven, and 
 

 5F =
G9(G:6G&)
7G9JG:JG&

log(TJ/T6)  (30) 

 
for the case of a single driven par5cle. As discussed in Sec5on 7, MLE with a hidden Markov 
model that assumes the correct kine5c scheme with 6 states shown in Fig. 4 will, in principle, 
recover the correct kine5c parameters and thus give the exact entropy produc5on in each case, 
given infinite amount of data. But as the exact number of states and the topology of the Markov 
model is unknown, here we inves5gate how choosing the “wrong” Markov model40 affects 
entropy produc5on es5mates. The most natural choice of such a model here would be the one 
iden5fying the observable states of the walker with the true microscopic states of the system.  
This means that the system’s dynamics would be interpreted using a 3-state Markov model 
(Figure 1, right and Figure 3, leH). The MLE will then predict the effec>ve transi5on rates TE  and 
TF for hopping in the clockwise and counterclockwise direc5ons (Fig. 4).  

Since in the limit of infinite photocount rate E the site of the observed par5cle is known 
exactly at any moment of 5me, it seems plausible that  TE  and TF  will be such that the average 
frequencies of clockwise and counterclockwise transi5ons will be the same as the ones in the 
original non-Markov model (in what follows, we will refer to this model as the “op5mal Markov 
model”). More specifically, as the pairs of the microscopic states (2’,3’), (4’5’), and (6’,1’) are 
mapped onto states 1, 2, and 3 of the 3-state model (we use primes to denote microscopic 
states, as in Fig. 4), we expect that the effec5ve 3-state model will preserve the fluxes between 
the coarse states 1,2,3, e.g.  
 
-W.:.':. − -:.W.'W. = TE'. − TF'7 = (TE − TF)/3.	 (31) 
 
Here '% = 1/3 is the steady-state popula5on of a coarse state, '%.  is the steady-state popula5on 
of a microscopic state, and -&.%.  is the transi5on rate from a microscopic state .′ to a 
microscopic state 0′. For example, -W.:. = T6 and -:.W. = TJ. Furthermore, the 3-state model 
should also preserve the (splimng) probabili5es to go in the clockwise and counterclockwise 
direc5ons, e.g.: 



 
G,
G-
=

*;.<.0<.
*#.$.0$.

=
G:0<.
G&0$.

  (32) 

 
Solving Eq. 2 for the steady-state probabili5es of the microscopic kine5c scheme and using Eqs. 
31-32 one finds  
 

TE =
G:
7 , TF =

G&
7  (33) 

 
for the case where both par5cles are driven. This result is intui5vely appealing: the observed 
par5cle can hop to an adjacent site half of the 5me (i.e., when this site is unoccupied), so that 
the effec5ve 3-state kine5c scheme, indeed, preserves the transi5on frequencies. 

For the case where only one par5cle is driven we find: 
 

TE =
G_(G:JG9)
7G9JG:JG&

, TF =
G:(G&JG9)
7G9JG:JG&

 (34) 

 
Using these rate coefficients in the Markov entropy produc5on es5mates (Eq. 13), 5 =
(TE − TF) log(TE/TF),		 we obtain the following op5mal Markov entropy produc5on es5mates: 
 

5V
SXX

	=
(G:6G&)

7 log(TJ/T6)  (35) 

 

5F
SXX

	=
G9(G:6G&)
7G9JG:JG&

wlog
G:
G&
+ log

G9JG&
G9JG:

x = 5F +
G9(G:6G&)
7G9JG:JG&

log
G9JG&
G9JG:

 (36) 

 
Here the superscript “eff” indicates that those are not the true entropy produc5on values but 
ones obtained from a Markov model with effec5ve rates. For the case where both par5cles are 
driven, the effec5ve 3-state model thus constructed underes5mates the entropy produc5on by 
a factor of two. In the case where only a single par5cle is driven, the accuracy of the es5mate 
depends on the rate T? of transi5ons of the undriven par5cle. For T? → ∞, the 3-state model 
recovers the exact entropy produc5on, a result that is easily understood by examining Figure 4, 
right. Indeed, in this limit, the interconversion 5mescale T?

6. within coarse states is much 
shorter than the mean dwell 5me (TF + TE)6. within coarse states, resul5ng in effec5vely 
Markovian transi5ons between coarse states65.   
 The limit T? → 0 is more interes5ng. In this limit, both the true entropy produc5on 5F 
and its effec5ve Markov es5mate 5F

SXX go to zero; however, we also have  
 
lim
Y9→?

