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A Hardware-Aware Network for Real-World Single 
Image Super-Resolutions 
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Abstract—Most single image super resolution (SISR) 
methods are developed on synthetic low resolution (LR) and 
high resolution (HR) image pairs, which are simulated by a 
predetermined degradation operation, such as bicubic 
downsampling. However, these methods only learn the 
inverse process of the predetermined operation, which fails 
to super resolve the real-world LR images, whose true 
formulation deviates from the predetermined operation. To 
address this, we propose a novel SR framework named 
hardware-aware super-resolution (HASR) network that 
first extracts hardware information, particularly the 
camera degradation information. The LR images are then 
super resolved by integrating the extracted information. To 
evaluate the performance of HASR network, we build a 
dataset named Real-Micron from real-world micron-scale 
patterns. The paired LR and HR images are captured by 
changing the objectives and registered using a developed 
registration algorithm. Transfer learning is implemented 
during the training of Real-Micron dataset due to the lack 
of amount of data. Experiments demonstrate that by 
integrating the degradation information, our proposed 
network achieves state-of-the-art performance for the blind 
SR task on both synthetic and real-world datasets. 

Impact Statement— The proposed HASR method has 
significant impact on various areas, such as enhancing the 
accurate inspection of manufactured products for quality 
control and enhancing the resolution of medical images to 
enable more accurate diagnosis and healthcare. Current SR 
solutions neglect the uniqueness of each imaging system, 
hence cannot produce accurate HR images across the 
different systems. Taking advantage of the known 
hardware information, HASR can differentiate low-
resolution images across different imaging systems and 
produce HR images that are closer to the real-world 
scenario. Given sufficient training images, the proposed 
HASR method can overcome the physical optical limitation 
and generate higher quality images. The proposed method 
improves the overall performance by about 0.2 dB and 0.5 
dB on the synthetic and the real-world datasets, 
respectively.  
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I. INTRODUCTION 
igh-resolution digital images are consistently 
preferred, whether for human satisfaction or for 
various downstream industrial applications. However, 
there are instances where obtaining images with the 
desired resolution is challenging due to limitations in 

imaging hardware. Factors like low-resolution (LR) cameras or 
unstable imaging conditions can result in a loss of image 
resolution. To address this issue, image super-resolution (SR) 
techniques are frequently employed. These SR techniques are 
designed to reconstruct high-resolution (HR) images from their 
LR counterparts. Image SR not only has the potential to 
enhance image details and realism [1] but also to overcome the 
limitations of imaging systems [2]. Recently, deep learning has 
paved the way for the development of numerous advanced SR 
algorithms that leverage large-scale datasets [3]–[5]. While 
these methods excel with artificially degraded LR images, like 
those created through techniques such as bicubic 
downsampling, they face challenges when dealing with real-
world LR images. This decline in performance results from a 
domain gap between the training data and the data encountered 
during inference, particularly when the degradation kernel of 
real-world LR images differs from the one used for training. 

There are typically two approaches to address the SR issue 
mentioned: (1) generating LR images through multiple 
degradation models during training [6]–[8], and (2)  learning 
the degradation kernel first and then using it for SR [9]–[11].  
The first approach struggles with complex real-world 
degradations, while the second approach is more practical, but 
it often overlooks a critical piece of prior knowledge: the 
hardware information of image acquisition devices.  

Real-world degradations, stemming from factors like camera 
blur, sensor noise, sharpening artifacts, and image compression 
[6],  are closely tied to the specific imaging system (camera) in 
use. Therefore, we posit that possessing prior knowledge of 
image acquisition system can significantly enhance real-world 

• Rui Ma is with Electrical and Computer Engineering Department, 
University of Massachusetts, Amherst, MA 01003, USA 

• Xian Du is with Mechanical and Industrial Engineering Department, 
University of Massachusetts, Amherst, MA 01003, USA 

 

H 



2 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

SR, a common scenario in industry where known camera 
models and lenses are typically used to for image acquisition. 
Leveraging this prior knowledge and the supervised contrastive 
learning (SupCon) method [12], we can generate hardware 
representations and employ them to enhance the generation of 
SR images.  

Our proposed hardware aware super-resolution (HASR) 
network consists of two steps. In the first step, we aim to extract 
hardware representations. We hypothesize that, in relatively 
stable capture environments, images taken by the same camera 
share similar blur kernels, while those from different cameras 
exhibit distinct blur kernels. Initially, we considered querying 
the specifications like pixel resolution and sensor type and 
encoding this information into vectors. However, for efficient 
differentiation of images from different hardware setups, we 
adopted contrastive learning. This method groups image 
patches from the same camera and separates patches from 
different cameras, implicitly embedding the camera’s hardware 
information. In the second step, we integrate this hardware 
information into the SR network using our proposed hardware-
aware block (HAB), incorporating spatial and channel attention 
mechanisms. Detailed structures of the HASR provided in Fig. 
1 and Section III.  

Furthermore, obtaining real-world LR-HR image pairs is 
challenging, resulting in limited large-scale real-world SR 
datasets. We address this in two ways. First, we apply transfer 
learning to the HASR network by initially training the network 
on publicly available synthetic datasets and fine-tune it with a 
small number of real-world datasets. These synthetic datasets 
simulate degradation processes using isotropic Gaussian filters 
with additive Gaussian noise. Second, we introduce the Real-
Micron dataset, containing micron-scale patterns and captured 
using three Basler CMOS cameras with objectives of various 
high magnification factors (see details in Section IV).  

The contributions of are as follows:  

• Pioneering the utilization of hardware information to 
enhance SR generation. 

• Introducing a novel supervised contrastive learning method 
for learning unknown degradation processes in various 
image acquisition systems. 

• Empirically demonstrating that integrating prior hardware 
information significantly enhances SR generation.  

• Presenting a real-world dataset featuring micron-scale 
patterns and containing precisely aligned HR and LR 
image pairs with different scale factors. 

II. RELATED WORK 
This section is divided into three parts: The first part surveys 

current solutions for the blind SR problem, the second part 
introduces contrastive learning and its variants, and the third 
part explores feature fusion methods.  

A. Blind SR Methods 
As discussed in the first section, there are two categories of 

blind SR methods. The first category includes methods that 
incorporate multiple degradation models in the network. For 
example, in [8], the authors proposed to concatenate an LR 
input image with its degradation map as a unified input to the 
SR model, allowing for feature adaptation according to the 
specific degradation and covering multiple degradation types in 
a single model. In [7], a kernel modeling super-resolution 
network (KMSR) was proposed, where the simulated LR 
images were generated by applying a specific blur kernel to HR 
images, which was chosen from a predetermined kernel pool. 
Other methods, such as [6], [13], [14], built more generic 
training datasets with more kinds of realistic blur kernels. 
However, these methods had a significant drawback: they relied 
on predefined blur kernel pools and could not provide 
satisfactory results for images with degradations not covered in 
their pools.  

 
                (a) Residual Group.                                                          (b) Hardware-Aware Block (HAB). 
 
Fig. 1. The architecture of HASR network. 
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The second category is to estimate the degradation kernel 
first and then to super resolve the LR images with the learned 
degradation kernel information. For instance, Iterative kernel 
correction (IKC) [10] proposed to correct kernel estimation in 
an iterative way to gradually approach a satisfactory result. In 
[9], the authors introduced “KernelGAN”, an image-specific 
Internal-GAN that estimated the SR kernel (downscaling 
kernel) that best preserved the distribution of patches across 
scales of the LR image. However, these methods were time-
consuming due to the numerous iterations during inference. In 
[15], unsupervised contrastive learning was used to estimate the 
degradation process. The authors first learned abstract 
representations to distinguish the various degradations in the 
representation space rather than explicitly estimating the exact 
degradations. They then introduced a Degradation-Aware SR 
(DASR) network with flexible adaptation to various 
degradations based on the learned representations. A 
contrastive loss was used to conduct unsupervised degradation 
representation learning by contrasting positive pairs against 
negative pairs in the latent space. However, the degradation 
representation highly relied on the contents of the LR images 
because of the assumption that each image had a unique 
degradation kernel. In [16], an unsupervised way to imitate real-
world LR images of an unknown downsampling process was 
proposed. The authors implemented generative adversarial 
network [17] to generate the LR images that had similar 
distribution to the real-world LR images. Furthermore, to keep 
the generation process stable, low-frequency loss (LFL) and 
adaptive data loss (ADL) were utilized to keep the content 
consistency between the generated LR and the real-world LR 
images. However, balancing the data loss and the adversarial 
loss needed to be very careful. They also did not consider the 
kernel variances from the training data. The estimated 
degradation kernel was just an average from all the training 
data, which would be inaccurate if the training data came from 
different acquisition systems.  

