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Avi I. Flamholz,1 Joshua E. Goldford,2 Philippa A. Richter,2 Elin M. Larsson,1 Adrian Jinich,3,4 Woodward W. Fischer,2 Dianne K. 
Newman1,2

AUTHOR AFFILIATIONS See affiliation list on p. 7.

ABSTRACT Aerobes require dioxygen (O2) to grow; anaerobes do not. However, nearly 
all microbes—aerobes, anaerobes, and facultative organisms alike—express enzymes 
whose substrates include O2, if only for detoxification. This presents a challenge 
when trying to assess which organisms are aerobic from genomic data alone. This 
challenge can be overcome by noting that O2 utilization has wide-ranging effects 
on microbes: aerobes typically have larger genomes encoding distinctive O2-utilizing 
enzymes, for example. These effects permit high-quality prediction of O2 utilization 
from annotated genome sequences, with several models displaying ≈80% accuracy on a 
ternary classification task for which blind guessing is only 33% accurate. Since genome 
annotation is compute-intensive and relies on many assumptions, we asked if annota­
tion-free methods also perform well. We discovered that simple and efficient models 
based entirely on genomic sequence content—e.g., triplets of amino acids—perform 
as well as intensive annotation-based classifiers, enabling rapid processing of genomes. 
We further show that amino acid trimers are useful because they encode information 
about protein composition and phylogeny. To showcase the utility of rapid prediction, 
we estimated the prevalence of aerobes and anaerobes in diverse natural environments 
cataloged in the Earth Microbiome Project. Focusing on a well-studied O2 gradient in the 
Black Sea, we found quantitative correspondence between local chemistry (O2:sulfide 
concentration ratio) and the composition of microbial communities. We, therefore, 
suggest that statistical methods like ours might be used to estimate, or “sense,” pivotal 
features of the chemical environment using DNA sequencing data.

IMPORTANCE We now have access to sequence data from a wide variety of natural 
environments. These data document a bewildering diversity of microbes, many known 
only from their genomes. Physiology—an organism’s capacity to engage metabolically 
with its environment—may provide a more useful lens than taxonomy for understand­
ing microbial communities. As an example of this broader principle, we developed 
algorithms that accurately predict microbial dioxygen utilization directly from genome 
sequences without annotating genes, e.g., by considering only the amino acids in protein 
sequences. Annotation-free algorithms enable rapid characterization of natural samples, 
highlighting quantitative correspondence between sequences and local O2 levels in a 
data set from the Black Sea. This example suggests that DNA sequencing might be 
repurposed as a multi-pronged chemical sensor, estimating concentrations of O2 and 
other key facets of complex natural settings.

KEYWORDS oxygen, physiology, biogeochemistry, genome analysis, machine learning

D ioxygen (O2) is a hugely consequential molecule for the biosphere. Aerobic 
respiration yields a tremendous amount of energy and is the most common 

bioenergetic mode in cells across the Earth’s surface environments. Yet O2 is also highly 
reactive, presenting challenges to organisms that encounter it (1). As a result, most 
genomes, whether they belong to obligate aerobes, obligate anaerobes, or facultative 
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organisms, encode enzymes that detoxify reactive oxygen species like peroxide (H2O2) 

and superoxide (O2
−). The suprisingly wide distribution of detoxifying enzymes (e.g., 

peroxidases) and terminal oxidases (e.g., heme-copper oxidases) makes it difficult to 
assess which organisms are aerobic from genomes alone (2, 3).

Aerobes, however, are different from anaerobes, and these differences—though 
subtle—are legible in genomes. Aerobes tend to have larger genomes (4) with proteins 
utilizing distinct amino acids (5), a larger number of O2-utilizing enzymes (2), and usually 
belong to specific phylogenetic groups (4). Conversely, anaerobes make use of diverse 
fermentation pathways to conserve energy in low-O2 settings (3, 6). These differences 
have been used to predict O2 utilization from the genome with reasonable accuracy (2, 7, 
8).

Classification of microbial O2 utilization typically relies on intensive preprocessing 
where, for example, enzymes are identified by sequence homology (2) or a full metabolic 
network is reconstructed (7). Such processing is costly and limited by our very incom­
plete knowledge of the relationship between sequence and function. We therefore asked 
whether accurate classification can be achieved without annotation, instead using DNA 
and protein sequences directly.

