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M Check for updates

Therate of river migration affects the stability of Arctic infrastructure and
communities*? and regulates the fluxes of carbon®*, nutrients® and sediment®’ to
the oceans. However, predicting how the pace of river migration will changeina
warming Arctic® has so far been stymied by conflicting observations about whether
permafrost’ primarily acts to slow'®" or accelerate'* river migration. Here we
develop new computational methods that enable the detection of riverbank
erosion at length scales 5-10 times smaller than the pixel size in satellite imagery,
aninnovation that unlocks the ability to quantify erosion at the sub-monthly
timescales whenrivers undergo their largest variations in water temperature and
flow. We use these high-frequency observations to constrain the extent to which
erosion is limited by the thermal condition of melting the pore ice that cements
bank sediment, arequirement that will disappear when permafrost thaws, versus
the mechanical condition of having sufficient flow to transport the sediment
comprising the riverbanks, a condition experienced by all rivers”. Analysis of
high-resolution data from the Koyukuk River, Alaska, shows that the presence of
permafrost reduces erosion rates by 47%. Using our observations, we calibrate and
validate anumerical model that can be applied to diverse Arctic rivers. The model
predicts that full permafrost thaw may lead to a30-100% increase in the migration
rates of Arcticrivers.

Does permafrost—defined as ground that remains below 0 °C for at
least two consecutive years’—act primarily to slow'®" or accelerate’>"
therate of riverbank erosion? This still-unanswered question is funda-
mental to understanding how the geochemical fluxes®'®, water quality”,
ecology’ andinfrastructure"*®in Arctic watersheds will respond to the
approximately 4 °C rising Arctic air temperatures® and roughly 40%
decrease in permafrost” predicted in the coming century®. Obser-
vations of river migration from remotely sensed imagery'*>*° have
beenusedtoreach opposite conclusions about the role of permafrost
inregulating the pace of riverbank erosion. For example, one recent
study found that erosion rates in rivers flowing through permafrost
are about nine times slower than those in non-permafrost terrains. By
contrast, another study” found that, for channels of the same width,
permafrost rivers migrate faster than their non-permafrost counter-
parts. This apparent discordance highlights the limitations of regional
or global comparisons'®*, as differences in migration rates fromriver
toriver canbe caused by myriad confounding variables, including flow
seasonality?, river-ice break-up intensity?, bank-material cohesion?
and riverine sediment load?, rather than the presence or absence of
permafrost.

Here we show how analysis of anindividual river lets us control for
many of these confounding variables and use natural variations in
water temperature, discharge and bank-material properties toisolate
the thermal and mechanical controls on bank erosion. Specifically,
we use variations in water temperature and discharge that occur
over timescales of weeks (not years or decades as used in previous
work!®12202%) ‘hecause the changesin flow conditions that Arctic rivers
experience on these sub-seasonal timescales exceed the decadal-scale

variability by more than an order of magnitude®. However, observ-
ing bank erosion at such high frequencies was previously not pos-
sible because it requires detecting changes that are much smaller
than the pixel size of satellite imagery. We develop computational
tools to resolve riverbank erosion at length scales roughly 100 times
finer than previous analyses® (owing to a ten-times improvement in
detection from our new algorithm and a ten-times improvement in
the resolution of widely available satellite imagery). We then apply
our methodology to the Koyukuk River in central Alaska (Fig. 1a,b),
ariver thatboth (1) experiences strong seasonality in water tempera-
ture and discharge and (2) flows through discontinuous permafrost,
making it particularly well suited to address whether and how perma-
frost affects river migration.

Using space and time to constrain the role of permafrost

We introduce three sets of observations to test the hypothesis that
permafrost limits the pace of river migration.

The spatial pattern of bank erosion

Rivers flowing through discontinuous permafrost offer exceptional
natural experiments because a single river (with a given hydrograph,
seasonal pattern of water temperature and downstream sediment
flux) encounters riverbanks that are variably frozen versus unfrozen.
Thus, measurements of local bank erosion rates in permafrost versus
non-permafrost terrains in the sameriver allow us to control for many
confounding variables andisolate the role of bank thermal properties
onerosion.
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Fig.1|Riverbank migration rates quantified for the approximately
450-km-long alluvial reach of the Koyukuk River near Huslia, Alaska.
a,Map ofthe study areain Alaska.b-d, The bank migrationrates are
calculated by applying our sub-pixel algorithm to a pair of Sentinel-2 satellite
images from 30 August 2016 and 13July 2022. Coordinates arein UTM zone 4N.
c,d, Zoomed-in maps of the bank displacement illustrating how thereis a
strong relationship between the migration rates and channel curvature?%.,

e, The three spatial series—(1) normalized channel curvature (channel width W
divided by radius of curvature R)***°, (2) migration of the right bank, and

(3) migration of the left bank—all are measured independently. The similarity

The sub-seasonal pattern of bank erosion

The widespread conceptual model for why permafrost may limit the
pace of bank erosion is that pore ice strengthens bank sediments to
the point that, inorder to be eroded by flowing water, those sediments
must first be thawed'****?, Thus, the bottleneck of heat transfer
from the river water to the frozen bank sediments” imposes a speed
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ofthe three curves highlights the strong control of channel curvature on
migration rate?*. Note that the channel migration lags the curvature by a
distance of about 700 m, or approximately 2.2 channel widths. f, Cartoon,
adapted fromref. 40, illustrating the source of the lag; as the river moves
around abend, the high-velocity core of the flow impinges on the outer bank
atadistance downstream from the bend apex?***#°. g-k, The local outer-bank
erosionrate (see e)is explained well by the lag-adjusted normalized curvature
(equation (26)). kdenotes the curvature-normalized riverbank erosion rate.
The colour schemeing-k matches thelocationsinb.

limit on bank erosion that is not experienced by low-latitude rivers™.
However, the observation that permafrost riverbanks often have an
approximately 1-m-thick layer of thawed sediment at their surface in
late summer'®?® suggests that permafrost rivers are also limited by
the ability of flowing river water to entrain and transport sediment™.
Douglas etal." thus proposed asimple theoretical framework in which
bank erosion in permafrost rivers is limited by the joint constraints



of thaw and entrainment. Because Arctic river water tends to be very
cold (for example, <2 °C) during the period of peak streamflow in early
spring (Extended DataFig.1), early-season erosionis limited by the abil-
ity of the water to thaw the bank material. Then, as the water warms, the
river more rapidly transports heat into the bank. However, the discharge
isnolonger high enough to entrain thawed bank sediment. This model
suggests that peak erosion occursinthe early summer at theintersec-
tion of still relatively high discharge but warmer waters. By contrast, if
permafrostrivers are purely entrainment-limited, the seasonal pattern
of erosion only should track discharge, and if permafrost rivers are
purely thaw-limited, the seasonal pattern of erosion predominantly
should track water temperature™. Finally, ifbank erosion in Arctic riv-
ers is dominated by ice-run gouging?, erosive activity should occur
primarily during the few-days period of ice break-up?. To summarize,
the different proposed mechanisms produce distinctive temporal
(sub-seasonal) fingerprints of bank erosion (Extended Data Fig. 1).

Theinterannual pattern of bank erosion

The hydrographs of Arctic rivers vary substantially from year to
year. Some years have substantial August rains, leading to high dis-
charge during a period when the river water is warm. Alternatively,
in some years, the flow required for sediment entrainment only
occurs during the period of spring snowmelt, when the river water
is very cold (Extended Data Figs. 1-3). This interannual variability
means that total annual erosion may vary by a factor of about three
from year to year (Extended Data Fig. 4). Notably, the thaw-limited,
entrainment-limited and combined models predict different finger-
prints for which years have more or less erosion, meaning that we
also can use interannual erosion patterns to distinguish between
mechanisms.

Resolving change at sub-pixellength scales

The three sets of observations described above provide independ-
ent, data-driven ways to test whether and how permafrost affects the
rate of riverbank erosion. Given the remote location of Arctic rivers
and the need to make observations across large spatial and temporal
scales, quantifying river migration from remotely sensed imagery is a
natural choice. However, average migration rates of even the largest
Arctic rivers are on the order of 10° m yr™ (refs. 10,20), meaning that
observational windows of about 3-30 years are required to observe
one pixel’sworth of change in satellite imagery. Previous methods for
quantifying river migration rates use whole-pixel classification'®?%*%,
Here we develop a new method that enables detection of river migra-
tion at scales 5-10 times smaller than the pixel width. This method
allows for the quantification of bank erosion over shorter timescales.
Forexample, consideralarge Arcticriver migratingatarateof 3myr™
(refs.10,12,30). Existing methods (whichinvolve the whole-pixel binary
masking of 30-m Landsat satellite imagery***’) might require time inter-
vals of about 10 years to robustly detect erosion. By contrast, our new
method, when paired with PlanetScope imagery (3-mresolution), can
detect movementsinthe riverbank of about 0.3-0.6 m, meaning that
we can subdivide the 3 m yr average erosion rates into 5-10 discrete
intervals each year and thereby resolve the sub-seasonal pattern of
erosion to test the second and third hypotheses above.

