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ABSTRACT

Analyzing multivariate time series is crucial in numerous domains, yet learning
robust and generalizable representations within such datasets remains challeng-
ing due to complex inter-channel relationships and non-stationary dynamics. In
this paper, we introduce a novel approach for learning data-adaptive position em-
beddings to incorporate learned spatial and temporal structure into transformer
architectures. Our framework introduces group tokens and constructs an instance-
specific group embedding (GE) layer that assigns input tokens to a select num-
ber of learned group tokens, thereby incorporating structural information into
the learning process. Building on this, we propose a novel architecture, the
Group-Aware Transformer (GAFormer), which integrates both spatial and tem-
poral group embeddings to achieve state-of-the-art performance on various time
series classification and regression tasks. Through evaluations on diverse time se-
ries datasets, we demonstrate that GE alone can significantly enhance the perfor-
mance of several backbone models, and that the combination of spatial and tempo-
ral group embeddings allows GAFormer to surpass existing baselines. Moreover,
our approach effectively discerns latent structures in data without prior knowledge
of the spatial ordering of channels, leading to a more explainable decomposition of
the spatial and temporal structure underlying complex timeseries datasets. Code
is available at https://github.com/nerdslab/GAFormer.

1 INTRODUCTION

Multivariate time series (MTS) arise in a Varlety of domains, from finance and traffic prediction
to healthcare ( s s ). MTS consist of many channels
of univariate time series, where each channel has its own temporal dynamics, and many channels
interact through latent interactions or dependencies across channels. The temporal dynamics, or
temporal structure of each channel, together with the relationships across different channels, or the
channel-wise structure, are both important when analyzing time series data ( ,

, ). Being able to learn shared spatial and temporal structures in multivariate tlme
series data is essential for obtaining robust representations and building inferences in downstream
tasks.

Transformers have demonstrated i 1mpresswe performance when being used to extract representations

from MTS ( s ). To learn nonlocal interactions across different
tokens in our sequence, pos1t10n embeddmgs are critical to encode the relative ordering between
channels and over different points in time ( , ). However, standard approaches for

position embedding (PE) that are used in language and vision are used can be problematic for the
following reasons:

 For general timeseries datasets, there is no predetermined ordering or “spatial position” for
different channels. Thus, unlike in language or vision, it is challenging to use positional embed-
dings to build inductive bias to understand the relationships across channels ( , ).

* The relationships across channels and time segments might be instance-specific. For example,
when localizing an event in the brain (e.g., seizure) using multiple electrodes spanning different
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regions in the brain, the dynamics would be altered depending on the specific brain region
where the seizure occurs ( s ). In this case, having a fixed set of positional
embeddings may lead to poor generalization.

These characteristics of timeseries make conventional positional embedding methods inadequate and
ineffective. Moving forward, it will be necessary to design novel types of embeddings techniques
tailored to the spatiotemporal structure of MTS.

In this work, we present a novel framework for learning
both channel and temporal structure in time series data and
then integrating this information into our tokens through
“group embeddings” (Figure 1). Our approach learns a con-
cise set of group-level tokens across the dataset and deter- prerer UL
mines how to adaptively assign them to individual samples Postonatembeddings KGR I 12 S S
based on the similarity between the group embedding and
specific sample embeddings. This versatile methodology
can be employed across sequences to integrate group-level Transformer
structures into transformer layers in either space or time.
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architecture, GAFormer processes multivariate time series o >

(MTS) data uniquely. It examines interactions across both P T

temporal and spatial dimensions, allowing it to form a more 0 s A
unified understanding of the structure within the data. Ad- Sample 1 Sample 2

ditionally, by decomposing our grouping into either the spa-
tial or temporal dimension, we show that this also leads
to enhanced interpretability, making GAFormer a more ex-
plainable architecture for modeling time series.

Figure 1: Group embedding layer. On
top, we show a standard position embed-
ding layer used in transformers. Below,
we show our proposed group embedding
(GE) layer which learns a set of group to-
kens and assigns them to different input
tokens in data-dependent fashion.

We tested our proposed technique on both classification and
regression tasks spanning a number of different multivariate
time series datasets. Our results suggest that group embed-
dings can be used to boost performance with various back-
bones, and that by combining both temporal and spatial group embeddings, GAFormer can provide
state-of-the-art performance in comparison to previous methods. When we further analyzed the
learned group structure, we found that GAFormer can reveal meaningful structure in data without
any prior knowledge of the channel or temporal grouping in the data.

