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A Hardware-Aware Network for Real-World Single
Image Super-Resolutions

Rui Ma, Xian Du*

Abstract—Most single image super resolution (SISR)
methods are developed on synthetic low resolution (LR) and
high resolution (HR) image pairs, which are simulated by a
predetermined degradation operation, such as bicubic
downsampling. However, these methods only learn the
inverse process of the predetermined operation, which fails
to super resolve the real-world LR images, whose true
formulation deviates from the predetermined operation. To
address this, we propose a novel SR framework named
hardware-aware super-resolution (HASR) network that
first extracts hardware information, particularly the
camera degradation information. The LR images are then
super resolved by integrating the extracted information. To
evaluate the performance of HASR network, we build a
dataset named Real-Micron from real-world micron-scale
patterns. The paired LR and HR images are captured by
changing the objectives and registered using a developed
registration algorithm. Transfer learning is implemented
during the training of Real-Micron dataset due to the lack
of amount of data. Experiments demonstrate that by
integrating the degradation information, our proposed
network achieves state-of-the-art performance for the blind
SR task on both synthetic and real-world datasets.

Impact Statement— The proposed HASR method has
significant impact on various areas, such as enhancing the
accurate inspection of manufactured products for quality
control and enhancing the resolution of medical images to
enable more accurate diagnosis and healthcare. Current SR
solutions neglect the uniqueness of each imaging system,
hence cannot produce accurate HR images across the
different systems. Taking advantage of the known
hardware information, HASR can differentiate low-
resolution images across different imaging systems and
produce HR images that are closer to the real-world
scenario. Given sufficient training images, the proposed
HASR method can overcome the physical optical limitation
and generate higher quality images. The proposed method
improves the overall performance by about 0.2 dB and 0.5
dB on the synthetic and the real-world datasets,
respectively.
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[. INTRODUCTION

igh-resolution digital images are consistently
preferred, whether for human satisfaction or for
Hvarious downstream industrial applications. However,
there are instances where obtaining images with the
desired resolution is challenging due to limitations in
imaging hardware. Factors like low-resolution (LR) cameras or
unstable imaging conditions can result in a loss of image
resolution. To address this issue, image super-resolution (SR)
techniques are frequently employed. These SR techniques are
designed to reconstruct high-resolution (HR) images from their
LR counterparts. Image SR not only has the potential to
enhance image details and realism [1] but also to overcome the
limitations of imaging systems [2]. Recently, deep learning has
paved the way for the development of numerous advanced SR
algorithms that leverage large-scale datasets [3]-[5]. While
these methods excel with artificially degraded LR images, like
those created through techniques such as bicubic
downsampling, they face challenges when dealing with real-
world LR images. This decline in performance results from a
domain gap between the training data and the data encountered
during inference, particularly when the degradation kernel of
real-world LR images differs from the one used for training.
There are typically two approaches to address the SR issue
mentioned: (1) generating LR images through multiple
degradation models during training [6]-[8], and (2) learning
the degradation kernel first and then using it for SR [9]-[11].
The first approach struggles with complex real-world
degradations, while the second approach is more practical, but
it often overlooks a critical piece of prior knowledge: the
hardware information of image acquisition devices.
Real-world degradations, stemming from factors like camera
blur, sensor noise, sharpening artifacts, and image compression
[6], are closely tied to the specific imaging system (camera) in
use. Therefore, we posit that possessing prior knowledge of
image acquisition system can significantly enhance real-world
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Fig. 1. The architecture of HASR network.

SR, a common scenario in industry where known camera
models and lenses are typically used to for image acquisition.
Leveraging this prior knowledge and the supervised contrastive
learning (SupCon) method [12], we can generate hardware
representations and employ them to enhance the generation of
SR images.

Our proposed hardware aware super-resolution (HASR)
network consists of two steps. In the first step, we aim to extract
hardware representations. We hypothesize that, in relatively
stable capture environments, images taken by the same camera
share similar blur kernels, while those from different cameras
exhibit distinct blur kernels. Initially, we considered querying
the specifications like pixel resolution and sensor type and
encoding this information into vectors. However, for efficient
differentiation of images from different hardware setups, we
adopted contrastive learning. This method groups image
patches from the same camera and separates patches from
different cameras, implicitly embedding the camera’s hardware
information. In the second step, we integrate this hardware
information into the SR network using our proposed hardware-
aware block (HAB), incorporating spatial and channel attention
mechanisms. Detailed structures of the HASR provided in Fig.
1 and Section III.

Furthermore, obtaining real-world LR-HR image pairs is
challenging, resulting in limited large-scale real-world SR
datasets. We address this in two ways. First, we apply transfer
learning to the HASR network by initially training the network
on publicly available synthetic datasets and fine-tune it with a
small number of real-world datasets. These synthetic datasets
simulate degradation processes using isotropic Gaussian filters
with additive Gaussian noise. Second, we introduce the Real-
Micron dataset, containing micron-scale patterns and captured
using three Basler CMOS cameras with objectives of various
high magnification factors (see details in Section IV).

The contributions of are as follows:
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e Pioneering the utilization of hardware information to
enhance SR generation.

e Introducing a novel supervised contrastive learning method
for learning unknown degradation processes in various
image acquisition systems.

e Empirically demonstrating that integrating prior hardware
information significantly enhances SR generation.

e Presenting a real-world dataset featuring micron-scale
patterns and containing precisely aligned HR and LR
image pairs with different scale factors.

II. RELATED WORK

This section is divided into three parts: The first part surveys
current solutions for the blind SR problem, the second part
introduces contrastive learning and its variants, and the third
part explores feature fusion methods.

A. Blind SR Methods

As discussed in the first section, there are two categories of
blind SR methods. The first category includes methods that
incorporate multiple degradation models in the network. For
example, in [8], the authors proposed to concatenate an LR
input image with its degradation map as a unified input to the
SR model, allowing for feature adaptation according to the
specific degradation and covering multiple degradation types in
a single model. In [7], a kernel modeling super-resolution
network (KMSR) was proposed, where the simulated LR
images were generated by applying a specific blur kernel to HR
images, which was chosen from a predetermined kernel pool.
Other methods, such as [6], [13], [14], built more generic
training datasets with more kinds of realistic blur kernels.
However, these methods had a significant drawback: they relied
on predefined blur kernel pools and could not provide
satisfactory results for images with degradations not covered in
their pools.
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The second category is to estimate the degradation kernel
first and then to super resolve the LR images with the learned
degradation kernel information. For instance, Iterative kernel
correction (IKC) [10] proposed to correct kernel estimation in
an iterative way to gradually approach a satisfactory result. In
[9], the authors introduced “KernelGAN”, an image-specific
Internal-GAN that estimated the SR kernel (downscaling
kernel) that best preserved the distribution of patches across
scales of the LR image. However, these methods were time-
consuming due to the numerous iterations during inference. In
[15], unsupervised contrastive learning was used to estimate the
degradation process. The authors first learned abstract
representations to distinguish the various degradations in the
representation space rather than explicitly estimating the exact
degradations. They then introduced a Degradation-Aware SR
(DASR) network with flexible adaptation to various
degradations based on the learned representations. A
contrastive loss was used to conduct unsupervised degradation
representation learning by contrasting positive pairs against
negative pairs in the latent space. However, the degradation
representation highly relied on the contents of the LR images
because of the assumption that each image had a unique
degradation kernel. In [16], an unsupervised way to imitate real-
world LR images of an unknown downsampling process was
proposed. The authors implemented generative adversarial
network [17] to generate the LR images that had similar
distribution to the real-world LR images. Furthermore, to keep
the generation process stable, low-frequency loss (LFL) and
adaptive data loss (ADL) were utilized to keep the content
consistency between the generated LR and the real-world LR
images. However, balancing the data loss and the adversarial
loss needed to be very careful. They also did not consider the
kernel variances from the training data. The estimated
degradation kernel was just an average from all the training
data, which would be inaccurate if the training data came from
different acquisition systems.