Fourier methods for change detection

Our algorithm for detecting bank migration is based on sub-pixel cor-
relation of optical satellite imagery® (Fig.1). Consider animage of a
river and surrounding floodplain (Fig. 1b). Let the outer bank of the
river erode a distance equivalent to one-tenth the pixel width. Such a
change may not be visible by eye but it is recorded in the image data
because the pixel intensity values along the river margins will change
to reflect the new ratio of water versus floodplain encapsulated in

that pixel (Extended Data Fig. 6). One way to quantify this sub-pixel
displacement would be to: (1) sample asmall n x n-pixel window (‘chip’)
from each image at a location of interest; (2) linearly upsample each
image chip by a factor of ten; and then (3) compute the 2D
cross-correlation between the two upsampled chips. If the primary
source of contrastin theimage is the river-floodplain boundary, then
the peakinthe 2D cross-correlation spectrumwill record the riverbank
displacement (Extended DataFig. 6). However, the computational cost
of 2D cross-correlation is O(n*), where nis the width of the chip. Thus,
performingthe 2D cross-correlation for every position along theriver
(Fig. 1) is computationally expensive and difficult to scale to larger
rivers, longer time series, or higher-resolutionimagery. Thus, we make
use of the convolution theorem (that is, the fact that convolution in
the spatial domain is equivalent to multiplication in the Fourier
domain)®. By taking the 2D Fourier transforms of the image chips,
taking the complex conjugate of the second image, multiplying the
result and then calculating the inverse Fourier transform, we can effi-
ciently detect riverbank erosion at sub-pixel length scales not visible
tothe humaneye. See Methods for acomplete description of the algo-
rithm, including data pre-processing routines and sensitivity tests.
A critical component of our methodology is a workflow to make the
displacement estimates robust to georeferencing errorsin the satellite
imagery, since image-to-image co-registration errors can exceed the
signal of riverbank erosion by >10 times.

Three tests of whether permafrost slows river migration

Here we show how our observations of the spatial, sub-seasonal, and
interannual patterns of riverbank erosion on the Koyukuk River (Fig.1)
allindependently demonstrate that permafrost slows the pace of river
migration.

The spatial pattern of bank erosion

As shown previously for low-latitude rivers®, river curvature repre-
sents the dominant control on migration rates (Fig. 1e); tight bends
migrate at rates >5 m yr~, whereas the straight reaches between them
experience erosion rates =10 times lower (Fig. 1c,d). Most previous
analyses have not corrected migration rates for the effects of curva-
ture'®2, Here we quantify the first-order relationship between river
curvature and migration rate (Fig. 1g-k) and then examine the devia-
tions from this trend. Specifically, we take advantage of the fact that
the Koyukuk River flows through discontinuous permafrost'®¢2,
As the river flows against heterogeneous bank material', we can ask
whether thereis a systematic difference in the curvature-normalized
erosionrates for permafrost versus non-permafrost terrain. For exam-
ple, Fig.2a-c shows an example of a sequence of meander bends that
impinge on older, thermokarst terrain to the north and younger, unfro-
zen river deposits to the south. We calculate the river curvature and
the bank migration rate for each meander bend over a 6-year period
(Fig.2d). Theratio of the areaunder the curve for these two variables
(Fig.2) records the average k value for each meander, in which kis the
curvature-normalized migration rate (m yr™). Qualitatively, larger
values of kimply that the riverbank is more susceptible to erosion.
InFig. 2e-g, we search along the entire 450-km reach of the Koyukuk
RivershowninFig.1bandinvestigate whether meanders through high-
permafrost terrains have systematically higher or lower erosion rates.
Meanders traversing terrains classified as non-permafrost (Extended
DataFig.10) migrate 91% faster for agivenriver curvature than those
migrating through permafrost terrains (Fig. 2e).

Note that, when consideredinisolation, the resultsin Fig. 2 present
us with a ‘chicken or the egg’ problem. The fact that non-permafrost
reaches experience channel migration rates about two times faster
than permafrost reaches could imply that permafrost banks slow
the pace of riverbank erosion. However, given the slow rate of per-
mafrost regeneration (about 10° years, as constrained by *C dating
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Fig.2|Spatial observationsshow thatriverbank erosionrates are
systematically slowerin meanders that erode permafrost compared with
those that erode unfrozen terrain. a, RGB satelliteimagery. b, Probability
of near-surface permafrost®. ¢, Simplified terrain classification for aseries
of meander bends on the Koyukuk River (Fig.1). Note how the riverimpinges
onolder, thermokarst terrain to the north and younger, non-permafrost
terrainto the south.d, Spatial series of lag-adjusted normalized curvature
(see equation (26))*** and riverbank erosion rates. The crossovers reflect the
places at which theriver transitions from eroding its right bank to eroding
itsleft bank, or vice versa. The colour of the shaded infill reflects the mean
permafrost probability* calculated for the eroding side of the meander.

along the Koyukuk River®), river reaches that are migrating rapidly
across their floodplain will be eroding into alluvial material that is
younger* and therefore more likely to be unfrozen. Thus, the arrow
of causation could be drawn in the opposite direction, in which
rapid channel migration—owing to non-thermal controls such as
elevated sediment supply?® at the relic Pleistocene aeolian sand
dunes near Huslia (Fig. 1a) or increases in river slope in response to
meander cut-offs**—could cause local riverbanks to have lower per-
mafrost content. To explicitly test whether there is a thermal con-
trol on erosion rates, we turn to the temporal pattern of riverbank
erosion.

The sub-seasonal pattern of bank erosion

Thevariationsinriver temperature and discharge within asingle spring
season on the Koyukuk River (Extended Data Fig. 1) are more than an
order of magnitude larger than thelong-term, decadal trendsin those
variables®. Following ice break-up in May, the water discharge spikes.
During this period of high snowmelt, the water temperature is close
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Foreachmeander, dividing the riverbank erosionrate (4,) by the lag-adjusted
normalized curvature (A,) yields abend-averaged value of k, the curvature-
normalized erosionrate (myr™) (see equation (27)). e, Bends classified as
permafrost®>** (Extended Data Fig.10) have mean kvalues of 4.6 myr™, whereas
bends classified as non-permafrost have mean k values of 8.8 myr™.f,g, The
kvalues systematically decrease with increasing average (f) and maximum (g)
permafrost content® calculated over the meanderbend. Infand g, the

L annotations signify the length of the river reaches that fall within each bin
for average and peak permafrost content. The satelliteimageryinais from
Bing Maps Aerial, reprinted with permission from Microsoft Corporation.

to 0 °C. The water temperature peaks around 17 °Cin mid-July, when the
water discharge is low (Extended Data Fig. 1). Here we follow Douglas
etal.*and consider simple, semi-empirical predictions for the seasonal
patternof riverbank erosion under the competing endmembers that:
(1) erosionis limited by the ability of warm river water to thaw the pore
iceinbank sediments®*?”* or (2) erosion is limited by the ability of the
river to entrain the sediment comprising the river bed and banks'>**%,
In the thaw-limited endmember, the erosion rate is described by the
function®>:

APreRek, T,

Hpb(l'f - CpTi) W

thaw =

in which Pr is the Prandtl number, Re is the Reynolds number, «,,
(Wm™°C?) is the thermal conductivity of water, T, (°C) is the water
temperature, 7;(°C) is the initial temperature of permafrost, L, (J kg™)
is the latent heat of fusion for permafrost, p, (kg m™)is the bulk density
of permafrost and c, (J kg™ °C™) is the heat capacity of permafrost.



Model predictions for the seasonal fingerprint of bank erosion
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Fig.3|Model predictions for—and observations of—the temporal patterns
of riverbank erosion. a-c, The water temperature and discharge time

series for the Koyukuk River (Extended Data Figs.1-3) are combined with
equations (1) and (2) to make predictions for the erosion rate throughout

the annual cycle under the thaw-limited (a), entrainment-limited (b) and
combined (c) regimes.d, The observed annual pattern of erosion rates (based
ondatafrom 2016 to 2022) best matches the predictions from the combined
thaw-limited and entrainment-limited model. The R’ valuesin a-c give the
goodness of fit of the model predictions to the observationsind. Note that

In equation (1), the numerator represents the heat transfer rate from
the river water to the bank and the denominator represents the heat
required to thaw the bank™*%,

In the entrainment-limited endmember, the erosion rate can be
calculated using the common threshold formulation®, adapted to
mixtures of sediment and ice™:

we only study the seasonal pattern of bank displacement on the eroding side
of theriver. The time series from the accreting side of the river should record
seasonal patterns of vegetation colonization and sediment deposition. See
Section 2 of the Supplementary Information. e, Model predictions for and
observations of the interannual pattern of bank erosion. The error bars
represent uncertainty in the model parameters based onleave-one-out
cross-validation (iteratively solving for the optimal model parameters using
4 ofthe5yearsinthe dataset). The observed interannual patternis best
explained by the combined thaw and entrainment model (R*= 0.85).

M [ p,GU*
pbf;ed (1+€)Tcrit

Eene=

(2)

in which ,, (Pa) is the critical shear stress required to entrain sedi-
ment, f,., =1 - fi.. (dimensionless) is the mass fraction of sediment,
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p,, (kg m™)isthe density of water, U(m s™) is the average flow velocity,
Cisthe dimensionlessfriction coefficient, e = 0.2 is asmall coefficient
in the ‘near-threshold’ model™***” and M (kg m2s™) is an empirical
coefficient describing the erodibility of the bank'**%, See Methods for
adiscussion of the assumptions underpinning equations (1) and (2).