B. Contrastive Learning 
Contrastive learning is a self-supervised learning method 

widely utilized in computer vision, natural language processing, 
and other domains. Intuitively, contrastive learning can be 
considered as learning by comparing. To learn the 
representations of the samples, contrastive learning compares 
the similarities among the samples: it aims to embed similar 
samples (positive examples) close to each other while trying to 
push different samples (negative examples) away. In [18], a 
simple framework for contrastive learning of visual 
representations (SimCLR) was presented. SimCLR learned 
representations by maximizing agreement between differently 
augmented views of the same data example via a contrastive 
loss in the latent space. The paper showed that the authors’ 
methods significantly outperformed previous techniques for 
self-supervised and semi-supervised learning on ImageNet. 
However, the batch size for SimCLR training was limited by 
the hardware constraints such as GPU memory. To address this 
issue, MoCo [19] introduced a dynamic dictionary with a queue 
and a moving-averaged encoder, allowing for the creation of a 

large and consistent dictionary on-the-fly, which facilitated 
contrastive unsupervised learning. MoCo-V2 [20] built upon 
this approach by incorporating SimCLR’s stronger data 
augmentation and MLP projection head, enabling it to achieve 
better results than SimCLR on a typical 8-GPU machine. 
Additionally, if additional labels were provided, they could be 
integrated into the contrastive framework’s similarity and 
dissimilarity definitions. The authors of [12] extended the self-
supervised batch contrastive approach to the fully-supervised 
setting with two possible versions of the supervised contrastive 
(SupCon) loss. The SupCon loss offered benefits for robustness 
to natural corruptions and was more stable to hyperparameter 
settings such as optimizers and data augmentations.  

C. Feature fusion 
As deep learning continues to evolve in handling multimodal 

data, the effective fusion of information across multiple 
modalities is extensively explored. Multimodal information 
fusion is typically categorized into three main approaches: early 
(feature-based), late (decision-based), and hybrid fusion [21]. 
In the context of this paper, we exclusively focus on early 
fusion, where hardware information is treated as a 
supplementary component rather than an independent modality. 
Within early fusion, one straightforward technique involves the 
use of adaptive instance normalization (AdaIN) [22] to align the 
mean and variance of features from one modality with those 
from another. Attention mechanisms, widely employed in 
image super-resolution (SR) networks, have played a pivotal 
role in early fusion. In [23], a channel attention mechanism was 
proposed to adaptively rescale channel-wise features by 
considering interdependencies among channels. Additionally, 
in [24], the authors introduced the holistic attention network 
(HAN) to model the comprehensive interdependencies among 
layers, channels, and positions. In [25], an SR network based 
on graph attention network (SRGAT) fully leveraged internal 
patch-recurrence within natural images. With the increasing 
adoption of transformer backbones, self-attention mechanisms 
are making their way into SR tasks as well. In [26], a multiscale 
hierarchical design, incorporating efficient Transformer blocks, 
was introduced to capture long-range pixel interactions, even 
for large images. This approach divides images into multiple 
patches that interact with each other through self-attention 
mechanisms within the transformer blocks. This paper focuses 
on investigating whether the fusion of hardware information 
improves SR performance. Thus, our exploration has been 
primarily centered on the application of attention mechanisms. 
We remain open to considering additional fusion methods in the 
future, with the anticipation that more effective solutions will 
be uncovered.  

III. METHOD 
This section begins by elucidating the rationale behind the use 

of hardware information. It then proceeds to offer a comprehensive 
overview of the HASR network, as illustrated in Fig. 1.  

A. Motivation of using hardware information  
Digital image acquisition systems play a pivotal role in 
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myriad of applications, capturing continuous real-world objects 
and generating sampled image, denoted by 𝑓𝑓𝐿𝐿𝐿𝐿 . In these 
systems, a physical camera can be conceptually modeled as a 
continuous-space filter, followed by sampling on a lattice [27]. 
If a higher-resolution camera capable of producing the desired 
HR image 𝑓𝑓𝐻𝐻𝐻𝐻 exists, the transformation between the HR image 
and the LR images can be defined as a function, represented as: 

 
 𝑓𝑓𝐿𝐿𝐿𝐿 = 𝐷𝐷(𝑓𝑓𝐻𝐻𝐻𝐻), (1) 

 
where 𝐷𝐷(∙)  is a degradation function that amalgamates both 
filtering and down-sampling processes. The essence of SR 
problem is to derive an estimated HR image 𝑓𝑓𝐻𝐻𝐻𝐻  from 𝑓𝑓𝐿𝐿𝐿𝐿 , 
effectively inverting transformation in (1). Note the SR problem 
is inherently ill-posed because multiple different HR images 
can yield the same LR result. To address this, it is transformed 
into an optimization problem.  

Previous SR methods either predefined the degradation 
function  [6], [7], [13], [14] or learned a degradation model for 
each LR image [15], [16]. However, in real-world scenarios, the 
degradation function is often more complex than the predefined 
ones, such as bicubic downsampling with anti-aliasing filter. 
Additionally, training a degradation prediction model to estimate 
the degradation function for each LR image heavily relies on the 
patterns within the LR images.  Consequently the estimation may 
become inaccurate when applied to LR images with unseen 
patterns, which can deteriorate the SR results [28].  

Considering that the degradation process originates from the 
image acquisition system, if we have knowledge that the images in 
the dataset come from similar image acquisition systems, it 
logically follows that these images should induce the same 
degradation process. Furthermore, if we possess a dataset 
containing information about the image acquisition system for 
each image, we can harness the contrastive learning method to 
extract information about these image acquisition systems, 
inherently representing various degradation processes. Our 
hypothesis posits that incorporating this learned information into 
the SR generation network will enhance SR performance. This 
approach eliminates the need for manually defining inaccurate 
degradation functions. Moreover, this approach defines different 
types of degradation functions based on the diversity of hardware 
information, rather than relying solely on individual LR images 
[15], [16], aligning it more closely with real-world scenarios. 
Therefore, the proposed SR algorithm can be represented as: 

 
 𝑓𝑓𝑆𝑆𝑆𝑆 = 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑓𝑓𝐿𝐿𝐿𝐿 ,ℎ), (2) 
 ℎ = 𝐹𝐹𝐷𝐷(𝑓𝑓𝐿𝐿𝐿𝐿), (3) 

 
where ℎ  is the feature map representing the degradation 
information of the current LR image acquisition system, 
acquired by the Degradation Information Extraction network 
𝐹𝐹𝐷𝐷. Hence, two parts of the loss functions are included in the 
training process, with its optimization represented by:  
 

 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑓𝑓𝐿𝐿𝐿𝐿) = argmin

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝐹𝐹𝐷𝐷
�ℒ1(𝑓𝑓𝑆𝑆𝑆𝑆,𝑓𝑓𝐻𝐻𝐻𝐻)

+ 𝜆𝜆ℒ𝑠𝑠𝑠𝑠𝑠𝑠�𝐹𝐹𝐷𝐷(𝑓𝑓𝐿𝐿𝐿𝐿)��, 
(4) 

 
where ℒ1  represents the pixel loss, ℒ𝑠𝑠𝑠𝑠𝑠𝑠  represents the 
supervised contrastive loss, and 𝜆𝜆  is a hyperparameter that 
controls the tradeoff between ℒ1 and ℒ𝑠𝑠𝑠𝑠𝑠𝑠. 

B. Network architecture 
Our proposed SR algorithm has two stages: the Degradation 

Information Extraction stage and the hardware-aware super-
resolution (HASR) stage. The first stage aims to extract a 
discriminative feature map from each LR image, while the 
second stage is responsible for performing the SR operation. 
The first stage is facilitated by a pretrained Degradation 
Information Extraction network, represented as the yellow 
block on the left side of Fig. 1. Within this initial stage, we use 
a simple 6-layer convolutional neural network as an encoder 
and SupCon method to extract the degradation information. 
Then, we omit the Two-layer Fully Connected (FC) projection 
part and employ the encoded feature map as the degradation 
representation. The complete procedure for Degradation 
Information Extraction is illustrated in Fig. 2, and we will delve 
into it shortly. The degradation representation obtained from the 
first stage and the LR feature map from the Shallow Feature 
Extraction block are combined within the Deep Feature Fusion 
block. The fusion operation is primarily executed by the 
proposed HAB. Finally, the super-resolved image is generated 
through the HR Image Reconstruction block, with the guidance 
of the hardware information. A detailed description of both 
stages is presented below.  