B. Contrastive Learning

Contrastive learning is a self-supervised learning method
widely utilized in computer vision, natural language processing,
and other domains. Intuitively, contrastive learning can be
considered as learning by comparing. To learn the
representations of the samples, contrastive learning compares
the similarities among the samples: it aims to embed similar
samples (positive examples) close to each other while trying to
push different samples (negative examples) away. In [18], a
simple framework for contrastive learning of visual
representations (SimCLR) was presented. SIimCLR learned
representations by maximizing agreement between differently
augmented views of the same data example via a contrastive
loss in the latent space. The paper showed that the authors’
methods significantly outperformed previous techniques for
self-supervised and semi-supervised learning on ImageNet.
However, the batch size for SimCLR training was limited by
the hardware constraints such as GPU memory. To address this
issue, MoCo [19] introduced a dynamic dictionary with a queue
and a moving-averaged encoder, allowing for the creation of a

large and consistent dictionary on-the-fly, which facilitated
contrastive unsupervised learning. MoCo-V2 [20] built upon
this approach by incorporating SimCLR’s stronger data
augmentation and MLP projection head, enabling it to achieve
better results than SimCLR on a typical 8-GPU machine.
Additionally, if additional labels were provided, they could be
integrated into the contrastive framework’s similarity and
dissimilarity definitions. The authors of [12] extended the self-
supervised batch contrastive approach to the fully-supervised
setting with two possible versions of the supervised contrastive
(SupCon) loss. The SupCon loss offered benefits for robustness
to natural corruptions and was more stable to hyperparameter
settings such as optimizers and data augmentations.

C. Feature fusion

As deep learning continues to evolve in handling multimodal
data, the effective fusion of information across multiple
modalities is extensively explored. Multimodal information
fusion is typically categorized into three main approaches: early
(feature-based), late (decision-based), and hybrid fusion [21].
In the context of this paper, we exclusively focus on early
fusion, where hardware information is treated as a
supplementary component rather than an independent modality.
Within early fusion, one straightforward technique involves the
use of adaptive instance normalization (AdalN) [22] to align the
mean and variance of features from one modality with those
from another. Attention mechanisms, widely employed in
image super-resolution (SR) networks, have played a pivotal
role in early fusion. In [23], a channel attention mechanism was
proposed to adaptively rescale channel-wise features by
considering interdependencies among channels. Additionally,
in [24], the authors introduced the holistic attention network
(HAN) to model the comprehensive interdependencies among
layers, channels, and positions. In [25], an SR network based
on graph attention network (SRGAT) fully leveraged internal
patch-recurrence within natural images. With the increasing
adoption of transformer backbones, self-attention mechanisms
are making their way into SR tasks as well. In [26], a multiscale
hierarchical design, incorporating efficient Transformer blocks,
was introduced to capture long-range pixel interactions, even
for large images. This approach divides images into multiple
patches that interact with each other through self-attention
mechanisms within the transformer blocks. This paper focuses
on investigating whether the fusion of hardware information
improves SR performance. Thus, our exploration has been
primarily centered on the application of attention mechanisms.
We remain open to considering additional fusion methods in the
future, with the anticipation that more effective solutions will
be uncovered.

III. METHOD

This section begins by elucidating the rationale behind the use
of hardware information. It then proceeds to offer a comprehensive
overview of the HASR network, as illustrated in Fig. 1.

A. Motivation of using hardware information

Digital image acquisition systems play a pivotal role in
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myriad of applications, capturing continuous real-world objects
and generating sampled image, denoted by f;. In these
systems, a physical camera can be conceptually modeled as a
continuous-space filter, followed by sampling on a lattice [27].
If a higher-resolution camera capable of producing the desired
HR image fy exists, the transformation between the HR image
and the LR images can be defined as a function, represented as:

fir = D(fur), (D

where D(-) is a degradation function that amalgamates both
filtering and down-sampling processes. The essence of SR
problem is to derive an estimated HR image fyz from fiz,
effectively inverting transformation in (1). Note the SR problem
is inherently ill-posed because multiple different HR images
can yield the same LR result. To address this, it is transformed
into an optimization problem.

Previous SR methods either predefined the degradation
function [6], [7], [13], [14] or learned a degradation model for
each LR image [15], [16]. However, in real-world scenarios, the
degradation function is often more complex than the predefined
ones, such as bicubic downsampling with anti-aliasing filter.
Additionally, training a degradation prediction model to estimate
the degradation function for each LR image heavily relies on the
patterns within the LR images. Consequently the estimation may
become inaccurate when applied to LR images with unseen
patterns, which can deteriorate the SR results [28].

Considering that the degradation process originates from the
image acquisition system, if we have knowledge that the images in
the dataset come from similar image acquisition systems, it
logically follows that these images should induce the same
degradation process. Furthermore, if we possess a dataset
containing information about the image acquisition system for
each image, we can harness the contrastive learning method to
extract information about these image acquisition systems,
inherently representing various degradation processes. Our
hypothesis posits that incorporating this learned information into
the SR generation network will enhance SR performance. This
approach eliminates the need for manually defining inaccurate
degradation functions. Moreover, this approach defines different
types of degradation functions based on the diversity of hardware
information, rather than relying solely on individual LR images
[15], [16], aligning it more closely with real-world scenarios.
Therefore, the proposed SR algorithm can be represented as:

fsg = HASR(fi, h), )
h = FD(fLR)' 3

where h is the feature map representing the degradation
information of the current LR image acquisition system,
acquired by the Degradation Information Extraction network
Fp. Hence, two parts of the loss functions are included in the
training process, with its optimization represented by:

HASR(fr) = argmin{l:l (fsr: fur)
HASR,Fp

“

+ ALgp (Fp (f2r))}
where L; represents the pixel loss, Lg,, represents the
supervised contrastive loss, and 4 is a hyperparameter that
controls the tradeoff between L; and Lg,,,.