The thaw-limited endmember (equation (1)) predicts that erosion
scales like the product of the flow velocity and the water tempera-
ture. Meanwhile, the entrainment-limited endmember (equation (2))
predicts that the erosion rate scales with the flow velocity squared
(see Methods). By applying these two sets of predictions to the water
temperature and discharge time series for the Koyukuk River over
the period 2016-2022 (Extended Data Figs. 1-3), we generate model
predictions for the seasonal pattern of riverbank erosion (Fig. 3a,b).
The joint constraint that the river must be able to both thaw frozen
bank material and entrain the thawed sedimentis represented by the
minimum of the thaw-limited and entrainment-limited rates™ (Fig. 3c).
Next we compile 61 cloud-free daily image mosaics of PlanetScope
satellite imagery over the period 2016-2022. We use our sub-pixel
riverbank change detection algorithm to quantify erosion at every
location along the 450-km river reach shown in Fig. 1b. The observed
sub-seasonal pattern of erosion (Fig. 3d) matches the predictions from
the combined thaw-limited and entrainment-limited model (R*= 0.90)
better than the thaw-only (R*=0.79) or entrainment-only (R*= 0.45)
models.

Interannual variability of bank erosion

The natural year-to-year variability in discharge and temperature means
thatinterannual observations canalso constrain what processes control
erosion. The thaw-limited model predicts that all yearsin our study win-
dowshould haverelatively equal erosion rates (Fig. 3e). Meanwhile, the
entrainment-limited model predicts that 2018 was a year of low erosion
(Fig.3e).Finally, the combined thaw-limited and entrainment-limited
model predicts that both 2018 and 2021 stand out as low-erosion years.
This combined model best matches the observed interannual pattern
of erosion (Fig. 3e; R* = 0.85), validating our interpretation from the
sub-seasonal observations (Fig. 3d) that the migration behaviour of
the Koyukuk River is controlled by the joint constraints of thaw and
entrainment.

Modelling future erosion behaviour

Our calibration and validation of models describing the spatial®**
(Fig.1b) and temporal (Fig. 3) patterns of riverbank erosion enables us to
run numerical simulations to predict how Arctic rivers may respond to
theforecasted increases in water temperature®, discharge seasonality®'®
and permafrost thaw®". In Extended Data Fig. 5, we perform a series
of numerical experimentsinwhich we perturb the water temperature
and discharge. We find that riverbank erosion is relatively insensitive
toincreases in water temperature on the Koyukuk River, as the sys-
tem quickly becomes entrainment-limited (Extended Data Fig.1). For
example, ifthe total discharge (Q,) remains constant, increasesin water
temperature of 10% and 30% only resultinincreasesin bank erosion of
4% and 9%, respectively. However, bank erosion scales approximately
linearly with the total discharge; increasesin Q, 0f 10% and 30% elevate
bank erosion by 12% and 34%, respectively. Finally, under the scenario
of complete permafrost thaw®, increasesin Q,, 0f10% and 30% result
inincreases of average bank erosion of 69% and 109%, respectively
(Extended DataFig. 5).

Implications for a changing Arctic

Riverbank erosion jeopardizes the stability of Arctic infrastructure
and communities'®, especially in Alaska, where 43% of villages are
located <1 km from rivers'. The rate of river migration also sets the
cadence of organic carbon cycling between floodplains, river water,
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the atmosphere and the ocean*'. Because bank erosion can liber-
ate carbon from depths >10 times the depth of annual thaw', river
migration may prove to be one of the most efficient mechanisms for
organic carbon turnover in the Arctic’. In other words, the pace of river
migration may representacritical bottleneck affecting the timescale
over whichthe 1,700 billion metric tons of carbonlocked up in Arctic
permafrost enters Earth’s atmosphere*. Our observations of the spa-
tialand temporal patterns of riverbank erosion demonstrate that, on
the Koyukuk River, the presence of discontinuous permafrost reduces
average migration rates by approximately 49% at present. Finally,
our numerical model (Fig. 3c) provides a tool to use variables such
asthe water temperature, river hydraulics and sediment grain size to
predict how the rates of riverbank erosion and associated sediment
and carbon fluxes will increase as permafrost thaws in the coming
centuries®®®,
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Methods

Model expectations for entrainment-limited and thaw-limited
riverbank erosion

Governing equations. As described in the main text, we present asim-
ple1D modelto try to capture the competing thermal versus physical
controls on Arcticriverbank erosion. For the thaw-limited endmember,
the erosion rate can be expressed by the function??;

APrRePk, (T, - Tp)
Hpb(Lf + Cp(Tf_ Tl))

thaw =

(3)

in which k,, (W m™°C™) is the thermal conductivity of water, T, (°C)
is the river water temperature, 7; (°C) is the freezing point of water
(assumed to be 0 °Cin the main text for simplicity), T; (°C) is the initial
temperature of permafrost, L, (J kg™) is the latent heat of fusion for
permafrost (L;=f..Li., Where f,.. (kgkg™) is the mass fraction of water
ice in permafrost and L, (J kg™) is the latent heat of fusion for water
ice), p, (kg m™) is the bulk density of permafrost and ¢, (J kg™ °C™) is
the heat capacity of permafrost. Pris the Prandtl number:

Pr=v/x (4)

inwhichv(m?s™)isthekinematic viscosity and y (m?s™) is the thermal
diffusivity of the river water. Re is the Reynolds number:

Re=HU/v (5

inwhich H(m) s the flow depthand U (m s™) is the average flow velocity.
Note that we define £, only for T, > 0.

For the entrainment-limited end-member, we use the common
threshold formulation::

n
M (g
Eene= [M - 1] (6)

pbf;ed Terit

inwhich 7., (Pa) is the shear stress on the bank, 7.,;. (Pa) is the critical
shear stress required to entrain bank sediment, f,.; = 1 — fi.. (dimen-
sionless) is the mass fraction of sediment and M (kgm™s™) and n
(dimensionless) are empirical coefficients'**, To solve for E,,,, we use
the following set of assumptions. First, we need amethod to partition
the total fluid shear stress in the channel (7) between the channel bed
and the bank*. To thefirst order, the bed and bank stress partitioning
depends on the relative roughness of the two surfaces and the chan-
nel width-to-depth ratio***. For simplicity, we let the shear stress on
the bank (1,,,,) follow the near-threshold ‘(1+ €)’ model of Parker'>*;

1
Toank = [mjrbed (7)
inwhiche=0.2(refs. 15,36). The shear stress on the bed can berelated

to the flow velocity using a canonical flow-resistance equation®:

Tyea =P, CiU” (8)

inwhich p,, (kg m™)is the density of water. Equation (8) isbased onthe
relationship between the cross-sectionally averaged flow velocity, U,
and the shear velocity, u,, through a dimensionless friction coefficient,
Ce

U=—
ic )
inwhichu, is defined as:

u,=, Tbed/pw

(10)

Combining equation (6) with equations (7) and (8), we arrive at the
expression:

(1

m [ pcU? )
f
Eepne= (W ]

pbf;ed (1+ €)7oy

We define equation (11) only for E,,,, > 0 m yr™. Empirical studies often
use n=1inthe Partheniades® erosion relation (equation (6))™. This
approximation reduces equation (11) to equation (2) of the main text.
Whenn=1,the erosionrate, E,,, is a simple quadratic function of the
flow velocity, U, above some critical threshold velocity, U,, at which
erosion starts to occur:

Eene> (U= Up)? 12)

Meanwhile, setting 8 =1in equation (3) (refs. 14,27) simplifies the
Re term in the numerator to HU/v, such that the predicted erosion
rate from thaw is a function of the product of the flow velocity and
water temperature:

Ethaw o UTW (13)

Thus, although there are many parametersin equations (3) and (11),
these expressions make simple predictions for how £, and £ ,,,, evolve
as afunction of the seasonal discharge and water temperature time
series. The entrainment-limited riverbank erosion should scale with
flow velocity squared (equation (12)), whereas the thaw-limited erosion
should scale with the product of flow velocity and temperature (°C
above freezing) (equation (13)). Moreover, because the water tempera-
ture varies by about 20 °C over the course of aseasonal cycle, whereas
the flow velocity varies by about 2 m s (Extended DataFig. 4), the sea-
sonal pattern of thaw-limited erosion is controlled roughly ten times
more by changesinwater temperature thanby changes in flow velocity.

Note that our simple model assumes that the state of the riverbank
isinlocal equilibrium with the erosion mode (entrainment-limited or
thaw-limited). In other words, our model does not include a ‘history
effect’ that could be importantin some cases for building up athawed
layer®. However, the numerical modelling of ref. 45 suggests that our
local equilibrium assumption is a reasonable one most of the time
becausethe thawed layer thickness rapidly adjusts to changesin either
thaw rate or entrainment rate (for which we define ‘rapid’ compared
with the temporal forcing from the hydrograph or the seasonal tem-
perature pattern)*®,

Finally, note that, to predict the seasonal cycles of E,,,. and Ey,,,,, we
must translate the discharge records (Extended Data Fig. 2) into esti-
mates of flow velocity. The water discharge Q,, (m®s™) is the product
of the cross-sectionally averaged flow velocity (U) and cross-sectional
area(A):

(14)

We calculate flow velocity from the discharge record using asimple
power-law empirical fit of Q,, versus U based on field data from the
Koyukuk River (Extended Data Fig. 4a).

