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Why the simplest explanation isn’t always the best
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Fig. 1. PCA can see structure that does not exist and miss structure that exists. All these datasets have the same principal components. (Left) if the data are
Gaussian, then PCA is the ideal technique, extracting all the structure that is there. (Middle) when data are not Gaussian, PCA may “see” dimensions that do not
exist, in this case stemming from there being multiple Gaussians. In such a case, relaxing the assumption of orthogonality could allow a model to extract the
relevant aspects. (Right) when data are highly structured but not simple (also see ref. 3), PCA will not discover the relevant structure, but will see structure that
is in a way not even there. Indeed, in this case of a single line graph another technique, such as isomap, would discover that the whole dinosaur is just a single

line, or a 1D-manifold embedded in 2D.

As datasets in neuroscience increase in size and complexity,
interpreting these high-dimensional data is becoming more
critical. However, developing an intuition for patterns or
structures in such datasets is hard. Dimensionality reduction
methods aim to find patterns in these high-dimensional data-
sets, sometimes transforming them into simpler and more
“interpretable” descriptions of the data (1). However, as Shinn
in PNAS (2) underscores, what feels intuitive and simple can
often mislead: Dimensionality reduction optimizes for spe-
cific statistical features of the data and doesn’t always agree
with the most intuitive explanation.

Principal components analysis (PCA) is one of the most widely
used dimensionality reduction techniques due to its conceptual
simplicity and utility in data interpretation. The first principal
component is defined as the direction of unit length that cap-
tures the maximum variance in the data, and the second prin-
cipal component is the direction, orthogonal to the first, that
captures the maximum remaining variance. This process con-
tinues for additional components, each capturing the maximum
variance under the constraint of orthogonality to the previous
components. When finished, this approach builds an orthogonal
basis which constrains the collection of generator elements to
have a particular geometry (Fig. 1). The principal components
describe the data, but depending on the structure of the data,
they may not align with the generating factors in data or, alter-
natively, produce hallucinated structure.

As a compelling example of such “hallucinations,” Shinn (2)
shows what happens when applying PCA to temporally or
spatially smooth and shifted time-limited signals that are
often encountered in neuroscience and behavioral analysis.
In such cases, oscillatory PCs arise, due to smoothness either
in time or space. Indeed, some of the oldest normative insights
into neural coding came from the realization that PCA run on
spatial low-pass signals (images) produces Fourier compo-
nents (4). Just as a low-pass filter in Fourier analysis empha-
sizes the smooth, low-frequency components and simplifies
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the signal by excluding higher frequencies, PCA similarly dis-
covers an oscillatory basis set when looking for an efficient
basis for smooth signals. However, this similarity also high-
lights a critical interpretive hazard: just as many different sig-
nals can share similar low-frequency profiles, diverse datasets
canyield similar principal components, complicating the attri-
bution of specific meanings or origins to these components.

Relaxing the Assumptions of PCA and Building
More “Expressive” Models

While perhaps counterintuitive, more complex or expressive
models that better align with the data's true generative struc-
tures offer a pathway to greater interpretability. For instance,
using convolutional operations introduces shift invariance,
enabling the model to recognize patterns irrespective of their
position in the input space. This in turn can lead to more mean-
ingful feature extraction and robust prediction. Moreover,
relaxing constraints such as linearity and orthogonality can
allow for more natural data representations. For example,
independent component analysis (5) introduces the concept
that natural data can often be represented as a combination
of elements from an overcomplete dictionary, leading to rep-
resentations that are both efficient and interpretable due to
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their parsimony (Fig. 1, Middle). Similarly in image processing,
nonnegative matrix factorization (6) avoids the cancelation
of positive and negative values, producing parts-based rep-
resentations that can be more readily understood and inter-
preted by humans.

As Shinn in PNAS underscores, what feels intuitive

arguably, weird data structures: local outliers, spatiotem-
poral smoothness, shifts in time, compositionality, and even
the presence of agents who optimize for their own goals.
Interpreting the results of dimensionality reduction meth-
ods is a truly daunting task. Any result found with dimen-
sionality reduction is compatible with a large
family of potential realities.

and simple can often mislead: dimensionality

reduction optimizes for specific statistical

features of the data, and doesn’t always agree

with the most intuitive explanation.