1) Degradation Information Extraction: The goal of the 
degradation information learning is to extract a discriminative 
feature map from each LR image. Building on our previous 
hypothesis, feature maps originating from different acquisition 
systems will exhibit dissimilarity, whereas those from the 
similar acquisition system will manifest similarity.  

In this context, we construct our degradation information 
learning based on the framework of MoCo V2 [20]. The presence 
of a large dictionary containing a diverse set of negative 
samples plays a critical role in contrastive learning, as 
underscored in existing contrastive learning methods [18], [19]. 
MoCo V2 offers a spacious and consistent dictionary that 
decouples the dictionary size from the mini-batch size. This 
feature enriches the pool of negative samples during training, 
and the size of the dictionary is not limited by the GPU memory.  

Furthermore, we introduce positive examples not only by 
augmenting the anchor image, but also by augmenting images 
taken from the same acquisition system. Consequently, the LR 
image datasets in our model are distinctively labeled with 
corresponding acquisition systems. The SupCon loss function 
used is as follows:  
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𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠 = �𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖
𝑖𝑖∈𝐼𝐼

= �
−1

|𝑃𝑃(𝑖𝑖)|
𝑖𝑖∈𝐼𝐼

� 𝑙𝑙𝑙𝑙𝑙𝑙
exp �𝑧𝑧𝑖𝑖 ∙ 𝑧𝑧𝑝𝑝/𝜏𝜏�

∑ exp (𝑧𝑧𝑖𝑖 ∙ 𝑧𝑧𝑎𝑎/𝜏𝜏)𝑎𝑎∈𝐴𝐴(𝑖𝑖)𝑝𝑝∈𝑃𝑃(𝑖𝑖)

. 
(5) 

 
In this equation, 𝑖𝑖 ∈ 𝐼𝐼 ≡ {1⋯ 2𝑁𝑁} represents the index of an 

arbitrary augmented sample, 𝑧𝑧𝑖𝑖 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸𝐸𝐸(𝑥𝑥�𝑖𝑖))  represents 
the feature map generated by the Degradation Information 
Extraction Encoder and the projection network, the ∙ symbol 
denotes the inner product, 𝜏𝜏 ∈ ℛ+  is a scalar temperature 
parameter, 𝐴𝐴(𝑖𝑖) ≡ 𝐼𝐼\{𝑖𝑖}  represents all the indices except 𝑖𝑖 , 
𝑃𝑃(𝑖𝑖) ≡ {𝑝𝑝 ∈ 𝐴𝐴(𝑖𝑖):𝑦𝑦�𝑝𝑝 = 𝑦𝑦�𝑖𝑖} represents all the indices that have 
the same label as the 𝑖𝑖th augmented sample, and |𝑃𝑃(𝑖𝑖)| is its 
cardinality.  

Fig. 2 serves as an illustration of (5). At the beginning of each 
training batch, a set of 𝑁𝑁  randomly sampled {image, 
acquisition system label} pairs {𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛}𝑛𝑛=1⋯𝑁𝑁, are selected. The 
corresponding training data comprises 2𝑁𝑁  pairs, 
{𝑥𝑥�𝑖𝑖 ,𝑦𝑦�𝑖𝑖}𝑖𝑖=1⋯2𝑁𝑁 , where 𝑥𝑥�2𝑛𝑛  and 𝑥𝑥�2𝑛𝑛−1  represent two random 
augmentations or “views” of 𝑥𝑥𝑛𝑛  (𝑛𝑛 = 1⋯𝑁𝑁 ), and 𝑦𝑦�2𝑛𝑛−1 =
𝑦𝑦�2𝑛𝑛 = 𝑦𝑦𝑛𝑛 . Fig. 2 presents an example with 𝑁𝑁 = 6 , 𝑖𝑖 = 1 , 
𝑃𝑃(1) = {2,3,4},𝐴𝐴(1) = {2,3, … ,12} , and the labels for the 
three acquisition systems (different cameras in Fig. 2) are 
respectively {1,2,3}. Intuitively, for the 𝑖𝑖th augmented sample, 
all the other augmented samples with the same label are 
expected to be positive samples, while the remaining 
augmented samples are expected to be negative samples. This 
equation is simply an extension of the classical self-supervised 
contrastive loss that enables multiple positive examples in a 
batch of training data.  

When the training is completed, like classical contrastive 
learning methods [18], [20], the degradation representation ℎ𝑖𝑖 
is used for the SR algorithm in this paper.  

Discussion. The proposed degradation information learning 
does not require the ground-truth degradation process. Its goal 
is to learn the hidden distinctive characteristics of degraded 
images taken from the different acquisition systems for 
distinguishing. Such a good degradation representation can 

improve the SR network performance, as shown in section IV. 
2) HASR network: Given the degradation information 

extracted from LR images we can integrate this information into 
an SR network backbone through deep feature fusion. As 
shown in Fig. 1, our proposed HASR network mainly contains 
three components: shallow feature extraction, deep feature 
fusion, and the HR image reconstruction.  

A convolution layer is first utilized to extract the shallow 
feature map 𝐹𝐹0 from 𝑓𝑓𝐿𝐿𝐿𝐿, which can be represented by:    

 
 𝐹𝐹0 = 𝑊𝑊3

(3,𝑚𝑚𝑚𝑚𝑚𝑚)(𝑓𝑓𝐿𝐿𝐿𝐿), (6) 
 
where 𝑊𝑊3

(3,𝑚𝑚𝑚𝑚𝑚𝑚)  denotes a convolution layer with filter size 
3 × 3, input channel 3, and output channel 𝑚𝑚𝑚𝑚𝑚𝑚. 𝑚𝑚𝑚𝑚𝑚𝑚 is a hyper 
parameter that decides the number of filters of the shallow 
feature extraction convolution layers. Next, the feature map 𝐹𝐹0 
and the degradation representation ℎ will go through multiple 
blocks of the residual group for the deep feature fusion. Each 
residual group takes both the feature map from the previous 
residual group and the degradation representation ℎ as inputs, 
and outputs the fused feature map 𝐹𝐹𝑖𝑖,  
 

 𝐹𝐹𝑖𝑖 = 𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 (𝐹𝐹𝑖𝑖−1,ℎ), (7) 
 
where 𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖  represents the 𝑖𝑖th residual group. More details of 
the residual group will be presented later. Then, after the last 
residual group, the fused feature map 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 will go through a 
convolution layer and make the summation with 𝐹𝐹0 (see (6)) to 
create the dense feature map 𝐹𝐹𝐷𝐷𝐷𝐷  by the global residual 
learning:   
 

 𝐹𝐹𝐷𝐷𝐷𝐷 = 𝑊𝑊3
(𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚)(𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) + 𝐹𝐹0. (8) 

 
Finally, the dense feature map 𝐹𝐹𝐷𝐷𝐷𝐷 will go through the HR 

reconstruction decoder. To effectively upscale the dense 
feature map 𝐹𝐹𝐷𝐷𝐷𝐷, the decoder utilizes efficient sub-pixel CNN 
(ESPCNN) [29] followed by a single convolution layer to 
output the three-channel SR images:  

 
Fig. 2. Illustration of the Degradation Information Extraction.  
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𝑓𝑓𝑆𝑆𝑆𝑆 = 𝑊𝑊3
(𝑚𝑚𝑚𝑚𝑚𝑚,3)�𝐻𝐻ESPCN(𝐹𝐹𝐷𝐷𝐷𝐷)�, (9) 

𝐻𝐻ESPCN

= �
𝑃𝑃𝑃𝑃 �𝑊𝑊3

(𝑚𝑚𝑚𝑚𝑚𝑚,4∗𝑚𝑚𝑚𝑚𝑚𝑚)(∙)�  𝑖𝑖𝑖𝑖 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 2,

𝑃𝑃𝑃𝑃(𝑊𝑊3
(𝑚𝑚𝑚𝑚𝑚𝑚,4∗𝑚𝑚𝑚𝑚𝑚𝑚) �𝑃𝑃𝑃𝑃 �𝑊𝑊3

(𝑚𝑚𝑚𝑚𝑚𝑚,4∗𝑚𝑚𝑚𝑚𝑚𝑚)(∙)��) 𝑖𝑖𝑖𝑖 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 4,
 (10) 

 
where 𝑃𝑃𝑃𝑃 represents the pixel-shuffle operation with the scale 
factor of 2.  