Observational constraints for discharge and water temperature
on the Koyukuk River. Using equations (3) and (11) to make model
predictions for the seasonal pattern of riverbank erosion requires
continuous time series of water temperature and discharge on the
Koyukuk River. The United States Geological Survey (USGS) main-
tains a streamflow station on the Koyukuk River at Hughes, Alaska
(66.04696° N, 154.26097° W), but this station was inactive from 1982
to 2021 (Extended Data Fig. 2), which covers nearly our entire obser-
vational window from 2016 to 2022. However, several USGS gauge



stations on the nearby Yukon and Tananarivers remained active from
2016 t0 2022. An investigation of historical periods of overlap bet-
ween the Hughes station and stations on the Yukon and Tananarivers
(Extended Data Fig. 2) suggests that the discharge records at these
nearby stations can be related using simple convolutional/deconvolu-
tionalfilters. Specifically, we consider the case of the USGS streamflow
stations at Hughes (Koyukuk River), Stevens Village (Yukon River) and
Pilot Station (Yukon River) (Extended Data Fig. 2k). The Koyukuk River
joinsthe Yukon River about halfway between Stevens Village and Pilot
Station, at which it contributes roughly 10-20% of the Yukon'’s total
discharge. Thus, the difference in discharge measured at Pilot Station
versus Stevens Village should encode information about the discharge
contribution from the Koyukuk River, modulated by convolutional
smoothing and other changes to the Yukon hydrograph that occur
from upstream to downstream.

Using autoencoders to fill gaps in observational discharge records.
We design a flexible model that can learn the relationships between
the hydrographs at Hughes, Pilot Station and Stevens Village using
historical data (Extended Data Fig. 2k). Specifically, we train a simple
neural network for which theinputisa2 x 365 array containing the daily
discharge time series at Pilot Station and Stevens Village (normalized
for numerical stability such that the minimum discharge is 0 and the
maximum discharge is 1) and the output is a1 x 365 array containing
the predicted daily discharge time series at Hughes (Extended Data
Fig.2l). Our neural network architecture consists of asimple2 x 332D
convolutional kernel, a batch normalization layer, a fully connected
layer and a regression layer. The neural network was implemented in
MATLAB R2022a.

Extended Data Fig. 3a—e shows the data used to train the model
(Syearsin the historical record when the USGS stations at Hughes,
Pilot Station and Stevens Village all had uninterrupted discharge data).
In the training dataset, the model is validated using leave-one-out
cross-validation. For example, in Extended Data Fig. 3a, the model is
trained using the historical data from 1978 to 1981 and then used to
predict the Hughes discharge time series from1977. The R*value gives
the variance reduction of the neural network model compared with
the observed discharge time series. The mean R? from all years in the
historical (training) dataset is 0.82. Extended Data Fig. 3f—j shows the
predictions for the discharge on the Koyukuk River during the years
2017-2021, when the Pilot Station and Stevens Village stations were
active, but the Hughes station was not.

Predictions for the sub-seasonal and interannual pattern of river-
bank erosion. Extended Data Fig. 4 combines the neural-network-
predicted discharge time series for the Koyukuk River (Extended Data
Fig.3) with the Pilot Station temperature data (Extended DataFig. 1b)
to estimate the annual patterns of erosion under the thaw-limited,
entrainment-limited and combinedscenarios.InExtended DataFig.4i-k,
we optimize the free parameters in equations (3)-(6) such that the
predicted annual erosion (2017-2021) best matches the observa-
tions from the Koyukuk River (Extended Data Fig. 4). Extended Data
Table 1 shows the values of the parameters obtained from our non-
linear optimization, along with the values of the fixed parameters used
for equations (3)-(6) (ref. 14).

Evaluating model goodness of fit. Note in Extended Data Fig. 4 that
we compare models with different numbers of tunable parameters:
one parameter for the thaw-only model, two for the entrainment-only
model and three for the combined thaw and entrainment model. Thus,
theincreaseintheraw R*values shownin Extended Data Fig. 4i-k could
reflect the added degrees of freedomin the models rather thananimp-
rovement in the description of the underlying process. In an attempt
toaccount for the changing model complexity in our evaluation of the
model goodness of fit, we compute the adjusted R? value, defined as:

_(1-R)(n-1

n-p-1 (15)

REi=1
inwhich nis the number of data points on which the variance reduc-
tion (R?) is evaluated and p is the number of independent variables
(parameters). The p in the denominator of equation (15) acts to pena-
lize models with more tunable parameters (that is, give them a lower
Rz;value). Extended Data Fig. 4i-k shows that the R ; values for the
thaw-only, entrainment-only and combined thaw and entrainment
models are 0.25, 0.14 and 0.40, respectively. In other words, the Razdj
metricsupports the conclusion that the combined thaw and entrain-
ment model best explains the interannual data.

Detecting bank erosion from sub-pixel image correlation
Background. Our workflow for detecting sub-pixel displacements
is inspired by the methodology of Leprince et al.>**¢ but is adapted
to handle both the challenges and the opportunities presented by
the fact that riverbanks are predominantly linear features rather
than ‘corner’ features. As anillustration of our approach, consider an
example high-resolution image of a riverbank on the Koyukuk River
(Extended Data Fig. 6). As a simple experiment, we shift the image by
2 pixelsinthex direction and 1 pixel in the y direction. We then down-
sample theimage by afactor of 10, so the Axand Ay offsets are 0.2 and
0.1 pixels, respectively. The question is whether we can detect these
sub-pixel offsets from the downsampled image. One approach would
be tocompute the 2D cross-correlation betweenimage 1and image 2.
The peak of the resulting cross-correlation spectrum (which can be
interpolated to sub-pixel positions) records the bank displacement.
Whenthebank geometry isrelatively linear (asis typically the case for
images thatare smaller than the length scale of the channel width—see
thesection ‘Selecting the window size (n)’), the cross-correlation spec-
trumdoes not have awell-resolved single peak but rather aridge of high
correlation values (Extended Data Fig. 6). However, the only probable
image offsets are the ones in which the riverbank accreted (migrated
towards the channel centreline) or eroded (migrated away from the
channel centreline). Thus, agood approximation for riverbank change
detection is that the offset vector is perpendicular to the bank. Sam-
pling theimage cross-correlation matrix alonga vector perpendicular
to the riverbank yields a peaked function whose maximum records
the bank offset. Note in Extended Data Fig. 6 that we can successfully
recover theimage displacements that are more than 5-10 times smaller
thanthe pixel size.

The computational cost of 2D cross-correlation is O(n*), in which n
isthewidth of theimage chip. Thus, performing the 2D cross-correlation
for every bank position along the river of interest (Fig. 1) is computa-
tionally expensive and difficult to scale to larger rivers, longer time
series or higher-resolutionimagery. Thus, we make use of the convolu-
tion theorem (that is, the fact that convolution in the spatial domain
is equivalent to multiplication in the Fourier domain)*¢. Convolution
between twoimagesisequivalentto correlationiftheintensity values
of one of the images are rotated 180°. Thus, the 2D cross-correlation
between two images, I, and L, is:

Qw,, wy) = FIi(x, ) © Fl,(x, )" (16)
inwhich Q(w,, w,) is the cross-correlation spectrum, F represents the
(2D) Fourier transform, © represents element-wise multiplication and
*denotes the complex conjugate®*. In practice, weighting the complex-
valued spectrum S,(w,, w,) = F(I;(x, y)) by a tapered filter suchas a
raised cosine filter®, V, helps to reduce the influence of the image
bordersand suppress high-frequency components of the spectrum?,

To measure the migration of a riverbank between two images, we
generate two image ‘chips’ (small n x n-pixel windows, centred at the
bank margin for the region ofinterest). These twoimage chips have the
same geographic coordinates. We then take the Fourier transform of
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each chip, weight each spectrum using a raised cosine filter (V), take
the complex conjugate of the weighted spectrum for the searchimage
(image 2) and multiply the resulting signals in the frequency domain:
Qw,, w)) = (V10 F(L(x,3)) © (V,0 Aly(x, )" 17)
Note that some care must be taken in choosing the window size (n)
of the image chips, which we discuss below. The results of the Fourier
methods shown in Extended Data Fig. 6 are numerically equivalent
to those produced by the computation of the 2D cross-correlationin
the spatial domain. However, the Fourier methods are much faster.
Qualitatively, there are two insights from our algorithm. The first is
thatthe common methodology of thresholding to produce binaryriver
masks'®?%?° removes most of the information encoded in the image;
retaining theimage spectralinformation as continuous values enables
the measurement of small bank displacements because we can use
spectral unmixingto estimate the relative proportions of the different
ground cover types (for example, river versus floodplain) that com-
prise anindividual pixel. The second insight is that feedbacks between
erosion and river flow*®* mean that bank erosion rates should have a
high degree of spatial autocorrelation (Fig.1). In other words, the bank
erosion rate at one location should be similar to the erosion rate at
some distance d away, as long as dis smaller than the channel width W
(refs. 39,48,49). As aresult, averaging observations across neighbouring
pixels canimprove the signal-to-noise ratio and yield more robust bank
displacement estimates. Our Fourier methods do this spatial averag-
ingimplicitly, asthe whole length of the river marginin the n x n-pixel
image chipisusedto calculate the bank migration. Intuitively, because
the Fourier methods convert from the spatial domain to the frequency
domain, our detection limit for bank migration becomes limited by the
frequency content of the transformed images, which depends on the
width n of theimage chip®*¢.