The major contributions of our work are as follows:

* We introduce a novel data-adaptive group embedding (GE) technique that can be used to learn
both spatial and temporal structure in multivariate time series datasets. GE can be applied
flexibly to any transformer encoder, and we show its application in multiple backbones and
architectures for incorporating both spatial and temporal group awareness.

* We develop a group-aware transformer, named GAFormer, which provides a robust solution
for learning spatial and temporal patterns that leads to improved classification.

* In addition to providing enhanced performance, GAFormer offers meaningful explanations in a
variety of different types of time series datasets by revealing both spatial and temporal grouping
structures within the data.

2 METHOD

In this section, we introduce our approach for building “group embeddings” and then introduce our
GAFormer architecture which uses a combination of spatial and temporal group embeddings.

2.1 GROUP EMBEDDINGS

Transformers provide a powerful architecture for processing a wide range of data modalities, ranging
from text and images, to temporal data. In all of these cases, the raw data must first be “tokenized”
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Figure 2: Combining spatial and temporal group embeddings with a channel-invariant transformer archi-
tecture. To learn both spatial and temporal groupings in multivariate timeseries data, GAFormer starts with a
channel-level tokenization of the input before passing the data through a channel-agnostic temporal transformer
encoder. In the next stage of processing, we then learn spatial group tokens and embed this information in a
spatial group embedding (SGE) encoder; in the last stage, we learn temporal group tokens and embed this
information in a temporal group emebdding (TGE) encoder.

to convert it into a sequence of tokens that can be effectively processed by a transformer. After
tokenizing our data, we consider a sequence of tokens X = [x1,...,xy] € RNXP where N is the
total number of tokens in the sequence, and D is the token dimensionality.

Due to the permutation invariant nature of self—attentlon position embeddings (PEs) are critical for

the success of transformers ( s ; s ). With both learnable and fixed
position embeddings (e.g., sin-cos), each token is augmented with a set of non-adaptive embeddings
P =[p1,...,pn] € RY*P (o create a new sequence Xpp = [x1 + P1,- .., Xyx + PnJ. Thus, in

a traditional position encoding scheme, each time a sequence is passed into the model, a token in
a specific position in the sequence will be augmented with a fixed embedding associated with that
sequence position. We can also write this operation as Xpp < X + P.

In contrast to this fixed scheme for PEs, we propose to build group embeddings (GEs) for
our input sequence in a data-adaptive manner. To assign the group embeddings to input to-
kens, we pass the input sequence to an transformer encoder layer Enc(-) to obtain a sequence
[Enc(X)1,...,Enc(X)y]. Each token in this sequence is projected to X' < D dimensions through
a learned weight matrix W € RP <K After projecting the sequence into a lower-dimensional space,
we then apply a softmax function to obtain the weights; this operation will effectively sparsify the
coefficients that assign group tokens to input tokens. This group embedding operation GE(X) can
then be written as follows:

GE(X) = SoftMax(Enc(X) - W) - G ()

where SoftMax(+) represents the softmax function applied to each sequence (column). The group
embedding GE(X) is then added to the input tokens X, resulting in:

Because we apply the softmax, we can sparsify the assignment weights and thus select a small
number of group embeddings to each token. We find that in practice, this assignment is often 1-
sparse and tokens in a sequence are each mapped to a single group embedding.

2.2 GAFORMER: A GROUP-AWARE SPATIOTEMPORAL TRANSFORMER

Based on the proposed group embedding technique, we propose GAFormer, a spatiotemporal trans-
former that concurrently extracts both temporal and spatial grouping structures through learning
group embeddings in both dimensions (Figure 2). GAFormer is designed to learn representations
from multivariate time series X € RE*7 where C represents total amount of channels, and T’
represents total amount of timepoints or patches along the temporal dimension.

Tokenization Layer: Following the channel-invariant design of ( ), we first divide the
complete temporal sequence from each channel into smaller “patches” (chunks in time), creating
a tensor of shape X € RE*P*L where P denotes the total number of patches, and L represents
the number of timepoints in each patch. We then use an encoder Token(+) to tokenize each patch,
forming Z = Token(X) € RE*P*P_ In practice, to both retain the channel-wise separation
and also inform the model about the temporal semantics of each channel, we implement Token(+)
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Figure 3: Synthetic experiments on trajectories from a noisy many-body system. (A) To build the spatial
correlation, we use a many-body system with noise, and use the energy of the system to perform classification.
Thus, the model first needs to identify relevant objects, and then classify their total energy. (B) We compare
the performance in three settings: (left) where the channel order is fixed in train and test, (middle) where the
channel ordering is permuted during training and testing, and (right) where the channel ordering in training is
distributed differently than in test. Our results show that group embeddings can provide robust performance in
the presence of channel mismatch and distribution shifts.

as a transformer encoder with learned positional embeddings that processes each channel in X
independently.