B. Network architecture

Our proposed SR algorithm has two stages: the Degradation
Information Extraction stage and the hardware-aware super-
resolution (HASR) stage. The first stage aims to extract a
discriminative feature map from each LR image, while the
second stage is responsible for performing the SR operation.
The first stage is facilitated by a pretrained Degradation
Information Extraction network, represented as the yellow
block on the left side of Fig. 1. Within this initial stage, we use
a simple 6-layer convolutional neural network as an encoder
and SupCon method to extract the degradation information.
Then, we omit the Two-layer Fully Connected (FC) projection
part and employ the encoded feature map as the degradation
representation. The complete procedure for Degradation
Information Extraction is illustrated in Fig. 2, and we will delve
into it shortly. The degradation representation obtained from the
first stage and the LR feature map from the Shallow Feature
Extraction block are combined within the Deep Feature Fusion
block. The fusion operation is primarily executed by the
proposed HAB. Finally, the super-resolved image is generated
through the HR Image Reconstruction block, with the guidance
of the hardware information. A detailed description of both
stages is presented below.

1) Degradation Information Extraction: The goal of the
degradation information learning is to extract a discriminative
feature map from each LR image. Building on our previous
hypothesis, feature maps originating from different acquisition
systems will exhibit dissimilarity, whereas those from the
similar acquisition system will manifest similarity.

In this context, we construct our degradation information
learning based on the framework of MoCo V2 [20]. The presence
of a large dictionary containing a diverse set of negative
samples plays a critical role in contrastive learning, as
underscored in existing contrastive learning methods [18], [19].
MoCo V2 offers a spacious and consistent dictionary that
decouples the dictionary size from the mini-batch size. This
feature enriches the pool of negative samples during training,
and the size of the dictionary is not limited by the GPU memory.

Furthermore, we introduce positive examples not only by
augmenting the anchor image, but also by augmenting images
taken from the same acquisition system. Consequently, the LR
image datasets in our model are distinctively labeled with
corresponding acquisition systems. The SupCon loss function
used is as follows:
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Fig. 2. Illustration of the Degradation Information Extraction.
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In this equation, i € I = {1 - 2N} represents the index of an

arbitrary augmented sample, z; = Proj(Enc(X;)) represents
the feature map generated by the Degradation Information
Extraction Encoder and the projection network, the - symbol
denotes the inner product, T € R* is a scalar temperature
parameter, A(i) = I\{i} represents all the indices except i,
P(i) = {p € A(i): J,, = J;} represents all the indices that have
the same label as the ith augmented sample, and |P(i)] is its
cardinality.

Fig. 2 serves as an illustration of (5). At the beginning of each
training batch, a set of N randomly sampled {image,
acquisition system label} pairs {X,, ¥, }n=1...n» are selected. The
corresponding  training data comprises 2N  pairs,
{%,9:}i=1..2n » where %,, and %,,_, represent two random
augmentations or “views” of x, (n=1--N), and ¥,,_; =
Yon = Vn . Fig. 2 presents an example with N=6,i=1,
P(1) ={2,3,4},A(1) = {2,3,...,12}, and the labels for the
three acquisition systems (different cameras in Fig. 2) are
respectively {1,2,3}. Intuitively, for the ith augmented sample,
all the other augmented samples with the same label are
expected to be positive samples, while the remaining
augmented samples are expected to be negative samples. This
equation is simply an extension of the classical self-supervised
contrastive loss that enables multiple positive examples in a
batch of training data.

When the training is completed, like classical contrastive
learning methods [18], [20], the degradation representation h;
is used for the SR algorithm in this paper.

Discussion. The proposed degradation information learning
does not require the ground-truth degradation process. Its goal
is to learn the hidden distinctive characteristics of degraded
images taken from the different acquisition systems for
distinguishing. Such a good degradation representation can

improve the SR network performance, as shown in section IV.

2) HASR network: Given the degradation information
extracted from LR images we can integrate this information into
an SR network backbone through deep feature fusion. As
shown in Fig. 1, our proposed HASR network mainly contains
three components: shallow feature extraction, deep feature
fusion, and the HR image reconstruction.

A convolution layer is first utilized to extract the shallow
feature map F, from f; p, which can be represented by:

Fy = W3(3'mid) (fLr) (6)

where W3(3'mld) denotes a convolution layer with filter size
3 x 3, input channel 3, and output channel mid. mid is a hyper
parameter that decides the number of filters of the shallow
feature extraction convolution layers. Next, the feature map F
and the degradation representation h will go through multiple
blocks of the residual group for the deep feature fusion. Each
residual group takes both the feature map from the previous
residual group and the degradation representation h as inputs,
and outputs the fused feature map F;,

Fi = H}i?esG(Fi—ll h), (7)

where Hj,. represents the ith residual group. More details of
the residual group will be presented later. Then, after the last
residual group, the fused feature map Fj,g will go through a
convolution layer and make the summation with F; (see (6)) to
create the dense feature map Fpr by the global residual
learning:

Fpp = WM™ D(E ) + Fy. (8)

Finally, the dense feature map Fpr will go through the HR
reconstruction decoder. To effectively upscale the dense
feature map Fpp, the decoder utilizes efficient sub-pixel CNN
(ESPCNN) [29] followed by a single convolution layer to
output the three-channel SR images:
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fsr = Wg(mld'g)(HESPCN(FDF)), )
HESPCN . .
PS (VV3(de,4*de) ()) if upscale = 2, (10)
= Ps(m(mid,4*mid) (PS (VVS(miaA»«mid)(_)))) if upscale = 4,

where PS represents the pixel-shuffle operation with the scale
factor of 2.

Residual Group: The Residual Group serves as a crucial
component in deep feature fusion. The incorporation of multi-
level skip connections allows abundant low-frequency
information to be bypassed, enabling the main network to focus
on learning high-frequency information. As shown in Fig. 1 (a),
each residual group comprises multiple HABs. The current
residual group i takes the previous fused feature map F;_; from
the previous residual group and the degradation information h
as inputs. Then, F;_; and h go through d HABs. Finally, the
residual group outputs the fused feature map F; with the long
skip connection. It can be formulated as:

Fi = Hjap((+ Hlap(Fiy, h) ), h) + Fi_y, (11)
where H{ 45 represents the dth HAB. d is a hyper parameter that
determines the number of HABs in each residual group.