Residual Group: The Residual Group serves as a crucial 
component in deep feature fusion. The incorporation of multi-
level skip connections allows abundant low-frequency 
information to be bypassed, enabling the main network to focus 
on learning high-frequency information. As shown in Fig. 1 (a), 
each residual group comprises multiple HABs. The current 
residual group 𝑖𝑖 takes the previous fused feature map 𝐹𝐹𝑖𝑖−1 from 
the previous residual group and the degradation information ℎ 
as inputs. Then, 𝐹𝐹𝑖𝑖−1  and ℎ go through 𝑑𝑑  HABs. Finally, the 
residual group outputs the fused feature map 𝐹𝐹𝑖𝑖 with the long 
skip connection. It can be formulated as:  
 

𝐹𝐹𝑖𝑖 = 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑑𝑑 ((⋯𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻1 (𝐹𝐹𝑖𝑖−1,ℎ)⋯ ),ℎ) + 𝐹𝐹𝑖𝑖−1, (11) 
 
where 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑑𝑑  represents the 𝑑𝑑th HAB. 𝑑𝑑 is a hyper parameter that 
determines the number of HABs in each residual group.  

Hardware-Aware Block: The detailed structure of the HAB 
is illustrated in Fig. 1 (b). The current HAB 𝑗𝑗 takes the fused 
feature map from previous HAB and the degradation 
information ℎ as inputs. It involves a deep feature extraction 
module (DFEM) and a dual-path attention mechanism. The 
DFEM can be either CNN based or Transformer based feature 
extraction layers. For more details of the structure with DFEM, 
readers can refer to our supplemental materials. The dual-path 
attention mechanism involves both channel attention (CA) and 
spatial attention (SA) paths. The output of the current HAB, 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻
𝑗𝑗  can be inferred by: 
 

𝐹𝐹𝑖𝑖
𝑗𝑗 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷�𝐹𝐹𝑖𝑖

𝑗𝑗−1� ⊗ 𝑅𝑅𝑅𝑅�𝐿𝐿(ℎ)� + 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐹𝐹𝑖𝑖

𝑗𝑗−1) ⊗𝐿𝐿(ℎ), 
(12) 

 
where 𝐹𝐹𝑖𝑖

𝑗𝑗 represents the output feature map of the 𝑗𝑗th HAB of 
the 𝑖𝑖 th residual group. 𝑗𝑗 ∈ {1 …𝑑𝑑}, 𝐹𝐹𝑖𝑖0 = 𝐹𝐹𝑖𝑖 . 𝐿𝐿  represents the 
two-layer multilayer perceptron (MLP), 𝑅𝑅𝑅𝑅  represents the 
reshape operation, ⊗  represents the element-wise 
multiplication. If the feature map 𝐹𝐹𝑖𝑖

𝑗𝑗−1  has the dimension of 
ℝ𝐶𝐶×𝐻𝐻×𝑊𝑊 , the degradation information will travel through dual 
paths before implementing element-wise multiplication with the 
feature map. The first path contains two fully connected (FC) 
layers and a reshape operation that projects the dimension of the 
degradation information to ℝ1×𝐻𝐻×𝑊𝑊 as the spatial attention values. 
The second path contains two FC layers that project the dimension 
of the degradation information ℝ𝐶𝐶×1×1  as the channel attention 
values. During element-wise multiplication, the attention values 
are broadcasted accordingly: spatial attention values are 
broadcasted (copied) along the channel dimension, and vice 

versa. This parallel attention mechanism enables the network to 
extract more informative features from the degradation 
information.  

Discussion. Current SR networks designed to handle 
multiple degradations, as seen in [8], [30], often combine 
degradation information with image feature maps and directly 
input them into the SR network. However, this direct 
integration using convolution may introduce interference due to 
the inherent domain gap between degradation information and 
image features, as highlighted in [10], [15]. In our approach, we 
utilize degradation information as attention values within dual 
paths, allowing us to effectively harness this information to 
adapt to specific degradation scenarios. The spatial attention 
path focuses on optimizing the connections between adjacent 
pixels in the image, guided by the degradation information. 
Meanwhile, the channel attention path is dedicated to 
optimizing the relationships between feature channels, again 
guided by degradation information. Subsequently, by 
optimizing through these two attention paths, we combine their 
results to achieve the fusion of degradation information and 
deep feature maps. In Section IV, we also conduct an ablation 
study on our fusion method to empirically demonstrate its 
effectiveness.  

IV.EXPERIMENTS 
In this section, we first introduce the super-resolution dataset 

named Real-Micron created from the real-world micron-scale 
patterns. We then present the experiment details and results 
based on open-source synthetic datasets, real-world datasets 
including DRealSR [31], ImagePairs [32], and Real-Micron 
dataset. Ablation study is presented at last.  

A. Real-Micron Datasets 
We collected sets of LR and HR images at multiple 

resolutions with the combination of three Basler cameras and 
three Mitutoyo objectives to build a dataset for learning and 
evaluating the super-resolution models of the real-world 
micron-scale patterns.  

1) Setup of Image Acquisition: The image acquisition system 
was mounted on an optical table to keep it as stable as possible, 
as shown in Fig. 3. Auto-focus algorithm [33] was applied 
during the acquisition process. The cameras and objectives 

 
Fig. 3. Image acquisition system. 
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could be easily unscrewed from the coaxial in-line assembly 
unit. The working distance could be adjusted by the translation 
stages and fine-tuned by the piezoelectric motion stage 
(PEMS).  

Four different samples were captured by the acquisition 
system, including the US Air Force Hi-Resolution target and 
three different micro-scale circuits as shown in Fig. 4. Different 
parts of each sample were captured by three different cameras. 
For each camera, images with three different resolutions were 
captured using the objectives with 20, 10, and 5 magnifications 
(20×, 10×, and 5×). After image pair registration, the images 
captured by 20× , 10×  and 5×  objectives were respectively 
ground-truth (GT), two times downsampled LR images (LR-
×2), and four times downsampled LR images (LR-×4) as the 
super-resolution dataset. Furthermore, each LR image was 
labeled by the camera number, showing which camera it came 
from.  

To reduce sensor noise, we captured 𝐿𝐿(𝐿𝐿 = 10) consecutive 
images for each scene as [34] did. Therefore, the raw images 
are computed by: 

 

 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟 =
1
𝐿𝐿
�𝑋𝑋𝑙𝑙

𝐿𝐿

𝑙𝑙=1

, (13) 

 
where 𝑋𝑋𝑙𝑙 represents the 𝑙𝑙th consecutive image. Each of these 𝐿𝐿 
consecutive images was captured under constant illumination 
and without interframe motion.  

2) Image Pair Registration: To create the pixel-wise aligned 
image pairs in different resolutions, we utilized the image pair 

registration algorithm.  For the images acquired by each model 
of the camera, we implemented image registration algorithms 
between the 5 ×  and 10 ×  objectives, the 10 ×  and 20 × 
objectives as the two times downsampling pixel-wise aligned 
pairs, and the 5 ×  and 20 ×  objectives as the four times 
downsampling pixel-wise aligned pairs. However, obtaining 
pixel-wise aligned image pairs is not straightforward due to 
duplicate patterns and unstable luminance conditions in the 
circuit targets. As shown in Fig. 4, conventional image 
registration algorithms such as SIFT [35], SURF [36], and 
SuperGlue [37] cannot produce accurate results. To obtain 
accurate image pair registration of our dataset, we designed a 
coarse-to-fine registration algorithm that maximizes the 
structural similarity index measure (SSIM) between the 
transformed LR image and the HR image.  

Denote 𝐼𝐼𝐻𝐻𝐻𝐻  and 𝐼𝐼𝐿𝐿𝐿𝐿  as the HR and the LR images to be 
registered. The final target of our algorithm is to maximize the 
objective function:  

 

max
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆[𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ∙ 𝐼𝐼𝐿𝐿𝐿𝐿), 𝐼𝐼𝐻𝐻𝐻𝐻], (14) 

 
where 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is the affine transformation matrix, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is the 
cropping operation to make the transformed 𝐼𝐼𝐿𝐿𝐿𝐿 the same size 
as 𝐼𝐼𝐻𝐻𝐻𝐻 , ‖⋅‖𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  is the structural similarity index measure 
(SSIM).  

