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Abstract: New properties characterising the pairs of the OAM modes in a scalar random
beam such as the degree of orbitalization and the orbitalization ellipse are introduced, in
similarity with those of polarization theory. © 2024 The Author(s)

1. Introduction

A large number of Orbital Angular Momentum (OAM) [1] components may be present in an arbitrary scalar
light beam. Unlike other light properties such as spectrum or polarization, the OAM components are not local
but are given at a fixed radius. The OAM basis consists of the elementary spiral phase functions, ¢//?, where [ is
the OAM index and ¢ is the polar angle. Hence, in general, a multidimensional space is required for quantitative
characterization of the individual OAM states. The mode-to-mode OAM correlation properties in random beams
are described by the Coherence-OAM matrices [2], [3] of a generally high rank.

We narrow down this general characterization problem to a pair of OAM modes that can be either superposed or
sorted out from the total beam and scrutinize the properties of the mixture. We show, in particular, that the single-
radius, two-OAM-mode COAM matrix can be uniquely split into completely random and purely harmonic-like
parts, which can be then used for determining the degree of statistical similarity between the two OAM modes,
and for deriving the elliptical form associated with its harmonic-like portion.

2. Theory

Two-point correlations in a scalar random beam can be characterized by the cross-spectral density function
W (ry,12) = (E*(r1)E(rp)) of the electric field E, at a pair of points with position vectors r, = p,p + ¢.¢, n = 1,2.
Here star denotes conjugation and angular brackets stand for ensemble average. The correlations among different
OAM components can then be obtained by filtering out the azimuthal dependence at both points as [2]
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for —oo < [,m < oo. These quantities form the Coherence-OAM (COAM) matrix, viz., W oam (p1,p2) =
Wap(P1,02)] = [(E¢(P1)Eg(p2))]. Here —oo < @, B < oo, in general. We will now segregate a 2 x 2 sub-matrix
formed at two fixed indices, say / and m, and consider it at the coinciding radii, p = p; = p», using notation
Sim(p) = Wim(p, p) for its elements: SIOJ-AM (p),(i,j =1,m). It is a non-negative definite, Hermitian matrix, with

non-negative diagonal elements. Hence, it yields a unique decomposition "M (p) = "S"ymorb(p) 4 "S"0r0 (),
Here “orb” and “unorb” stand for purely orbitalized and completely unorbitalized (unstructured) OAM portions,
in similarity with completely polarized and unpolarized portions in a vectorial random beam (for proof see anal-

ogous derivation in [4], Sec. 10.9.2). The unst(gctured portion being a multiple of a 2 x 2 identity matrix and the
S orb

purely orbitalized portion being singular, Det[ S ">

(p)] = 0, Det standing for matrix determinant, are given as
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We have retained sub-indices [ and m for the elements A, B, C, and D to stress that different matrices are expected
for different / and m values. These elements can be related to the matrix ?10_;21” (p).

For the given pair of states, / and m, let us now consider a ratio of orbitalized portion of the spectral density to
the total spectral density of these two states:
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Here Tr stands for a trace of a matrix. This quantity is the OAM counterpart of the degree of polarization defined
for vectorial optical beams, being the ratio of the spectral density of a polarized portion of the beam to that of the
total beam. We term quantity O; ,,(p) the degree of orbitalization (DO). Further, matrix S O’b(p) is singular and,
hence, factorizes:

Sorb(p): E[*(p)El(p) E[*(p)Em(p)

En(P)E/(P) E,(P)En(p)|’ )

where E;(p) and E,(p) are the spatial counterparts of the equivalent monochromatic realizations of the
OAM components: & (p,t) = E;(p)e’®,  &un(p,t) = En(p)e'®. They can be related to the elements of ma-
) =

trix ?;’”b (p) as Ei(p VBim(p)e®P) | E(p) = \/Crm(p)e®P). Hence the real-valued realizations of

modes [ and m become: éaf )(p,t) = \/Bim(p)cos[&(p) + o], & (p,t) = \/Crm(p)cos[On(p) + wt]. Fur-
ther, since D;,,(p) = E;(p)En(p), the phase difference between the two OAM modes relates to Dy, (p) as
O m(p) = 6m(p) — & (p) = arg[D; »(p)]. Here arg stands for an argument of a complex number. Therefore, the
removal of the time-dependence portion from field realization leads to an elliptic form:
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where Re(Im) are real(imaginary) parts. This derivation is similar to that for polarization ellipse [5]. We term this
curve the orbitalization ellipse (OE).

3. Numerical examples

Figure 1 (A), (B) shows the DO for three pairs of the OAM indices, while (C), (D) represents the OE for / = 1
and m = 2 of the incoherently superimposed pair of the /;-Bessel correlated beams [6] varying with: (A), (C)
propagation distance z at p = 1mm; (B), (D) radial distance p at the source z = 0. Figure 1 (A) shows that for
some pairs of OAM modes (i.e., I,m = 1,2 or 0, 1), the DO can reach zero value. This occurs if S;; = S,;;,. For
z — oo the DO tends to 1. Similar behavior can also be observed in Fig. 1 (B), however at p — oo, the DO saturates
at a value less than unity. In Fig. 1(C), the OE is plotted at fixed p = Imm. It starts from a linear state along the

(g,l(r) axis, shrinks to a point, and then expands in a linear state along the éa,,(,r) axis. A comparable pattern for the
OE can also be observed Fig. 1 (D) plotted at source. However, the OE starts and ends as a point, due to the zero
axial intensity pertinent to the OAM-carrying beams and vanishing intensity beyond the beam edge.

Note that the space spanned by basis functions ¢//? and ¢™? is not the physical x —y plane customary for
polarization analysis. However, since the COAM matrix is directly measurable [3], the OE can be readily deduced

and presented in the (éalm , éa,,(f)) coordinates. If needed, the OE can be mapped to the real Cartesian plane by the
devices of polarization optics inserted behind the rings in the measurement procedure of [3].
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Fig. 1. DO and OE for a pair of /;-Bessel correlated beams.
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