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Permafrost slows Arctic riverbank erosion

Emily C. Geyman1 ✉, Madison M. Douglas1,2, Jean-Philippe Avouac1 & Michael P. Lamb1

The rate of river migration affects the stability of Arctic infrastructure and 
communities1,2 and regulates the fluxes of carbon3,4, nutrients5 and sediment6,7 to  
the oceans. However, predicting how the pace of river migration will change in a 
warming Arctic8 has so far been stymied by conflicting observations about whether 
permafrost9 primarily acts to slow10,11 or accelerate12,13 river migration. Here we 
develop new computational methods that enable the detection of riverbank  
erosion at length scales 5–10 times smaller than the pixel size in satellite imagery,  
an innovation that unlocks the ability to quantify erosion at the sub-monthly 
timescales when rivers undergo their largest variations in water temperature and 
flow. We use these high-frequency observations to constrain the extent to which 
erosion is limited by the thermal condition of melting the pore ice that cements  
bank sediment14, a requirement that will disappear when permafrost thaws, versus 
the mechanical condition of having sufficient flow to transport the sediment 
comprising the riverbanks, a condition experienced by all rivers15. Analysis of 
high-resolution data from the Koyukuk River, Alaska, shows that the presence of 
permafrost reduces erosion rates by 47%. Using our observations, we calibrate and 
validate a numerical model that can be applied to diverse Arctic rivers. The model 
predicts that full permafrost thaw may lead to a 30–100% increase in the migration 
rates of Arctic rivers.

Does permafrost—defined as ground that remains below 0 °C for at 
least two consecutive years9—act primarily to slow10,11 or accelerate12,13 
the rate of riverbank erosion? This still-unanswered question is funda-
mental to understanding how the geochemical fluxes3,16, water quality17, 
ecology5 and infrastructure1,18 in Arctic watersheds will respond to the 
approximately 4 °C rising Arctic air temperatures8 and roughly 40% 
decrease in permafrost19 predicted in the coming century9,19. Obser-
vations of river migration from remotely sensed imagery10,12,20 have 
been used to reach opposite conclusions about the role of permafrost 
in regulating the pace of riverbank erosion. For example, one recent 
study10 found that erosion rates in rivers flowing through permafrost 
are about nine times slower than those in non-permafrost terrains. By 
contrast, another study12 found that, for channels of the same width, 
permafrost rivers migrate faster than their non-permafrost counter-
parts. This apparent discordance highlights the limitations of regional 
or global comparisons10,12, as differences in migration rates from river 
to river can be caused by myriad confounding variables, including flow 
seasonality21, river-ice break-up intensity21, bank-material cohesion22 
and riverine sediment load23, rather than the presence or absence of 
permafrost.

Here we show how analysis of an individual river lets us control for 
many of these confounding variables and use natural variations in 
water temperature, discharge and bank-material properties to isolate 
the thermal and mechanical controls on bank erosion. Specifically, 
we use variations in water temperature and discharge that occur 
over timescales of weeks (not years or decades as used in previous 
work10,12,20,24), because the changes in flow conditions that Arctic rivers 
experience on these sub-seasonal timescales exceed the decadal-scale 

variability by more than an order of magnitude25. However, observ-
ing bank erosion at such high frequencies was previously not pos-
sible because it requires detecting changes that are much smaller 
than the pixel size of satellite imagery. We develop computational 
tools to resolve riverbank erosion at length scales roughly 100 times 
finer than previous analyses20 (owing to a ten-times improvement in 
detection from our new algorithm and a ten-times improvement in 
the resolution of widely available satellite imagery). We then apply 
our methodology to the Koyukuk River in central Alaska (Fig. 1a,b),  
a river that both (1) experiences strong seasonality in water tempera-
ture and discharge and (2) flows through discontinuous permafrost, 
making it particularly well suited to address whether and how perma-
frost affects river migration.

Using space and time to constrain the role of permafrost
We introduce three sets of observations to test the hypothesis that 
permafrost limits the pace of river migration.

The spatial pattern of bank erosion
Rivers flowing through discontinuous permafrost offer exceptional 
natural experiments because a single river (with a given hydrograph, 
seasonal pattern of water temperature and downstream sediment 
flux) encounters riverbanks that are variably frozen versus unfrozen. 
Thus, measurements of local bank erosion rates in permafrost versus 
non-permafrost terrains in the same river allow us to control for many 
confounding variables and isolate the role of bank thermal properties 
on erosion.
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The sub-seasonal pattern of bank erosion
The widespread conceptual model for why permafrost may limit the 
pace of bank erosion is that pore ice strengthens bank sediments to 
the point that, in order to be eroded by flowing water, those sediments 
must first be thawed10,14,26,27. Thus, the bottleneck of heat transfer 
from the river water to the frozen bank sediments27 imposes a speed 