To find the accurate 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 , point correspondences 
between 𝐼𝐼𝐻𝐻𝐻𝐻  and 𝐼𝐼𝐿𝐿𝐿𝐿  must be also accurate. We first 
implemented the registration algorithm in [38] to obtain the 
point correspondences since it solved the problem of duplicate 
and deformable patterns. Then, given the scale factor from the 
magnification of the lenses, other unknown parameters in 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  can be calculated from the point correspondences 
using the least square method. Next, several cropped candidates 
will be proposed based on the inverse transformation of 𝐼𝐼𝐻𝐻𝐻𝐻 . 
Due to the stability of our acquisition system, scale and 
translation are the principal transformations. Therefore, 

 
Fig. 5. Registered image pairs. (a) and (b) are captured by 
the same camera, Basler acA640 - 750 μm, different 
objectives, 5 ×  and 20 ×  , respectively. (c) and (d) are 
captured by the same camera, Basler acA1300 - 200 μm, 
different objectives, 5× and 20× , respectively. 

(c) (d)

(a) (b)

TABLE I Cameras and Lenses Used in Data Collection. 
Cameras Lenses 

Basler acA640 - 750 μm 5× 
Basler acA1300 - 200 μm 10× 
Basler acA4112 - 30 μm 20× 

Note: All lenses are Mitutoyo Plan Apo Infinity Corrected Long 
WD Objective 
 
 

 
Fig. 4. Sample images from our acquisition system. (a) and 
(c) are capturing the same target using the same acA4112 - 
30 μm camera. (a) uses 10× Objective and (c) uses 20× 
Objective. (b) and (d) are capturing the same target using the 
same acA1300 - 200 μm camera. (b) uses 5× Objective and 
(d) uses 10× Objective. 

(a) (b)

(c) (d)
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identifying four corners of 𝐼𝐼𝐻𝐻𝐻𝐻 ∙ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)  will be 
enough for proposing the candidates. Last, the SSIM values will 
be calculated to pick the best candidate.  

The detailed registration algorithm is included in the 
supplemental materials. The code was written in MATLAB 
2022b and is available at 
https://github.com/cucum13er/Hardware-Aware-Super-
Resolution/tree/main/Matlab_github.   

Fig. 5 shows examples of the registered image pairs from 
different cameras, and conspicuous field of view (FOV) 
differences can be observed between the two cameras. We will 
present the quantitative results in the next subsections to prove 
that the images taken from different cameras have different 
degradation processes. Note: it is difficult to observe the 
degradation differences among cameras by eyes.  

B. Experimental setup  
To train the Degradation Information Extraction network, we 

first synthesized LR images according to (1). The simulation of 
the degradation process included Gaussian blurring and bicubic 
downsampling.  

To evaluate the performance of the degradation information, 
we implemented five different isotropic Gaussian kernels with 
bicubic downsampling on the HR images in the synthetic 
experiment. Five different image acquisition systems were 
simulated by the five 2D-Gaussian blurring kernels with 𝜎𝜎2 
setting to [0.5, 1.0, 2.0, 3.0, 4.0], respectively. Following [10], 
the size of the Gaussian kernels was fixed to 21 × 21. We also 
used LARS optimizer [39] to train the degradation information 
network with the SupCon loss with 128 batch size and 2 
augmented views (see (5)). During training, each of the 128 LR 
image patches was randomly selected from different 
degradation processes and cropped into size 160 × 160. Data 
augmentation was then performed through random flipping and 
transposing. The start learning rate was 0.4, and we performed 
1000 iterations of training. We separated the training images of 
the DIV2K [40] dataset into 70%, 10%, and 20% as the training 
set, validation set and one of the test sets respectively. We also 
included Flickr2K [41], BSD100 [42], Set5 [43], Set14 [44], 
and Urban100 [45] as the test sets.  

We employed the same training process for the real-world 
datasets (DRealSR [31], ImagePairs [32], and Real-Micron) as 
for synthetic datasets, with the difference being that we already 
had real LR images and different camera labels in real-world 
datasets.  

We evaluated our HASR model using both the synthesized 
LR-HR image pairs with known blurring kernels and 
downsampling methods and the real-world LR-HR image pairs 
with unknown degradation processes.  

For synthetic experiments, we used training images from the 
DIV2K and Flickr2K datasets as the training set and the Set5, 
Set14, and Urban100 benchmark datasets as the testing set. HR 
images were degraded into LR images using the same methods 
as we used to train the Degradation Information Extraction 
network. We trained HASR network with a combination of 
SupCon loss and 𝐿𝐿1 loss for 200𝐾𝐾 iterations, with the learning 
rate of 1 × 10−4 for the SR part, 1 × 10−9 for the degradation 
information part, and decaying half every 40𝐾𝐾 iterations. The 
hyperparameter 𝜆𝜆 was set to 0.1, and we used the Adam [46] 
optimizer with 𝛽𝛽1 = 0.9,𝛽𝛽2 = 0.999 for optimization.  

We used the registered image pairs from DRealSR, 
ImagePairs, and Real-Micron datasets to conduct real-world 
experiments. DRealSR consisted of real-world LR and HR 
images collected by zooming DSLR cameras. The dataset 
included five DSLR cameras (Canon, Nikon, Olympus, 
Panasonic, and Sony), corresponding to five different 
acquisition systems of our Degradation Information Extraction 
network. ImagePairs used a beam-splitter to capture the same 
scene by a low resolution camera (LRC) and a high resolution 
camera (HRC). The LRC can be the sixth acquisition system for 
our Degradation Information Extraction network. For the × 2 
experiments, we combined the DRealSR and ImagePairs for 
training and testing. For the × 4 experiments, we only used 
DRealSR for training and testing since ImagePairs does not 
have the ground-truth HR images. However, the Real-Micron 
dataset does not have enough training samples. Therefore, we 
implemented transfer learning to improve the model 
performance. We first separated the Real-Micron dataset into 
80% and 20% as the training and testing datasets, respectively. 
Next, the best model we have trained on the Real-Micron 
dataset for extracting the hardware information (MoCo-
V2+SuperCon) was selected to initialize the Degradation 
Information Extraction part of HASR network. Then, the other 

TABLE III The results of 5-class classification for isotropic Gaussian kernels. 

Method (backbone) DIV2K Flickr2K BSD100 Set5 Set14 Urban100 

MoCo-V2 (ResNet-18) 71.8% 76.4% 68% 56% 65.7% 72.8% 

Supervised (ResNet-18) 89.4% 85.6% 90.4% 76% 85.7% 83.4% 

Supervised (6-layer CNNs) 95.9% 96.1% 92.6% 84.0% 91.4% 93.2% 

SimCLR + SupCon (ResNet-18) 87.9% 86.6% 87.2% 72.0% 78.6% 82.2% 

SimCLR + SupCon (6-layer CNNs) 94.3% 95.6% 93.8% 88.0% 95.7% 93.8% 

MoCo-V2 + SupCon (ResNet-18) 89.2% 91.1% 88.0% 72% 84.3% 84.8% 

MoCo-V2 + SupCon (6-layer CNNs) 96.1% 95.5% 94.6% 88.0% 95.7% 94.8% 

 

TABLE II The classification results for real-world datasets. 

Method (backbone) DRealSR Real-Micron 

Supervised (6-layer CNNs) 98.9% 85.9% 

SimCLR + SupCon (6-layer CNNs) 95.7% 84.4% 

MoCo-V2 + SupCon (6-layer CNNs) 100% 93.8% 

 
 
 

https://github.com/cucum13er/Hardware-Aware-Super-Resolution/tree/main/Matlab_github
https://github.com/cucum13er/Hardware-Aware-Super-Resolution/tree/main/Matlab_github
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part of HASR network was initialized by the model we trained 
on the synthetic experiments (DIV2K and Flickr2K datasets). 
Finally, we trained the HASR network on the Real-Micron 
dataset for 20K iterations by freezing the Degradation 
Information Extraction part and partially freezing the residual 
groups. Specifically, we experimentally quantified the 
generality versus specificity of neurons in each residual group 
of the network by freezing the trainable parameters of different 
residual groups during the fine-tuning. Further analysis and 
more details are included in the next subsections and 
supplemental materials. 

We conducted experiments using PyTorch and MMediting 
[47]. NVIDIA RTX3090 and RTX2080ti GPUs were used for 

training and testing. The source code and pre-trained models is 
available at https://github.com/cucum13er/mmagic/tree/0.x.  

C. Experiments on The Degradation Information Extraction 
Network 

To evaluate the performance of the degradation information, 
we compared the supervised contrastive methods to 
unsupervised contrastive methods, including SimCLR [18] and 
MOCO V2 [20], and the supervised method. To be fair, we used 
the same backbones ResNet-18 [48] and 6-layer CNNs [15] to 
compare different methods. For the performance evaluation, we 
added a classification head (a supervised linear classifier: two 
fully connected layers followed by SoftMax) to the backbone 

 
Fig. 6. Visualization of the degradation information. (a) – (d), visualization of the degradation information from the synthetic 
dataset DIV2K with different kernel width 𝝈𝝈 . The methods used from left to right: before training, SimCLR+SupCon, 
Supervised, MoCo-V2+SupCon. (e) – (h), visualization of the degradation information from real-world datasets. (e) DRealSR 
dataset, before training. (f) DRealSR dataset, MoCo-V2+SupCon. (g) Real-Micron, before training. (h) Real-Micron, MoCo-
V2+SupCon.  