Classifiers trained here predict O2 utilization phenotypes from genomic sequences. 
We focused on the ternary (three-way) classification problem, categorizing organisms 
as (i) obligate aerobes, (ii) obligate anaerobes, or (iii) facultative. Classifiers were trained 
and evaluated using a compendium of ≈3,100 genomes with documented O2 utilization, 
reserving a phylogenetically balanced 20% subset for testing (Materials and Methods, 
Fig. S1).

RESULTS

A typical classification pipeline begins with identification of protein-coding open reading 
frames (ORF prediction, Fig. 1A), followed by annotation of gene functions (2, 7, 8). 
Further processing is sometimes performed, e.g., constructing a metabolic network from 

FIG 1 Approaches to predicting microbial O2 utilization. (A) Schematic pipelines for predicting O2 utilization with (left branch) and without (right) compute-

intensive genome annotation. Genome annotation (≈10 min/genome) is far slower than extraction of amino acid trimers (< 1 s/genome, Table S1). (B) 

Close relatives are strong predictors of O2 utilization, as exemplified by near-perfect accuracy of “random relative” classification at the species level (solid 

blue curve). However, phenotypes are frequently unavailable for close relatives, as shown in gray dashes for samples from the Earth Microbiome Project 

(Materials and Methods) (10). (C) We used machine learning methods to train classifiers that can produce phenotypic predictions even for unobserved taxa. 

The best-performing models were ≈80% accurate at classifying out-of-sample genomes as aerobes, anaerobes, or facultative. These included annotation-free 

feature sets (green) like amino acid 3-mers and annotation-driven feature sets (blue) including counts of annotated protein functions (Materials and Methods). 

The class-balanced accuracy of guessing at random is 33% for ternary classification. Fig. S2 and Table S2 report accuracies for all models evaluated, including 

binary classifiers.
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annotations (7). Processed data are then used to train classifiers predicting phenotypes 
like carbon source preference (9) or O2 utilization from genomic features. Features can 
include counts of annotated gene functions, e.g., one benzoate dioxygenase, two heme 
oxygenases, etc. (2), or the suite of molecules produced by annotated enzymes (7, 8).

Working directly with unannotated nucleotide (NT) and amino acid (AA) sequences 
avoids most preprocessing steps (Fig. 1A), removes assumptions, and greatly reduces 
runtime (Table S1). One way of representing patterns in NT and AA sequences is by 
counting k-mers—substrings of length k (11, 12). A more complex, and potentially 
valuable, approach uses advances in machine learning to summarize (“embed”) protein 
sequences in vectors of fixed dimension (13, 14).

As genes and genomes are predominantly vertically inherited, any feature set, 
whether annotation-based or annotation-free, will be correlated with phylogeny to 
some degree. Indeed, related organisms have correlated O2 utilization (Fig. 1B). One 
might therefore predict the O2 utilization of a novel genome by querying closely related 
species. This approach is accurate, but its applicability is limited by the narrow taxonomic 
range of cultivated microbes. Generalizable prediction therefore requires a classifier 
integrating phylogeny with other signals.

We used linear (logistic regression) and nonlinear methods (neural networks) to train 
classifiers on a variety of feature sets (Materials and Methods, Fig. S2 and S3). A linear 
classifier predicting microbial O2 utilization from counts of annotated gene functions 
(KEGG orthogroups, Fig. 1C) displayed 82% class-balanced testing accuracy—2.5 times 
the accuracy of guessing at random. Yet several annotation-free classifiers also displayed 
≈80% accuracy, including models based on counts of AA triplets and protein sequence 
embeddings. Predictions from annotation-free models also generalized well, classifying 
genomes from withheld phylogenetic groups substantially better than guessing at 
random (Fig. S4).

Counting AA triplets is far more efficient than annotating genomes, which greatly 
accelerated our evaluation of O2 utilization in environmental samples. To demonstrate 
the utility of rapid characterization, we analyzed ≈30,000 metagenome-assembled 
genomes (MAGs) from Earth Microbiome Project samples (10) using the nonlinear 
AA 3-mer model. Consistent with expectations, samples of characteristically anaerobic 
habitats (e.g., rumen, 606/606 predicted anaerobic MAGs) contained a much greater 
proportion of anaerobic MAGs (Fig. 2A).

To examine the quantitative relationship between local chemistry ([O2]) and 
physiology (O2 utilization), we applied the AA 3-mer model along a natural O2 gradient 
(Fig. 2B). Due to its unique hydrography and intense density gradient, the surface of 
the Black Sea mixes poorly with deeper waters, leading to a sharp transition from oxia 
near the surface to anoxic and sulfidic habitats at depth (15, 16). As expected from 
these chemical transitions, the classifier predicted sympathetic traces of O2 utilization 
with depth, with aerobic MAGs dominating near the surface and anaerobes in deeper 
waters below the mixed layer (Fig. 2C). This correspondence was also quantitative, with 
the [O2]/[H2S] ratio correlating strongly with inferred aerobe/anaerobe ratios, suggesting 
that chemical gradients might be “sensed” by analysis of DNA sequences (Fig. 2C).