limit on bank erosion that is not experienced by low-latitude rivers14. 
However, the observation that permafrost riverbanks often have an 
approximately 1-m-thick layer of thawed sediment at their surface in 
late summer10,28 suggests that permafrost rivers are also limited by 
the ability of flowing river water to entrain and transport sediment14.  
Douglas et al.14 thus proposed a simple theoretical framework in which 
bank erosion in permafrost rivers is limited by the joint constraints 
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Fig. 1 | Riverbank migration rates quantified for the approximately 
450-km-long alluvial reach of the Koyukuk River near Huslia, Alaska.  
a, Map of the study area in Alaska. b–d, The bank migration rates are 
calculated by applying our sub-pixel algorithm to a pair of Sentinel-2 satellite 
images from 30 August 2016 and 13 July 2022. Coordinates are in UTM zone 4N. 
c,d, Zoomed-in maps of the bank displacement illustrating how there is a 
strong relationship between the migration rates and channel curvature24,39.  
e, The three spatial series—(1) normalized channel curvature (channel width W 
divided by radius of curvature R)24,39, (2) migration of the right bank, and  
(3) migration of the left bank—all are measured independently. The similarity 

of the three curves highlights the strong control of channel curvature on 
migration rate24. Note that the channel migration lags the curvature by a 
distance of about 700 m, or approximately 2.2 channel widths. f, Cartoon, 
adapted from ref. 40, illustrating the source of the lag; as the river moves 
around a bend, the high-velocity core of the flow impinges on the outer bank 
at a distance downstream from the bend apex24,39,40. g–k, The local outer-bank 
erosion rate (see e)is explained well by the lag-adjusted normalized curvature 
(equation (26)). k denotes the curvature-normalized riverbank erosion rate. 
The colour scheme in g–k matches the locations in b.
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of thaw and entrainment. Because Arctic river water tends to be very 
cold (for example, ≤2 °C) during the period of peak streamflow in early 
spring (Extended Data Fig. 1), early-season erosion is limited by the abil-
ity of the water to thaw the bank material. Then, as the water warms, the 
river more rapidly transports heat into the bank. However, the discharge 
is no longer high enough to entrain thawed bank sediment14. This model 
suggests that peak erosion occurs in the early summer at the intersec-
tion of still relatively high discharge but warmer waters. By contrast, if 
permafrost rivers are purely entrainment-limited, the seasonal pattern 
of erosion only should track discharge, and if permafrost rivers are 
purely thaw-limited, the seasonal pattern of erosion predominantly 
should track water temperature14. Finally, if bank erosion in Arctic riv-
ers is dominated by ice-run gouging21, erosive activity should occur 
primarily during the few-days period of ice break-up21. To summarize, 
the different proposed mechanisms produce distinctive temporal 
(sub-seasonal) fingerprints of bank erosion (Extended Data Fig. 1).

The interannual pattern of bank erosion
The hydrographs of Arctic rivers vary substantially from year to 
year. Some years have substantial August rains, leading to high dis-
charge during a period when the river water is warm. Alternatively, 
in some years, the flow required for sediment entrainment only 
occurs during the period of spring snowmelt, when the river water 
is very cold (Extended Data Figs. 1–3). This interannual variability 
means that total annual erosion may vary by a factor of about three 
from year to year (Extended Data Fig. 4). Notably, the thaw-limited, 
entrainment-limited and combined models predict different finger-
prints for which years have more or less erosion, meaning that we 
also can use interannual erosion patterns to distinguish between  
mechanisms.

Resolving change at sub-pixel length scales
The three sets of observations described above provide independ-
ent, data-driven ways to test whether and how permafrost affects the 
rate of riverbank erosion. Given the remote location of Arctic rivers 
and the need to make observations across large spatial and temporal 
scales, quantifying river migration from remotely sensed imagery is a 
natural choice. However, average migration rates of even the largest 
Arctic rivers are on the order of 100 m yr−1 (refs. 10,20), meaning that 
observational windows of about 3–30 years are required to observe 
one pixel’s worth of change in satellite imagery. Previous methods for 
quantifying river migration rates use whole-pixel classification10,20,24,29. 
Here we develop a new method that enables detection of river migra-
tion at scales 5–10 times smaller than the pixel width. This method 
allows for the quantification of bank erosion over shorter timescales. 
For example, consider a large Arctic river migrating at a rate of 3 m yr−1 
(refs. 10,12,30). Existing methods (which involve the whole-pixel binary 
masking of 30-m Landsat satellite imagery20,29) might require time inter-
vals of about 10 years to robustly detect erosion. By contrast, our new 
method, when paired with PlanetScope imagery (3-m resolution), can 
detect movements in the riverbank of about 0.3–0.6 m, meaning that 
we can subdivide the 3 m yr−1 average erosion rates into 5–10 discrete 
intervals each year and thereby resolve the sub-seasonal pattern of 
erosion to test the second and third hypotheses above.

Fourier methods for change detection
Our algorithm for detecting bank migration is based on sub-pixel cor-
relation of optical satellite imagery31 (Fig. 1). Consider an image of a 
river and surrounding floodplain (Fig. 1b). Let the outer bank of the 
river erode a distance equivalent to one-tenth the pixel width. Such a 
change may not be visible by eye but it is recorded in the image data 
because the pixel intensity values along the river margins will change 
to reflect the new ratio of water versus floodplain encapsulated in  