(a) (b) (c) (d)

(e) (f) (g) (h)

TABLE IV PSNR and SSIM comparison of CNN based models on open-source synthetic datasets. 
Kernel width (𝜎𝜎) 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0 
Method scale Set5 (PSNR/SSIM) Set14 (PSNR/SSIM) Urban100 (PSNR/SSIM) 

RDN 

× 2 

30.63 
0.878 

26.13 
0.748 

23.90 
0.659 

22.56 
0.602 

27.74 
0.808 

24.21 
0.653 

22.53 
0.565 

21.52 
0.515 

24.58 
0.803 

21.05 
0.600 

19.56 
0.491 

18.71 
0.434 

Real-ESRGAN 27.94 
0.839 

27.03 
0.812 

25.78 
0.770 

24.78 
0.731 

26.00 
0.747 

25.31 
0.711 

24.24 
0.656 

23.21 
0.609 

23.08 
0.751 

22.24 
0.705 

20.97 
0.633 

19.99 
0.571 

DASR 35.17 
0.934 

32.64 
0.902 

25.30 
0.732 

23.19 
0.640 

30.66 
0.875 

28.64 
0.820 

23.38 
0.624 

21.81 
0.544 

28.95 
0.908 

26.32 
0.840 

20.46 
0.553 

19.09 
0.454 

CNN HASR 
(MoCo) 

35.27 
0.928 

32.89 
0.896 

30.48 
0.850 

28.89 
0.811 

30.98 
0.874 

29.12 
0.824 

27.14 
0.749 

25.95 
0.698 

28.60 
0.900 

26.46 
0.845 

24.00 
0.749 

22.89 
0.691 

CNN HASR 
(SimCLR) 

35.40 
0.932 

32.95 
0.896 

30.57 
0.851 

28.95 
0.813 

31.19 
0.880 

29.34 
0.827 

27.22 
0.751 

25.75 
0.685 

28.80 
0.905 

26.72 
0.852 

24.21 
0.759 

22.99 
0.697 

RDN 

× 4 

29.10 
0.824 

25.96 
0.736 

23.86 
0.656 

22.54 
0.601 

26.22 
0.716 

24.02 
0.634 

22.50 
0.562 

21.50 
0.514 

23.75 
0.733 

21.42 
0.616 

20.09 
0.535 

19.25 
0.487 

Real-ESRGAN 26.16 
0.721 

25.63 
0.704 

24.56 
0.668 

23.33 
0.616 

24.37 
0.665 

24.13 
0.648 

23.18 
0.604 

22.06 
0.550 

21.77 
0.677 

21.26 
0.654 

20.23 
0.600 

19.14 
0.530 

DASR 29.98 
0.859 

29.91 
0.856 

29.28 
0.840 

28.05 
0.804 

26.34 
0.736 

26.29 
0.731 

25.87 
0.709 

25.03 
0.670 

24.21 
0.750 

24.06 
0.742 

23.61 
0.719 

22.81 
0.676 

CNN HASR 
(MoCo) 

30.66 
0.847 

30.05 
0.826 

29.83 
0.819 

29.73 
0.803 

26.99 
0.749 

26.55 
0.726 

26.25 
0.706 

25.45 
0.653 

25.36 
0.735 

24.95 
0.709 

24.33 
0.704 

23.64 
0.657 

CNN HASR 
(SimCLR) 

29.96 
0.842 

30.03 
0.842 

29.35 
0.824 

27.97 
0.791 

26.58 
0.727 

26.53 
0.723 

26.08 
0.700 

25.18 
0.660 

23.98 
0.739 

23.86 
0.735 

23.46 
0.711 

22.61 
0.666 

 

https://github.com/cucum13er/mmagic/tree/0.x


10 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

and loaded the pretrained weights into the backbone. We then 
froze the weights of the backbone and trained the whole 
network for a small number of epochs.  

TABLE III presents a comparison of the classification 
performance using different methods for the isotropic Gaussian 
kernels. The results demonstrate that the supervised contrastive 
and the classic supervised methods outperform the 
unsupervised methods in this classification task due to their use 
of label information. As noted in [12], supervised contrastive 
learning can improve classifier accuracy and robustness. We, 
therefore, select this method to extract degradation information, 
as supported by the results in TABLE I. Surprisingly, simple 6-
layer CNNs outperform ResNet-18 in all the three methods 
because they can effectively represent degradation information, 
unlike the more complex ResNet-18, which has too many 
redundant trainable parameters. Additionally, limited training 
data and iterations can cause overfitting issues with ResNet-18.  

Given the 6-layer CNNs perform well in synthetic 

experiments, we opt to use them to train the real-world datasets. 
TABLE II presents the classification results of these real-world 
datasets. The supervised contrastive method with MoCo-V2 
structure achieves the best classification accuracy on average. 
We, therefore, finalized our Degradation Information 
Extraction network with 6-layer CNNs as the backbone, MoCo-
V2 as the training algorithm, SuperCon loss as the loss function.  

To further visualize the learned degradation information, we 
used the T-SNE method [49] to cluster LR images from both 
synthetic and real-world datasets. The degradation 
representations of those LR images were fed to the Degradation 
Information Extraction networks and then visualized. Fig. 6 
shows the visualization results, where the first row includes the 
results of the synthetic dataset DIV2K with five different 
isotropic Gaussian blurring kernels and the second row includes 
the results of the DRealSR dataset with five DSLR cameras and 
the results of Real-Micron dataset with three different Basler 
cameras. The visualization results reveal the feature vectors are 

TABLE VI PSNR and SSIM results on DRealSR and ImagePairs datasets. 

Method  Canon Nikon Olympus Panasonic Sony LRC 
Scale × 2 × 4 × 2 × 4 × 2 × 4 × 2 × 4 × 2 × 4 × 2 

RDN 

Backbone: 
CNN 

32.41 
0.893 

28.56 
0.834 

32.49 
0.885 

28.05 
0.804 

32.07 
0.872 

28.07 
0.771 

32.21 
0.865 

28.14 
0.788 

31.85 
0.845 

29.27 
0.821 

22.30 
0.694 

Real-ESRGAN 27.53 
0.868 

24.83 
0.793 

29.68 
0.886 

26.95 
0.798 

29.66 
0.867 

26.31 
0.750 

29.54 
0.848 

26.03 
0.748 

26.68 
0.810 

26.53 
0.766 

21.86 
0.785 

DASR 30.87 
0.898 

27.91 
0.844 

31.71 
0.901 

27.99 
0.831 

30.52 
0.881 

27.73 
0.796 

31.08 
0.873 

28.05 
0.806 

28.14 
0.831 

28.52 
0.826 

21.86 
0.735 

CDC 32.61 
0.933 

30.43 
0.898 

33.12 
0.930 

29.84 
0.874 

31.58 
0.909 

29.31 
0.832 

32.43 
0.903 

30.18 
0.847 

28.63 
0.851 

29.93 
0.854 

22.10 
0.785 

CNN HASR 
(MoCo) 

34.10 
0.932 

30.78 
0.884 

34.18 
0.917 

29.73 
0.841 

33.63 
0.906 

29.77 
0.811 

33.70 
0.891 

30.92 
0.816 

31.61 
0.843 

31.50 
0.846 

25.26 
0.829 

DiffBIR 

Backbone: 
Transformer 

26.99 
0.805 

26.99 
0.802 

27.51 
0.774 

26.98 
0.777 

27.27 
0.757 

27.17 
0.739 

27.63 
0.761 

27.22 
0.757 

25.84 
0.724 

27.20 
0.768 

21.73 
0.751 

HAT 30.27 
0.874 

27.75 
0.822 

31.50 
0.892 

27.43 
0.810 

31.67 
0.886 

27.47 
0.778 

33.46 
0.885 

28.40 
0.789 

31.79 
0.875 

29.12 
0.818 

21.87 
0.756 

Restormer 30.25 
0.895 

28.62 
0.855 

30.11 
0.874 

28.46 
0.827 

29.82 
0.862 

28.22 
0.796 

30.16 
0.862 

28.57 
0.806 

28.67 
0.787 

28.83 
0.818 

22.37 
0.759 

SwinIR 31.30 
0.902 

28.97 
0.852 

31.68 
0.886 

27.47 
0.795 

30.33 
0.858 

28.02 
0.780 

30.50 
0.847 

27.95 
0.782 

30.82 
0.855 

28.39 
0.808 

21.68 
0.688 

Swin-Transformer 
HASR (MoCo) 