(5F
SXX
/5F)		 = 	0, (37) 

 
and thus the rela>ve accuracy of the Markov es5mate becomes increasingly poor as the rate T? 
decreases. 
 In our numerical MLE es5mates, we generated photon sequences from the kine5c 
scheme in Figure 4 using the standard Kine5c Monte Carlo method (see, e.g., refs.53, 54, 57, 84). We 



then used the Fre5ca soHware85, 86 (version 9.11.2023) developed by D. Ne\els, B. Schuler and 
coworkers.  The log-likelihood of sequences consis5ng of 200,000 photons, was jointly 
op5mized with respect to TE,	TF, and E. This causes photon trajectories simulated at low values 
of E to represent a longer 5me period than those simulated at high E. The entropy produc5on 
was then es5mated using 5ZU[ = (TE − TF) log(TE/TF) (cf. Eq. 13). In general, we find that 
the es5mated parameters TE  and TF are not equal to their “op5mal” values, Eq. 33-34, except 
in the limit E → ∞ (Figs. 5 and 6). 
 We now turn to the model-free entropy produc5on es5mators that are based on Eq. 7. 
We call them “histogram” es5mators, as they are based on compu5ng mul5dimensional 
histograms for the probabili5es of different photon sequences. As noted above, the advantage 
of such an es5mator is that it does not require any knowledge or guess about the underlying 
microscopic dynamics, but a disadvantage is that its performance (even if unlimited data are 
available) is limited by the photon count rate E. Moreover, when photon sequences exhibit 
significant memory, the numerical evalua5on of Eq. 7 becomes prohibi5ve, and further 
approxima5ons assuming memory cutoffs must be introduced. That is, instead of es5ma5ng the 

entropy produc5on 5%
(-), one es5mates 5%

(9) at some finite Markov order I. Here we report 
data for I = 1,2, and 3, es5mated using the longer of either 10\ photons or the amount of 5me 
needed to simulate 10] state transi5ons. 

The simplest (and least costly computa5onally) es5mate, 5%
(.),  assumes that the photon 

sequence is a 1st order Markov process, with only pair of consecu5ve photons being correlated. 
In this case, the entropy produc5on is described by Eqs. 15-17, with a suitably chosen matrix F. 
For example, since states 2’ and 3’ lead to emission of photons of color 1, we have F.7 = F.: =
1, but F77 = F7: = F:7 = F:: = 0 etc. We can also use Eq. 27 to obtain the “infinite-Markov-
order” (albeit unobtainable in real applica5ons) es5mate of Eq. 7, which is not hampered by 
computa5onal issues and which provides an informa5on-theore5cal limit on the entropy 
produc5on obtained from Eq. 27 given a finite photocount rate E.  
 The results are illustrated in Figure 5 (two driven par5cles) and 6 (one driven par5cle).  
We find that the infinite-order-Markov es5mate converges toward the true entropy produc5on 
(Eqs. 29,30) as the photon count rate increases, with nearly exact result achieved when the 
mean inter-photon 5me is 1-2 orders of magnitude shorter than the mean life5me of an 
observable state in the system. The performance of the 1-st order Markov es5mate is 
comparable to that of the op5mal Markov model es5mate, Eqs. 35-36. Curiously, this es5mate 
shows a non-monotonic dependence on the photocount rate E, similar to that observed in Fig. 
2. For sufficiently high values of E the 1st-order Markov es5mate is slightly be\er (i.e. greater) 
than the op5mal Markov es5mate, but the effect is rather small for all model parameters that 
we have considered. 
 The maximum likelihood es5mate of the entropy produc5on rate, as an5cipated above, 
coincides with the op5mal Markov model es5mate, Eqs. 35-36, in the limit E → ∞, but, 
somewhat surprisingly, it predicts a greater entropy produc5on rate for small photocount rates. 
While this may seem like a welcome news (predicted values closer to the true one, as in Fig. 6), 
it is not: In general, good entropy produc5on es5mators are expected to provide a lower bound, 
yet the MLE method may predict greater values than the true entropy produc5on (Fig. 5) and 
thus suggest that the observed process is more irreversible than it actually is.  