that pixel (Extended Data Fig. 6). One way to quantify this sub-pixel 
displacement would be to: (1) sample a small n × n-pixel window (‘chip’) 
from each image at a location of interest; (2) linearly upsample each 
image chip by a factor of ten; and then (3) compute the 2D 
cross-correlation between the two upsampled chips. If the primary 
source of contrast in the image is the river–floodplain boundary, then 
the peak in the 2D cross-correlation spectrum will record the riverbank 
displacement (Extended Data Fig. 6). However, the computational cost 
of 2D cross-correlation is O n( )4 , where n is the width of the chip. Thus, 
performing the 2D cross-correlation for every position along the river 
(Fig. 1) is computationally expensive and difficult to scale to larger 
rivers, longer time series, or higher-resolution imagery. Thus, we make 
use of the convolution theorem (that is, the fact that convolution in 
the spatial domain is equivalent to multiplication in the Fourier 
domain)31. By taking the 2D Fourier transforms of the image chips, 
taking the complex conjugate of the second image, multiplying the 
result and then calculating the inverse Fourier transform, we can effi-
ciently detect riverbank erosion at sub-pixel length scales not visible 
to the human eye. See Methods for a complete description of the algo-
rithm, including data pre-processing routines and sensitivity tests.  
A critical component of our methodology is a workflow to make the 
displacement estimates robust to georeferencing errors in the satellite 
imagery, since image-to-image co-registration errors can exceed the 
signal of riverbank erosion by ≥10 times .

Three tests of whether permafrost slows river migration
Here we show how our observations of the spatial, sub-seasonal, and 
interannual patterns of riverbank erosion on the Koyukuk River (Fig. 1) 
all independently demonstrate that permafrost slows the pace of river 
migration.

The spatial pattern of bank erosion
As shown previously for low-latitude rivers24, river curvature repre-
sents the dominant control on migration rates (Fig. 1e); tight bends 
migrate at rates >5 m yr−1, whereas the straight reaches between them 
experience erosion rates ≥10 times lower (Fig. 1c,d). Most previous 
analyses have not corrected migration rates for the effects of curva-
ture10,12. Here we quantify the first-order relationship between river 
curvature and migration rate (Fig. 1g–k) and then examine the devia-
tions from this trend. Specifically, we take advantage of the fact that 
the Koyukuk River flows through discontinuous permafrost10,16,32. 
As the river flows against heterogeneous bank material16, we can ask 
whether there is a systematic difference in the curvature-normalized 
erosion rates for permafrost versus non-permafrost terrain. For exam-
ple, Fig. 2a–c shows an example of a sequence of meander bends that 
impinge on older, thermokarst terrain to the north and younger, unfro-
zen river deposits to the south. We calculate the river curvature and 
the bank migration rate for each meander bend over a 6-year period 
(Fig. 2d). The ratio of the area under the curve for these two variables 
(Fig. 2) records the average k value for each meander, in which k is the 
curvature-normalized migration rate (m yr−1). Qualitatively, larger 
values of k imply that the riverbank is more susceptible to erosion. 
In Fig. 2e–g, we search along the entire 450-km reach of the Koyukuk 
River shown in Fig. 1b and investigate whether meanders through high- 
permafrost terrains have systematically higher or lower erosion rates. 
Meanders traversing terrains classified as non-permafrost (Extended 
Data Fig. 10) migrate 91% faster for a given river curvature than those 
migrating through permafrost terrains (Fig. 2e).

Note that, when considered in isolation, the results in Fig. 2 present 
us with a ‘chicken or the egg’ problem. The fact that non-permafrost 
reaches experience channel migration rates about two times faster 
than permafrost reaches could imply that permafrost banks slow 
the pace of riverbank erosion. However, given the slow rate of per-
mafrost regeneration (about 103 years, as constrained by 14C dating 
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along the Koyukuk River33), river reaches that are migrating rapidly 
across their floodplain will be eroding into alluvial material that is 
younger4 and therefore more likely to be unfrozen. Thus, the arrow 
of causation could be drawn in the opposite direction, in which 
rapid channel migration—owing to non-thermal controls such as 
elevated sediment supply23 at the relic Pleistocene aeolian sand 
dunes near Huslia (Fig. 1a) or increases in river slope in response to 
meander cut-offs34—could cause local riverbanks to have lower per-
mafrost content. To explicitly test whether there is a thermal con-
trol on erosion rates, we turn to the temporal pattern of riverbank  
erosion.

The sub-seasonal pattern of bank erosion
The variations in river temperature and discharge within a single spring 
season on the Koyukuk River (Extended Data Fig. 1) are more than an 
order of magnitude larger than the long-term, decadal trends in those 
variables25. Following ice break-up in May, the water discharge spikes. 
During this period of high snowmelt, the water temperature is close  

to 0 °C. The water temperature peaks around 17 °C in mid-July, when the 
water discharge is low (Extended Data Fig. 1). Here we follow Douglas  
et al.14 and consider simple, semi-empirical predictions for the seasonal 
pattern of riverbank erosion under the competing endmembers that: 
(1) erosion is limited by the ability of warm river water to thaw the pore 
ice in bank sediments26,27,35 or (2) erosion is limited by the ability of the 
river to entrain the sediment comprising the river bed and banks15,36,37. 
In the thaw-limited endmember, the erosion rate is described by the 
function27,35:

( )
E

A κ T

Hρ L c T
=

Pr Re
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(1)