Spatial (Channel-Wise) Group Embeddings: To next extract the channel-wise interactions, we
then slice the spatiotemporal sequences spatially, building a set of P sequences of length C. Let Zg
denote the new set of P spatial sequences. In this case, we can use our group embedding strategy
to learn spatial or across-channel structure through a spatial group embedding (SGE) layer; here,
we learn a spatial set of group tokens Gs € REs*DP where Kg is the number of groups and
assignments as described in the previous subsection. The spatial operations jointly update the latent
embeddings Zg as below:

Z' = Trans-S(Zs + SGE(Zs)), (3)

where Trans-S(+) to denote a spatial transformer encoder that operates on sequences of tokens that
are at the same point in time but vary across their channel dimension. Critically, since each tem-
poral patch of data is an independent sample to the spatial group embedding module SGE(-), we
can extract different spatial groupings for each time period. This gives GAFormer impressive ex-
pressiveness, such that it gives customized spatial grouping to each temporal period based on the
structure of the complete training dataset.

Temporal Group Embeddings: Next we apply a dimension reduction layer H (-) to extract Zp =
H([Z},...,Z%]) € RP*P' where C channels of D-dimension tokens are bottlenecked into one
token of D’-dimension. We pass this temporal sequence through a temporal transformer encoder
Trans-T(-) and apply a temporal group embedding module TGE(-) to apply temporal grouping
structure to the sequence. This results in a final output which can be written as

final _ TI‘anS-T(ZT + TGE(ZT))a @

where GAFormer maintains a temporal set of group tokens G € RX7*D " with K groups.

The architecture is trained end-to-end, where the parameters of the tokenization layer, the spatial
encoder, the dimension reduction layer, and the temporal encoder are jointly optimized. When
performing discriminative tasks, the tokens in Zfi"2! are averaged and fed into a linear classifier or
regressor depending on the task.

3 RESULTS

3.1 AN INTUITIVE EXAMPLE: NOISY MANY-BODY SYSTEMS

We first provide an intuitive example to motivate the benefits of our proposed group embedding.
Specifically, we examine a system where the classification can only be performed after correctly
identifying the channel groupings. In this scenario, we inspect the shortcomings of existing posi-
tional embedding strategies and assess the necessity of employing our proposed GE technique.



Noisy Many-Body Systems: To dissect the performance of our model, we consider mutivariate
time series generated from the tra]ectorles of many-body systems consisting of mutually interacting
particles ( ). In our experiments, the task is to classify the
total energy of a many- body system to dec1de if it belongs to a high-energy or a low-energy system.
However, to make the problem more challenging, we pollute the system with irrelevant objects that
are just passing by and not interacting with the system. To solve this task, we assume that the system
needs to (i) identify the objects that are within the interactive system, and then (ii) classify the total
energy of the system. We denote the resulting system as the noisy many-body system (Figure 3(A)).

Experiment Setup: For each noisy many-body system, we first initialize a pair of interacting objects
and a pair of non-interacting objects ( , ), and then solve the trajectories with the
Explicit Runge-Kutta method ( , ). We sample 20 consecutive observations
with a gap of 0.2 within time span [0, 10] for each system, and randomly generate 30,000 trials to
provide rich variability of the trajectories. We compute the total energy of each system and keep the
top and bottom quartiles for the classification labels. We then perform a 60/40% train/test random
split, and used the same generated dataset throughout.

To benchmark the effectiveness of GE, we train the exact same transformer architecture with (i)
learnable positional embedding ( s ; ; ), (i1) parameter-
free sin-cos positional embedding ( , ), and (iii) GE Each architecture contains
4-layer transformer blocks with 4 attention heads and 32 dimensions, where for GE we share the
first transformer layer as the Enc(-) that generates group embedding coefficients to keep the total
depth of the transformer consistent. We train all models with learning rate of 0.0001 using the Adam
optimizer ( , ), with a batch size of 64 for 200k steps until the model converges.
All runs are repeated for five random seeds.

Results: We examine the robustness of GE in three settings: (i) Stable setting, where the relative
position of objects (channels) never shifts; (ii) Shuffle setting, where the observed objects could be
in any position and are randomized similarly in training and testing; (iii) Biased setting, where the
observed objects have different positions that are randomly sampled from non-overlapping sets for
the training and testing data.