 The higher-order entropy produc5on es5mates, 5%
(7) and 5%

(:), produce modest 
improvements, and the compression-based method leads to more significant improvement at 
intermediate photocount rates E, but it results in spurious non-monotonic E dependence at 

high photocount rates. We note that higher-order es5mates  5%
(9) quickly become 

computa5onally prohibi5ve and entail large sta5s5cal errors62 thus requiring more data 

(thereby making them even more demanding). For example, when es5ma5ng 5%
(7) or 5%

(:) at 
higher values of E, we find that there is insufficient data to compute probabili5es of all reverse 
sequences, leading to a division by zero in Equa5on 7. In Figures 5 and 6, we do not plot the 

values for 5%
(7) or 5%

(:) when this happens, leading to their lines disappearing in some parts of 
the plot. 
 As the compression-based es5mates do not rely on Markovianity of photon sequences 
(or their being close to Markov), we expect that the compression approach will be even more 
advantageous when another source of non-Markovianity – namely, the emission of photons of 
different colors from each state, as in Sec5on 4 – is present. On the other hand, a drawback of 
the compression approach is the lack of exis5ng methods for controlling its errors in a 
systema5c way: although one hopes that it will converge to the exact result in the limit of 
infinite trajectory length, in prac5ce this convergence is extremely slow62.   
 

 
       
 
Figure 5. Entropy produc8on rate es8mates (in units of %/0%6) for single-file diffusion (Fig. 4, le$) with %7 =
0.5	%6 ploDed as a func8on of the photocount rate & measured in units of %6. The “infinite order es8mate” is 
obtained from Eq. 27, and an “order-1“ es8mate  2((>)assumes that the sequence of photons is 1?@ − order 
Markov. The “MLE” es8mate assumes that the dynamics of the system can be described as a Markov process with 3 
interconnected states. The op8mal Markov es8mate (Eq. 35) assumes a 3-state Markov model with the rates 
preserving the transi8on frequencies of the original model and underes8mates the true entropy produc8on (Eq. 
29) by a factor of 2. The “infinite-order” Markov es8mate is based on Eq. 27 and represents the 2((A) limit. Error 
bars represent the maximum range observed over 5 trials. 



 

 
 
Figure 6. Entropy produc8on rate es8mates (in units %/0%6) for single-file diffusion (Fig. 4, right) with %7 = 0.5	%6 
and %8 = 0.1	%6, ploDed as a func8on of the photocount rate & measured in units of %6. The “infinite order 
es8mate” is obtained from Eq. 27, and an “order-1“ es8mate  2((>)assumes that the sequence of photons is 1?@ − 
order Markov. The “MLE” es8mate assumes that the dynamics of the system can be described as a Markov process 
with 3 interconnected states. The op8mal Markov es8mate (Eq. 36) assumes a 3-state Markov model with the rates 
preserving the transi8on frequencies of the original model and significantly underes8mates the true entropy 
produc8on (Eq. 30). The “infinite-order” Markov es8mate is based on Eq. 27 and represents the 2((A) limit. Error 
bars represent the maximum range observed over 5 trials. 
 

 
9. Beyond Poissonian photoemission sta(s(cs: more realis(c models for FRET photophysics.   
 So far, the discussion was limited to the case where the photon arrival 5mes were 
described by Poisson sta5s5cs. For a single-molecule source of light, this is only an 
approxima5on (see, e.g., ref.61, 87). Photons emi\ed by a single-molecule source tend to “repel” 
one another or “an5-bunch”, as detec5on of one photon implies that the molecule is in the 
ground state and is unlikely to immediately emit another photon. Even more importantly, the 
cycle of laser excita5on and photon emission is a nonequilibrium process, and one must ask 
whether the nonequilibrium nature of photophysics will contribute to the entropy produc5on 
es5mates obtained using Eqs. 6 and 7.   Here we address this ques5on by considering 5me 
reversibility of single-molecule emi\ers that do not undergo any conforma5onal dynamics. 
Specifically, Fig. 7, leH, shows a simplified scheme of a FRET, involving 3 states. AHer a photon 
has been emi\ed by either the donor or acceptor molecule, the system is found in its ground 
state G.  The FRET donor can then be excited to the state D* by a laser, which is followed by 
either reemission of a photon by the donor (D* to G transi5on) or by energy transfer to the A* 
state where the acceptor is excited. This is eventually followed by a transi5on from A* to G 
where an acceptor photon is emi\ed. This scheme contains a nonequilibrium cycle (cf. Fig 3, 



leH), and the ques5on is whether its noenquilibrium nature can be deduced from the sequence 
of the donor and acceptor photons.       

