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ABSTRACT Aerobes require dioxygen (O,) to grow; anaerobes do not. However, nearly
all microbes—aerobes, anaerobes, and facultative organisms alike—express enzymes
whose substrates include O,, if only for detoxification. This presents a challenge
when trying to assess which organisms are aerobic from genomic data alone. This
challenge can be overcome by noting that O, utilization has wide-ranging effects
on microbes: aerobes typically have larger genomes encoding distinctive O,-utilizing
enzymes, for example. These effects permit high-quality prediction of O, utilization
from annotated genome sequences, with several models displaying =80% accuracy on a
ternary classification task for which blind guessing is only 33% accurate. Since genome
annotation is compute-intensive and relies on many assumptions, we asked if annota-
tion-free methods also perform well. We discovered that simple and efficient models
based entirely on genomic sequence content—e.g., triplets of amino acids—perform
as well as intensive annotation-based classifiers, enabling rapid processing of genomes.
We further show that amino acid trimers are useful because they encode information
about protein composition and phylogeny. To showcase the utility of rapid prediction,
we estimated the prevalence of aerobes and anaerobes in diverse natural environments
cataloged in the Earth Microbiome Project. Focusing on a well-studied O, gradient in the
Black Sea, we found quantitative correspondence between local chemistry (Oy:sulfide
concentration ratio) and the composition of microbial communities. We, therefore,
suggest that statistical methods like ours might be used to estimate, or “sense,” pivotal
features of the chemical environment using DNA sequencing data.

IMPORTANCE We now have access to sequence data from a wide variety of natural

environments. These data document a bewildering diversity of microbes, many known

only from their genomes. Physiology—an organism’s capacity to engage metabolically

with its environment—may provide a more useful lens than taxonomy for understand- Editor Chris Greening, Monash University,
ing microbial communities. As an example of this broader principle, we developed  Melbourne, Victoria, Australia
algorithms that accurately predict microbial dioxygen utilization directly from genome Address correspondence to Dianne K.
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highlighting quantitative correspondence between sequences and local O, levels in a

data set from the Black Sea. This example suggests that DNA sequencing might be
repurposed as a multi-pronged chemical sensor, estimating concentrations of O, and
other key facets of complex natural settings.
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genomes, whether they belong to obligate aerobes, obligate anaerobes, or facultative Hcemz Ul
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organisms, encode enzymes that detoxify reactive oxygen species like peroxide (H,05)
and superoxide (O3). The suprisingly wide distribution of detoxifying enzymes (e.g.,
peroxidases) and terminal oxidases (e.g., heme-copper oxidases) makes it difficult to
assess which organisms are aerobic from genomes alone (2, 3).

Aerobes, however, are different from anaerobes, and these differences—though
subtle—are legible in genomes. Aerobes tend to have larger genomes (4) with proteins
utilizing distinct amino acids (5), a larger number of O,-utilizing enzymes (2), and usually
belong to specific phylogenetic groups (4). Conversely, anaerobes make use of diverse
fermentation pathways to conserve energy in low-O, settings (3, 6). These differences
have been used to predict O, utilization from the genome with reasonable accuracy (2, 7,
8).

Classification of microbial O, utilization typically relies on intensive preprocessing
where, for example, enzymes are identified by sequence homology (2) or a full metabolic
network is reconstructed (7). Such processing is costly and limited by our very incom-
plete knowledge of the relationship between sequence and function. We therefore asked
whether accurate classification can be achieved without annotation, instead using DNA
and protein sequences directly.

Classifiers trained here predict O, utilization phenotypes from genomic sequences.
We focused on the ternary (three-way) classification problem, categorizing organisms
as (i) obligate aerobes, (ii) obligate anaerobes, or (jii) facultative. Classifiers were trained
and evaluated using a compendium of =3,100 genomes with documented O, utilization,
reserving a phylogenetically balanced 20% subset for testing (Materials and Methods,
Fig. S1).