As shown in Figure 3(B), the synthetic results demonstrate that GE is necessary for the successful
modeling of MTS with varying spatial structures. When the channel structure is known and fixed
(Stable), GE performs similar as the other two position embedding techniques. However, when the
channel structure is randomized and thus exhibits rich variability (Shuffle), GE shows impressive im-
provement over learnable position embedding (=~710%) albeit having similar amount of parameters,
and outperforms sin-cos position embedding by a large margin of ~14%. Finally, when the spa-
tial structure distribution differs from the train and test (Biased), GE becomes the only embedding
method that gives robust performance (~97%), while the other two baseline methods fail to learn
(=50%). The results on synthetic experiments demonstrate that GE is a necessary component for
effective learning on datasets where the token-wise structure is unknown or biased.

3.2 TIME-SERIES CLASSIFICATION TASKS

In this section, we aim to validate: (i) The effectiveness of GE when it is added into other architec-
tures; (ii) The effectiveness of GAFormer when it is used in multivariate time-series.

Univariate and Multivariate Table 1
Datasets: We validate the effec-
tiveness of GE on both the univariate

. Classification performance on univariate time-series
datasets. We bold the best model and underline the second best.

datasets and the muiltivariate datasets; InlineSkate Farthquakes Adiac
. GRU ,2017) 28.00 74.82 37.08
and further examine the performance TCN( : 2255 7428 58.06
of GAFormer on muiltivariate datasets. MVTS - : 3518 ISy 57357
Both datasets are selected from the MVTS + TGE 34.73 76.26 61.64
UEA Time Series Classification bench- A 112.55 11.44 14.10
mark ( , ), where AutoTrans( )| 33.09 7554 67.02
univariate time-series datasets contain AutoTrans +TGE 34.73 76.98 75.45
InlineSkate (7 classes) ( A T1.64 11.44 18.43
), Earthquakes (2 classes), Adlac
(37 classes) ( , ); While the multivariate time-series datasets contain MotorImagery



Table 2: Classification performance on multivariate time-series from the UEA benchmark. Results obtained
through our Group-Embedding (GE) approach are highlighted below each architecture in terms of change in
accuracy A. The top performing model is boldface and second model is underlined.

SelfRegSCP2  FaceDetect Ethanol Motorlmagery

(c=7) (c=144) (c=3) (c=64) Avg.

NN 48.30 51.90 29.30 51.0 45.13

DTW; 53.30 51.30 30.40 39.0 43.5

DTWp 53.90 52.90 32.30 50.0 47.28

GRU( ,2017) 51.11 56.56 34.60 51.0 48.32

TCN( ,2017) 53.89 66.60 30.04 50.0 50.13

MVTS( ,2021) 51.11 55.82 25.10 50.0 45.51

MVTS + TGE 51.67 61.75 30.42 55.0 49.71

A 10.56 15.93 15.32 15.0 14.20

AutoTrans( ,2022) 44.78 65.12 27.76 53.0 47.67

AutoTrans + TGE 52.78 68.05 27.00 56.0 50.96

A 18.00 12.93 10.76 13.0 13.29

PatchTST( ,2022) 50.56 54.99 25.86 54.0 46.35

GAFormer 56.11 67.99 41.44 61.0 56.64
(64-channel ECoG, 2 classes) ( , ), SelfRegSCP2 (7-channel EEG, 2 classes)
( s ), FaceDetect (144-channel MEG, 2 classes), and Ethanol (3-channel
Spectrometer, 4 classes) ( , ). The selected datasets present a multifaceted spectrum

of challenges inherent to time series analysis.

Baselines: For univariate experiments, we incorporate temporal GE (TGE) on top of two transform-
ers for time-series classification: MVTS ( , ) and AutoTransformer ( ,

). We also selected two non-transformer architectures, a GRU ( , )and a TCN
( , ), for comparison.

For our experiments on multivariate time-series, we implemented a supervised version of PatchTST
( , ), apply multivariate versions of the same baselines used for the univariate experi-
ments, and compare against results for a nearest neighbor classifier (NN) ( s ) and two
dynamic time warping approaches that either use the same (DTW7) or different (DTW p) warping
factors across dimensions, as reported in ( ). More details of benchmarks and
model implementation are stated in Appendix B.