α β

thaw
w w

b f p i

in which Pr is the Prandtl number, Re is the Reynolds number, κw 
(W m−1 °C−1) is the thermal conductivity of water, Tw (°C) is the water 
temperature, Ti (°C) is the initial temperature of permafrost, Lf ( J kg−1) 
is the latent heat of fusion for permafrost, ρb (kg m−3) is the bulk density 
of permafrost and cp ( J kg−1 °C−1) is the heat capacity of permafrost.  
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Fig. 2 | Spatial observations show that riverbank erosion rates are 
systematically slower in meanders that erode permafrost compared with 
those that erode unfrozen terrain. a, RGB satellite imagery. b, Probability  
of near-surface permafrost32. c, Simplified terrain classification for a series  
of meander bends on the Koyukuk River (Fig. 1). Note how the river impinges 
on older, thermokarst terrain to the north and younger, non-permafrost 
terrain to the south. d, Spatial series of lag-adjusted normalized curvature 
(see equation (26))24,39 and riverbank erosion rates. The crossovers reflect the 
places at which the river transitions from eroding its right bank to eroding  
its left bank, or vice versa. The colour of the shaded infill reflects the mean 
permafrost probability32 calculated for the eroding side of the meander.  

For each meander, dividing the riverbank erosion rate (A2) by the lag-adjusted 
normalized curvature (A1) yields a bend-averaged value of k, the curvature- 
normalized erosion rate (m yr−1) (see equation (27)). e, Bends classified as 
permafrost32,33 (Extended Data Fig. 10) have mean k values of 4.6 m yr−1, whereas 
bends classified as non-permafrost have mean k values of 8.8 m yr−1. f,g, The  
k values systematically decrease with increasing average (f) and maximum (g) 
permafrost content32 calculated over the meander bend. In f and g, the  
L annotations signify the length of the river reaches that fall within each bin 
for average and peak permafrost content. The satellite imagery in a is from 
Bing Maps Aerial, reprinted with permission from Microsoft Corporation.
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In equation (1), the numerator represents the heat transfer rate from 
the river water to the bank and the denominator represents the heat 
required to thaw the bank14,27.

In the entrainment-limited endmember, the erosion rate can be 
calculated using the common threshold formulation38, adapted to 
mixtures of sediment and ice14:
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Fig. 3 | Model predictions for—and observations of—the temporal patterns 
of riverbank erosion. a–c, The water temperature and discharge time  
series for the Koyukuk River (Extended Data Figs. 1–3) are combined with 
equations (1) and (2) to make predictions for the erosion rate throughout  
the annual cycle under the thaw-limited (a), entrainment-limited (b) and 
combined (c) regimes. d, The observed annual pattern of erosion rates (based 
on data from 2016 to 2022) best matches the predictions from the combined 
thaw-limited and entrainment-limited model. The R2 values in a–c give the 
goodness of fit of the model predictions to the observations in d. Note that  

we only study the seasonal pattern of bank displacement on the eroding side 
of the river. The time series from the accreting side of the river should record 
seasonal patterns of vegetation colonization and sediment deposition. See 
Section 2 of the Supplementary Information. e, Model predictions for and 
observations of the interannual pattern of bank erosion. The error bars 
represent uncertainty in the model parameters based on leave-one-out 
cross-validation (iteratively solving for the optimal model parameters using  
4 of the 5 years in the dataset). The observed interannual pattern is best 
explained by the combined thaw and entrainment model (R2 = 0.85).
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ρw (kg m−3) is the density of water, U (m s−1) is the average flow velocity, 
Cf is the dimensionless friction coefficient, ϵ ≈ 0.2 is a small coefficient 
in the ‘near-threshold’ model15,36,37 and M (kg m−2 s−1) is an empirical 
coefficient describing the erodibility of the bank14,38. See Methods for 
a discussion of the assumptions underpinning equations (1) and (2).

The thaw-limited endmember (equation (1)) predicts that erosion 
scales like the product of the flow velocity and the water tempera-
ture. Meanwhile, the entrainment-limited endmember (equation (2)) 
predicts that the erosion rate scales with the flow velocity squared 
(see Methods). By applying these two sets of predictions to the water 
temperature and discharge time series for the Koyukuk River over 
the period 2016–2022 (Extended Data Figs. 1–3), we generate model 
predictions for the seasonal pattern of riverbank erosion (Fig. 3a,b). 
The joint constraint that the river must be able to both thaw frozen 
bank material and entrain the thawed sediment is represented by the 
minimum of the thaw-limited and entrainment-limited rates14 (Fig. 3c). 
Next we compile 61 cloud-free daily image mosaics of PlanetScope 
satellite imagery over the period 2016–2022. We use our sub-pixel 
riverbank change detection algorithm to quantify erosion at every 
location along the 450-km river reach shown in Fig. 1b. The observed 
sub-seasonal pattern of erosion (Fig. 3d) matches the predictions from 
the combined thaw-limited and entrainment-limited model (R2 = 0.90) 
better than the thaw-only (R2 = 0.79) or entrainment-only (R2 = 0.45) 
models.

Interannual variability of bank erosion
The natural year-to-year variability in discharge and temperature means 
that interannual observations can also constrain what processes control 
erosion. The thaw-limited model predicts that all years in our study win-
dow should have relatively equal erosion rates (Fig. 3e). Meanwhile, the 
entrainment-limited model predicts that 2018 was a year of low erosion 
(Fig. 3e). Finally, the combined thaw-limited and entrainment-limited 
model predicts that both 2018 and 2021 stand out as low-erosion years. 
This combined model best matches the observed interannual pattern 
of erosion (Fig. 3e; R2 = 0.85), validating our interpretation from the 
sub-seasonal observations (Fig. 3d) that the migration behaviour of 
the Koyukuk River is controlled by the joint constraints of thaw and 
entrainment.