RESULTS

A typical classification pipeline begins with identification of protein-coding open reading
frames (ORF prediction, Fig. 1A), followed by annotation of gene functions (2, 7, 8).
Further processing is sometimes performed, e.g., constructing a metabolic network from
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FIG 1 Approaches to predicting microbial O, utilization. (A) Schematic pipelines for predicting O, utilization with (left branch) and without (right) compute-
intensive genome annotation. Genome annotation (=10 min/genome) is far slower than extraction of amino acid trimers (< 1 s/genome, Table S1). (B)
Close relatives are strong predictors of O, utilization, as exemplified by near-perfect accuracy of “random relative” classification at the species level (solid
blue curve). However, phenotypes are frequently unavailable for close relatives, as shown in gray dashes for samples from the Earth Microbiome Project
(Materials and Methods) (10). (C) We used machine learning methods to train classifiers that can produce phenotypic predictions even for unobserved taxa.
The best-performing models were =80% accurate at classifying out-of-sample genomes as aerobes, anaerobes, or facultative. These included annotation-free
feature sets (green) like amino acid 3-mers and annotation-driven feature sets (blue) including counts of annotated protein functions (Materials and Methods).
The class-balanced accuracy of guessing at random is 33% for ternary classification. Fig. S2 and Table S2 report accuracies for all models evaluated, including
binary classifiers.
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annotations (7). Processed data are then used to train classifiers predicting phenotypes
like carbon source preference (9) or O, utilization from genomic features. Features can
include counts of annotated gene functions, e.g., one benzoate dioxygenase, two heme
oxygenases, etc. (2), or the suite of molecules produced by annotated enzymes (7, 8).

Working directly with unannotated nucleotide (NT) and amino acid (AA) sequences
avoids most preprocessing steps (Fig. 1A), removes assumptions, and greatly reduces
runtime (Table S1). One way of representing patterns in NT and AA sequences is by
counting k-mers—substrings of length k (11, 12). A more complex, and potentially
valuable, approach uses advances in machine learning to summarize (“embed”) protein
sequences in vectors of fixed dimension (13, 14).

As genes and genomes are predominantly vertically inherited, any feature set,
whether annotation-based or annotation-free, will be correlated with phylogeny to
some degree. Indeed, related organisms have correlated O, utilization (Fig. 1B). One
might therefore predict the O utilization of a novel genome by querying closely related
species. This approach is accurate, but its applicability is limited by the narrow taxonomic
range of cultivated microbes. Generalizable prediction therefore requires a classifier
integrating phylogeny with other signals.

We used linear (logistic regression) and nonlinear methods (neural networks) to train
classifiers on a variety of feature sets (Materials and Methods, Fig. S2 and S3). A linear
classifier predicting microbial O, utilization from counts of annotated gene functions
(KEGG orthogroups, Fig. 1C) displayed 82% class-balanced testing accuracy—2.5 times
the accuracy of guessing at random. Yet several annotation-free classifiers also displayed
~80% accuracy, including models based on counts of AA triplets and protein sequence
embeddings. Predictions from annotation-free models also generalized well, classifying
genomes from withheld phylogenetic groups substantially better than guessing at
random (Fig. S4).

Counting AA triplets is far more efficient than annotating genomes, which greatly
accelerated our evaluation of O, utilization in environmental samples. To demonstrate
the utility of rapid characterization, we analyzed =30,000 metagenome-assembled
genomes (MAGs) from Earth Microbiome Project samples (10) using the nonlinear
AA 3-mer model. Consistent with expectations, samples of characteristically anaerobic
habitats (e.g., rumen, 606/606 predicted anaerobic MAGs) contained a much greater
proportion of anaerobic MAGs (Fig. 2A).

To examine the quantitative relationship between local chemistry ([O,]) and
physiology (O utilization), we applied the AA 3-mer model along a natural O, gradient
(Fig. 2B). Due to its unique hydrography and intense density gradient, the surface of
the Black Sea mixes poorly with deeper waters, leading to a sharp transition from oxia
near the surface to anoxic and sulfidic habitats at depth (15, 16). As expected from
these chemical transitions, the classifier predicted sympathetic traces of O, utilization
with depth, with aerobic MAGs dominating near the surface and anaerobes in deeper
waters below the mixed layer (Fig. 2C). This correspondence was also quantitative, with
the [0,]/[H,S] ratio correlating strongly with inferred aerobe/anaerobe ratios, suggesting
that chemical gradients might be “sensed” by analysis of DNA sequences (Fig. 2C).