Selecting the window size (n). The choice of nreflects a balance
between the spatial resolution (that s, localizing a bank change esti-
mate to a small segment of the riverbank) and the spectral ampli-
tude, which translates to the precision of the (A,, A)) bank offset
estimate). There are several considerations in the choice of n.
On one hand, n should be small enough that bank offsets, (A,, A4)),
are uniform across the window. If the image chip is so large that it
includes a meander bend for example, the magnitude and direction
of bank change will vary across the image chip and the displacement
estimate using equation (17) will be a poor representation of local
estimates of bank migration. On the other hand, n must be large
enough that signal (image texture representing real differences in
ground reflectance), rather than noise, is matched between image
pairs. Having larger n also allows for greater spectral amplitude and
therefore higher precision in the displacement estimate. In prac-
tice, Leprince et al.* find that n = 32 pixels reflects a good balance
between obtaining high-spatial-resolution offset estimates (a con-
sideration that favours low n) and having both sufficient signal in
the image chips and sufficient spectral resolution to make accurate
and precise phase offset measurements (a consideration that favours
high n). The value of n also controls the minimum channel size for
which we can obtain robust single-bank erosion estimates. For
example, a chip of n =32 pixels, centred on the bank margin, typically
will not capture the opposing riverbank or other side of a meander
bend for channels greater than about 16 pixels in width (Extended
Data Fig. 6). For images with 3.0-m spatial resolution (images from
the PlanetScope constellation), this 16-pixel constraint corresponds
to channels that are 48 m wide.

Remote-sensing datasets. For observing the spatial pattern of
bank erosion (Extended Data Fig. 9), we use a pair of Sentinel-2 ima-
ges (10-m spatial resolution), spaced 6 years apart (30 August 2016

and 13 July 2022) (Extended Data Fig. 6). For reconstructing the sub-
seasonal pattern of bank erosion, we require higher spatial resolution,
so we use PlanetScope satellite imagery (3.0-m spatial resolution,
16-bitradiometricresolution) from Planet Labs (https://www.planet.
com/). We compile 61 daily image mosaics acquired over the period
2016-2022, for an average of about ten cloud-free image observations
for each season (the period from May until late October, when the
riveris unfrozen). See Supplementary Table1for alist of PlanetScope
observation dates.

Image pre-processing. A notable challenge in the detection of river-
bank erosion on seasonal timescales is ensuring that changes in river
stage (water level) are not misinterpreted as bank migration. Extended
DataFig. 6 shows an example of how falling river level over the course
of'the 2022 summer season affects the appearance of the riverbankin
true-colour (RGB) imagery. If these unprocessed true-colour compos-
ites were used as the input to the sub-pixel offset mapping algorithm
(seeabove), we would inadvertently track the changing water line rather
thanthe eroding riverbank. Therefore, as afirst pre-processing step, we
transform theimages shown in Extended Data Fig. 6 using the normal-
ized difference vegetation index (NDVI) band ratio:

NIR-R

NDVI=(IR+R

(18)

in which NIR and R represent the intensity values associated with the
near-infrared and red bands of light, respectively. The NDVl is princi-
pally sensitive to the presence of vegetation, rather than the presence
of water. Notice in Extended Data Fig. 6 that exposed sand bars and
water have relatively similar NDVI values. Thus, the primary intensity
gradients in the NDVIimages are between the vegetated riverbank
and the channel (which, depending on the river stage, can consist of
sand or water).

The NDVIvalues of the river and surrounding vegetated banks vary
fromimage to image as a function of the water turbidity, the seasonal
changes in vegetation (for example, the greening ‘leaf-out’ period
in the spring and autumnal senescence in the fall) and atmospheric
conditions that affect the relative intensities of light measured in
the near-infrared versus red wavelengths of light. However, regard-
less of these seasonal changes and atmospheric correction effects,
it is always true that the strongest gradient in the NDVI images is
between the vegetated riverbank and the active channel (Extended
DataFig. 6). Therefore, as asecond pre-processing step, we fitasimple
two-component Gaussian mixture model to the distribution of NDVI
values in each image to differentiate the vegetated floodplain from
the unvegetated channel. Finally, we compute the image gradient
of the fuzzy-classified map generated from the Gaussian mixture
model to highlight the location of the riverbank. These image gradi-
ent maps are the input to the sub-pixel image-correlation algorithm
described above.

Channel identification. We developed an automated pipeline for
channel extraction and the identification of riverbanks from satellite
imagery. The pipeline uses acombination of thresholding, morphologi-
cal opening operations and skeletonization. Itisimplemented in MAT-
LAB (see ‘Code availability’). Briefly, the NDVI is calculated following
equation (18) and thentheimageis thresholded to the 10th percentile of
the NDVI. The resultisabinary mask that separates unvegetated pixels
(principally rivers and lakes) from the other pixels. Next, we perform
amorphological opening operation (with a disk-structuring element
of'size 5 pixels = 50 m) to eliminate the small channels from the binary
water mask. We then identify the river from the other water features
(forexample, lakes) in the water mask using a connected-component
analysis. Finally, we identify the river centreline by skeletonizing the
river mask.
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Calculating river curvature. We follow ref. 24 and compute channel
curvature (whichis the inverse of the radius of curvature, R) as:
l _ xl-y” _y/xll

2. 2002 (19)
R (x2+y2)

in which x” and x” represent the first-order and second-order deriva-
tives of x, respectively. Inequation (19), we use the xand y coordinates
of the channel centreline, extracted at 10-m intervals and smoothed
witha Savitzky-Golay finiteimpulse response smoothing filter***° with
polynomial order 3 and frame length of 33. The frame length is chosen
on the basis of the chip width, n =32, plus 1to ensure that the frame
lengthis an odd integer*®. Note that the curvature (equation (19)) has
units of m™. We multiply the curvature in equation (19) by the channel
width to obtain the local ‘normalized curvature’ (see equation (25)),
which is dimensionless.

Extracting robust erosion rates from noisy time series

We perform the sub-pixel riverbank offset detection algorithm
described in Extended Data Fig. 6 between every successive pair of
images in the PlanetScope time series. The result is a 61-element 1D
time series of inferred bank displacements for each eroding bank loca-
tion along the Koyukuk River. Note that, although our algorithm can
detect riverbank displacements on the order of one-tenth the pixel
size (0.3 m), the reported uncertainty in the georeferencing of the
PlanetScope images is <10 m root mean square error (typically <Sm
root mean square error) (https://www.planet.com/). Therefore, if
uncorrected, image-to-image co-registration errors can overwhelm
the signal of riverbank erosion.

To obtain more robust erosion rates from the PlanetScope time
series, we make use of the fact that the Fourier methods (Extended
DataFig. 6) are socomputationally efficient that it is tractable to meas-
ure the bank displacements not just between successive images, but
between every image to every otherimage. Thus, instead of 61 pairwise
comparisons (in which the firstimage is compared with itself), we per-
form 61 x 61 = 3,721 pairwise comparisons. Although this decision
makes the computational cost of performing the time-series analysis
scale like O(m?) rather than O(m), in which mis the number of images,
the advantage of this approachis thatitallows us to performtwo types
of filtering—stacking and bracketing—that help us see through the
noise of image-to-image co-registration errors and extract robust ero-
sionrecords.

The pairwise bank displacements computed from each image to
every otherimage canbe visualized in matrices such as thatin Extended
Data Fig. 7. In the matrix £(x, y) shown in Extended Data Fig. 7, each
row () represents a different template image and each column (x)
represents a different search image. Along the diagonals, images are
compared with themselves, so the estimated offsets are 0. The triangles
on either side of the matrix diagonal are mirror images of each other
(related through a negative sign):

E(x,y)=-E(y,x) (20)

Forexample, position (1, 40) comparesimage 1as thereference image
to image 40 as the search image, whereas position (40, 1) compares
image 40 as the reference image to image 1 as the search image. In
principle, the approximate equality in equation (20) should be exact.
However, because we follow ref. 31 and use different taper functions
for the template and search images (V, and V, in equation (17)), E(x, y)
and -E(y, x) can differ slightly from each other. When E(x, y) and -£(y, x)
diverge substantially, the bank offset measurementis not robust and we
reject the measurement. Thus, computing E(x, y) and —E(y, x) separately
isaway todetect and remove outliers.

Asasimpleexperiment toillustrate how we handle the datain £(x, ),
we create a synthetic time series of riverbank erosion based on the

discharge climatology for the Koyukuk River (Extended Data Fig. 1a)
andthe modelfor entrainment-limited erosion (equation (6)). Extended
Data Fig. 7c shows the instantaneous erosion rate and Extended Data
Fig. 7d shows the cumulative bank displacement from 2016 to 2022.
We thensample the cumulative displacement curve at the times of our
PlanetScope image acquisitions. The matrix in Extended Data Fig. 7e
shows the bank offsets extracted from this synthetic, noise-free dataset.
Theblocky appearance of the displacement matrix is the result of the
limited temporal resolution of our image time series. Note that the
bank offsets in Extended Data Fig. 7e change monotonically with time.
Our real (noisy) data have non-monotonic jumps, which are largely the
result of co-registration errors (Extended Data Fig. 7f). Our goal is to
find the most probable monotonic erosion record that underlies (gives
rise to) our noisy observations. We achieve this through: (1) stacking;
(2) bracketing; and (3) Markov chain Monte Carlo (MCMC) simulations.

Stacking. Each row of the matrix E(x, y) represents the time series
of bank displacements constructed by comparing each image in the
PlanetScope dataset (see Supplementary Table1) (the ‘search’image)
to the same ‘template’ image. For example, the first row of Extended
DataFig.7e compares every image to theimage acquired on 31 August
2016. The second row compares every image to theimage acquired on
4 September 2016 and so on. Thus, averaging the relative displacement
sequences encoded by each row of E(x, y) (which we refer to here as
stacking) helps toreduce noise associated with co-registration errors
inthe template image.