Modelling future erosion behaviour
Our calibration and validation of models describing the spatial24,39 
(Fig. 1b) and temporal (Fig. 3) patterns of riverbank erosion enables us to 
run numerical simulations to predict how Arctic rivers may respond to 
the forecasted increases in water temperature8, discharge seasonality8,18 
and permafrost thaw9,19. In Extended Data Fig. 5, we perform a series 
of numerical experiments in which we perturb the water temperature 
and discharge. We find that riverbank erosion is relatively insensitive 
to increases in water temperature on the Koyukuk River, as the sys-
tem quickly becomes entrainment-limited (Extended Data Fig. 1). For 
example, if the total discharge (Qw) remains constant, increases in water 
temperature of 10% and 30% only result in increases in bank erosion of 
4% and 9%, respectively. However, bank erosion scales approximately 
linearly with the total discharge; increases in Qw of 10% and 30% elevate 
bank erosion by 12% and 34%, respectively. Finally, under the scenario 
of complete permafrost thaw9,19, increases in Qw of 10% and 30% result 
in increases of average bank erosion of 69% and 109%, respectively 
(Extended Data Fig. 5).

Implications for a changing Arctic
Riverbank erosion jeopardizes the stability of Arctic infrastructure 
and communities1,18, especially in Alaska, where 43% of villages are 
located ≤1 km from rivers10. The rate of river migration also sets the 
cadence of organic carbon cycling between floodplains, river water, 

the atmosphere and the ocean4,16. Because bank erosion can liber-
ate carbon from depths ≥10 times the depth of annual thaw16, river 
migration may prove to be one of the most efficient mechanisms for 
organic carbon turnover in the Arctic3. In other words, the pace of river 
migration may represent a critical bottleneck affecting the timescale 
over which the 1,700 billion metric tons of carbon locked up in Arctic 
permafrost enters Earth’s atmosphere3,4. Our observations of the spa-
tial and temporal patterns of riverbank erosion demonstrate that, on 
the Koyukuk River, the presence of discontinuous permafrost reduces 
average migration rates by approximately 49% at present. Finally, 
our numerical model (Fig. 3c) provides a tool to use variables such 
as the water temperature, river hydraulics and sediment grain size to 
predict how the rates of riverbank erosion and associated sediment 
and carbon fluxes will increase as permafrost thaws in the coming 
centuries8,9,19.
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Methods

Model expectations for entrainment-limited and thaw-limited 
riverbank erosion
Governing equations. As described in the main text, we present a sim-
ple 1D model to try to capture the competing thermal versus physical 
controls on Arctic riverbank erosion. For the thaw-limited endmember, 
the erosion rate can be expressed by the function27,35:

( )
E

A κ T T

Hρ L c T T
=

Pr Re ( − )

+ ( − )
(3)

α β

thaw
w w f

b f p f i

in which κw (W m−1 °C−1) is the thermal conductivity of water, Tw (°C) 
is the river water temperature, Tf (°C) is the freezing point of water 
(assumed to be 0 °C in the main text for simplicity), Ti (°C) is the initial 
temperature of permafrost, Lf ( J kg−1) is the latent heat of fusion for 
permafrost (Lf = ficeLice, where fice (kg kg−1) is the mass fraction of water 
ice in permafrost and Lice ( J kg−1) is the latent heat of fusion for water 
ice), ρb (kg m−3) is the bulk density of permafrost and cp ( J kg−1 °C−1) is 
the heat capacity of permafrost. Pr is the Prandtl number:

ν χPr = / (4)

in which ν (m2 s−1) is the kinematic viscosity and χ (m2 s−1) is the thermal 
diffusivity of the river water. Re is the Reynolds number:

HU νRe = / (5)

in which H (m) is the flow depth and U (m s−1) is the average flow velocity. 
Note that we define Ethaw only for Tw ≥ 0.

For the entrainment-limited end-member, we use the common 
threshold formulation38:
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in which τbank (Pa) is the shear stress on the bank, τcrit (Pa) is the critical 
shear stress required to entrain bank sediment, fsed = 1 − fice (dimen-
sionless) is the mass fraction of sediment and M (kg m−2 s−1) and n 
(dimensionless) are empirical coefficients14,38. To solve for Eent, we use 
the following set of assumptions. First, we need a method to partition 
the total fluid shear stress in the channel (τ) between the channel bed 
and the bank41. To the first order, the bed and bank stress partitioning 
depends on the relative roughness of the two surfaces and the chan-
nel width-to-depth ratio41–44. For simplicity, we let the shear stress on 
the bank (τbank) follow the near-threshold ‘(1 + ϵ)’ model of Parker15,36:
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in which ϵ = 0.2 (refs. 15,36). The shear stress on the bed can be related 
to the flow velocity using a canonical flow-resistance equation15:

τ ρ C U= (8)bed w f
2

in which ρw (kg m−3) is the density of water. Equation (8) is based on the 
relationship between the cross-sectionally averaged flow velocity, U, 
and the shear velocity, u

*
, through a dimensionless friction coefficient, 

Cf:

U
C
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f

in which u
*

 is defined as:

u τ ρ
*
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Combining equation (6) with equations (7) and (8), we arrive at the 
expression:
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We define equation (11) only for Eent ≥ 0 m yr−1. Empirical studies often 
use n ≈ 1 in the Partheniades38 erosion relation (equation (6))14. This 
approximation reduces equation (11) to equation (2) of the main text. 
When n = 1, the erosion rate, Eent, is a simple quadratic function of the 
flow velocity, U, above some critical threshold velocity, U0, at which 
erosion starts to occur:

E U U∝ ( − ) (12)ent 0
2

Meanwhile, setting β = 1 in equation (3) (refs. 14,27) simplifies the 
Reβ term in the numerator to HU/ν, such that the predicted erosion 
rate from thaw is a function of the product of the flow velocity and 
water temperature:

E UT∝ (13)thaw w

Thus, although there are many parameters in equations (3) and (11), 
these expressions make simple predictions for how Eent and Ethaw evolve 
as a function of the seasonal discharge and water temperature time 
series. The entrainment-limited riverbank erosion should scale with 
flow velocity squared (equation (12)), whereas the thaw-limited erosion 
should scale with the product of flow velocity and temperature (°C 
above freezing) (equation (13)). Moreover, because the water tempera-
ture varies by about 20 °C over the course of a seasonal cycle, whereas 
the flow velocity varies by about 2 m s−1 (Extended Data Fig. 4), the sea-
sonal pattern of thaw-limited erosion is controlled roughly ten times 
more by changes in water temperature than by changes in flow velocity.

Note that our simple model assumes that the state of the riverbank 
is in local equilibrium with the erosion mode (entrainment-limited or 
thaw-limited). In other words, our model does not include a ‘history 
effect’ that could be important in some cases for building up a thawed 
layer45. However, the numerical modelling of ref. 45 suggests that our 
local equilibrium assumption is a reasonable one most of the time 
because the thawed layer thickness rapidly adjusts to changes in either 
thaw rate or entrainment rate (for which we define ‘rapid’ compared 
with the temporal forcing from the hydrograph or the seasonal tem-
perature pattern)45.

Finally, note that, to predict the seasonal cycles of Eent and Ethaw, we 
must translate the discharge records (Extended Data Fig. 2) into esti-
mates of flow velocity. The water discharge Qw (m3 s−1) is the product 
of the cross-sectionally averaged flow velocity (U) and cross-sectional 
area (A):

Q UA= . (14)w

We calculate flow velocity from the discharge record using a simple 
power-law empirical fit of Qw versus U based on field data from the 
Koyukuk River (Extended Data Fig. 4a).

Observational constraints for discharge and water temperature 
on the Koyukuk River. Using equations (3) and (11) to make model 
predictions for the seasonal pattern of riverbank erosion requires 
continuous time series of water temperature and discharge on the 
Koyukuk River. The United States Geological Survey (USGS) main-
tains a streamflow station on the Koyukuk River at Hughes, Alaska 
(66.04696° N, 154.26097° W), but this station was inactive from 1982 
to 2021 (Extended Data Fig. 2), which covers nearly our entire obser-
vational window from 2016 to 2022. However, several USGS gauge 



stations on the nearby Yukon and Tanana rivers remained active from 
2016 to 2022. An investigation of historical periods of overlap bet
ween the Hughes station and stations on the Yukon and Tanana rivers  
(Extended Data Fig. 2) suggests that the discharge records at these 
nearby stations can be related using simple convolutional/deconvolu-
tional filters. Specifically, we consider the case of the USGS streamflow 
stations at Hughes (Koyukuk River), Stevens Village (Yukon River) and 
Pilot Station (Yukon River) (Extended Data Fig. 2k). The Koyukuk River 
joins the Yukon River about halfway between Stevens Village and Pilot 
Station, at which it contributes roughly 10–20% of the Yukon’s total 
discharge. Thus, the difference in discharge measured at Pilot Station 
versus Stevens Village should encode information about the discharge 
contribution from the Koyukuk River, modulated by convolutional 
smoothing and other changes to the Yukon hydrograph that occur 
from upstream to downstream.

Using autoencoders to fill gaps in observational discharge records. 
We design a flexible model that can learn the relationships between 
the hydrographs at Hughes, Pilot Station and Stevens Village using 
historical data (Extended Data Fig. 2k). Specifically, we train a simple 
neural network for which the input is a 2 × 365 array containing the daily 
discharge time series at Pilot Station and Stevens Village (normalized 
for numerical stability such that the minimum discharge is 0 and the 
maximum discharge is 1) and the output is a 1 × 365 array containing 
the predicted daily discharge time series at Hughes (Extended Data 
Fig. 2l). Our neural network architecture consists of a simple 2 × 33 2D 
convolutional kernel, a batch normalization layer, a fully connected 
layer and a regression layer. The neural network was implemented in 
MATLAB R2022a.

Extended Data Fig. 3a–e shows the data used to train the model 
(5 years in the historical record when the USGS stations at Hughes, 
Pilot Station and Stevens Village all had uninterrupted discharge data). 
In the training dataset, the model is validated using leave-one-out 
cross-validation. For example, in Extended Data Fig. 3a, the model is 
trained using the historical data from 1978 to 1981 and then used to 
predict the Hughes discharge time series from 1977. The R2 value gives 
the variance reduction of the neural network model compared with 
the observed discharge time series. The mean R2 from all years in the 
historical (training) dataset is 0.82. Extended Data Fig. 3f–j shows the 
predictions for the discharge on the Koyukuk River during the years 
2017–2021, when the Pilot Station and Stevens Village stations were 
active, but the Hughes station was not.