DISCUSSION

In this study, we evaluated classifiers of microbial O2 utilization phenotypes. While 
typical approaches rely on annotated genomes (2, 7, 8), we found that several compu­
tationally efficient annotation-free models performed similarly to the best annotation-
driven approaches (Fig. 1C).

There are two compatible explanations for the success of these naive models. First, O2 
utilization is correlated with phylogeny to a degree (4), and k-mer counts are a proxy for 
phylogenetic proximity (17–19). A phylogenetic cross-validation (Fig. S4) revealed that (i) 
related species indeed have correlated O2 utilization and (ii) classifiers rely on phyloge­
netic correlations to varying degrees. Predictions based on phylogeny can be useful 
when the species of interest have relatives in the training set (e.g., Fig. 1B). Illustrating the 
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potential of phylogenetic predictions, we achieved useful prediction accuracies with a 
classifier trained on machine-learned embeddings of ribosomal 16S sequences (Fig. S5).

A second explanation for the success of k-mer models posits that the contents of 
genomes and proteomes adapts to the reactivity of O2, e.g., by incorporating fewer 
redox-active groups like cysteine thiols (5). To evaluate this argument, we trained 
classifiers on (i) genomic AA counts (1-mers) and (ii) chemical descriptors of AAs and 
NTs (e.g., elemental content and C redox state, see Materials and Methods). Such features 
contain less phylogenetic information yet produce classifiers that perform much better 
than guessing at random (Fig. 1C; Fig. S2). As such, a practical advantage of k-mers is that 
they encode chemical and phylogenetic information, indicating that k-mers may simplify 
prediction of other complex phenotypes (9).

Our exploration of metagenomes indicated that the physical and chemical conditions 
of natural environments affect their sequence content in a legible way (Fig. 2). Indeed, 
we observed a quantitative correspondence between local chemistry ([O2]/[H2S]) and 
inferred aerobe/anaerobe ratios in the Black Sea (Fig. 2C), suggesting that the inverse 
problem—estimating the concentrations of O2 and other key molecules from sequence 
data—is tractable. Microbes use a wide variety of genetically encoded mechanisms to 
extract and utilize species of phosphorus, nitrogen, sulfur, and carbon. Similar to O2, we 
expect the presence and abundance of microbial taxa extracting mineral phosphorus to 
relate to soluble phosphorus concentrations, for example.

Nutrient supply (e.g., N, P, and Fe) limits the growth of crops and the productivity 
of ecosystems, yet it is currently very challenging to characterize or monitor environ­
mental chemistry at a frequency or scale useful for agriculture or Earth system mod­
els. Our results here suggest that sequencing data could serve as a “multi-sensor” of 
the local, biologically available concentrations of key nutrients. Substantial research is 
needed to realize this vision, collecting and collating environmental sequencing data 
with paired chemical measurements, potentially learning the genetic mechanisms by 

FIG 2 O2 is a major determinant of the sequence composition of natural microbial communities. (A) We applied our AA 3-mer classifier to metagenome-assem­

bled genomes (MAGs) associated with Earth Microbiome Project samples (Materials and Methods). Samples from environments with characteristically low O2 

levels (e.g., rumen and anaerobic digesters) displayed greater anaerobe content, while oxic surface environments predominantly hosted MAGs inferred to be 

aerobes (e.g., freshwater lakes). Fig. S7 evaluates classification using contigs instead of MAGs. (B and C) The Black Sea is a well-studied stratified euxinic ecosystem 

with a long-lived systematic O2 gradient—oxygenated at the surface with a loss of O2 and an increase in sulfide with depth. We drew depth-dependent O2 and 

H2S concentrations as well as Black Sea MAGs from reference 15. (B) We applied the nonlinear AA 3-mer model to 160 MAGs to estimate the depth-dependent 

prevalence of aerobes and anaerobes (Materials and Methods). Consistent with O2 and H2S profiles, aerobes were most prevalent near the surface and anaerobes 

most prevalent at depth. (C) The [O2]/[H2S] ratio was strongly correlated with the inferred aerobe/anaerobe ratio on a log–log plot (Pearson ρ = 0.97, P < 10−5) 

such that estimating the redox gradient from sequencing data resulted in < 80% relative error over roughly six orders.
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which microbial taxa access nutrients, and, finally, calibrating models inferring nutrient 
concentrations (or fluxes) from such data. Yet, if such efforts enable scalable monitoring 
of diverse microbial habitats, they are surely worthwhile.