DISCUSSION

In this study, we evaluated classifiers of microbial O, utilization phenotypes. While
typical approaches rely on annotated genomes (2, 7, 8), we found that several compu-
tationally efficient annotation-free models performed similarly to the best annotation-
driven approaches (Fig. 1C).

There are two compatible explanations for the success of these naive models. First, O,
utilization is correlated with phylogeny to a degree (4), and k-mer counts are a proxy for
phylogenetic proximity (17-19). A phylogenetic cross-validation (Fig. S4) revealed that (i)
related species indeed have correlated O, utilization and (ii) classifiers rely on phyloge-
netic correlations to varying degrees. Predictions based on phylogeny can be useful
when the species of interest have relatives in the training set (e.g., Fig. 1B). lllustrating the
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FIG 2 O is a major determinant of the sequence composition of natural microbial communities. (A) We applied our AA 3-mer classifier to metagenome-assem-

bled genomes (MAGs) associated with Earth Microbiome Project samples (Materials and Methods). Samples from environments with characteristically low O,

levels (e.g., rumen and anaerobic digesters) displayed greater anaerobe content, while oxic surface environments predominantly hosted MAGs inferred to be

aerobes (e.g., freshwater lakes). Fig. S7 evaluates classification using contigs instead of MAGs. (B and C) The Black Sea is a well-studied stratified euxinic ecosystem

with a long-lived systematic O, gradient—oxygenated at the surface with a loss of O, and an increase in sulfide with depth. We drew depth-dependent O, and

H,S concentrations as well as Black Sea MAGs from reference 15. (B) We applied the nonlinear AA 3-mer model to 160 MAGs to estimate the depth-dependent

prevalence of aerobes and anaerobes (Materials and Methods). Consistent with O, and H,S profiles, aerobes were most prevalent near the surface and anaerobes

most prevalent at depth. (C) The [0,]/[H,S] ratio was strongly correlated with the inferred aerobe/anaerobe ratio on a log-log plot (Pearson p = 0.97, P < 10™°)

such that estimating the redox gradient from sequencing data resulted in < 80% relative error over roughly six orders.

potential of phylogenetic predictions, we achieved useful prediction accuracies with a
classifier trained on machine-learned embeddings of ribosomal 16S sequences (Fig. S5).

A second explanation for the success of k-mer models posits that the contents of
genomes and proteomes adapts to the reactivity of O,, e.g., by incorporating fewer
redox-active groups like cysteine thiols (5). To evaluate this argument, we trained
classifiers on (i) genomic AA counts (1-mers) and (ii) chemical descriptors of AAs and
NTs (e.g., elemental content and C redox state, see Materials and Methods). Such features
contain less phylogenetic information yet produce classifiers that perform much better
than guessing at random (Fig. 1C; Fig. S2). As such, a practical advantage of k-mers is that
they encode chemical and phylogenetic information, indicating that k-mers may simplify
prediction of other complex phenotypes (9).

Our exploration of metagenomes indicated that the physical and chemical conditions
of natural environments affect their sequence content in a legible way (Fig. 2). Indeed,
we observed a quantitative correspondence between local chemistry ([0,]/[H,S]) and
inferred aerobe/anaerobe ratios in the Black Sea (Fig. 2C), suggesting that the inverse
problem—estimating the concentrations of O, and other key molecules from sequence
data—is tractable. Microbes use a wide variety of genetically encoded mechanisms to
extract and utilize species of phosphorus, nitrogen, sulfur, and carbon. Similar to O,, we
expect the presence and abundance of microbial taxa extracting mineral phosphorus to
relate to soluble phosphorus concentrations, for example.

Nutrient supply (e.g., N, P, and Fe) limits the growth of crops and the productivity
of ecosystems, yet it is currently very challenging to characterize or monitor environ-
mental chemistry at a frequency or scale useful for agriculture or Earth system mod-
els. Our results here suggest that sequencing data could serve as a “multi-sensor” of
the local, biologically available concentrations of key nutrients. Substantial research is
needed to realize this vision, collecting and collating environmental sequencing data
with paired chemical measurements, potentially learning the genetic mechanisms by
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which microbial taxa access nutrients, and, finally, calibrating models inferring nutrient
concentrations (or fluxes) from such data. Yet, if such efforts enable scalable monitoring
of diverse microbial habitats, they are surely worthwhile.