 
Figure 7. Le$: Simplified scheme of FRET, where excita8on of the donor from the ground state of the system 
results either in photon emission from the donor or energy transfer to the acceptor, which subsequently emits a 
lower-frequency photon. Colored arrows indicate the transi8ons that are observable as photons. The system 
contains a nonequilibrium cycle G→D*→A*→G.  Right: a hypothe8cal equilibrium 3-state system, where only 
transi8ons 2 → 1 and 3 → 1  (indicated, by analogy with the scheme on the le$, with colored arrows) are 
observable.   
 

For the purpose of evalua5ng Eq. 7, one needs to consider the sequence of photon 
colors .., .7, … , .9 (where . ∈ {r, |})	and discard the informa5on about their arrival 5mes 
;., ;7, … , ;9. Since we know the state (i.e., G) of the system with certainty aHer detec5ng the 
photon of either color, there is no memory in the color; in fact, the colors are independent 
random numbers drawn with probabili5es '^ = 1 − ], and 'V = ], where ] is the FRET 
efficiency. Such a random sequence of two possible colors is 5me-reversible14. Therefore, at the 
level of Eq. 7, the photon color sequence does not reflect the irreversibility of the 
excita5on/emission process.  

When the temporal informa5on about photon arrival 5mes is included, the situa5on is 
different. We can record the full informa5on about the photons as a sequence of pairs 
(G., ..), (G7, .7)… , (G9, .9), where G@ = ;@ − ;@6. is the dark 5me preceding the detec5on of 
the J-th photon. Consider, for instance, the following 3-photon sequence, 
(G@6., |), (G@, |)… , (G@J., r).  The 5me G@ is drawn from the distribu5on ~V(G) condi5onal 
upon observing the acceptor photon (and thus going through the sequence of states � → r∗ →
|∗ → �), which is reflected in the subscript “A”. The 5me G@J. is drawn from the distribu5on 
~^(G) condi5onal upon going through the sequence � → r∗ → � resul5ng in the emission of a 
donor photon.  According to the sta5s5cal proper5es of the above sequence, its 5me reversal 
results in the sequence 	(… , r), (G@J., |), (G@, |), with the lag 5me preceding the second 
photon (A) drawn from  ~^(G). But this is different from the distribu5on ~V(G) that this 5me 
would have in the forward-in-5me photon sequence. Therefore, the sta5s5cs of the original and 
5me-reversed photon sequences are different when photon arrival 5mes are taken into 
account, and thus Eq. 6 would predict irreversible dynamics in this case.  Stated more briefly, 
the lag-5me distribu5on condi5oned on the first photon being emi\ed by the donor and the 
next by the acceptor is given by '^→V(G) = ~V(G), which is different from 'V→^(;) = ~^(G), 
and thus the photon sequence is 5me-asymmetric. We note that such asymmetry has been 
previously observed in correla5on func5ons of donor and acceptor emission intensity57, 58.     
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G
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1

2 3FRET

excitation
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emission
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Unfortunately, this 5me irreversibility is spurious rather than indica5ve of 
nonequilibrium photophysics, as it could lead one to erroneously conclude that the kine5c 
scheme shown in Fig. 7, right, which obeys detailed balance (cf. Fig. 3, right), is 5me reversible 
as well! Indeed, this result inevitably follows from the difference between the distribu5ons  
~V(G) and ~^(G),  which generally exists even for the equilibrium scheme on the right.  

The spurious irreversibility found here is akin to the finding of ref.37, and our conclusion 
is, similarly, that (1) Eq. 6 does not correctly uncover the driven nature of the FRET  
photophysical processes and (2) the temporal informa5on in photon sequences should be 
discarded and Eq.7 should be used, in which case  photophysical effects will not contribute to 
the es5mated entropy produc5on. We note that the failure of Eq. 7 to quan5fy irreversibility of 
the photoemission process is not surprising: In order to do so one generally expects14, 22 both 
forward and backward transi5ons (e.g. both the photoexcita5on � → r∗ and the photoemission 
r∗ → �	steps in Fig. 7, leH) to be observable, which is not the case.   
   