Bracketing. Note that co-registration errors in the search image are
notreduced by the stacking procedure above, as each column of E(x, y)
has the same search image (so every row being stacked has the same
co-registration error in the x position of £(x, y)). To make the recon-
structed displacement time series more robust to errorsin the search
image co-registration, we compute the cumulative displacements
through each row of E(x, y) while skipping every other column, every
two columns, every three columns, every four columns and so on.
Thus, the estimated cumulative displacement at any timetin the time
series is bracketed by displacement estimates that were made from
theimages surrounding theimage acquired at time ¢ but not from that
image at time ¢itself.

MCMC sampling to identify monotonic paths through the bank-
position time series. Finally, we impose the constraint that the cumu-
lative displacement record should be a monotonic function of time.
The assumption here is that—in most cases—ariverbank should not
transition from eroding to accreting over the course of our 6-year obser-
vational window. Thus, non-monotonic back-stepping of the bank
position is most probably the result of unmitigated co-registration
errors (Extended DataFig. 7h). We seek the most probable monotonic
paththrough the cumulative displacement time series (Extended Data
Fig.7h). This problemis similar to the task of constructing a geological
age model for asequence of stratigraphic layers®*. Steno’s principle
of superposition states that each successive stratigraphiclayer should
be younger than the one before it. This geological constraint helps
us reduce the uncertainties of depositional ages of horizons dated
using radioisotopic measurements™. In the example of constructing
ageological age model, we can perform arandom walk through the
sequence of radioisotopic ages (which are a function of heightin a
stratigraphic column) with the constraint that the age can either get
younger or stay the same—but not get older—as we move our way up
the stratigraphic column®*. We perform the same type of procedure
using our cumulative displacement time series (Extended Data Fig. 7i).

Identification and removal of seasonal biases using measured dis-
placements at slowly eroding banks. As shown in Extended Data
Fig. 6,acritical stepin our workflow is the transformation of the original
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multispectralimage (RGB-NIR) to a greyscale image that accentuates
theimage gradient at the channel-floodplain boundary. This spectral
transformation should mute the variationinimage intensity resulting
from changes in water turbidity, river stage, soil water content and so
onover the course of the season, such that the position of the channel-
bankboundaryis always the strongest feature (contrast) intheimage.
We find that the NDVI (equation (18)) is a simple band transformation
thataccomplishes this goal (Extended DataFig. 6). However, to ensure
that changesinwater level or vegetation greenness and so ondo notbias
theresults of our seasonal reconstructions of erosion rates (Extended
DataFig.7), we compute the bank offset matrix for all relatively ‘static’
banklocations along the 450-km reach of the Koyukuk River (Extended
DataFig.9), defined asthose banks that have eroded or accreted <1 m
over the 6-year time series. Displacements from co-registration errors
(the {Ax, Ay} shifts fromimage toimage) largely cancel out by stacking
the displacement observations from many banks (see Supplementary
Fig.1). However, inferred displacements caused by water-level drops
for example will not disappear during stacking, because a water-level
dropwould be measured as bank accretion no matter what orientation
theriverbankisin (Supplementary Fig.1). Therefore, seasonal patterns
of erosion/accretion in our stacked dataset from all slowly eroding/
accreting banks probably reflect seasonal biases in our detection of
the channel-floodplain boundary and are therefore removed from
our displacement matrix:

Eeorl, ) = Eorig(x'y) = Egow(x,Y) (21

in which E_,(x, y) is the corrected pairwise displacement matrix,
E,ig(x, y) is the original (uncorrected) pairwise displacement matrix
and £, (x, y) is the stacked pairwise displacement matrix for all slowly
eroding/accreting banks (<1 m of change detected over our 6-year
observational window).

Capturing the spatial pattern of riverbank erosion
Phenomenological models for river meandering and the ‘upstream
adjusted curvature’. It haslong been observed from field* 8, labora-
tory*® and remote-sensing?®° observations that the rate of riverbank
erosion is not constant along a meandering river but instead focused
at the river bends®”. This spatial focusing of river migration rate is the
result of stress gradients developed between theinner and outer edges
of ameander bend, which drive differential erosion and deposition of
sediment****58¢162 The first field observations suggested that there
was anon-monotonicrelationship betweenriver curvature and migra-
tion rate”; migration rates peaked when the radius of curvature is two
to three times the channel width¥. This relationship was reproduced
in subsequent studies®**¢. However, as pointed out by Furbish*° and
others, comparing bank erosion rates to the local river curvature
(Extended Data Fig. 9) neglects the cumulative aspect of how river
curvature affects near-bank shear stresses*. River curvature must be
sustained for some distance in order for the high-velocity filament
of flow in the river channel to be displaced towards the outer bend,
increasing the local velocity gradient and thus the shear stress on the
outer bank***** Thus, two river bends with the same radius of curva-
ture can have different migration rates*. Likewise, the bank erosion
rateatthe entranceto abend shouldbeless than the migrationrate at
the downstreamside of the bend* (Fig. 1f). This cumulative behaviour
of river curvature is captured empirically/phenomenologically by
convolutional models such as the model of Howard and Knutson®.
The bank migration rate, M(s), is modelled as:

M =oms +(r [ ms-ao@ac [ aoa) @

inwhichsisthe along-river coordinate system (longitudinal distance),
(is the distance upstream from the point of interest and G({) is a

weighting function that decays exponentially upstream from the point
of interest:

G(=e (23)

The atermin equation (23) controls the rate of decay of the influence

of the upstream curvature and it can be parameterized as a function

of the friction factor, C; (dimensionless), and the water depth, H (m)
(refs. 24,39):

a=2Ci/H (24)

The term M,(s) represents what Howard and Knutson® refer to as
the ‘nominal’ migration rate, that is, the rate that would be observed
ifmigration were only a function of local curvature. The simplest func-
tional dependence for M,(s) is*:

w
Mys) = k(ﬂ

in which k (m yr™) is a migration rate constant, W (m) is the channel
widthand R (m) is the local radius of curvature. We refer to the dimen-
sionless ratio W/R as the ‘local normalized curvature’. In equation (22),
Qand I are constants (-1and 2.5, respectively)®.

The intuition underlying the Howard and Knutson® model (equa-
tion (22)) is the same as that shown in the cartoon in Fig. 1f; the river
migration rate depends not only on the local curvature but also on
the river curvature upstream of the point of interest. However, the
influence of the neighbouring curvature declines as we move farther
from the point of interest. This intuition is confirmed by theoretical
models in which bank erosion is considered to be a linear function of
the near-bank excess velocity, which can be approximated using the
shallow water equations®.

Accounting for the cumulative effects of curvature rather than
just the local curvature makes the sigmoidal relationships shown in
Extended Data Fig. 9c-f reduce to a simple first-order (quasi-linear)
relationship**° between the bank erosionrate, E(m yr™), and what we
refer to as the ‘lag-adjusted dimensionless curvature?*° (Extended
Data Fig. 9h-I). The lag-adjusted dimensionless curvature (C) is
defined using the convolutional formulation of Howard and Knutson®
(equations (22)-(25)):

e} (Jo- oo o]

Equation (26) simply modifies the local normalized curvature (W/R)
by the weighting function G({) that decays exponentially upstream from
the point ofinterest. On the basis of equation (22), the bank migration
rate, M, is asimple linear function of the lag-adjusted dimensionless
curvature (C):

(25)

(26)

M=kC (27)
in which k (m yr™) is the same migration rate constant as in equa-
tion (25).In Figs.1and 2, we compute the lag-adjusted dimensionless
curvature (C) (equation (26)) using measurements of river width and
river curvature. We then compare Cwith the observed migrationrates
to quantify k. The quantity k conveys how fast river migration proceeds
foragivenamountof'river curvature. This parameter thereby removes
the first-order control of river geometry (curvature) in setting local
river migration rates* (Figs. 1and 2) and highlights the role of bank
material properties.

Field evaluation of near-surface permafrost map. To evaluate the
accuracy of the Pastick et al.*? Alaska-wide permafrost map for our study



area along the Koyukuk River (Fig. 2), we used a permafrost probe to
collect n=176 permafrost presence/absence and active layer thickness
observations during field expeditions to the Koyukuk River inJuly 2018
(n=137),June 2022 (n=2) and October 2022 (n = 37)% (Extended Data
Fig.8). Our ground-truth observations suggest that applying asimple
classification threshold value of 40% to the Pastick et al.>* permafrost
probability map can identify permafrost presence/absence with an
average accuracy of 69% (Extended DataFig. 10).

Data availability

The Sentinel-2 satellite images used to extract the 2016-2022 migration
ratesshowninFig.1arefreely available fromthe EuropeanSpace Agency
on data portals such as the Copernicus Open Access Hub (https://
scihub.copernicus.eu/). The PlanetScopeimages used for the seasonal
time-series analysis (Fig. 3) are available from Planet Labs (https://
www.planet.com). The stream gauge data in Extended Data Fig. 2 are
available fromthe United States Geological Survey (https://waterdata.
usgs.gov/nwis). The permafrost map used in Fig.2 and Extended Data
Fig.10 is fromref. 32 and is made available by the United States Geo-
logical Survey (https://www.sciencebase.gov/catalog/item/5602ab5a
e4b03bc34f5448b4). Our spatial measurements of riverbank erosion
fromthe Sentinel-2 and PlanetScope time-series analysis (Figs.1-3) are
packaged on the NSF Arctic Data Center®®: https://doi.org/10.18739/
A2HM52M6Q. Our field observations of permafrost presence/absence
(Extended DataFig.10) from summer 2018 and fall2022 are published
on the ESS-DIVE repository® (https://doi.org/10.15485/2204419).