Hardware-Aware Block: The detailed structure of the HAB
is illustrated in Fig. 1 (b). The current HAB j takes the fused
feature map from previous HAB and the degradation
information h as inputs. It involves a deep feature extraction
module (DFEM) and a dual-path attention mechanism. The
DFEM can be either CNN based or Transformer based feature
extraction layers. For more details of the structure with DFEM,
readers can refer to our supplemental materials. The dual-path
attention mechanism involves both channel attention (CA) and
spatial attention (SA) paths. The output of the current HAB,

H}, . can be inferred by:

F/ = DFEM(F/™") ® Rs(L(h)) + a2)
DFEM(F/™") ® L(h),

where Fi’ represents the output feature map of the jth HAB of
the ith residual group. j € {1...d}, F? = F;. L represents the
two-layer multilayer perceptron (MLP), Rs represents the
reshape  operation, @ represents the element-wise
multiplication. If the feature map Fl.j ! has the dimension of
RE*H*W - the degradation information will travel through dual
paths before implementing element-wise multiplication with the
feature map. The first path contains two fully connected (FC)
layers and a reshape operation that projects the dimension of the
degradation information to RV*#*W a5 the spatial attention values.
The second path contains two FC layers that project the dimension
of the degradation information R¢*1*? as the channel attention
values. During element-wise multiplication, the attention values
are broadcasted accordingly: spatial attention values are
broadcasted (copied) along the channel dimension, and vice

Fig. 3. Image acquisition system.

versa. This parallel attention mechanism enables the network to
extract more informative features from the degradation
information.

Discussion. Current SR networks designed to handle
multiple degradations, as seen in [8], [30], often combine
degradation information with image feature maps and directly
input them into the SR network. However, this direct
integration using convolution may introduce interference due to
the inherent domain gap between degradation information and
image features, as highlighted in [10], [15]. In our approach, we
utilize degradation information as attention values within dual
paths, allowing us to effectively harness this information to
adapt to specific degradation scenarios. The spatial attention
path focuses on optimizing the connections between adjacent
pixels in the image, guided by the degradation information.
Meanwhile, the channel attention path is dedicated to
optimizing the relationships between feature channels, again
guided by degradation information. Subsequently, by
optimizing through these two attention paths, we combine their
results to achieve the fusion of degradation information and
deep feature maps. In Section IV, we also conduct an ablation
study on our fusion method to empirically demonstrate its
effectiveness.

IV.EXPERIMENTS

In this section, we first introduce the super-resolution dataset
named Real-Micron created from the real-world micron-scale
patterns. We then present the experiment details and results
based on open-source synthetic datasets, real-world datasets
including DRealSR [31], ImagePairs [32], and Real-Micron
dataset. Ablation study is presented at last.

A. Real-Micron Datasets

We collected sets of LR and HR images at multiple
resolutions with the combination of three Basler cameras and
three Mitutoyo objectives to build a dataset for learning and
evaluating the super-resolution models of the real-world
micron-scale patterns.

1) Setup of Image Acquisition: The image acquisition system
was mounted on an optical table to keep it as stable as possible,
as shown in Fig. 3. Auto-focus algorithm [33] was applied
during the acquisition process. The cameras and objectives
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Fig. 4. Sample images from our acquisition system. (a) and
(c) are capturing the same target using the same acA4112 -
30 pm camera. (a) uses 10X Objective and (c) uses 20X
Objective. (b) and (d) are capturing the same target using the
same acA 1300 - 200 pm camera. (b) uses 5X Objective and
(d) uses 10x Objective.

could be easily unscrewed from the coaxial in-line assembly
unit. The working distance could be adjusted by the translation
stages and fine-tuned by the piezoelectric motion stage
(PEMS).

Four different samples were captured by the acquisition
system, including the US Air Force Hi-Resolution target and
three different micro-scale circuits as shown in Fig. 4. Different
parts of each sample were captured by three different cameras.
For each camera, images with three different resolutions were
captured using the objectives with 20, 10, and 5 magnifications
(20x%, 10X, and 5x). After image pair registration, the images
captured by 20x, 10X and 5X objectives were respectively
ground-truth (GT), two times downsampled LR images (LR-
%x2), and four times downsampled LR images (LR-X4) as the
super-resolution dataset. Furthermore, each LR image was
labeled by the camera number, showing which camera it came
from.

To reduce sensor noise, we captured L(L = 10) consecutive
images for each scene as [34] did. Therefore, the raw images
are computed by:

L
1
KXraw = ZZXI: (13)
=1

where X; represents the Ith consecutive image. Each of these L
consecutive images was captured under constant illumination
and without interframe motion.

2) Image Pair Registration: To create the pixel-wise aligned
image pairs in different resolutions, we utilized the image pair

TABLE I Cameras and Lenses Used in Data Collection.

Cameras Lenses
Basler acA640 - 750 pm 5%
Basler acA1300 - 200 um 10x
Basler acA4112 - 30 um 20x

Note: All lenses are Mitutoyo Plan Apo Infinity Corrected Long
WD Objective

Fig. 5. Registered image pairs. (a) and (b) are captured by
the same camera, Basler acA640 - 750 pm, different
objectives, 5 X and 20 X , respectively. (c) and (d) are
captured by the same camera, Basler acA1300 - 200 pm,
different objectives, 5X and 20X , respectively.

registration algorithm. For the images acquired by each model
of the camera, we implemented image registration algorithms
between the 5 X and 10 X objectives, the 10 X and 20 X
objectives as the two times downsampling pixel-wise aligned
pairs, and the 5 X and 20 X objectives as the four times
downsampling pixel-wise aligned pairs. However, obtaining
pixel-wise aligned image pairs is not straightforward due to
duplicate patterns and unstable luminance conditions in the
circuit targets. As shown in Fig. 4, conventional image
registration algorithms such as SIFT /35], SURF /36/, and
SuperGlue /37] cannot produce accurate results. To obtain
accurate image pair registration of our dataset, we designed a
coarse-to-fine registration algorithm that maximizes the
structural similarity index measure (SSIM) between the
transformed LR image and the HR image.

Denote Iy, and I as the HR and the LR images to be
registered. The final target of our algorithm is to maximize the
objective function:

max SSIM[Crop(TransM - 1I;p),

TransM ( 1 4)

IHR],

where TransM is the affine transformation matrix, Crop is the
cropping operation to make the transformed I, 5 the same size
as Iyg, ||'llssim is the structural similarity index measure
(SSIM).

To find the accurate TransM , point correspondences
between Iyp and [z must be also accurate. We first
implemented the registration algorithm in [38] to obtain the
point correspondences since it solved the problem of duplicate
and deformable patterns. Then, given the scale factor from the
magnification of the lenses, other unknown parameters in
TransM can be calculated from the point correspondences
using the least square method. Next, several cropped candidates
will be proposed based on the inverse transformation of Iy.
Due to the stability of our acquisition system, scale and
translation are the principal transformations. Therefore,
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identifying four corners of Iy - inverse(TransM) will be
enough for proposing the candidates. Last, the SSIM values will
be calculated to pick the best candidate.

The detailed registration algorithm is included in the
supplemental materials. The code was written in MATLAB
2022b and is available at
https://github.com/cucum13er/Hardware-Aware-Super-
Resolution/tree/main/Matlab_github.

Fig. 5 shows examples of the registered image pairs from
different cameras, and conspicuous field of view (FOV)
differences can be observed between the two cameras. We will
present the quantitative results in the next subsections to prove
that the images taken from different cameras have different
degradation processes. Note: it is difficult to observe the
degradation differences among cameras by eyes.