Predictions for the sub-seasonal and interannual pattern of river
bank erosion. Extended Data Fig. 4 combines the neural-network- 
predicted discharge time series for the Koyukuk River (Extended Data 
Fig. 3) with the Pilot Station temperature data (Extended Data Fig. 1b) 
to estimate the annual patterns of erosion under the thaw-limited, 
entrainment-limited and combined scenarios. In Extended Data Fig. 4i–k,  
we optimize the free parameters in equations (3)–(6) such that the 
predicted annual erosion (2017–2021) best matches the observa-
tions from the Koyukuk River (Extended Data Fig. 4l). Extended Data  
Table 1 shows the values of the parameters obtained from our non- 
linear optimization, along with the values of the fixed parameters used 
for equations (3)–(6) (ref. 14).

Evaluating model goodness of fit. Note in Extended Data Fig. 4 that 
we compare models with different numbers of tunable parameters: 
one parameter for the thaw-only model, two for the entrainment-only 
model and three for the combined thaw and entrainment model. Thus, 
the increase in the raw R2 values shown in Extended Data Fig. 4i–k could 
reflect the added degrees of freedom in the models rather than an imp
rovement in the description of the underlying process. In an attempt 
to account for the changing model complexity in our evaluation of the 
model goodness of fit, we compute the adjusted R2 value, defined as:

R
R n

n p
= 1 −

(1 − )( − 1)
− − 1

(15)adj
2

2

in which n is the number of data points on which the variance reduc-
tion (R2) is evaluated and p is the number of independent variables 
(parameters). The p in the denominator of equation (15) acts to pena
lize models with more tunable parameters (that is, give them a lower 
Radj

2  value). Extended Data Fig. 4i–k shows that the Radj
2  values for the 

thaw-only, entrainment-only and combined thaw and entrainment 
models are 0.25, 0.14 and 0.40, respectively. In other words, the Radj

2  
metric supports the conclusion that the combined thaw and entrain-
ment model best explains the interannual data.

Detecting bank erosion from sub-pixel image correlation
Background. Our workflow for detecting sub-pixel displacements  
is inspired by the methodology of Leprince et al.31,46 but is adapted  
to handle both the challenges and the opportunities presented by  
the fact that riverbanks are predominantly linear features rather 
than ‘corner’ features. As an illustration of our approach, consider an 
example high-resolution image of a riverbank on the Koyukuk River 
(Extended Data Fig. 6). As a simple experiment, we shift the image by 
2 pixels in the x direction and 1 pixel in the y direction. We then down-
sample the image by a factor of 10, so the Δx and Δy offsets are 0.2 and 
0.1 pixels, respectively. The question is whether we can detect these 
sub-pixel offsets from the downsampled image. One approach would 
be to compute the 2D cross-correlation between image 1 and image 2. 
The peak of the resulting cross-correlation spectrum (which can be 
interpolated to sub-pixel positions) records the bank displacement. 
When the bank geometry is relatively linear (as is typically the case for 
images that are smaller than the length scale of the channel width—see 
the section ‘Selecting the window size (n)’), the cross-correlation spec-
trum does not have a well-resolved single peak but rather a ridge of high 
correlation values (Extended Data Fig. 6). However, the only probable 
image offsets are the ones in which the riverbank accreted (migrated 
towards the channel centreline) or eroded (migrated away from the 
channel centreline). Thus, a good approximation for riverbank change 
detection is that the offset vector is perpendicular to the bank. Sam-
pling the image cross-correlation matrix along a vector perpendicular 
to the riverbank yields a peaked function whose maximum records 
the bank offset. Note in Extended Data Fig. 6 that we can successfully 
recover the image displacements that are more than 5–10 times smaller 
than the pixel size.

The computational cost of 2D cross-correlation is O n( )4 , in which n 
is the width of the image chip. Thus, performing the 2D cross-correlation 
for every bank position along the river of interest (Fig. 1) is computa-
tionally expensive and difficult to scale to larger rivers, longer time 
series or higher-resolution imagery. Thus, we make use of the convolu-
tion theorem (that is, the fact that convolution in the spatial domain 
is equivalent to multiplication in the Fourier domain)46. Convolution 
between two images is equivalent to correlation if the intensity values 
of one of the images are rotated 180°. Thus, the 2D cross-correlation 
between two images, I1 and I2, is:

ω ω x y x y( , ) = ( ( , )) ( ( , )) (16)x y 1 2⊙ ⋆F FQ I I

in which Q(ωx, ωy) is the cross-correlation spectrum, F  represents the 
(2D) Fourier transform, ⊙ represents element-wise multiplication and 
⋆ denotes the complex conjugate31,47. In practice, weighting the complex- 
valued spectrum S IFω ω x y( , ) = ( ( , ))x y1 1  by a tapered filter such as a 
raised cosine filter31, V, helps to reduce the influence of the image  
borders and suppress high-frequency components of the spectrum31,47.

