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Abstract.  
 
A recent ground-breaking experimental study [Lyons et al, Physical Review X 14 (1), 011017 
(2024)] reports on measuring the temporal duration and the spatial extent of failed 
attempts to cross an activation barrier (i.e., “loops”) for a folding transition in a single 
molecule and for a Brownian particle trapped within a bistable potential. Within the model 
of diSusive dynamics, however, both of these quantities are, on the average, exactly zero 
because of the recrossings of the barrier region boundary.   That is, an observer endowed 
with infinite spatial and temporal resolution would find that finite loops do not exist (or, 
more precisely, form a set of measure zero). Here we develop a description of the 
experiment that takes the “fuzziness” of the boundaries caused by finite experimental 
resolution into account and show how the experimental uncertainty of localizing the point, 
in time and space, where the barrier is crossed leads to observable distributions of loop 
times and sizes. Although these distributions generally depend on the experimental 
resolution, this dependence, in certain cases, may amount to a simple resolution-
dependent factor and thus the experiments do probe inherent properties of barrier crossing 
dynamics.    
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Recent single-molecule experiments have been able to observe, with great temporal 

and spatial resolution, how molecules cross an activation barrier en route between two 

metastable states such as the folded and unfolded states of a protein (see, e.g., refs. 1-3 and 

discussion in refs. 4, 5). Until recently, such studies mainly focused on transition paths. A 

transition path is a segment of a molecular trajectory !(#) that enters the barrier region 

(%, ') through one of its boundaries (say %) and exits through the other ('), as illustrated in 

Fig. 1. Properties of transition paths such as their temporal duration (i.e., the transition path 

time), average velocity and shape inform one  about  microscopic mechanisms of barrier 

crossing and oSer an opportunity to test the applicability of various theories of barrier 

crossing; among those, the simple model of diSusive barrier crossing over a one-

dimensional free energy barrier6-9 is often found to provide a quantitative description of the 

process10.       

 More recently, trajectories that enter the barrier region but do not necessarily 

traverse it have attracted attention. In particular, we studied11, theoretically, the 

distributions of the exit time12 for a system that starts somewhere within the barrier region. 

This time is a generalization of the transition path time, as it contains contributions both 

from transition paths and from nonreactive trajectories that enter and exit the barrier region 

through the same boundary. In the first (to our knowledge) experimental eSort to probe 

barrier dynamics beyond transition paths3, Lyons et al, measured the properties of 

nonproductive fluctuations, or “loops”13-15,    which enter and exit the barrier region through 

the same boundary (Fig. 1). In particular, they have measured two properties of loops. The 

first one is the distribution ((!!"#|% → %)	of the turning points !!"#  for the loops that enter 



and exit the barrier region through the same boundary (here %). The second one is the 

distribution of the temporal duration of loops ((#|% → %).  

 For purely diSusive dynamics (with inertial eSects ignored altogether, which is a 

good approximation at experimental timescales16) , however,  both of these distributions 

are pathological, and the exact expressions for them (see below for further details) are the 

delta functions: 

((!!"#|% → %) = 2.(!!"# − %) (1) 

((#|% → %) = 2δ(#)  (2) 

Eqs. 1 and 2 simply state that a diSusive trajectory crossing the boundary % will 

immediately recross back and thus will never penetrate the barrier region. In other words, 

the loops that start exactly at % and have finite temporal duration/spatial extent form a set 

of measure zero in the absence of inertial eSects. When inertial eSects are appreciable, 

this is no longer the case. While inertial eSects in Brownian motion have been probed by 

some studies17, temporal resolution that is many orders of magnitude better than typical 

one16 would be required to resolve inertial eSects in studies of biomolecular folding such 

as ref.3  We thus conclude that experimental measurements capture loops thanks to their 

limited spatial and temporal resolution: the exact moment when a boundary is crossed is 

unknown, and when the beginning of a loop is detected the trajectory is already a finite 

distance Δ away from the boundary (Fig. 1). As a result, the time it takes to return to the 

boundary and the distance the trajectory can travel into the barrier region are both finite. At 

first glance, then, one may conclude that the measured loop properties are experimental 

artifacts. The purpose of this note is (1) to explore the eSect of experimental resolution on 





We consider the following model of an experiment performed with a limited spatio-

temporal resolution. When an experimental trajectory !(#) is being analyzed, each loop 

starts when it is observed, for the first time (say at # = #$) to the right of the boundary %, 