MATERIALS AND METHODS
Training, validation, and testing data sets

The data sets of Madin et al. (20) and Jabtorska & Tawfik (2) were merged and mapped
onto the Genome Taxonomy Database (GTDB release r207 [21]) to produce a collection
of genomes and metagenomes with known modes of dioxygen utilization. Reference
2 provides RefSeq IDs, which were used to retrieve genomes and coding sequences.
Roughly 350 genomes not meeting NCBI quality standards (marked “suppressed”) were
then removed. We generated three classes of labels for each genome using the following
rules: we labeled annotations “Anaerobe” and “Obligate anaerobe” as “Anaerobe,
“Facultative” and “Facultative anaerobe” as "Facultative,” and “Aerobe,” “Microaerophilic,”
and “Obligate aerobe” as "Aerobe.” See Fig. S8 for the distribution of raw labels. Genomes
were processed with a custom Python pipeline to extract features (e.g., nucleotide
tetramers). Genome annotation was performed using kofamscan (22), and protein
embedding was performed with the protein language model ProtT5-XL-uniref50 (13).
The merged data set was then split by reserving 20% of genomes in each phylogenetic
class for an independent test set. Twenty percent of the remaining genomes were
reserved for a validation set used in hyperparameter selection for nonlinear models.
These withheld sets are phylogenetically representative of the training set (Fig. S1), so
validation and testing represent phylogenetic “interpolation tests”—i.e., test the model’s
ability to predict phenotypes of microbes related to those in the training set at the class
level or closer.

Feature sets tested

We developed a common pipeline to evaluate 21 feature sets (Fig. S2). Annotation-free
feature sets included the number of predicted open reading frames (“gene count”),
counts of genomic DNA k-mers (lengths 1-5), counts of coding sequence (CDS)
nucleotide k-mers (lengths 1-5), CDS amino acid k-mers (lengths 1-3), a list of simple
chemical features of nucleotide and amino acid sequences in each genome (“chemi-
cal features”), and genome embeddings. Chemical features included the number of
open reading frames, genomic GC content, the average number of carbon, nitrogen,
oxygen and sulfur atoms (23) per monomer (AA or NT) in protein- and RNA-coding
sequences, as well as the average redox state of carbon (Z.) in those same sequences
(5). Genome embeddings were generated by first passing all protein-coding sequen-
ces through a pretrained large language model (13) and mean-pooling each protein
embedding over sequence length to produce one fixed-length 1,024-dimensional vector
per sequence. Then, for each genome, we averaged the protein embeddings to produce
a "genome embedding.” Annotation-based feature sets included per-genome counts of
KEGG orthogroups (“All gene families”), per-genome counts of terminal oxidases, mean
embeddings of all annotated O,-utilizing enzymes in each genome (“O, enzymes”), and
two scalar feature sets: the number of O,-utilizing enzymes and the fraction of genes
that are O,-utilizing enzymes.

Model training

We applied both linear and nonlinear classifiers to estimate the mapping between
features and labels. Our linear method was L,-regularized logistic regression (Python
sklearn package; regularization strength set to C = 100, max_iter = 10,000), which we
used to compare binary (O-tolerant vs O-intolerant) and ternary classifiers (aerobe vs
anaerobe vs facultative) of O, utilization. We also evaluated a neural network by using
a candidate nonlinear method. Using the PyTorch package, we implemented simple
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Ly-regularized multilayer perceptron consisting of an input layer, a 512-node hidden
layer, and a three-dimensional output layer. For all feature sets, the nonlinear model was
trained on batches of size 16 for at most 100 epochs, with a learning rate of 0.0001. Final
model weights were selected based on accuracy on the validation set. Throughout, we
report class-balanced accuracies calculated using the sklearn.metrics package in Python.
Model accuracies are summarized in Fig. S2 and Table S2 with per-class accuracies
reported in Fig. S3 for select models.

