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COMMENTARY

Why the simplest explanation isn’t always the best
Eva L. Dyera and Konrad Kordingb,1

As datasets in neuroscience increase in size and complexity, 
interpreting these high-dimensional data is becoming more 
critical. However, developing an intuition for patterns or 
structures in such datasets is hard. Dimensionality reduction 
methods aim to find patterns in these high-dimensional data-
sets, sometimes transforming them into simpler and more 
“interpretable” descriptions of the data (1). However, as Shinn 
in PNAS (2) underscores, what feels intuitive and simple can 
often mislead: Dimensionality reduction optimizes for spe-
cific statistical features of the data and doesn’t always agree 
with the most intuitive explanation.

Principal components analysis (PCA) is one of the most widely 
used dimensionality reduction techniques due to its conceptual 
simplicity and utility in data interpretation. The first principal 
component is defined as the direction of unit length that cap-
tures the maximum variance in the data, and the second prin-
cipal component is the direction, orthogonal to the first, that 
captures the maximum remaining variance. This process con-
tinues for additional components, each capturing the maximum 
variance under the constraint of orthogonality to the previous 
components. When finished, this approach builds an orthogonal 
basis which constrains the collection of generator elements to 
have a particular geometry (Fig. 1). The principal components 
describe the data, but depending on the structure of the data, 
they may not align with the generating factors in data or, alter-
natively, produce hallucinated structure.

As a compelling example of such “hallucinations,” Shinn (2) 
shows what happens when applying PCA to temporally or 
spatially smooth and shifted time-limited signals that are 
often encountered in neuroscience and behavioral analysis. 
In such cases, oscillatory PCs arise, due to smoothness either 
in time or space. Indeed, some of the oldest normative insights 
into neural coding came from the realization that PCA run on 
spatial low-pass signals (images) produces Fourier compo-
nents (4). Just as a low-pass filter in Fourier analysis empha-
sizes the smooth, low-frequency components and simplifies 

the signal by excluding higher frequencies, PCA similarly dis-
covers an oscillatory basis set when looking for an efficient 
basis for smooth signals. However, this similarity also high-
lights a critical interpretive hazard: just as many different sig-
nals can share similar low-frequency profiles, diverse datasets 
can yield similar principal components, complicating the attri-
bution of specific meanings or origins to these components.

Relaxing the Assumptions of PCA and Building 
More “Expressive” Models

While perhaps counterintuitive, more complex or expressive 
models that better align with the data's true generative struc-
tures offer a pathway to greater interpretability. For instance, 
using convolutional operations introduces shift invariance, 
enabling the model to recognize patterns irrespective of their 
position in the input space. This in turn can lead to more mean-
ingful feature extraction and robust prediction. Moreover, 
relaxing constraints such as linearity and orthogonality can 
allow for more natural data representations. For example, 
independent component analysis (5) introduces the concept 
that natural data can often be represented as a combination 
of elements from an overcomplete dictionary, leading to rep-
resentations that are both efficient and interpretable due to 
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Fig. 1. PCA can see structure that does not exist and miss structure that exists. All these datasets have the same principal components. (Left) if the data are 
Gaussian, then PCA is the ideal technique, extracting all the structure that is there. (Middle) when data are not Gaussian, PCA may “see” dimensions that do not 
exist, in this case stemming from there being multiple Gaussians. In such a case, relaxing the assumption of orthogonality could allow a model to extract the 
relevant aspects. (Right) when data are highly structured but not simple (also see ref. 3), PCA will not discover the relevant structure, but will see structure that 
is in a way not even there. Indeed, in this case of a single line graph another technique, such as isomap, would discover that the whole dinosaur is just a single 
line, or a 1D-manifold embedded in 2D.
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their parsimony (Fig. 1, Middle). Similarly in image processing, 
nonnegative matrix factorization (6) avoids the cancelation 
of positive and negative values, producing parts-based rep-
resentations that can be more readily understood and inter-
preted by humans.