!% ≡ !(#$) > %, having arrived from the region ! < %. Because of finite spatial and temporal 

resolution, this staring point is slightly to the right of the boundary, !% = % + Δ > %. As a 

result, one measures properties of “incomplete loops” starting to the right of the boundary 

(Fig. 1) rather than those of true loops.  We will assume that the starting points of such 

incomplete loops are sampled from some resolution-dependent distribution 6(!%), where 

the average distance of the starting point from the boundary, 

Δ7 = ∫ 6(!%)(!% − %)9!%&
" ,  (3) 

characterizes the uncertainty in localizing the beginning of the crossing, or the fuzziness of 

the boundary as detected experimentally. We will further assume that this uncertainty is 

much smaller than the barrier with, Δ7 ≪ ' − %, as, otherwise the system’s traversing the 

barrier region cannot be meaningfully resolved. 

We now derive an expression for the probability density  ((!!"#|!% → %) of the 

turning points of incomplete loops by noting that ((!!"#|!% → %)9!!"#  must be 

proportional to the fraction of trajectories that start at !% and reach !!"#  but do not reach 

!!"# + 9!!"#. This fraction is given by ;(!% →	!!"#|%) − 	;(!% →	!!"# + 9!!"#|%) =

−;′(!% →	!!"#|%)9!!"#, where ;(!% → 	!|%) is the splitting probability, for a trajectory 

starting at !% > %,  to reach !  before reaching %. Let as assume coordinate-independent 

diSusivity – in support of this assumption we note that experimental studies of coordinate 

dependence of diSusivity in biomolecular folding yield conflicting results that may stem 



from experimental artifacts and do not indicate sifnificant coordinate dependence18. Then 

the splitting probability does not depend on the diSusivity and is given by19,   

;(!% → 	!|%) = ∫ ()*$%('))*
+
∫ ()*$%('))
+

 (4) 

and thus we have 

;′(!% → 	!|%) = − *$%()) ∫ ()*$%('))*
+

+∫ ()*$%('))
+ ,

,     (5)  

Combining this with the obvious normalization requirement ∫ ((!!"#|!% → %)9!!"# = 1&
#* , 

we obtain a probability density in a factorized form: 

((!!"#|!% → %) = >(!!"#)?(!%), 	!!"# > !%,  (6) 

with	

>(!!"#) = *$%()-+))

+∫ ()*$%('))-+)
+ ,

, (7) 

and	

?(!%) =
+∫ ()*$%(').
+ ,+∫ ()*$%('))*

+ ,
∫ ()*$%(').
)*

(8) 

Notice that if !% = % then ?(!%) = 0	and so  ((!!"#|% → %) = 0. This means that the 

system situated exactly at % will never leave this boundary, and so the distribution of !!"#  

is formally the delta function, Eq. 1.  

 For small enough values of !% − %, corresponding to the starting points close to the 

boundary %, we can further approximate Eq. 8 by 

?(!%) ≈ (!% − %)B-.(") (9) 

 Since the exact location of the point !% relative to the boundary % is below the 

experimental resolution, we should average Eq. 6 over the distribution 6(!%) of the starting 



points. In doing so, it is only meaningful to consider points !!"#  that are far enough from 

the fuzzy boundary set by the experimental resolution. Specifically, we assume  !!"# −

% ≫ Δ7  (which also implies the weaker condition ' − % ≫ Δ7), where Δ7, defined by Eq. 3, 

characterizes the distribution width; for such values of !!"#  we are sure that the loop !(#) 

turns around to the right of the point !% where it has started. The apparent distribution 

(D(!!"#|% → %)  of the turning points (where the tilde indicates that we are referring to an 

apparent distribution) is then simply an average of Eq. 6 over the distribution of the starting 

points, 

(D(!!"#|% → %) = 〈?(!%)〉1>(!!"#) (10)   

〈?(!%)〉1 = ∫ 9!%6(!%)?(!%) ≈ ∫ 9!%6(!%)?(!%)&
"

#-+)
" , (11) 

In changing the integration limit above we have assumed that the product 6(!%)?(!%) 

decays with increasing  !% rapidly enough, which, in view of Eq. 9 predicting linear !% 

dependence of ?(!%), would be satisfied, say, by the Gaussian distribution.  Using Eq. 9, 

we can further approximate the result as  

(D(!!"#|% → %) ≈ Δ7B-.(")>(!!"#) = Δ	7 *$%()-+))/%(+)

+∫ ()*$%('))-+)
+ ,

,  (12) 

We emphasize that the factorization of Eq. 10 into !!"#- and  !%-independent terms is only 

valid under the assumption that !!"# − % ≫ Δ7	. A key observation that ensues is that the 

apparent distribution of the turning points is always given by Eq. 7 multiplied by some 

numerical factor, regardless of the precise details of the measurement. This is precisely the 

observation made by Lyons et al3, see Eq. 5 there.  