Phylogenetic cross-validation

To test whether models generalize well to genomes from withheld phylogenetic groups,
we designed a phylogenetic cross-validation scheme. We used sklearn’s GroupShuffleS-
plit to generate five random splits each withholding =20% of genomes from the training
set. This method ensures that all members of a particular phylogenetic group—e.g.,
family or class—are either in the training set or withheld. At the class level, for example,
this entails withholding all of the Chlorobia or none of them. We then trained each
model on the remainder of the training set and evaluated the accuracy on withheld
genomes to produce balanced accuracies as a function of phylogenetic holdout level
for each model, as shown in Fig. S4. As a baseline, we implemented a “random rela-
tive” classifier that is based solely on phylogeny. To predict O, utilization, the random
relative classifier chooses a genome that belongs to the same phylogenetic group at
the prescribed level. For a query genome in the class Chlorobia, for example, another
genome in the same class would be selected at random. This phylogenetic approach is
very accurate when phenotypic information is available for closely related species, but
fails to produce predictions at all when this is not the case (Fig. S4).

Classification using embeddings of 16S sequences

To predict O, utilization from 16S rRNA DNA sequencing, we applied the pretrained
DNA Language Model GenSLM (24). For genomes with NCBI accession for 16S rRNA
genes, we extracted the V34 region and embedded this into a 512-dimensional vector
using GenSLM. NCBI accessions were not available for all genomes in (20), meaning
that 16S sequences could not be ascertained in all cases. This resulted in a data set
of n=1,031 variable regions from genomes with known oxygen requirements. We
randomly partitioned the data into training sequences (n = 693), validation sequences
(n = 150), and testing sequences (n = 188). We constructed a classification layer on top
of GenSLM in PyTorch, varying only the weights in this additional layer during training.
The model was trained with a learning rate of 0.01, a batch size of 16, and for a maximum
of 100 epochs using the Adam optimizer. The final model was chosen via early stopping
at epoch 95, which corresponded to the model with the highest balanced accuracy for
the validation set during training. Note that this model uses different training and test
sets than models trained on full genomes. As such, these model results are not directly
comparable with those in Fig. 1; Fig.S2, so they are presented separately in Fig. S5.

Black Sea analysis

Paired chemical measurements and DNA sequencing data were drawn from (15), which
assembled metagenome-assembled genomes (MAGs) from Black Sea samples. The
relative abundances of MAGs were estimated previously in (25). Briefly, metagenomic
samples were aligned to the previously-assembled MAGs using bbmap. Alignments
with a mapping quality above 10 were retained, converted to BAM format, sorted, and
indexed using samtools. The relative abundance of each MAG was determined by the
fraction of reads mapped to it, as summarized by samtools idxstats. This process was
automated via a Python script, utilizing samtools v1.8 and bbmap.sh, and executed on
the Resnick High-Performance Computing Center cluster at Caltech. As we achieved
competitive accuracy using a nonlinear classifier trained on amino acid trimers, we
applied this model to the Black Sea MAGs.
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Earth Microbiome Project (EMP) analysis

O, utilization phenotypes of EMP metagenome-assembled genomes from (10) were
classified using the nonlinear AA 3-mer model. As EMP projects are categorized with
an ad hoc nomenclature describing the environment sampled, we manually mapped
tags to a simplified set of categories. For analysis, we removed MAGs with less than
50% estimated completeness, considered only samples from which at least 10 MAGs
were assembled and only environmental labels (e.g., “rhizosphere”) for which at least
10 samples were available (see Fig. S6). This left 1,598 samples and 31,279 MAGs for
consideration. The data presented in Fig. 2C give the fraction of MAGs that are inferred to
be aerobes, anaerobes, and facultative in each habitat for samples meeting these criteria.

Contigs as predictors of dioxygen utilization

We used MAGs in our above-described analysis of environmental samples. As MAG
binning is compute-intensive and model-dependent, it may be preferable to evaluate O,
utilzation from contigs or raw reads directly. To determine if such an analysis is feasible,
we evaluated model performance on artificial contigs generated from 100 genomes in
the testing set. For a genome of size n and contigs of length [, n/l non-overlapping
contigs were generated and written to a FASTA file. Predictions were generated by
running nonlinear nucleotide models—NT 3-, 4-, and 5-mer—on per-contig feature
vectors. Using NT features avoids the use of open reading frame prediction, which is
more complex for partial sequences like contigs. As shown in Fig. S7, relatively long
contigs (>10 kbp) were required for local predictions to match the global one.
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