In neuroscience, there has been a push to build more 
expressive models of neural dynamics that can better cap-
ture the nonlinear structures present in large recordings (7). 
For instance, models like gaussian process factor analysis 
can be used to impose smooth structure on the generating 
factors (8), and jPCA can be used to encourage a set of 
dynamics that use oscillatory factors (9). Latent factor anal-
ysis through dynamics assumes a simple dynamical system 
model on a learned latent space (10). Contrastive learning 
methods take a different tact: Rather than trying to learn 
factors that can generate data, they instead learn embed-
dings of the data that are invariant to different transforma-
tions of the input (11–13). By defining positive and negative 
examples, these methods allow us to guide the model to 
focus on specific features in the data. All these methods allow 
us to detect highly nontrivial structure in datasets that may 
be missed using simpler linear models like PCA.

All dimensionality reduction techniques look for projections 
of data that are special in a way, just like PCA is looking for data 
that best explains the variance in the training data’s distribution. 
However, as generative models become more expressive and 
overparameterized, they can also become less interpretable 
and can overfit specific nuances in the data. For example, jPCA 
has been shown to find rotational dynamics even if they do not 
exist (14). Contrastive learning objectives are also known to be 
affected by the choice of positive and negative views (15). These 
examples show that, while more expressive models can some-
times improve interpretation, if left unbounded, these models 
can also lead to results that are difficult to interpret because 
they start to reproduce too much. When data violates our 
assumptions of simplicity, we may be susceptible to hallucina-
tions through the kinds of mechanisms illustrated by Shinn (2).

Regardless of how we do dimensionality reduction, if the 
assumptions and biases underlying a method are not 
understood then it can be possible to see things in the data 
that aren’t there. We have already seen how even simple 
properties of data, like that it changes slowly over time and 
space, a near universal aspect of the world, means that an 
algorithm maximizing variance will extract fourier-like oscil-
latory components. Plotting high-variance components 
against one another will often have apparently interpreta-
ble shapes. But the world is full of such universal and, 

arguably, weird data structures: local outliers, spatiotem-
poral smoothness, shifts in time, compositionality, and even 
the presence of agents who optimize for their own goals. 
Interpreting the results of dimensionality reduction meth-
ods is a truly daunting task. Any result found with dimen-

sionality reduction is compatible with a large 
family of potential realities.

Towards Acknowledging Complexity 
and Ways of Handling it

Neuroscientists often aim to artificially produce 
simplicity in neural activity by utilizing simple 

tasks. However, even the simplest of tasks is embedded 
within a much broader behavioral context, and in reality, 
animals dynamically switch between the many tasks needed 
to survive in a complex world, using a wide variety of cues 
in order to succeed in their environment. Consequently, 
there is an emerging approach to neuroscience that actively 
looks for neural representations of unconstrained real-
world behavior, a trend in parts enabled by modern 
computer-vision-based tracking approaches (16, 17) and 
automated tools for behavior analysis (18, 19). In complex 
real-world scenarios, data are not simple, and we should 
not expect any dimensionality reduction algorithm to reveal 
a single set of factors that are easy to interpret.

So what should we do when faced with complex and real-
world behavior? Do we try to find a model with just the right 
amount of complexity? Look for simpler interpretations within 
complex models. One radical alternative is to give up on the 
notion of finding a simple explanation for complex data (20). 
If the data are complicated, we may still be able to build a 
model that does justice to it, for example, by building foun-
dation models that are trained on many diverse tasks, across 
many animals and individuals, and across different sources 
of data (21–23). Such models can then readily model data 
complexities because they have a large number of parame-
ters that are tuned on very large datasets. This approach 
promises to offer many of the benefits of dimensionality 
reduction—for instance, enabling better decoding—while 
allowing dealing with data that is not simple or easy to explain. 
However, there is nothing simple nor interpretable in these 
models—prediction is much easier than interpretation.

That being said, the kind of large models that can describe 
real-world behavior may not ultimately be interpretable in 
the sense that neuroscientists are looking for. The Shinn 
paper (2) already shows that even with smaller and simpler 
models, we may see things in the data that aren’t there. In 
most cases, there may not be a simple way of describing the 
complexity of the data and models in ways that humans can 
readily interpret. This leads us to, arguably, the most chal-
lenging topic in neuroscience. If brain function doesn’t obey 
a simple set of principles, what can we understand about it, 
and how can we navigate the balance between faithfulness 
to the data and the desire to have simple explanations?
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