 
10. Conclusions. 
 Inferring dissipa5on by molecular machines, as studied by FRET, is a difficult task, and all 
of the methods considered here have advantages and disadvantages. Generally, we have 
considered two classes of approaches, model-based ones (such as hidden Markov maximum 
likelihood es5mators) and “model-free” ones (which are based on direct es5ma5on of the KL 
divergence between the forward and 5me-reversed photon sequences). The maximum 
likelihood es5mates depend on how close the assumed model is to the true microscopic 
dynamics. If the two coincide, the MLE method will, in principle, give the exact entropy 
produc5on and exact transi5on rates given enough data71, 78. In prac5ce, of course, low 
photocount rates may result in significant sta5s5cal errors78. Moreover, sta5s5cal errors will bias 
MLE toward posi5ve es5mated values of entropy produc5on (and thus toward erroneous 
characteriza5on of the dynamics as irreversible) when the system sa5sfies detailed balance and 
thus when the true entropy produc5on is exactly zero.  
 When the assumed Markov model is not an accurate descrip5on of true dynamics then 
the entropy produc5on es5mate depends on both the photon count rate E and on the model 
itself. For example, a Markov model assuming a linear kine5c scheme will always predict zero 
entropy produc5on by construc5on.  In contrast, a non-Markov model involving discrete states 
arranged linearly may s5ll show 5me asymmetry14.  A Markov model that assumes wrong 
dynamics may further overes5mate the entropy produc5on, making the dynamics appear more 
irreversible than the true dynamics at low photocount rates.  
 Model free es5mators that approximate Eqs. 6-7 are limited by the photon count rate  
and can recover the true entropy produc5on only in the limit E → ∞. This is not surprising, 
since the state of the system is unknown during the dark periods between photons. The 
examples studied here suggest that the true entropy produc5on can be recovered when both 
the infinite Markov order and infinite emission rate limits are taken, and that finite-Markov 

order es5mates 5%
(9) at finite emission rates provide a lower bound on entropy produc5on. 

Except for an analy5cally solvable model of Sec5on 3,  however, we do not have a strict proof of 
the above two statements.   



 In prac5ce, we find that Eq. 7, which discards informa5on about photon arrival 5mes 
and only considers their sequences, does not result in any loss of accuracy and, moreover, 
avoids ar5facts associated with spurious contribu5on of photophysical effects to the entropy 
produc5on (Sec5on 9). Discarding temporal informa5on is of significant computa5onal 
advantage, as the “photon color states” usually form a small discrete set, while photon arrival 
5mes are con5nuous and require further discre5za5on66.  
 S5ll, in prac5ce, high-Markov-order es5mates are computa5onally challenging, but 
compression-based approaches (par5cularly the method of ref. 69) hold some promise. On the 
other hand, the compression approach suffers from the systema5c errors of the compression 
method introduced by the finite amount of data62  (i.e. compression of limited amounts of data 
is never perfect) and from their rather weak dependence on the amount of data. Overall, there 
seems to be no clear winner among the methods considered here – it seems advisable to have a 
toolkit containing both model-based and model-free methods.   
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Appendix A. Entropy produc(on from photon sequences with and without temporal 
informa(on.  
 
In most of this paper, we used Eq. 7 to es5mate the entropy produc5on from photon 
sequences. This equa5on discards the informa5on about the arrival 5mes of the photons, which 
is included in Eq. 6. In prac5ce, we find the two es5mates to be nearly iden5cal when the inter-
photon 5mes E6. are shorter than the typical dwell 5mes in each state of the system. To 
illustrate this, here we consider the Markov entropy produc5on es5mators based on Eqs. 6 and 
7, which neglect correla5ons between photons beyond those between consecu5ve photon 
pairs.    
 The first order Markov es5mate of the entropy produc5on including temporal 
informa5on is given by 

53%
(.)

= E7 ∫ 8;
-
? ∑ '(0, ;|., 0)'(((.)R6<3%,& log

0(&,3|%,?)
0(%,3|&,?) , '(0, ;|., 0)	 = (R`3)&% 		, (A1) 

where the summa5on accounts for averaging over states and integra5on accounts for averaging 

over emission 5mes in Eq. 6.   The es5mate 5%
(.) without the temporal informa5on is given by 

Eqs. 8-9. For the 3-state model of Fig. 1, right, this result is further given by Eq. 11. In Figure A1 

we plot  53%
(.) and 5%

(.), as a func5on of the photon count rate E, for this three state system using 
the same parameters as in Fig. 2. Both es5mates give nearly iden5cal results for the emission 
rates in the range 0.5 < ETF < 100.  
 



 
 Figure 8. First order es8mates of entropy produc8on including temporal informa8on (2?((*), solid line) and not 
including it (2((*) dashed line) as a func8on of the photon count rate & for the 3-state model of Figure 1, right, using 
3-color FRET. Photon colors directly correspond to the molecular states. The model parameters are %) = 2%/, and 
the emission rate  & is measured is measured in dimensionless units set by %/.  
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