35.27 
0.929 

32.59 
0.893 

33.88 
0.911 

31.58 
0.867 

34.30 
0.908 

30.94 
0.821 

34.08 
0.892 

31.09 
0.839 

31.70 
0.849 

32.65 
0.879 

25.62 
0.807 

 

TABLE V PSNR and SSIM comparison of Transformer based models on open-source synthetic datasets. 
Kernel width (𝜎𝜎) 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0 
Method scale Set5 (PSNR/SSIM) Set14 (PSNR/SSIM) Urban100 (PSNR/SSIM) 

DiffBIR 

× 2 

27.24 
0.785 

26.24 
0.756 

25.54 
0.736 

24.14 
0.681 

23.98 
0.632 

23.60 
0.624 

23.02 
0.583 

22.18 
0..544 

22.28 
0.685 

21.76 
0.654 

20.76 
0.585 

19.70 
0.508 

HAT 30.64 
0.891 

26.14 
0.767 

23.91 
0.675 

22.57 
0.613 

27.81 
0.817 

24.22 
0.660 

22.54 
0.572 

21.52 
0.522 

24.66 
0.808 

21.05 
0.599 

19.56 
0.487 

18.72 
0.429 

Restormer 31.45 
0.891 

29.57 
0.843 

27.50 
0.777 

25.84 
0.717 

28.75 
0.838 

26.87 
0.766 

24.88 
0.672 

23.57 
0.608 

25.45 
0.825 

23.49 
0.735 

21.66 
0.620 

20.56 
0.544 

SwinIR 32.31 
0.916 

27.71 
0.812 

26.95 
0.704 

23.53 
0.699 

29.41 
0.825 

25.81 
0.656 

24.81 
0.593 

23.66 
0.540 

26.26 
0.810 

22.27 
0.589 

21.11 
0.483 

19.96 
0.420 

Swin-Transformer 
HASR (MoCo) 

37.34 
0.924 

34.29 
0.901 

31.70 
0.861 

30.55 
0.828 

31.23 
0.872 

30.39 
0.823 

28.74 
0.758 

26.03 
0.658 

28.55 
0.882 

26.45 
0.821 

24.46 
0.715 

22.89 
0.621 

DiffBIR 

× 4 

24.55 
0.703 

24.66 
0.703 

23.84 
0.672 

22.32 
0.611 

22.53 
0.566 

22.30 
0.543 

21.78 
0..514 

21.43 
0.495 

20.67 
0.587 

20.54 
0.573 

20.24 
0.549 

19.76 
0.521 

HAT 29.36 
0.850 

25.98 
0.757 

23.87 
0.672 

22.54 
0.613 

26.39 
0.732 

24.05 
0.643 

22.51 
0.569 

21.51 
0.521 

24.18 
0.756 

21.47 
0.621 

20.09 
0.536 

19.26 
0.486 

Restormer 26.98 
0.749 

26.59 
0.738 

26.26 
0.722 

25.32 
0.689 

24.59 
0.658 

24.26 
0.640 

23.99 
0.624 

23.37 
0.591 

21.82 
0.628 

21.43 
0.605 

21.06 
0.582 

20.70 
0.557 

SwinIR 30.14 
0.855 

26.63 
0.763 

24.15 
0.677 

22.45 
0.594 

26.94 
0.726 

24.39 
0.638 

22.50 
0.549 

22.83 
0.533 

24.90 
0.725 

22.69 
0.608 

20.64 
0.513 

20.15 
0.450 

Swin-Transformer 
HASR (MoCo) 

32.18 
0.868 

31.17 
0.863 

30.10 
0.839 

29.49 
0.819 

27.55 
0.744 

26.97 
0.743 

26.19 
0.703 

25.27 
0.656 

26.21 
0.723 

25.54 
0.725 

25.08 
0.715 

24.08 
0.665 
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well clustered by different degradation kernels or different 
cameras.  MoCo-V2 can distinguish different categories better 
than other algorithms, as demonstrated in TABLE III and 
TABLE II. Fig. 6 (h) is less distinguishable because the three 
Basler cameras have very similar specifications, making their 
degradation information quite similar.  

D. Experiments on the HASR Network 
We conducted simulation experiments on LR-HR pairs with 

known blurring kernels and downsampling methods, i.e., 
isotropic Gaussian blurring kernels with bicubic downsampling 
method. We compared our CNN based HASR to several recent 

CNN based SR algorithms, including RDN [50], Real-
ESRGAN [6] and DASR [15], using their pretrained models. 
Furthermore, the adoption of stronger Transformer backbones 
has gained significant traction recently. To validate that our 
proposed degradation information's impact on enhancing SR is 
not confined to the SR generation network's backbone, we 
conducted experiments using Transformer based backbones as 
well, including DiffBIR [51], HAT [52], SwinIR [53] with their 
pretrained models, fine-tuned Restormer [26], and Swin-
Transformer based HASR. TABLE IV shows the PSNR and 
SSIM comparison results among the CNN based backbones, 
indicating that with the assistance of the degradation 
information, our CNN based HASR algorithm outperforms 
other algorithms, especially when the LR images are heavily 
blurred by a greater 𝜎𝜎 value. TABLE V presents a comparison 
of PSNR and SSIM results among the Transformer based 
backbones. Similar to TABLE V, we find that the inclusion of 
degradation information consistently enhances the quality of 
SR results. Taking advantage of both local self-attention 
mechanism and the shifted window scheme, the Swin-
Transformer based HASR achieves the best performance across 
most test datasets.  

We also conducted experiments on real-world LR-HR image 
pairs using DRealSR and ImagePairs datasets for the × 2 
experiments and DRealSR dataset for the × 4 experimens. We 
then used Real-Micron dataset for another real-world dataset 
evaluation. As shown in TABLE VI, our HASR algorithm 
consistently achieves higher PSNR and SSIM values compared 

 
Fig. 7. Qualitative comparison of our model with other works on × 𝟒𝟒 super-resolution on the Real-Micron dataset (top) and 
× 𝟐𝟐 super-resolution on the ImagePair dataset (bottom).  

GT

CDC

RDNLR image

Real-ESRGAN HASR (Ours)

DASR

GT

CDC

RDN

Real-ESRGAN HASR (Ours)

DASRLR image

TABLE VII PSNR and SSIM results on Real-Micron dataset. 

 Method Scale Cameras 
C640 C1300 C4112 

RDN 

× 2 

22.06 
0.854 

22.01 
0.846 

15.01 
0.761 

DASR 21.98 
0.854 

11.96 
0.560 

12.02 
0.740 

CDC 21.83 
0.862 

21.50 
0.867 

12.13 
0.761 

CNN HASR 
(MoCo) 

28.99 
0.921 

28.07 
0.900 

21.02 
0.841 

RDN 

× 4 

19.90 
0.839 

17.18 
0.823 

11.05 
0.725 

DASR 19.89 
0.845 

17.17 
0.830 

11.02 
0.727 

CDC 19.57 
0.836 

17.15 
0.825 

11.11 
0.726 

CNN HASR 
(MoCo) 

27.79 
0.904 

25.02 
0.914 

21.54 
0.869 
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to most other algorithms. It's worth noting that CDC [31] 
exhibits higher SSIM values in certain cases, as it dissects an 
image into three components (flat, edges, and corners) and 
reconstructs each component individually. In contrast, our 
proposed method is designed to reconstruct the entire image as 
a whole. However, an interesting avenue for future research 
could involve adapting CDC to incorporate degradation 
information.   

For the evaluation of the Real-Micron dataset, as stated in 
subsection IV.B, we initialized the HASR model by employing 
the pretrained Degradation Information Extraction network 
obtained from the Real-Micron dataset, along with the 
pretrained HASR network acquired from the synthetic 
experiments. We utilized CNN based HASR in the evaluation 
due to the relatively small scale of the Real-Micron dataset.  