B. Experimental setup

To train the Degradation Information Extraction network, we
first synthesized LR images according to (1). The simulation of
the degradation process included Gaussian blurring and bicubic
downsampling.

To evaluate the performance of the degradation information,
we implemented five different isotropic Gaussian kernels with
bicubic downsampling on the HR images in the synthetic
experiment. Five different image acquisition systems were
simulated by the five 2D-Gaussian blurring kernels with o2
setting to [0.5, 1.0, 2.0, 3.0, 4.0], respectively. Following [10],
the size of the Gaussian kernels was fixed to 21 X 21. We also
used LARS optimizer [39] to train the degradation information
network with the SupCon loss with 128 batch size and 2
augmented views (see (5)). During training, each of the 128 LR
image patches was randomly selected from different
degradation processes and cropped into size 160 X 160. Data
augmentation was then performed through random flipping and
transposing. The start learning rate was 0.4, and we performed
1000 iterations of training. We separated the training images of
the DIV2K [40] dataset into 70%, 10%, and 20% as the training
set, validation set and one of the test sets respectively. We also
included Flickr2K [41], BSD100 [42], Set5 [43], Setl4 [44],
and Urban100 [45] as the test sets.

We employed the same training process for the real-world
datasets (DRealSR [31], ImagePairs [32], and Real-Micron) as
for synthetic datasets, with the difference being that we already
had real LR images and different camera labels in real-world
datasets.

TABLE II The classification results for real-world datasets.

Method (backbone) DRealSR Real-Micron
Supervised (6-layer CNNs) 98.9% 85.9%
SimCLR + SupCon (6-layer CNNs) 95.7% 84.4%
MoCo-V2 + SupCon (6-layer CNNs) 100% 93.8%

We evaluated our HASR model using both the synthesized
LR-HR image pairs with known blurring kernels and
downsampling methods and the real-world LR-HR image pairs
with unknown degradation processes.

For synthetic experiments, we used training images from the
DIV2K and Flickr2K datasets as the training set and the SetS5,
Set14, and Urban100 benchmark datasets as the testing set. HR
images were degraded into LR images using the same methods
as we used to train the Degradation Information Extraction
network. We trained HASR network with a combination of
SupCon loss and L1 loss for 200K iterations, with the learning
rate of 1 x 10™* for the SR part, 1 X 1072 for the degradation
information part, and decaying half every 40K iterations. The
hyperparameter 1 was set to 0.1, and we used the Adam [46]
optimizer with ; = 0.9, 8, = 0.999 for optimization.

We used the registered image pairs from DRealSR,
ImagePairs, and Real-Micron datasets to conduct real-world
experiments. DRealSR consisted of real-world LR and HR
images collected by zooming DSLR cameras. The dataset
included five DSLR cameras (Canon, Nikon, Olympus,
Panasonic, and Sony), corresponding to five different
acquisition systems of our Degradation Information Extraction
network. ImagePairs used a beam-splitter to capture the same
scene by a low resolution camera (LRC) and a high resolution
camera (HRC). The LRC can be the sixth acquisition system for
our Degradation Information Extraction network. For the X 2
experiments, we combined the DRealSR and ImagePairs for
training and testing. For the X 4 experiments, we only used
DRealSR for training and testing since ImagePairs does not
have the ground-truth HR images. However, the Real-Micron
dataset does not have enough training samples. Therefore, we
implemented transfer learning to improve the model
performance. We first separated the Real-Micron dataset into
80% and 20% as the training and testing datasets, respectively.
Next, the best model we have trained on the Real-Micron
dataset for extracting the hardware information (MoCo-
V2+SuperCon) was selected to initialize the Degradation
Information Extraction part of HASR network. Then, the other

TABLE III The results of 5-class classification for isotropic Gaussian kernels.

Method (backbone) DIV2K Flickr2K BSD100 Sets Setl4 Urban100
MoCo-V2 (ResNet.18) 71.8% 76.4% 68% 56% 65.7% 72.8%
Supervised (ResNet-18) 89.4% 85.6% 90.4% 76% 85.7% 83.4%

Supervised (6-layer CNNs) 95.9% 96.1% 92.6% 84.0% 91.4% 93.2%
SimCLR + SupCon (ResNet-18) 87.9% 86.6% 87.2% 72.0% 78.6% 82.2%
SimCLR + SupCon (6-layer CNNs) 94.3% 95.6% 93.8% 88.0% 95.7% 93.8%
MoCo-V2 + SupCon (ResNet-18) 89.2% 91.1% 88.0% 72% 84.3% 84.8%
96.1% 95.5% 94.6% 88.0% 95.7% 94.8%

MoCo-V2 + SupCon (6-layer CNNs)
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Fig. 6. Visualization of the degradation information. (a) — (d), visualization of the degradation information from the synthetic
dataset DIV2K with different kernel width . The methods used from left to right: before training, SImCLR+SupCon,
Supervised, MoCo-V2+SupCon. (e) — (h), visualization of the degradation information from real-world datasets. (¢) DRealSR
dataset, before training. (f) DRealSR dataset, MoCo-V2+SupCon. (g) Real-Micron, before training. (h) Real-Micron, MoCo-

V2+SupCon.

part of HASR network was initialized by the model we trained
on the synthetic experiments (DIV2K and Flickr2K datasets).
Finally, we trained the HASR network on the Real-Micron
dataset for 20K iterations by freezing the Degradation
Information Extraction part and partially freezing the residual
groups. Specifically, we experimentally quantified the
generality versus specificity of neurons in each residual group
of the network by freezing the trainable parameters of different
residual groups during the fine-tuning. Further analysis and
more details are included in the next subsections and
supplemental materials.

We conducted experiments using PyTorch and MMediting
[47]. NVIDIA RTX3090 and RTX2080ti GPUs were used for

training and testing. The source code and pre-trained models is

available at https://github.com/cucum13er/mmagic/tree/0.x.

C. Experiments on The Degradation Information Extraction
Network

To evaluate the performance of the degradation information,
we compared the supervised contrastive methods to
unsupervised contrastive methods, including SImCLR [18] and
MOCO V2 [20], and the supervised method. To be fair, we used
the same backbones ResNet-18 [48] and 6-layer CNNs [15] to
compare different methods. For the performance evaluation, we
added a classification head (a supervised linear classifier: two
fully connected layers followed by SoftMax) to the backbone

TABLE IV PSNR and SSIM comparison of CNN based models on open-source synthetic datasets.