 We now turn to the distribution of loop times. Again, we consider the time duration 

of an incomplete loop ((#|!% → %) instead, assuming that the starting point is to the right of 

the boundary, !% > %. This is what is also known as the exit time12 conditional upon 

reaching the boundary % before reaching the boundary '. Properties of conditional exit time 

distributions have been studied in ref.11, where formulas for its first and second moments 

were derived given the potential of mean force G(!). Unfortunately, in this case the shape 

of this distribution (plotted in Fig. 4a of ref.3) depends, explicitly and nontrivially, on the 

starting point !% and/or on the distribution 6(!%) of the starting points, and so the eSect of 

the measurement cannot simply be reduced to a numerical factor, as in Eqs. 6,10, and 12. 

To illustrate this, let us consider very short loops (corresponding to the case where 

!% and !!"#	are suSiciently close to the boundary %). As such short loops cannot travel 

very far from the boundary, one can neglect the eSect of the potential G(!) and use the 

approximation11 where G(!) is constant. Moreover, one can ignore the existence of the right 

boundary ', which is unlikely to be reached during a short loop time. This results in a well 

known formula12   

((#|!% → %) ≈ (#*2")3452
()*0+),
123

6√89:4  (13) 

Unlike Eq. 6, this distribution depends on the location of the initial point !% in a nontrivial 

way. This suggests that the properties of the measured distribution of the temporal loop 

duration cannot be understood without explicit consideration of the experimental 

uncertainties and the precise manner in which the trajectories are analyzed.  

 An interesting feature of Eq. 13 is that this is a broad distribution, with a power-law 

tail. This is in agreement with the experimentally measured distribution, see ref.3, Fig. 4a, 



and in contrast with the narrow distributions expected for the transition path times in the 

case of diSusive dynamics20. The first moment of the distribution of Eq. 13 (as well as its 

higher moments) diverges, but this divergence is removed when the second boundary, ! =

', is taken into account11, as this boundary limits the time the system can spend in the 

barrier region.     

 The sensitivity of the loop time distribution to experimental uncertainties makes it 

diSicult to interpret it as a fundamental property of the observed dynamics. One alternative 

is to consider the distribution of the loop time conditional upon having !!"#  as the loop’s 

turning point,   

([#|!% → %, max
%;<5;:

!(#=) = !!"#] ≡ ((#|!% → !!"# → %	)  (14) 

We note in passing that this conditional distribution, together with the distribution  of the 

turning points, ((!!"#|!% → %), contains, in principle, all information about the 

unconditional distribution ((#|!% → %), as the latter can (in principle) be obtained from 

((#|!% → !!"# → %	) by averaging over !!"#, 

((#|!% → %) = ∫ 9!!"#&
#* 	((!!"#|!% → %)((#|!% → !!"# → %	), (15) 

Unlike the unconditional distribution ((#|!% → %), the conditional distribution 

((#|!% → !!"# → %	) is only weakly dependent on the starting point !%, and the limit  

lim
#*→"

((#|!% → !!"# → %	) = ((#|% → !!"# → %	)  (16) 

is well behaved for !!"# ≫ % + Δ7, which is the case assumed here. For this reason, for a 

suSiciently small values of Δ7 it is not necessary to diSerentiate between the distribution 



((#|!% → !!"# → %	) for incomplete loops and ((#|% → !!"# → %	) for complete loops, and 

it can be assumed that the experimental measurement directly yields ((#|% → !!"# → %	).  

 Each % → !!"# → % loop further consists of a transition path from %	to !!"#  and a 

transition path from !!"#  to %. Therefore, measuring the time spent by the system on such 

a loop amounts to measuring the sum of two statistically independent (if obeying 

Markovian dynamics) transition path times (with the boundaries % and !!"#) and is thus 

analogous to earlier transition path measurements. The distribution of this time is a 

convolution of two transition path time distributions: 

((#|% → !!"# → %	) = ∫ 9P	((P|% → !!"#)((# − P|!!"# → %):
% = ∫ 9P((P|% → !!"#)((# −:

%

P|% → !!"#), (17) 

where we recognized that the time-reversal symmetry of transition paths21-23 leads to 

identity of distributions ((#|% → !!"#)  and ((#|!!"# → %) for transition paths from % to 

!!"#  and from !!"#  to %.    