TABLE VI and TABLE VII shows the PSNR and SSIM 
results and confirms that our proposed HASR network achieved 
better quantitative evaluation results than other state-of-the-art 
algorithms. Additionally, Fig. 7 shows the SR visualization 
results on the Real-Micron and ImagePairs datasets, 
demonstrating that the proposed HASR network successfully 
reconstructs detailed textures and edges in the HR images, 
yielding better-looking SR outputs compared to other methods. 
While Real-ESRGAN produces sharper-looking details, it 
introduces some artifacts due to its adversarial model. The 
adversarial model prioritizes generating visually pleasing SR 
images over SR images closer to the input LR images, resulting 
in a tradeoff between the visual quality and the quantitative 
performance. Note the PSNR metric fundamentally disagrees 
with the subjective evaluation of human observers [1]. If users 
care more about the quantitative performance in SR 

applications, e.g., using the HASR for product pattern 
inspection and metrology in manufacturing processes, the SR 
results must be as close as possible to the ground-truth rather 
than guessing a more visually pleasing image.   

E. Ablation Studies 
 We first evaluated the effectiveness of the degradation 

information in the network by conducting ablation experiments 
using three different backbones. Then, we evaluated the 
effectiveness of the dual-path attention mechanism by 
conducting an ablation experiment using different fusion 
methods. Finally, we evaluated the performance of transfer 
learning on Real-Micron dataset by training and evaluating 
various models.  

1) Analysis on Degradation Information: The backbones we 
have implemented include CNN based HASR, Restormer based 
HASR, and EDSR [4] with Adaptive Instance Normalization 
(AdaIN) [22]. To disregard the degradation information, we set 
λ = 0  for ℒsup  of the HASR networks and compared the 
experiment results of these models to the results of previous 
HASR networks for the first two comparisons. To explore the 
generalizability of the degradation information, we conducted 
an experiment on another SR backbone with a different fusion 
method, EDSR with AdaIN fusion method. For this experiment, 
we made specific modifications to the residual blocks of EDSR. 
Specifically, we used the two-FC-layer projected degradation 
information as the style feature map for AdaIN, while the 
feature map from the original residual blocks served as the 
content feature map. These two feature maps were then 
combined using an AdaIN layer. Fig. 8 illustrated both original 
and modified residual blocks. Similarly, we trained two models 
for this architecture with λ = 0.1 and λ = 0, respectively. 

TABLE IX displays the PSNR and SSIM results for these 
three models ( 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶 , 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅 , 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  respectively 
represent CNN HASR, Restormer HASR, and EDSR 
backbones). It is evident that the inclusion of degradation 
information enhances the performance of both SR networks, 
confirming the effectiveness of this approach.  

2) Analysis on Feature Fusion: To evaluate the effectiveness of 
the dual-path attention mechanisms, we conducted experiments 
of different fusion approaches of the CNN based HASR 
network. Specifically, we compared the original HASR with 
single path attention (either only spatial or channel attention) 
and channel attention outside of RCAB [23]. Readers can refer 
to Supplemental Materials for more details. TABLE VIII shows 
the PSNR and SSIM comparison of different fusion methods. 

TABLE VIII PSNR and SSIM results of different fusion methods. 
Kernel width (𝜎𝜎) 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0 
Method scale Set5 Set14 Urban100 

SA only 

× 4 

29.87 
0.829 

29.66 
0.825 

28.39 
0.783 

28.05 
0.779 

26.41 
0.722 

26.11 
0.694 

25.71 
0.677 

24.54 
0.625 

23.53 
0.668 

23.94 
0.662 

22.95 
0.632 

22.81 
0.609 

CA only 29.29 
0.803 

29.41 
0.810 

29.01 
0.794 

28.63 
0.764 

26.32 
0.714 

25.78 
0.702 

24.76 
0.663 

24.18 
0.634 

24.10 
0.687 

24.08 
0.667 

23.33 
0.645 

22.67 
0.617 

CA outside of 
RCAB 

29.33 
0.812 

28.59 
0.790 

28.44 
0.796 

27.71 
0.760 

25.79 
0.700 

25.08 
0.682 

25.33 
0.641 

24.16 
0.609 

23.38 
0.660 

23.26 
0.651 

22.40 
0.617 

21.89 
0.574 

CNN HASR 
(MoCo) 

30.66 
0.847 

30.05 
0.826 

29.83 
0.819 

29.73 
0.803 

26.99 
0.749 

26.55 
0.726 

26.25 
0.706 

25.45 
0.653 

25.36 
0.735 

24.95 
0.709 

24.33 
0.704 

23.64 
0.657 

 

 
(a) EDSR. 

 
(b)EDSR+AdaIN. 

Fig. 8. Comparison of residual blocks in original EDSR 
and EDSR with AdaIn fusion. 
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The method which performed the worst was the one where 
fusion occurred outside of the RCAB. This outcome can be 
attributed to the absence of degradation information during the 
deep feature extraction process, which occurred inside RCAB. 
Similarly, methods employing a single path, be it the CA or SA 
path, exhibited worse performance. These single-path methods 
lack connections between adjacent pixels or feature channels, 
making them less effective compared to the proposed fusion 
method with dual-path.  

3) Analysis on Transfer Learning: To evaluate the effectiveness 
of transfer learning on the Real-Micron dataset, we conducted 
two sets of experiments using the CNN based HASR network. 
Firstly, we trained the HASR network using only the Real-
Micron training data, with the degradation information part 
pretrained and the HASR part randomly initialized. Secondly, 
we trained the network using the same training data with both 
pretrained degradation information and HASR parts. For the 
latter, we froze different residual groups in the models during 
training. Fig. 9 shows the PSNR and SSIM results of both 
transfer learning metrics. More training details are included in 
the supplemental materials. 

The results indicate that transfer learning outperforms direct 
training from scratch when the weights of the first one, two or 
three residual groups are frozen. This is reasonable due to two 
factors. Firstly, the Real-Micron dataset has fewer LR-HR 
image pairs than other public datasets like ImagePairs and 
DRealSR, making overfitting a potential issue during training 
from scratch. Secondly, by using the pretrained model 
(DIV2K+Flirck2K) to initialize the HASR, the SR performance 
can be improved. However, since the pretrained model has 
domain gaps with the Real-Micron dataset, the best 
performance was achieved when unlocking the weights of the 
last and penultimate residual groups. This approach locks in the 
learned generic features from pretrained model, while 
providing enough learnable parameters for learning the unique 
features of the Real-Micron dataset.  

V. CONCLUSION 
In this study, we propose a blind SR method that can handle 

various degradation processes of different image acquisition 
systems by extracting and integrating the prior hardware 
information. By the inclusion of HAB, both Transformer based 
and CNN based HASR networks outperform conventional 

approaches by not relying on predefined or ground-truth 
degradation kernels. Results from both synthetic and real-world 
datasets demonstrate the effectiveness of the proposed method 
in handling blind SR problems. Future work will extend our 
method to more state-of-the-art SR frameworks such as CDC 
and verify the effectiveness of the degradation information in 
these frameworks. Additionally, the effective utilization of 
prior hardware knowledge to enhance image quality represents 
a promising avenue for exploration. Algorithms developed on 
the basis of such hardware information hold significant 
potential for practical applications.  

However, our HASR method may have limitations when 
handling input LR images acquired from hardware that 
significantly deviates from the training data. In such cases, the 
HASR network cannot accurately predict the unknown 
hardware degradation, resulting in a decline of SR performance. 
Moreover, obtaining labeled device sources to use as training 
data for the HASR method can be challenging, which adds to 
the difficulty of acquiring the necessary data.  
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(a) 

 
(b) 

Fig. 9. PSNR and SSIM comparison of transfer 
learning on Real-Micron dataset.  

TABLE IX PSNR and SSIM comparisons with/without degradation information.  

Method Scale Canon Nikon Olympus Panasonic Sony 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝜆𝜆=0𝐶𝐶𝐶𝐶𝐶𝐶 

× 4 

30.51 
0.874 

29.79 
0.830 

29.68 
0.805 

30.77 
0.819 

30.30 
0.839 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝜆𝜆=0.1
𝐶𝐶𝐶𝐶𝐶𝐶  30.78 

0.884 
29.73 
0.841 

29.77 
0.811 

30.92 
0.816 

31.50 
0.846 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝜆𝜆=0𝑅𝑅𝑅𝑅  28.62 
0.855 

28.46 
0.827 

28.22 
0.796 

28.57 
0.806 

28.83 
0.818 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝜆𝜆=0.1
𝑅𝑅𝑅𝑅  30.50 

0.896 
29.56 
0.851 

30.00 
0.807 

29.31 
0.821 

30.46 
0.834 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝜆𝜆=0 30.32 
0.870 

29.32 
0.829 

29.46 
0.790 

29.74 
0.816 

29.63 
0.820 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝜆𝜆=0.1 31.69 
0.883 

29.55 
0.836 

29.73 
0.793 

30.28 
0.814 

30.09 
0.831 
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