Kernel width (o) 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0
Method scale Set5 (PSNR/SSIM) Set14 (PSNR/SSIM) Urban100 (PSNR/SSIM)

RDN 30.63  26.13 2390 2256 2774 2421 2253 2152 2458 21.05 19.56 18.71
0.878 0.748 0.659 0.602 0.808 0.653 0.565 0.515 0.803 0.600 0.491 0.434
Real-ESRGAN 2794 27.03 2578 2478 2600 2531 2424 2321 23.08 2224 2097 19.99
0.839 0812 0.770 0.731 0.747 0.711 0.656 0.609 0.751 0.705 0.633 0.571
DASR %2 35.17 32.64 2530 23.19 30.66 28.64 2338 21.81 2895 2632 2046 19.09
0934 0902 0.732 0.640 0.875 0.820 0.624 0.544 0.908 0.840 0.553 0.454
CNN HASR 3527 32.89 3048 2889 3098 29.12 27.14 2595 28.60 2646 24.00 22.89
(MoCo) 0928 0.896 0.850 0811 0874 0.824 0.749 0.698 0.900 0.845 0.749 0.691
CNN HASR 3540 3295 30.57 2895 31.19 2934 2722 2575 2880 2672 2421 2299
(SimCLR) 0932 0.896 0.851 0.813 0.880 0.827 0.751 0.685 0.905 0.852 0.759 0.697
RDN 29.10 2596 2386 2254 2622 24.02 2250 21.50 2375 2142 20.09 19.25
0.824 0.736  0.656 0.601 0.716 0.634 0.562 0.514 0.733 0.616 0.535 0.487
Real-ESRGAN 26.16 2563 2456 2333 2437 24.13 23.18 2206 21.77 2126 2023 19.14
0.721 0.704 0.668 0.616 0.665 0.648 0.604 0.550 0.677 0.654 0.600 0.530
DASR % 4 2998 2991 2928 28.05 2634 2629 2587 2503 2421 24.06 23.61 2281
0.859 0.856 0.840 0.804 0.736  0.731  0.709 0.670 0.750 0.742 0.719 0.676
CNN HASR 30.66 30.05 29.83 29.73 26.99 26.55 2625 2545 2536 2495 2433 23.64
(MoCo) 0.847 0.826 0819 0803 0.749 0.726 0.706 0.653 0.735 0.709 0.704 0.657
CNN HASR 2996 30.03 2935 2797 2658 2653 2608 2518 2398 2386 2346 2261
(SimCLR) 0.842 0.842 0.824 0.791 0.727 0.723 0.700 0.660 0.739 0.735 0.711 0.666
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TABLE V PSNR and SSIM comparison of Transformer based models on open-source synthetic datasets.

Kernel width (o) 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0
Method scale Set5 (PSNR/SSIM) Set14 (PSNR/SSIM) Urban100 (PSNR/SSIM)

DiffBIR 2724 2624 2554 2414 2398 2360 23.02 2218 2228 21.76 20.76 19.70
0.785 0.756 0.736 0.681 0.632 0.624 0.583 0.544 0.685 0.654 0.585 0.508
HAT 30.64 26.14 2391 2257 27.81 2422 2254 2152 2466 21.05 19.56 18.72
0.891 0.767 0.675 0.613 0.817 0.660 0.572 0.522 0.808 0.599 0.487 0.429
Restormer %2 3145 2957 2750 2584 2875 2687 2488 23,57 2545 2349 21.66 20.56
0.891 0.843 0.777 0.717 0.838 0.766 0.672  0.608 0.825 0.735 0.620  0.544
SwinlR 3231 2771 2695 2353 2941 2581 2481 23.66 2626 2227 21.11 19.96
0916 0.812 0.704 0.699 0.825 0.656 0.593 0.540 0.810 0.589 0.483 0.420
Swin-Transformer 37.34 3429 31.70 3055 31.23 3039 28.74 26.03 2855 26.45 24.46 22.89
HASR (MoCo) 0924 0901 0861 0828 0872 0823 0.758 0.658 0.882 0.821 0.715 0.621
DiffBIR 2455 2466 23.84 2232 2253 2230 21.78 2143 20.67 2054 2024 19.76
0.703 0.703 0.672 0.611 0.566 0.543 0.514 0495 0.587 0.573 0.549 0.521
HAT 29.36 2598 23.87 2254 2639 2405 2251 2151 2418 2147 20.09 19.26
0.850 0.757 0.672 0.613 0.732 0.643 0.569 0.521 0.756 0.621 0.536  0.486
Restormer % 4 2698 2659 2626 2532 2459 2426 2399 2337 2182 2143 21.06 20.70
0.749 0.738 0.722 0.689 0.658 0.640 0.624  0.591 0.628 0.605 0.582  0.557
SwinlR 30.14  26.63 24.15 2245 2694 2439 2250 22.83 2490 22.69 20.64 20.15
0.855 0.763 0.677 0594 0.726 0.638 0.549  0.533  0.725 0.608 0.513 0.450
Swin-Transformer 3218 31.17 30.10 2949 2755 2697 2619 2527 2621 2554 25.08 24.08
HASR (MoCo) 0.868 0.863 0.839 0819 0.744 0.743 0.703 0.656 0.723 0.725 0.715  0.665

and loaded the pretrained weights into the backbone. We then
froze the weights of the backbone and trained the whole
network for a small number of epochs.

TABLE I presents a comparison of the classification
performance using different methods for the isotropic Gaussian
kernels. The results demonstrate that the supervised contrastive
and the classic supervised methods outperform the
unsupervised methods in this classification task due to their use
of label information. As noted in [12], supervised contrastive
learning can improve classifier accuracy and robustness. We,
therefore, select this method to extract degradation information,
as supported by the results in TABLE I. Surprisingly, simple 6-
layer CNNs outperform ResNet-18 in all the three methods
because they can effectively represent degradation information,
unlike the more complex ResNet-18, which has too many
redundant trainable parameters. Additionally, limited training
data and iterations can cause overfitting issues with ResNet-18.

Given the 6-layer CNNs perform well in synthetic

experiments, we opt to use them to train the real-world datasets.
TABLE II presents the classification results of these real-world
datasets. The supervised contrastive method with MoCo-V2
structure achieves the best classification accuracy on average.
We, therefore, finalized our Degradation Information
Extraction network with 6-layer CNNss as the backbone, MoCo-
V2 as the training algorithm, SuperCon loss as the loss function.

To further visualize the learned degradation information, we
used the T-SNE method [49] to cluster LR images from both
synthetic and real-world datasets. The degradation
representations of those LR images were fed to the Degradation
Information Extraction networks and then visualized. Fig. 6
shows the visualization results, where the first row includes the
results of the synthetic dataset DIV2K with five different
isotropic Gaussian blurring kernels and the second row includes
the results of the DRealSR dataset with five DSLR cameras and
the results of Real-Micron dataset with three different Basler
cameras. The visualization results reveal the feature vectors are

TABLE VI PSNR and SSIM results on DRealSR and ImagePairs datasets.