Code availability

Our methodology for measuring sub-pixel bank erosion, as well as
our workflow for channel extraction and the measurement of channel
morphometrics (width, radius of curvature, longitudinal distance and
soon) (Fig.1), is available on the NSF Arctic Data Center®®: https://doi.
org/10.18739/A2HM52M6Q. The code is written in MATLAB.
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Observations of annual discharge & water temperature
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Extended DataFig.1|Discharge and water temperature seasonality on
the Koyukuk River (Alaska) and theoretical predictions for the timing of
riverbank erosion. a, Discharge climatology for the Koyukuk River at Hughes
(66.04696°N,154.26097° W) based on data from the USGS streamflow station
during the period1962-1981 (Extended DataFig. 7a). Note that 1ft*/sis equal
toapproximately 0.028 m%/s. Discharge peaks during the spring freshetin late
May to earlyJune.Some years have asecond discharge peak associated with
August rains (Extended Data Figs. 3 and 7a). The Koyukuk River maintains very
low discharge from late October to mid-May, when the surface of theriveris
frozen.b, Average water temperature time series from the USGS gauge at Pilot
Stationonthe Yukon River (61.93369° N, 162.88293° W). The USGS gauge at
Hughes does notrecord water temperature, whichis why we rely on the Pilot
Station temperature record. However, comparison of water temperatures
measured by HOBO loggers deployed on the Koyukuk River near Huslia during
thesummers of2022 and 2023 show that the water temperature at Pilot
Stationisagood proxy for the water temperature on the Koyukuk River. Water
temperatures approach O °Cduringtheriver-ice ‘break-up’and ‘freeze-up’
periods, and peakin mid-July, atatime when the water discharge approaches
itssummertime low (a). c-e, Theoretical predictions for the sub-seasonal
patterns of riverbank erosionunder the endmember scenarios that erosion

is controlled by: ice gouging during break-up®®7?(c), the thawing of pore-ice
infrozenbank sediments'*?**73(d) and the ability for flowing river water to
entrain bank sediment*¢8 (e). The time seriesin cisanillustrative cartoon.
Thebreak-up periodin May is probably the time of greatest erosive action from
ice?, although the freeze-up period in October can proceedinfitsandstarts,
during which thinice lenses flow downstream and could erode thawed
riverbanks. The uncertainty envelopesind and e propagate the discharge

and water temperature variability inaand b using Monte Carlo simulations.
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Can we infer the missing Koyukuk discharge using observations from the Yukon before and after the confluence with the Koyukuk?
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Extended DataFig. 2 |Illustration and justification for our method of
estimating discharge on the Koyukuk River (which is missing gauge data
during our study period from 2016 to 2022) based on the discharge time
series fromnearbyrivers.a-e, Discharge records from USGS stream gauges
atHughes (66.04696° N,154.26097° W) (a-e), Pilot Station (61.93369°N,
162.88293° W) (a), Nenana (64.56494° N, 149.09400° W) (b), Stevens Village
(65.87510° N, 149.72035° W) (c), Eagle (64.78917° N, 141.20009° W) (d), and
Fairbanks (64.79234° N, 147.84131° W) (e). Note that 1 ft*/s is equal to
approximately 0.028 m®/s. The discharge data for the Koyukuk River at
Hughes areshowninbrown and the discharge datafromall other stations are
showningreen.f-j, Azoom-in of the period 1977-1982, when all six stations
wererecording discharge data. Note the similarity in the hydrographs between
the stations. We ask: can we use the historical period of overlap (f-j) totraina
model that infers the discharge on the Koyukuk River given the hydrographs

recorded at nearby stations? k, Consider the specific case of the streamflow
recorded at Hughes, Pilot Station and Stevens Village. The Koyukuk River
carries roughly 20% of the streamflow observed on the Yukon River at Stevens
Village (c,h). Thus, the difference in discharge observed at Stevens Village
versus Pilot Station (thatis, before and after the confluence with the Koyukuk
River, respectively) should encode information about the discharge from the
Koyukuk River, modulated by a characteristic convolutional smoothing of the
hydrograph from upstream to downstream.l, We use asimple neural network
toinfer the hydrograph from the Koyukuk River (whichis not directly observed
during our study period from2016-2022) based on the hydrographs of the
Yukon River at Stevens Village and Pilot Station (which have continuous
observational records from 2016 to 2022). We train the neural network using
the period of overlap when all three stations were collecting data from 1977
to1982 (Extended DataFig. 3).
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Training the neural network using historical data
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Extended DataFig.3|Training and implementation of our neuralnetwork leave-one-outcross-validation. The neural network predicts the historical

used toinfer the ‘missing’ discharge time series on the Koyukuk River discharge time series withamean R?of 0.82. f-j, Implementation of the neural
based onthedischargerecords at Stevens Village and Pilot Station on the network for estimating the Koyukuk River discharge records during the
Yukon River (before and after the confluence with the Koyukuk River)— period 2017-2021. These datasets are used to make model predictions for the

see Extended DataFig.2.a-e, The neural networkis trained using periodsof ~ seasonaland interannual patterns of riverbank erosion under the thaw-limited,
overlap inthe historical record when all three USGS streamflow stations were entrainment-limited and combined scenarios (Extended DataFig. 4).
active.Ina-e, the R*valuesrepresent the model performance evaluated using



Power-law fits relating discharge to flow depth and velocity at Hughes, AK
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Extended DataFig. 4| Time series for quantifying annual erosionrates.
a,b, Power-law regressions relating the water discharge, Q,, to the average
flow depth (H) (a) and average flow velocity (U) (b) for the USGS station at
Hughes. Each data pointrepresents a field measurement from the USGS
(mostly from the period 1962-1981). ¢, In situ water temperature observations
from Pilot Station on the Yukon River. d, Water discharge time series for the
Koyukuk River estimated from the neural network in Extended Data Fig. 3.
e.f, Timeseries of average flow depth (H) and average flow velocity (U)
constructed from the discharge datasetind and the power-law fitsinaandb.
g, Predicted patterns of thaw-limited and entrainment-limited erosion based
onequations (3)-(6) and the Hand Utime seriesin e and f. h, The minimum of
the thaw-limited and entrainment-limited erosion curvesing.Ingand h, the
yaxis gives theinstantaneous erosionrate (that s, the total annual erosion
thatwould occur if that rate were sustained for a full 365-day period). i-k, The

integrated areas under the erosion rate curves (g and h) for thaw-limited (i),
entrainment-limited (j) and combined (k) erosion scenarios.l, The observed
erosionrates for2017-2021. Note that the model parametersin equations (3)-(6)
are optimized separately for each scenario (i-k) to have the interannual
erosion fingerprintbest match the observations (I) (see Extended Data Fig. 1).
Even after optimization, the thaw-limited and entrainment-limited endmembers
canonly replicate theinterannual pattern of erosion with R?of 0.44 and 0.57,
respectively. The combined thaw and entrainment scenario reproduces the
interannual patternwith R*=0.85. To account for the fact that the thaw-only,
entrainment-only and combined thaw and entrainment models have different
numbersofindependent parameters (1,2 and 3, respectively), we also compute
theadjusted R? value (see equation (15)). The R % metricincludes a penalty for
models with more parameters, yet it still supports the conclusion that the
combined thaw and entrainment model best explains the data.
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Extended DataFig. 5|Simulations for how thereach-averaged riverbank
erosionrates for the Koyukuk River may respond to changesin the total
water discharge, the discharge seasonality, the water temperature, and
the permafrost abundancein theriverbanks. We use the combined thaw-
limited and entrainment-limited erosion model (Fig. 3), calibrated using our
observations for the seasonal and interannual patterns of bank erosion, to
explore changesinerosionratesinresponse to perturbations in total water
discharge (Q,), discharge seasonality, and water temperature (7,). Note that
our perturbations to the discharge seasonality involve reallocating 0-30% of
the water discharge from the first 30 days of ice-free conditions (mid-May to

mid-June on the Koyukuk River) to the mid-summer (in this case, to the month
of August). This experiment simulates reduced springtime discharge as aresult
ofasmaller snowpack, compensated by increasing summertime rain®. Because
we lack robust constraints on whether or how the ‘flashiness’ of the Koyukuk
River hydrograph will change, wereallocate the seasonal discharge through
simplelinear scalings of the historical discharge records (Extended Data Fig. 2).
Thenumbersinboldindicate thereach-averaged bank erosionratesin metres
peryear and the numbersin parenthesesindicate the percent change relative
tothe modern (2016-2022) erosion rates.