MATERIALS AND METHODS

Training, validation, and testing data sets

The data sets of Madin et al. (20) and Jabłońska & Tawfik (2) were merged and mapped 
onto the Genome Taxonomy Database (GTDB release r207 [21]) to produce a collection 
of genomes and metagenomes with known modes of dioxygen utilization. Reference 
2 provides RefSeq IDs, which were used to retrieve genomes and coding sequences. 
Roughly 350 genomes not meeting NCBI quality standards (marked “suppressed”) were 
then removed. We generated three classes of labels for each genome using the following 
rules: we labeled annotations “Anaerobe” and “Obligate anaerobe” as “Anaerobe,” 
“Facultative” and “Facultative anaerobe” as ”Facultative,” and “Aerobe,” “Microaerophilic,” 
and “Obligate aerobe” as ”Aerobe.” See Fig. S8 for the distribution of raw labels. Genomes 
were processed with a custom Python pipeline to extract features (e.g., nucleotide 
tetramers). Genome annotation was performed using kofamscan (22), and protein 
embedding was performed with the protein language model ProtT5-XL-uniref50 (13). 
The merged data set was then split by reserving 20% of genomes in each phylogenetic 
class for an independent test set. Twenty percent of the remaining genomes were 
reserved for a validation set used in hyperparameter selection for nonlinear models. 
These withheld sets are phylogenetically representative of the training set (Fig. S1), so 
validation and testing represent phylogenetic “interpolation tests”—i.e., test the model’s 
ability to predict phenotypes of microbes related to those in the training set at the class 
level or closer.

Feature sets tested

We developed a common pipeline to evaluate 21 feature sets (Fig. S2). Annotation-free 
feature sets included the number of predicted open reading frames (“gene count”), 
counts of genomic DNA k-mers (lengths 1–5), counts of coding sequence (CDS) 
nucleotide k-mers (lengths 1–5), CDS amino acid k-mers (lengths 1–3), a list of simple 
chemical features of nucleotide and amino acid sequences in each genome (“chemi­
cal features”), and genome embeddings. Chemical features included the number of 
open reading frames, genomic GC content, the average number of carbon, nitrogen, 
oxygen and sulfur atoms (23) per monomer (AA or NT) in protein- and RNA-coding 
sequences, as well as the average redox state of carbon (ZC) in those same sequences 
(5). Genome embeddings were generated by first passing all protein-coding sequen­
ces through a pretrained large language model (13) and mean-pooling each protein 
embedding over sequence length to produce one fixed-length 1,024-dimensional vector 
per sequence. Then, for each genome, we averaged the protein embeddings to produce 
a “genome embedding.” Annotation-based feature sets included per-genome counts of 
KEGG orthogroups (“All gene families”), per-genome counts of terminal oxidases, mean 
embeddings of all annotated O2-utilizing enzymes in each genome (“O2 enzymes”), and 
two scalar feature sets: the number of O2-utilizing enzymes and the fraction of genes 
that are O2-utilizing enzymes.

Model training

We applied both linear and nonlinear classifiers to estimate the mapping between 
features and labels. Our linear method was L2-regularized logistic regression (Python 
sklearn package; regularization strength set to C = 100, max_iter = 10,000), which we 
used to compare binary (O2-tolerant vs O2-intolerant) and ternary classifiers (aerobe vs 
anaerobe vs facultative) of O2 utilization. We also evaluated a neural network by using 
a candidate nonlinear method. Using the PyTorch package, we implemented simple 
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L2-regularized multilayer perceptron consisting of an input layer, a 512-node hidden 
layer, and a three-dimensional output layer. For all feature sets, the nonlinear model was 
trained on batches of size 16 for at most 100 epochs, with a learning rate of 0.0001. Final 
model weights were selected based on accuracy on the validation set. Throughout, we 
report class-balanced accuracies calculated using the sklearn.metrics package in Python. 
Model accuracies are summarized in Fig. S2 and Table S2 with per-class accuracies 
reported in Fig. S3 for select models.