Experiment Setup: For each dataset, we perform an 80/20% train/val split on the original training
dataset, and select the best model on the validation set to obtain results on the testing set. We perform
consistent evaluation on all experiments, where we train all models with the Adam optimizer with
an initial learning rate of 0.0003, a cosine annealing scheduler with warm restarts (

, ), a restarting period of 5 epochs, and the multiplying factor of 2. We set the maximum
number of epochs as 300. All models are trained until convergence. We provide more details of the
models and the optimization process in Appendix B.

Univariate Results: In Table 1, we studied the performance of baseline architectures with and with-
out temporal group embeddings on a number of univariate datasets. In all datasets, we show that
when adding the temporal group embedding module (TGE), the performance of baseline transform-
ers can be greatly improved. Especially, in InlineSkate, adding TGE to MVTS gives an impressive
1712.55% increase in accuracy; while in Adiac, adding TGE to AutoTransformer gives 18.43% in-
crease in accuracy. The experimental results demonstrate that adding temporal group embeddings
to univariate time-series provides an impressive boost in performance.

Multivariate Results: In Table 2, we report the classification performance of GAFormer and the
performance gain provided by GE across various multivariate datasets. Similar to the univariate
results, we show that integrating the temporal group embeddings TGE into the transformer archi-
tectures MVTS and AutoTransformer gives notable improvements in accuracy, and in the case of
the SelfRegSCP2 dataset, the classification accuracy gain is 78.00%. Furthermore, when combin-
ing spatial and temporal grouping structures, we show that GAFormer can obtain further boosts in
performance, giving an average classification performance increase of ~16%. Our analysis demon-
strates the benefits of group embeddings, highlighting its versatility both on its own and when im-
plemented as an independent architecture.



Table 3: Performance on neural population decoding including both time-series classification tasks (Mihi-
Chewie) and regression tasks (NLB). We bold the best model and underline the second best one.

Classification (Acc) Regression (R?)
Chewie-1 Chewie-2 Mihi-1  Mihi-2 \ NLB-Maze NLB-RTT
GRU(¢ ,2017) 75.00 94.44 73.81 86.05 0.8887 0.5951
TCN(¢ ,2017) 78.13 91.67 90.48 81.40 0.8946 0.5407
NDT( ,2021) 81.06 88.89 88.10 90.70 0.8708 0.4621
EIT( ,2022) 75.00 77.78 78.57 65.91 0.8791 0.4691
GAFormer 81.25 94.44 92.86 88.37 0.9136 0.5433

3.3 CLASSIFICATION AND REGRESSION TASKS ON NEURAL RECORDINGS

Brain-computer interfaces (BCIs) enable the direct translation of neural activity into outputs that can
control external devices, bridging the gap between the brain and machines. Crucially, the success
of BCIs heavily relies on the accuracy of the neural decoding methods, which benefit from the
identification of neuronal function groups. Thus, we examine GAFormer for neural decoding tasks.

Neural Decoding Datasets: We systematically evaluate GAFormer across six neural decoding
datasets that capture neural population activities from the motor cortex of nonhuman primates en-
gaged in different movement tasks ( , ; ). In neural recording datasets,
the activities of individual neurons are sorted into dlstlnct channels and the number of spikes across
temporal period (20ms) are counted to produce multivariate time-series.

We first test GAFormer on the Mihi-Chewie reaching dataset for classification ( , ).
The dataset consists of stable behavior-based neural responses from different neuron populations and
animals performing the same task ( , , ), where two rhesus macaques,
Chewie and Mihi, were trained to reach one of elght locations. While executing different reaches,
neural activity in their primary motor cortex was continuously recorded across the two subjects on
two different days, forming a total of four sub-datasets.

We also examine the performance of GAFormer on the Maze and the Random Target Task (RTT)
tasks of the Neural Latents Benchmark (NLB) for regression ( s ). The Maze dataset
records the neural activity from the dorsal premotor (PMd) and primary motor (M1) cortices, where
the objective is to predict the hand movement trajectories of the observed subject. The RTT dataset
is a unique self-paced sequential reaching task set amidst random elements of a grid. The dataset
contains neural spikes from the primary cortex, which are used to predict the subject’s hand position.

Experimental Setup: We benchmark GAFormer against existing state-of-the-art transformer-based
models for neural data, including NDT ( , ) and EIT ( s ), as well
as traditional methods GRU and TCN. For all experiments, we use the same GAFormer architec-
ture as stated in Section 3.2, and simply add one linear projection layer to the final embeddings of
GAFormer to predict the hand velocities for the regression task with an MSE loss. For all experi-
ments, we train the model for 300 epochs, and optimize the network with an Adam optimizer and a
cosine annealing learning rate scheduler, and report the converged accuracy and R2 score on the test
set. We report additional details about the hyperparameters in Appendix B.