Method Canon Nikon Olympus Panasonic Sony LRC
Scale X 2 X 4 X 2 X 4 X 2 X 4 X2 X 4 X2 X 4 X2

RDN 3241 2856 3249 28.05 3207 28.07 3221 2814 31.85 2927 2230

0.893 0.834 0.885 0.804 0872 0.771 0.865 0.788 0.845 0.821 0.694

27.53 2483 29.68 2695 29.66 2631 2954 26.03 26.68 26.53 21.86

Real-ESRGAN 0.868 0.793 0.886 0.798 0.867 0.750 0.848 0.748 0.810 0.766  0.785

DASR Backbone: 3087 2791 31.71 2799 3052 2773 31.08 28.05 28.14 2852 21.86

CNN 0898 0.844 0901 0.831 0.881 0796 0.873 0.806 0.831 0.826 0.735

CDC 3261 3043 33.12 29.84 3158 2931 3243 30.18 28.63 2993 22.10

0933 0.898 0.930 0.874 0909 0.832 0903 0.847 0.851 0.854 0.785

CNN HASR 3410 30.78 3418 29.73 33,63 29.77 3370 3092 31.61 3150 2526

(MoCo) 0932 0.884 0917 0.841 0906 0.811 0.891 0.816 0.843 0.846  0.829
DiffBIR 2699 2699 27.51 2698 2727 2717 27.63 2722 2584 2720 21.73
0.805 0.802 0.774 0.777 0.757 0.739  0.761 0.757 0.724  0.768  0.751

HAT 3027 2775 3150 2743  31.67 2747 3346 2840 31.79 29.12 2187

0.874 0.822 0.892 0.810 0.886 0.778 0.885 0.789 0.875 0.818 0.756

Restormer Backbone: 30.25 28.62 30.11 2846 29.82 2822 30.16 2857 28.67 28.83 2237

Transformer 0.895 0.855 0.874 0.827 0.862 0.796 0.862 0.806 0.787 0.818 0.759

SwinlR 3130 2897 31.68 2747 3033 28.02 3050 2795 30.82 2839 21.68

0902 0.852 0.886 0.795 0.858 0.780 0.847 0.782 0.855 0.808 0.688

Swin-Transformer 3527 3259 3388 31.58 3430 30.94 34.08 31.09 31.70 32.65 25.62

HASR (MoCo) 0929 0.893 0911 0.867 0908 0821 0.892 0.839 0.849 0.879 0.807
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Fig. 7. Qualitative comparison of our model with other works on x 4 super-resolution on the Real-Micron dataset (top) and

x 2 super-resolution on the ImagePair dataset (bottom).

well clustered by different degradation kernels or different
cameras. MoCo-V2 can distinguish different categories better
than other algorithms, as demonstrated in TABLE III and
TABLE II. Fig. 6 (h) is less distinguishable because the three
Basler cameras have very similar specifications, making their
degradation information quite similar.

D. Experiments on the HASR Network

We conducted simulation experiments on LR-HR pairs with
known blurring kernels and downsampling methods, i.e.,
isotropic Gaussian blurring kernels with bicubic downsampling
method. We compared our CNN based HASR to several recent

TABLE VII PSNR and SSIM results on Real-Micron dataset.

Cameras
Method Scale 649 C1300 C4112
22.06 22.01 15.01
RDN 0.854 0.846 0.761
21.98 11.96 12.02
DASR <7 0.854 0.560 0.740
cpC 21.83 21.50 12.13
0.862 0.867 0.761
CNN HASR 28.99 28.07 21.02
(MoCo) 0.921 0.900 0.841
19.90 17.18 11.05
RDN 0.839 0.823 0.725
19.89 17.17 11.02
DASR w4 0.845 0.830 0.727
cpC 19.57 17.15 1111
0.836 0.825 0.726
CNN HASR 27.79 25.02 2154
(MoCo) 0.904 0.914 0.869

CNN based SR algorithms, including RDN [50], Real-
ESRGAN [6] and DASR [15], using their pretrained models.
Furthermore, the adoption of stronger Transformer backbones
has gained significant traction recently. To validate that our
proposed degradation information's impact on enhancing SR is
not confined to the SR generation network's backbone, we
conducted experiments using Transformer based backbones as
well, including DiffBIR [51], HAT [52], SwinIR [53] with their
pretrained models, fine-tuned Restormer [26], and Swin-
Transformer based HASR. TABLE IV shows the PSNR and
SSIM comparison results among the CNN based backbones,
indicating that with the assistance of the degradation
information, our CNN based HASR algorithm outperforms
other algorithms, especially when the LR images are heavily
blurred by a greater o value. TABLE V presents a comparison
of PSNR and SSIM results among the Transformer based
backbones. Similar to TABLE V, we find that the inclusion of
degradation information consistently enhances the quality of
SR results. Taking advantage of both local self-attention
mechanism and the shifted window scheme, the Swin-
Transformer based HASR achieves the best performance across
most test datasets.

We also conducted experiments on real-world LR-HR image
pairs using DRealSR and ImagePairs datasets for the X 2
experiments and DRealSR dataset for the X 4 experimens. We
then used Real-Micron dataset for another real-world dataset
evaluation. As shown in TABLE VI, our HASR algorithm
consistently achieves higher PSNR and SSIM values compared
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Fig. 8. Comparison of residual blocks in original EDSR
and EDSR with Adaln fusion.

to most other algorithms. It's worth noting that CDC [31]
exhibits higher SSIM values in certain cases, as it dissects an
image into three components (flat, edges, and corners) and
reconstructs each component individually. In contrast, our
proposed method is designed to reconstruct the entire image as
a whole. However, an interesting avenue for future research
could involve adapting CDC to incorporate degradation
information.

For the evaluation of the Real-Micron dataset, as stated in
subsection IV.B, we initialized the HASR model by employing
the pretrained Degradation Information Extraction network
obtained from the Real-Micron dataset, along with the
pretrained HASR network acquired from the synthetic
experiments. We utilized CNN based HASR in the evaluation
due to the relatively small scale of the Real-Micron dataset.

TABLE VI and TABLE VII shows the PSNR and SSIM
results and confirms that our proposed HASR network achieved
better quantitative evaluation results than other state-of-the-art
algorithms. Additionally, Fig. 7 shows the SR visualization
results on the Real-Micron and ImagePairs datasets,
demonstrating that the proposed HASR network successfully
reconstructs detailed textures and edges in the HR images,
yielding better-looking SR outputs compared to other methods.
While Real-ESRGAN produces sharper-looking details, it
introduces some artifacts due to its adversarial model. The
adversarial model prioritizes generating visually pleasing SR
images over SR images closer to the input LR images, resulting
in a tradeoff between the visual quality and the quantitative
performance. Note the PSNR metric fundamentally disagrees
with the subjective evaluation of human observers [1]. If users
care more about the quantitative performance in SR

applications, e.g., using the HASR for product pattern
inspection and metrology in manufacturing processes, the SR
results must be as close as possible to the ground-truth rather
than guessing a more visually pleasing image.

E. Ablation Studies

We first evaluated the effectiveness of the degradation
information in the network by conducting ablation experiments
using three different backbones. Then, we evaluated the
effectiveness of the dual-path attention mechanism by
conducting an ablation experiment using different fusion
methods. Finally, we evaluated the performance of transfer
learning on Real-Micron dataset by training and evaluating
various models.