Workflow for sub-pixel detection of riverbank erosion
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Extended DataFig. 6| Methodology for measuring sub-pixel erosionalong
riverbanks. a, Anillustration of the workflow for the sub-pixel detection of
riverbank erosion. b,c, Anexample of the two Sentinel-2 images used to
compute the migration of the Koyukuk River (2016-2022) in Extended Data
Fig.9.The cropsinband cshowaregion of the Koyukuk River near Huslia
(65.6966° N,156.3824° W). Note that theriver stage and sedimentload are
higher on30 August 2016 compared with13 July 2022, causing theriver colour
(RGB values) and the position of the land-water boundary to be differentin the
twoimages. We want to make sure that our algorithmrecords the net migration
oftheriverasaresult ofbank erosion, rather than the variable exposure of sand
ontheriverbanks resulting fromrising and falling river stage. Todo so, we
transform the multispectral satellite image to the dimensionless NDVIband
ratio (equation (18)). The NDVIaccentuates the spectral difference between
theriver water and the vegetated floodplain while collapsing the spectral
difference between unvegetated sand and river water. The resultis that the

. 1
605000 615000 609000 611000

NDVIimageisrelatively insensitive to changes in water level (which expose or
submerge unvegetated bars). Next, we extract an n x n-pixel chip, centred at
thebankedge for the location of interest, from theimage acquired at time 1.
Weextractan n x n-pixel chip at the same location in theimage acquired at time 2.
We use Fourier methods to take the 2D cross-correlation of the two image
chips. The 2D cross-correlation spectrum, which we upsample by a factor of 10,
peaksata (Ax, Ay) value that records the estimated riverbank displacement
betweentimelandtime2.Notethat, giventherelatively linear bank geometry
(atleast onthescale of the n x n-pixel chips), the cross-correlation spectrum
has aridge-like geometry rather thanasharp peak. Thus, whensearching

for the maximumin the 2D cross-correlation spectrum, we search along a
vector thatis perpendicular to the orientation of the riverbank (and therefore
perpendicular totheridgein the cross-correlationspectrum).d,e, lllustration
of how we perform the methodology describedinafor every positionalongthe
450-kmreach of the Koyukuk River showninFig. 1b.
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Extended DataFig.7| A synthetic dataset toillustrate our method

of reconstructing erosion rates from pairwise bank displacement
observations. a, Continuous discharge time series for the Koyukuk River from
the USGS station at Hughes (1961-1982). b, Average annual discharge cycle
basedonthedataina.c, Asimplesynthetictimeseries for erosionrate based
onequation (6) (the entrainment-limited endmember). The ‘instantaneous’
erosionrate gives the total annual erosion that would occur if thaterosion rate
were sustained for a365-day period. The grey lines depict the times for which
we have PlanetScope images (see Supplementary Table 1).d, The cumulative
erosion from the synthetic curveind. e, A pairwise displacement matrix
computed from the synthetic cumulative erosion curveind.f, An examplereal
(noisy) displacementrecord. g, Stacking and bracketing of the displacement
matrixleads toless noisy cumulative displacement records. Stacking refers
toaveraging the differential displacement time series along each column of
the matrixin e. Bracketing refers to computing the cumulative displacement
fromeverysecond column, every third column, every fourth columnand so
on.Stacking (averaging over the rows) makes the cumulative displacement

2017 2018 2019 2020 2021 2022

estimates less sensitive to errorsinthe co-registration of the template image
(rows of E(x, y)), whereas bracketing (skipping columns) makes the cumulative
displacement estimates less sensitive to errorsin the co-registration of the
searchimage (columns of £(x, y)). h,i, Remaining noise in the stacked and
bracketed cumulative erosion record (g) is reduced by imposing the constraint
that the cumulative displacement time series should be amonotonic function
oftime; in most cases, an eroding riverbank should not switch from eroding to
accreting over the course of our approximately 6-year analysis. Thus, temporary
back-stepping of the bank position (h) is probably anerror.i, We use MCMC

to construct the most probable monotonic path through the cumulative
displacement time series. j, Differentiatingthe recordiniwithrespectto time
yields an estimate for the instantaneous erosionrate. The green curve shows
the synthetic curve used to generate the displacement matrix (e) and the grey
curvegives thereconstructed erosion rate (shown as astair-step plotrather
thanacontinuous curve because our temporal observations are limited to the
roughly ten cloud-free PlanetScope mosaics each year (Supplementary Table 1).



Koyukuk River, Alaska
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Extended DataFig. 8| Representative field photos of the Koyukuk River ofachannel (pointbar) isaccretionary, whereasits outer bend (cut bank) is
near Huslia (65.689°N,156.381° W). a, Scroll bars are arcuate traces of the erosional.c, Azoom-inonan erosional permafrost cut bank.
river’s former positionrecorded in the floodplainlandscape. b, The inner bend
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Extended DataFig. 9 |Spatial patterns of riverbank erosion on the Koyukuk
River. This figureis similarto Fig. 1but it shows the river migrationrateasa
function of both the local normalized river curvature (W/R, in which Wis the
river width (m) and Ris the local radius of curvature of the channel (m)) (e-g)
and thelag-adjusted normalized curvature, which is given by equation (26)
(h-1). Note that the migration rate saturates at high values of local curvature
inc-f,giving the curvature versus migration rate curves asigmoidal shape. By
contrast, the migrationrateisalinear function of the lag-adjusted normalized

Lag-adjusted normalized curvature

Lag-adjusted normalized curvature Lag-adjusted normalized curvature

curvature®. Notice that the y-axis scale in kandlis two times the scale in h-j.

In other words, after the confluence of the two threads of the Koyukuk River
atthelocationindicated by the black arrowinb, the curvature-normalized
migrationrate increases by afactor of2. AsinFig.1, the migrationrates were
measured by applying our sub-pixel of fset algorithm to a pair of Sentinel-2
images from 30 August 2016 and 13 July 2022. Here, as in Fig. 1, we quantify the
migration rate using the displacement observed on the erosional side of theriver
(seeFig.1le).
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Extended DataFig.10 | Field validation of the near-surface permafrost
map. a, Probability of near-surface (<1 m depth) permafrost estimated by
Pastick etal.>. b, Zoom-in to our area of field observations, in which we
collected n =176 permafrost probe measurementsinjuly 2018 (n=137),June
2022 (n=2)and October 2022 (n =37).Blue dots indicate permafrost detected
andred dotsindicate no permafrost detected. ¢, Acomparison between our
permafrost ground-truth observations (b) and the permafrost probability
estimates from Pastick et al.* (an Alaska-wide permafrost map, calibrated
using n=16,786 statewide observations of near-surface permafrost, but no
observationsintheregionshowninb).d, We explore the accuracy of the
Pastick et al.*? permafrost map for the Koyukuk region based onapplying a
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simple classification threshold (that is, classifying all pixels with areported
permafrost probability below the threshold as not permafrost and all pixels
withareported permafrost probability above the threshold as permafrost).
We sweep through all possible threshold values, from 0% to 100%, and
compute the true positive and true negative rates, as well as the total accuracy.
e, Thethreshold value of 40% yields the highest total classificationaccuracy.
Thetrue-negative, false-negative, false-positive and true-positive values for
this classification are shownin the confusion matrix in e. The satellite imagery
inbis from Bing Maps Aerial, reprinted with permission from Microsoft
Corporation.
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Extended Data Table 1| Physical constants and parameters used for equations (3)-(6)

[ Variable | Description Value Units Source
PHYSICAL CONSTANTS AND LITERATURE VALUES
Pb Bulk density of bank sediment 861 kg m™3 Lininger et al. (2019)
Tie Mass fraction of ice in bank sediment 0.236 kg kg™?! Lininger et al. (2019)
T; Initial bank temperature -1 °%c Smith et al. (2022)
Ty Fusion temperature for water ice 0 °C
cp Heat capacity for bank sediment 3300 Jkg~tec?
Lice Latent heat of fusion for ice 3.34x10° J kg™!
« Exponent on Pr in thaw model 0.333 dimensionless | Lunardini et al. (1986)
B Exponent on Re in thaw model 0.927 dimensionless | Lunardini et al. (1986)
Kw Thermal conductivity of water 0.6 Wm~!°c~?!
v Kinematic viscosity of water 1.00 x 1076 m? s71
Pr Prandtl number 10 dimensionless Costard et al. (2003)
g Gravitational acceleration 9.81 m s~ ?
Pw Density of water 1000 kg m™3
n Exponent in entrainment equation 1 dimensionless Partheniades (1965)
M Coefficient in entrainment equation 2.5 x107° kg m~2 s~1 Partheniades (1965)
Terit Critical shear stress required to entrain bank sediment 10°-10% Pa Dunne et al. (2020)
Cy Friction coefficient for flow-resistance equation (eqn. 9) 5x 1073 dimensionless Phillips et al. (2022)
VALUES OPTIMIZED TO MATCH THE OBSERVED ANNUAL-AVERAGED EROSION RATES
A [thaw] Coefficient in thaw equation 3.2 x 10~ %% | dimensionless This study
M [entrainment] Coefficient in entrainment equation 1.1 x 10™4 kg m~2s7?! This study
Terit [entrainment] Critical shear stress required to entrain bank sediment 3.5 Pa This study
A [combined] Coefficient in thaw equation 3.6 x 10722 | dimensionless This study
M [combined] Coefficient in entrainment equation 7.5 x 1073 kgm~2s7! This study
Terit [combined] Critical shear stress required to entrain bank sediment 4.0 Pa This study

Note that the parameters A, M and 1., are poorly constrained from the existing literature. In Extended Data Fig. 4i-k, we perform an optimization, allowing A, M and T, to adopt the values such
that the estimated annual erosion over the period 2017-2021 best matches the observations for the Koyukuk River (Extended Data Fig. 4l). The thaw-limited model has the free parameter {A}, the
entrainment-limited model has the free parameters {M, 7.} and the combined model has all three free parameters {A, M and t,,;;}. Note that the improvement in the goodness of fit (quantified
through R?) from Extended Data Fig. 4i to Extended Data Fig. 4k could simply represent the increase in the number of tunable parameters from one (thaw-only) to two (entrainment-only) to three
(combined thaw and entrainment). To try to address this effect arising from the change in the number of model parameters, we also compute the adjusted R? value (see equation (15)), which

includes a penalty for models with more parameters. Sources: refs. 9,15,27,37,38,74,75.
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