In neuroscience, there has been a push to build more
expressive models of neural dynamics that can better cap-
ture the nonlinear structures presentin large recordings (7).
For instance, models like gaussian process factor analysis
can be used to impose smooth structure on the generating
factors (8), and jPCA can be used to encourage a set of
dynamics that use oscillatory factors (9). Latent factor anal-
ysis through dynamics assumes a simple dynamical system
model on a learned latent space (10). Contrastive learning
methods take a different tact: Rather than trying to learn
factors that can generate data, they instead learn embed-
dings of the data that are invariant to different transforma-
tions of the input (11-13). By defining positive and negative
examples, these methods allow us to guide the model to
focus on specific features in the data. All these methods allow
us to detect highly nontrivial structure in datasets that may
be missed using simpler linear models like PCA.

All dimensionality reduction techniques look for projections
of data that are special in a way, just like PCA is looking for data
that best explains the variance in the training data’s distribution.
However, as generative models become more expressive and
overparameterized, they can also become less interpretable
and can overfit specific nuances in the data. For example, jPCA
has been shown to find rotational dynamics even if they do not
exist (14). Contrastive learning objectives are also known to be
affected by the choice of positive and negative views (15). These
examples show that, while more expressive models can some-
times improve interpretation, if left unbounded, these models
can also lead to results that are difficult to interpret because
they start to reproduce too much. When data violates our
assumptions of simplicity, we may be susceptible to hallucina-
tions through the kinds of mechanisms illustrated by Shinn (2).

Regardless of how we do dimensionality reduction, if the
assumptions and biases underlying a method are not
understood then it can be possible to see things in the data
that aren't there. We have already seen how even simple
properties of data, like that it changes slowly over time and
space, a near universal aspect of the world, means that an
algorithm maximizing variance will extract fourier-like oscil-
latory components. Plotting high-variance components
against one another will often have apparently interpreta-
ble shapes. But the world is full of such universal and,
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Towards Acknowledging Complexity
and Ways of Handling it

Neuroscientists often aim to artificially produce

simplicity in neural activity by utilizing simple
tasks. However, even the simplest of tasks is embedded
within @ much broader behavioral context, and in reality,
animals dynamically switch between the many tasks needed
to survive in a complex world, using a wide variety of cues
in order to succeed in their environment. Consequently,
there is an emerging approach to neuroscience that actively
looks for neural representations of unconstrained real-
world behavior, a trend in parts enabled by modern
computer-vision-based tracking approaches (16, 17) and
automated tools for behavior analysis (18, 19). In complex
real-world scenarios, data are not simple, and we should
not expect any dimensionality reduction algorithm to reveal
a single set of factors that are easy to interpret.

So what should we do when faced with complex and real-
world behavior? Do we try to find a model with just the right
amount of complexity? Look for simpler interpretations within
complex models. One radical alternative is to give up on the
notion of finding a simple explanation for complex data (20).
If the data are complicated, we may still be able to build a
model that does justice to it, for example, by building foun-
dation models that are trained on many diverse tasks, across
many animals and individuals, and across different sources
of data (21-23). Such models can then readily model data
complexities because they have a large number of parame-
ters that are tuned on very large datasets. This approach
promises to offer many of the benefits of dimensionality
reduction—for instance, enabling better decoding—while
allowing dealing with data that is not simple or easy to explain.
However, there is nothing simple nor interpretable in these
models—prediction is much easier than interpretation.

That being said, the kind of large models that can describe
real-world behavior may not ultimately be interpretable in
the sense that neuroscientists are looking for. The Shinn
paper (2) already shows that even with smaller and simpler
models, we may see things in the data that aren't there. In
most cases, there may not be a simple way of describing the
complexity of the data and models in ways that humans can
readily interpret. This leads us to, arguably, the most chal-
lenging topic in neuroscience. If brain function doesn't obey
asimple set of principles, what can we understand about it,
and how can we navigate the balance between faithfulness
to the data and the desire to have simple explanations?
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