Results and Insights: We show the experimental results as in Table 3. Across the board, we find
that GAFormer provides strong performance on all neural decoding tasks with major improvements
over the baseline methods in multiple instances. The good performance happens in both classi-
fication tasks and regression tasks, where significant improvements in the Chewie-2 and Mihi-1
datasets of a classification accuracy of 94.44% and 92.86% are observed, surpassing the previous
state-of-the-art by ~13%. For the more complicated regression tasks, GAFormer also gives the new
state-of-the-art, demonstrating robust decoding performance decoding neural activities. The neural
decoding results demonstrate that GAFormer can consistently outperform the previous state-of-the-
arts, suggesting its adaptability and promise for a diverse range of tasks.

Overall, the GAFormer model showcases versatility across datasets, highlighting its potential as a
robust tool for neural decoding in BClIs, even when compared against the previous state-of-the-art
models. Besides the impressive classification performance, another major advantage of GAFormer
is its interpretability, which is demonstrated through the visualizations in Appendix C, where the
structural information about neurons organizations as well as temporal stages are generated through
group embedding assignments automatically.



3.4 ABLATION STUDIES

To understand the contributions of various components in our GAFormer architecture, we conducted
a number of ablations to the model. These experiments aimed to quantify the impact of temporal
group embedding and spatial group embedding within the system.

The first ablation revolved around understanding the performance of GAFormer without any of the
group-aware embeddings (Table 4, Base). By comparing this stripped-down version with the full
model, we can gauge the performance gain offered by our group-aware embedding mechanism. We
found that training the model without group-aware embeddings resulted in suboptimal performance
across all of the UEA datasets that we tested. This demonstrates that our proposed group embedding
strategy is integral to harnessing the intricate patterns present in multivariate time series.

The second ablation aimed to dissect the o )
individual impacts of spatial and temporal Table 4: Ablations. Our base channel-invariant architecture

roup embeddings. To do this, we trained (left), with temporal GE only, \yith spatial GE only, and using
;gwougistinct rrio%il Variantsl's (‘:}e E:xlclzllu— GAFormer to extract both spatial and temporal GE.

sively leveraging spatial group embed- | Base +TGE +SGE  Ours
dings (+SGE) and the other reliant solely SelfRegSCP2 | 5278 5333 55.00  56.11
on temporal group embeddings (+TGE), FaceDetect | 53.80 56.83 6155 67.99

Ethanol 25.10  30.04 37.64 4144

Both variants improved over the base Motorlmagery | 50.0 54.0 530 610

model with no group embeddings. How-
ever, neither reached the performance of the combined spatial and temporal model, indicating that
the joint utility of spatial and temporal tokens plays a crucial role in the learning process.

3.5 VISUALIZATIONS OF THE GROUP ASSIGNMENTS

A key advantage of our group-aware architecture is that, once trained, we can examine the spatial and
temporal group embedding assignments that are learned by the model. Thus, we studied the spatial
and temporal embeddings learned by GAFormer in the Motorlmagery ECoG dataset (Figure 4) and
the NLB RTT dataset (Appendix C.1). In both cases, we found clear temporal grouping structure
that appeared to segment the data in a data-adaptive manner, with the temporal grouping structure
of NLB RTT aligning well with the intrinsic structure of the movement task ( , ). In
the case of the MotorImagery dataset, we also found distinguishable grouping structures along the
channel (spatial) dimension. In this case, the imagined movements of fingers have huge variation
(Figure 4 left), while the imagined movements of the tongue exhibit similar grouping structures
across trials (Figure 4 right). The distinction of grouping structures across the different classes seem
to align with the temporal complexity of the task, as the movement of the finger is originally richer
than the movement of tongue.
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Figure 4: Spatial (top) and temporal (bottom) groupings for the MotorImagery dataset. The two examples on
the left and right are from Class 1 (Finger) and Class 2 (Tongue), respectively.

4 RELATED WORK

Position Embedding: Position embedding plays a critical role in the transformer architecture,
whether dealing with textual, images, to temporal data ( s ; s ). Given



the order-agnostic nature of transformers, positional embeddings introduce the essential context
needed to build complex relationships across different parts of a sequence. For this reason, numer-
ous studies ( ); ( ); ( ); ( ), have delved
into the specifics and refinements of simple positional embeddings. Among existing techniques, our
approach shares similarities with the conditional positional embedding that is used in visual repre-
sentation learning ( , ). However, their method focuses on instance-specific learning
of positional embedding without specifically targeting the discovery of grouping structures, which
is one unique advantage of our proposed approach. Moreover, it is worth noting that recent works
on multivariate time series also explored the use of spatiotemporal embeddings that have been de-
veloped for traffic forecasting ( , ) and future location predlctlon ( , ).
Different from them, the robustness of GE relies on the design of the grouping structure, which
effectively identifies distinct spatial and temporal structure in MTS datasets.