1) Analysis on Degradation Information: The backbones we
have implemented include CNN based HASR, Restormer based
HASR, and EDSR [4] with Adaptive Instance Normalization
(AdalN) [22]. To disregard the degradation information, we set
A =0 for L, of the HASR networks and compared the
experiment results of these models to the results of previous
HASR networks for the first two comparisons. To explore the
generalizability of the degradation information, we conducted
an experiment on another SR backbone with a different fusion
method, EDSR with AdalN fusion method. For this experiment,
we made specific modifications to the residual blocks of EDSR.
Specifically, we used the two-FC-layer projected degradation
information as the style feature map for AdalN, while the
feature map from the original residual blocks served as the
content feature map. These two feature maps were then
combined using an AdalN layer. Fig. 8 illustrated both original
and modified residual blocks. Similarly, we trained two models
for this architecture with A = 0.1 and A = 0, respectively.

TABLE IX displays the PSNR and SSIM results for these
three models ( HASR“N | HASR®T | EDSR respectively
represent CNN HASR, Restormer HASR, and EDSR
backbones). It is evident that the inclusion of degradation
information enhances the performance of both SR networks,
confirming the effectiveness of this approach.

2) Analysis on Feature Fusion: To evaluate the effectiveness of
the dual-path attention mechanisms, we conducted experiments
of different fusion approaches of the CNN based HASR
network. Specifically, we compared the original HASR with
single path attention (either only spatial or channel attention)
and channel attention outside of RCAB [23]. Readers can refer
to Supplemental Materials for more details. TABLE VIII shows
the PSNR and SSIM comparison of different fusion methods.

TABLE VIII PSNR and SSIM results of different fusion methods.

Kernel width (o) 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0
Method scale Set5 Set14 Urban100

SA only 29.87 29.66 2839 2805 2641 2611 2571 2454 2353 2394 2295 2281
0.829 0.825 0.783 0.779 0.722 0.694 0.677 0.625 0.668 0.662 0.632 0.609
CA only 2929 2941 29.01 2863 2632 2578 2476 24.18 24.10 24.08 23.33 22.67
_ 4 0.803 0.810 0.794 0.764 0.714 0.702 0.663 0.634 0.687 0.667 0.645 0.617
CA outside of 29.33 28.59 2844 2771 2579 2508 2533 24.16 2338 2326 2240 21.89
RCAB 0.812 0.790 0.796 0.760 0.700 0.682 0.641 0.609 0.660 0.651 0.617 0.574
CNN HASR 30.66 30.05 29.83 29.73 26.99 26.55 2625 2545 2536 2495 2433 23.64
(MoCo) 0.847 0.826 0.819 0.803 0.749 0.726 0.706 0.653 0.735 0.709 0.704 0.657




> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

TABLE IX PSNR and SSIM comparisons with/without degradation information.
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Method Scale  Canon  Nikon Olympus Panasonic Sony 25 ‘/'/\/-\me sorateh
HASRENN 30.51 29.79 29.68 30.77 30.30 245
A=0 0.874 0.830 0.805 0.819 0.839 2
HASRENN 30.78  29.73 29.77 30.92 31.50
A=01 0.884 0.841 0.811 0.816 0.846 z 235
HASRET 28.62 28.46 28.22 28.57 28.83 2 2
4=0 % 4 0.855 0.827 0.796 0.806 0.818 25
HASRET 30.50 29.56 30.00 29.31 30.46
A=01 0.896 0.851 0.807 0.821 0.834 2
EDSR 30.32 29.32 29.46 29.74 29.63 215
A=0 0.870 0.829 0.790 0.816 0.820 ”
EDSR 31.69  29.55 29.73 30.28 30.09 0 1 2 3 4 5
A=l 0.883  0.836  0.793 0.814 0.831 ffzze)” groups
a

The method which performed the worst was the one where
fusion occurred outside of the RCAB. This outcome can be
attributed to the absence of degradation information during the
deep feature extraction process, which occurred inside RCAB.
Similarly, methods employing a single path, be it the CA or SA
path, exhibited worse performance. These single-path methods
lack connections between adjacent pixels or feature channels,
making them less effective compared to the proposed fusion
method with dual-path.

3) Analysis on Transfer Learning: To evaluate the effectiveness
of transfer learning on the Real-Micron dataset, we conducted
two sets of experiments using the CNN based HASR network.
Firstly, we trained the HASR network using only the Real-
Micron training data, with the degradation information part
pretrained and the HASR part randomly initialized. Secondly,
we trained the network using the same training data with both
pretrained degradation information and HASR parts. For the
latter, we froze different residual groups in the models during
training. Fig. 9 shows the PSNR and SSIM results of both
transfer learning metrics. More training details are included in
the supplemental materials.

The results indicate that transfer learning outperforms direct
training from scratch when the weights of the first one, two or
three residual groups are frozen. This is reasonable due to two
factors. Firstly, the Real-Micron dataset has fewer LR-HR
image pairs than other public datasets like ImagePairs and
DRealSR, making overfitting a potential issue during training
from scratch. Secondly, by using the pretrained model
(DIV2K+Flirck2K) to initialize the HASR, the SR performance
can be improved. However, since the pretrained model has
domain gaps with the Real-Micron dataset, the best
performance was achieved when unlocking the weights of the
last and penultimate residual groups. This approach locks in the
learned generic features from pretrained model, while
providing enough learnable parameters for learning the unique
features of the Real-Micron dataset.

V. CONCLUSION

In this study, we propose a blind SR method that can handle
various degradation processes of different image acquisition
systems by extracting and integrating the prior hardware
information. By the inclusion of HAB, both Transformer based
and CNN based HASR networks outperform conventional

o 9SSIM comparison with different frozen residual groups

e —Transfer learning
0.89x/ ‘*’/\ From scratch

0.88

0.87

=086
(7]
@ 0.85
0.84
0.83
0.82
0.81
0 1 2 3 4 5
frozen groups

Fig. 9. PSNR and SSIM comparison of transfer
learning on Real-Micron dataset.

approaches by not relying on predefined or ground-truth
degradation kernels. Results from both synthetic and real-world
datasets demonstrate the effectiveness of the proposed method
in handling blind SR problems. Future work will extend our
method to more state-of-the-art SR frameworks such as CDC
and verify the effectiveness of the degradation information in
these frameworks. Additionally, the effective utilization of
prior hardware knowledge to enhance image quality represents
a promising avenue for exploration. Algorithms developed on
the basis of such hardware information hold significant
potential for practical applications.

However, our HASR method may have limitations when
handling input LR images acquired from hardware that
significantly deviates from the training data. In such cases, the
HASR network cannot accurately predict the unknown
hardware degradation, resulting in a decline of SR performance.
Moreover, obtaining labeled device sources to use as training
data for the HASR method can be challenging, which adds to
the difficulty of acquiring the necessary data.
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