Phylogenetic cross-validation

To test whether models generalize well to genomes from withheld phylogenetic groups, 
we designed a phylogenetic cross-validation scheme. We used sklearn’s GroupShuffleS-
plit to generate five random splits each withholding ≈20% of genomes from the training 
set. This method ensures that all members of a particular phylogenetic group—e.g., 
family or class—are either in the training set or withheld. At the class level, for example, 
this entails withholding all of the Chlorobia or none of them. We then trained each 
model on the remainder of the training set and evaluated the accuracy on withheld 
genomes to produce balanced accuracies as a function of phylogenetic holdout level 
for each model, as shown in Fig. S4. As a baseline, we implemented a “random rela­
tive“ classifier that is based solely on phylogeny. To predict O2 utilization, the random 
relative classifier chooses a genome that belongs to the same phylogenetic group at 
the prescribed level. For a query genome in the class Chlorobia, for example, another 
genome in the same class would be selected at random. This phylogenetic approach is 
very accurate when phenotypic information is available for closely related species, but 
fails to produce predictions at all when this is not the case (Fig. S4).

Classification using embeddings of 16S sequences

To predict O2 utilization from 16S rRNA DNA sequencing, we applied the pretrained 
DNA Language Model GenSLM (24). For genomes with NCBI accession for 16S rRNA 
genes, we extracted the V34 region and embedded this into a 512-dimensional vector 
using GenSLM. NCBI accessions were not available for all genomes in (20), meaning 
that 16S sequences could not be ascertained in all cases. This resulted in a data set 
of n = 1, 031 variable regions from genomes with known oxygen requirements. We 
randomly partitioned the data into training sequences (n = 693), validation sequences 
(n = 150), and testing sequences (n = 188). We constructed a classification layer on top 
of GenSLM in PyTorch, varying only the weights in this additional layer during training. 
The model was trained with a learning rate of 0.01, a batch size of 16, and for a maximum 
of 100 epochs using the Adam optimizer. The final model was chosen via early stopping 
at epoch 95, which corresponded to the model with the highest balanced accuracy for 
the validation set during training. Note that this model uses different training and test 
sets than models trained on full genomes. As such, these model results are not directly 
comparable with those in Fig. 1 ; Fig.S2 , so they are presented separately in Fig. S5.

Black Sea analysis

Paired chemical measurements and DNA sequencing data were drawn from (15), which 
assembled metagenome-assembled genomes (MAGs) from Black Sea samples. The 
relative abundances of MAGs were estimated previously in (25). Briefly, metagenomic 
samples were aligned to the previously-assembled MAGs using bbmap. Alignments 
with a mapping quality above 10 were retained, converted to BAM format, sorted, and 
indexed using samtools. The relative abundance of each MAG was determined by the 
fraction of reads mapped to it, as summarized by samtools idxstats. This process was 
automated via a Python script, utilizing samtools v1.8 and bbmap.sh, and executed on 
the Resnick High-Performance Computing Center cluster at Caltech. As we achieved 
competitive accuracy using a nonlinear classifier trained on amino acid trimers, we 
applied this model to the Black Sea MAGs.
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Earth Microbiome Project (EMP) analysis

O2 utilization phenotypes of EMP metagenome-assembled genomes from (10) were 
classified using the nonlinear AA 3-mer model. As EMP projects are categorized with 
an ad hoc nomenclature describing the environment sampled, we manually mapped 
tags to a simplified set of categories. For analysis, we removed MAGs with less than 
50% estimated completeness, considered only samples from which at least 10 MAGs 
were assembled and only environmental labels (e.g., “rhizosphere”) for which at least 
10 samples were available (see Fig. S6). This left 1,598 samples and 31,279 MAGs for 
consideration. The data presented in Fig. 2C give the fraction of MAGs that are inferred to 
be aerobes, anaerobes, and facultative in each habitat for samples meeting these criteria.

Contigs as predictors of dioxygen utilization

We used MAGs in our above-described analysis of environmental samples. As MAG 
binning is compute-intensive and model-dependent, it may be preferable to evaluate O2 
utilzation from contigs or raw reads directly. To determine if such an analysis is feasible, 
we evaluated model performance on artificial contigs generated from 100 genomes in 
the testing set. For a genome of size n and contigs of length l, n/l non-overlapping 
contigs were generated and written to a FASTA file. Predictions were generated by 
running nonlinear nucleotide models—NT 3-, 4-, and 5-mer—on per-contig feature 
vectors. Using NT features avoids the use of open reading frame prediction, which is 
more complex for partial sequences like contigs. As shown in Fig. S7, relatively long 
contigs (>10 kbp) were required for local predictions to match the global one.
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