 Recent work highlighted the shapes of the distributions of barrier crossing times as 

possible signatures of microscopic dynamics11, 20, 24-27. In particular, the shape of the 

transition path time distribution is always narrow in the case of diSusive dynamics, such 

that its standard deviation is always smaller than its mean. This property is often quantified 

by the value of the distribution’s coeSicient of variation Q, which is less than 1 for diSusive 

activate rate processes: 

Q = ?〈:,〉2〈:〉,
〈:〉 < 1, (18) 



and thus violation of this inequality indicates breakdown of the Kramers-type picture of 

diSusive barrier crossing4, 20, 28 resulting, e.g., from multiple distinct transition pathways. 

Here, for any distribution ((#), the moment 〈#B〉 is defined by 

 〈#B〉 = ∫ 9##B((#)C
% . (19) 

Other times related to barrier dynamics, such as exit times, however, can have broad 

distributions even in the case of diSusive dynamics11. In this light, it is instructive to 

compare the shape of the unconditional distribution ((#|!% → %) with that of the 

conditional loop time distribution ((#|% → !!"# → %	). As mentioned above and discussed 

in ref.11, the former is broad and can violate Eq. 18. In contrast, the latter is always narrow, 

with a coeSicient of variation Q satisfying Eq. 18.  Let us outline the proof that Q < 1 in this 

case.  

First we note that Eq. 18 has been proven earlier for transition path time 

distributions20, 24, 25 (assuming diSusive dynamics). Second, it is easy to prove that, given 

that ((P|% → !!"#) satisfies Eq. (18), the convolution of this distribution with itself, Eq. 17, 

also satisfies Eq. 18. In fact, if the coeSicient of variation of the distribution ((#|% → !!"#)  

is Q(< 1), then the coeSicient of variation of the ((#|% → !!"# → %	),	given by the 

convolution of Eq. 17, is Q= = D
√6 < 1. This can be shown, for example, by expressing the 

moments of each distribution as 〈#〉 = −(̂=(0), 〈#6〉 = (̂==(0), where (̂(S) = ∫ B2E:((#)9#C
%  is 

the Laplace transform of ((#), and by writing the Laplace transform of ((#|% → !!"# →

%	),	which is a convolution, as the product of the two identical Laplace transforms, i.e., 

(̂6(S|% → !!"#	).  



To summarize, unlike transition paths, whose properties are relatively insensitive to 

the fuzziness of the experimental barrier boundaries, failed barrier crossing attempts, or 

loops, have pathological properties within the model of diSusive dynamics: a loop that 

starts at a boundary of a barrier region will never leave this boundary. The experimental 

uncertainty in locating the precise crossing of the boundary results in loops of finite spatial 

size and of finite temporal duration, but this raises the question of whether such loops are 

experimental artifacts or whether they report on inherent properties of the dynamics within 

the barrier region. Here we have shown that certain properties of loops thus measured, 

such as the shape of the distribution of the turning points !!"#, are independent of or 

weakly dependent on the measurement accuracy. This observation oSers a precise 

theoretical foundation to experimental studies of failed barrier crossing attempts. In 

particular, two experiments performed on the same system but with instruments of 

diSerent resolution will measure the same distribution of the turning points (proportional to 

the function >(!!"#),	see Eqs. 6 and 10) to within a numerical factor. This function, then, 

can be thought of as an inherent property of barrier crossing dynamics. In contrast, the 

experimentally observable distribution of (unconditional) loop times does not have such a 

simple interpretation, as it depends on the experimental resolution in a nontrivial way. A 

related function, the distribution of loop times conditional on the position !!"#  of the 

turning point, is well behaved but it less interesting (at least in the case of Markovian 

dynamics), as it provides information that is also easily obtainable by considering (much 

better understood22, 29-32) transition paths over a modified barrier region (%, !!).     



We note that finite experimental resolution will also lead to additional errors in 

measuring the duration of failed barrier crossing attempts: for example, a trajectory 

sampled at finite time intervals may cross and recross a boundary thus terminating a loop, 

yet this crossing may be unobserved, resulting in a larger apparent loop time. This kind of 

systematic errors is not considered here, but it has been the subject of recent work33-35.           
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