Set Discovery and Prediction: In the domain of computer vision, ( ) introduced
slot attention, which is used for weakly supervised set discovery and prediction problems. Drawing
parallels with our proposed methodology, both techniques require the construction of a fixed-size
‘group tokens’, which are referred to as ‘slots’ in slot attention. However, our proposed group
embeddlng differs from slot attention and its successive works ( ,

, ) due to the unique multivariate nature of timeseries, and the data- adaptlve
nature of our approach. We hypothesize that the performance gain obtained by our approach is due
to the uniqueness of the structure of MTS, which is often neglected in previous works.

Transformers for Multivariate Timeseries: Initial approaches to integrating transformers for mul-
tivariate time series involved tokenizing short context windows from sequences. These tokenized
segments were subsequently embedded using Multi-Layer Perceptrons (MLP) or Temporal Con-
volutional Networks (TCN) ( , ). Despite its foundational nature, this method
exhibited limitations in extracting channel-specific features and incorporating them into the training
process. Recent methodologies, notably EIT ( , ) and PatchTST ( R ), in-
troduced a channel-independent design, for classification and forecasting tasks, respectively. Build-
ing on this work, ( ) introduces a spatiotemporal channel-independent transformer
architecture for traffic prediction.

In the realm of forecasting, PatchTST ( , ) has introduced an innovative patch design
tailored for time series predictions, maintaining a channel-invariant design. Similarly, CrossFormer
( , ) prioritizes patch designs but with a focus on exploiting inter-channel depen-
dencies. Such methodologies underscore the importance of channel relationships for enhancing
forecastmg outcomes. Other significant contributions in this domain include works like ( ,

; ; , ), which have expanded the use cases of transformer-based forecasting.

5 DISCUSSION

In this work, we introduced a novel framework for building data-adaptive position embeddings to
enhance time series transformers. By adaptively assigning group-level tokens to individual samples
based on similarity, our method effectively integrates channel-wise and temporal groupings into the
transformer architecture. Empirical validations on several time series benchmarks demonstrate how
group embeddings can be integrated into a number of existing transformer models. Furthermore, the
Group-Aware Transformer (GAFormer) architecture developed in this work offers a robust solution
for capturing and leveraging the complex interactions within multivariate time series data, leading to
enhanced performance and interpretability without the need for known ordering or spatial structure
across channels.

Limitations and Future Work: While GAFormer has shown promising results, it partially relies
on the channel-independent design as proposed in ( ); ( ). While this
approach has many advantages, as discussed in ( ), a channel-separable design might
not adequately capture the complexities of data with intricate inter-channel dynamics, leading to
suboptimal representations in certain datasets. In addition, as the spatial and temporal dimensions
grow, more data is needed for the model to effectively extract reliable grouping structures. Moving
forward, improving the group embedding module for effective training on high-dimensional MTS
data would be an exciting line of research. Additionally, a more in-depth examination of model
interpretability, possibly using advanced quantification metrics or visualization tools, can shed light
on how the group tokens capture and represent data dynamics.
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APPENDIX

A  DATASETS
A.1 UEA DATASETS

Table 1: Selected datasets from UEA Multivariate Time Series Classification archive.

Dataset Train Test Channels Length Classes
MotorImagery 278 100 64 3000 2
SelfRegSCP2 200 180 7 1152 2
FaceDetection 5890 3524 144 62 2
Ethanol 261 263 3 1751 4

A.2 NEURAL DATASETS

Table 2: Neural datasets.

Dataset Train Test Units Length Classes
NLB-Maze 1721 574 182 140 -
NLB-RTT 810 270 130 120 -
Mihi-Day 1 167 42 162 76/84 8
Mihi-Day 2 172 43 152 73/87 8
Chewie-Day 1 127 32 163 81 8
Chewie-Day 2 144 36 148 75177 8

B EXPERIMENT DETAILS

B.1 MODEL IMPLEMENTATION AND HYPERPARAMETERS

For the patching tokenization layer of PatchTST and GAFormer, we set the patch window as 10
for SelfRegSCP2, MotorImagery, and Ethanol, set the patch window as 2 for FaceDetec since the
data length is short. For all neural datasets (Mihi-Chewie, NLB-Maze, NLB-RTT), we set the patch
window as 1 to better evaluate the potential of our model for studying fine-grained dynamics of
neural activities. For all experiments and all models including GRU, TCN, MVTS, AutoTrans, the
token dimension and embedding size are 256. For Transformer layers, the number of head is set
as 16. In GAFormer, we set the depth of spatial/temporal group embedding module and spatial
transformer encoder as 3, and the depth for final temporal transformer encoder as 6. For the added
TGE module to other baseline models, we kept the depth and dimension consistent with the TGE in
GAFormer. For fair comparison, the depth of MVTS, AutoTrans, NDT and EIT are kept the same
as the total depths of spatial and temporal Transformer layers in GAFormer. We set the number
of groups to be 10 in all group embedding modules. Following ( ) and

( ), we adopt batch normalization rather than layer normalization in all Transfomer architectures.

B.2 TRAINING

We did not use pretraining or data augmentations for all experiments except for the Motorlmagery
dataset. In the MotorImagery dataset, the number of samples is limited and the length of each trial

TGE T-Encoder Dim Head GroupK Patch size
3 6 256 8 10 10

Table 3: Hyperparameters used for univariate datasets.
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Dataset Channel-independent Encoder SGE  S-Encoder TGE T-Encoder Dim Group K  Patch Size

FaceDetect 3 3 3 3 6 256 8 10
MotorImagery 3 3 3 3 6 256 8 10
SelfRegSCP2 3 3 3 3 8 256 8 10
Ethanol 3 3 3 3 8 256 8 10
Mihi-Chewie 3 3 3 3 6 256 16 1
NLB 3 3 3 3 8 256 8 1

Table 4: Hyperparameters used for multivariate datasets. The first 5 columns represent the depth of each
transformer component.

(3000 timepoints) is too long even with patching tokenization. Thus we split each test sample from
3000 timepoints to be 3 samples of 1000 timepoints and formed a larger dataset. In the training
stage, we randomly select a segment of 1000 timepoints from each training trial as a strong data
augmentation. For models with patching tokenization, we set the batch size as 32. For models with
no patching tokenization (MVTS, AutoTrans), we set the batch size as 16 since the number of tokens
is large.

C ADDITIONAL VISUALIZATIONS

C.1 VISUALIZATIONS ON REAL-WORLD DATASETS

Neural spiking data SGE(X) TGE(X)

channels
channels
time

channels
channels
time

channels
channels
time

Figure 1: Visualization of Group Embeddings for Neural Spiking Datasets. (Left) Spiking data, (Middle) Spa-
tial group embeddings, and (Right) Temporal Group Embeddings for the Neural Latents Benchmark Random
Target Task.
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Figure 2: Visualization of Group Embeddings for Neural Spiking Datasets. (Left) Spiking data, (Middle)
Spatial group embeddings, and (Right) Temporal Group Embeddings for the Neural Latents Maze Task.

As shown on the right in Figure 2, we observed a consistent cutoff in the temporal group assign-
ments, where the initial 50 timepoints were mostly categorized as group 1. We notice that this
corresponds to the onset time (at 250ms in each trial, which is binned as the 50th timepoints with
bin size of 50ms) of the movements of monkey subjects in the studied MC_Maze subdataset (

, ). This grouping structure indicates that GE facilitates the encoder’s ability to
discern nuanced, common structural patterns throughout the dataset.

C.2 VISUALIZATIONS ON SYNTHETIC DATASETS

We provide additional visualizations of token representations on the synthetic many-body datasets,
as shown in Figure 3, Figure 4, and Figure 5.
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Figure 3: Token embeddings
at the input (left) and out-
put (right) layers for a trans-
former encoder trained with
learned position embeddings
(PE). Different colors repre-
sent the x and y axis of object-
1 (green and orange), object-
2 (blue and purple), and two
random noise objects.

Figure 4: Token embeddings at
the input (left) and output (right)
layers for a transformer encoder
trained with group embeddings
(GE). Different colors represent
the x and y axis of object-
1 (green and orange), object-2
(blue and purple), and two ran-
dom noise objects.

Figure 5: Token embeddings at
the output for the same frozen
transformer backbone without
(left) and with (right) GE. Sur-
prisingly, with the same back-
bone, applying group embed-
dings at the input can produce
representations that are more
separable. Different colors repre-
sent the x and y axis of object-
1 (green and orange), object-2
(blue and purple), and two ran-
dom noise objects.
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