To measure the migration of a riverbank between two images, we 
generate two image ‘chips’ (small n × n-pixel windows, centred at the 
bank margin for the region of interest). These two image chips have the 
same geographic coordinates. We then take the Fourier transform of 
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each chip, weight each spectrum using a raised cosine filter (V), take 
the complex conjugate of the weighted spectrum for the search image 
(image 2) and multiply the resulting signals in the frequency domain:

⊙ ⊙ ⊙ ⋆ω ω x y x y( , ) = ( ( ( , ))) ( ( ( , ))) (17)x y 1 1 2 2Q V I V IF F

Note that some care must be taken in choosing the window size (n) 
of the image chips, which we discuss below. The results of the Fourier 
methods shown in Extended Data Fig. 6 are numerically equivalent 
to those produced by the computation of the 2D cross-correlation in 
the spatial domain. However, the Fourier methods are much faster.

Qualitatively, there are two insights from our algorithm. The first is 
that the common methodology of thresholding to produce binary river 
masks10,20,29 removes most of the information encoded in the image; 
retaining the image spectral information as continuous values enables 
the measurement of small bank displacements because we can use 
spectral unmixing to estimate the relative proportions of the different 
ground cover types (for example, river versus floodplain) that com-
prise an individual pixel. The second insight is that feedbacks between 
erosion and river flow48,49 mean that bank erosion rates should have a 
high degree of spatial autocorrelation (Fig. 1). In other words, the bank 
erosion rate at one location should be similar to the erosion rate at 
some distance d away, as long as d is smaller than the channel width W 
(refs. 39,48,49). As a result, averaging observations across neighbouring 
pixels can improve the signal-to-noise ratio and yield more robust bank 
displacement estimates. Our Fourier methods do this spatial averag-
ing implicitly, as the whole length of the river margin in the n × n-pixel 
image chip is used to calculate the bank migration. Intuitively, because 
the Fourier methods convert from the spatial domain to the frequency 
domain, our detection limit for bank migration becomes limited by the 
frequency content of the transformed images, which depends on the 
width n of the image chip31,46.

Selecting the window size (n). The choice of n reflects a balance  
between the spatial resolution (that is, localizing a bank change esti
mate to a small segment of the riverbank) and the spectral ampli
tude, which translates to the precision of the (Δx, Δy) bank offset 
estimate). There are several considerations in the choice of n. 
On one hand, n should be small enough that bank offsets, (Δx, Δy), 
are uniform across the window. If the image chip is so large that it  
includes a meander bend for example, the magnitude and direction 
of bank change will vary across the image chip and the displacement 
estimate using equation (17) will be a poor representation of local 
estimates of bank migration. On the other hand, n must be large 
enough that signal (image texture representing real differences in 
ground reflectance), rather than noise, is matched between image 
pairs. Having larger n also allows for greater spectral amplitude and 
therefore higher precision in the displacement estimate. In prac-
tice, Leprince et al.31 find that n = 32 pixels reflects a good balance 
between obtaining high-spatial-resolution offset estimates (a con-
sideration that favours low n) and having both sufficient signal in 
the image chips and sufficient spectral resolution to make accurate 
and precise phase offset measurements (a consideration that favours 
high n). The value of n also controls the minimum channel size for  
which we can obtain robust single-bank erosion estimates. For  
example, a chip of n = 32 pixels, centred on the bank margin, typically  
will not capture the opposing riverbank or other side of a meander 
bend for channels greater than about 16 pixels in width (Extended 
Data Fig. 6). For images with 3.0-m spatial resolution (images from 
the PlanetScope constellation), this 16-pixel constraint corresponds 
to channels that are 48 m wide.

Remote-sensing datasets. For observing the spatial pattern of  
bank erosion (Extended Data Fig. 9), we use a pair of Sentinel-2 ima
ges (10-m spatial resolution), spaced 6 years apart (30 August 2016  

and 13 July 2022) (Extended Data Fig. 6). For reconstructing the sub- 
seasonal pattern of bank erosion, we require higher spatial resolution, 
so we use PlanetScope satellite imagery (3.0-m spatial resolution, 
16-bit radiometric resolution) from Planet Labs (https://www.planet.
com/). We compile 61 daily image mosaics acquired over the period 
2016–2022, for an average of about ten cloud-free image observations 
for each season (the period from May until late October, when the 
river is unfrozen). See Supplementary Table 1 for a list of PlanetScope 
observation dates.

Image pre-processing. A notable challenge in the detection of river-
bank erosion on seasonal timescales is ensuring that changes in river 
stage (water level) are not misinterpreted as bank migration. Extended 
Data Fig. 6 shows an example of how falling river level over the course 
of the 2022 summer season affects the appearance of the riverbank in 
true-colour (RGB) imagery. If these unprocessed true-colour compos-
ites were used as the input to the sub-pixel offset mapping algorithm 
(see above), we would inadvertently track the changing water line rather 
than the eroding riverbank. Therefore, as a first pre-processing step, we 
transform the images shown in Extended Data Fig. 6 using the normal-
ized difference vegetation index (NDVI) band ratio:

NDVI =
NIR − R
NIR + R

(18)

in which NIR and R represent the intensity values associated with the 
near-infrared and red bands of light, respectively. The NDVI is princi-
pally sensitive to the presence of vegetation, rather than the presence 
of water. Notice in Extended Data Fig. 6 that exposed sand bars and 
water have relatively similar NDVI values. Thus, the primary intensity 
gradients in the NDVI images are between the vegetated riverbank 
and the channel (which, depending on the river stage, can consist of 
sand or water).

The NDVI values of the river and surrounding vegetated banks vary 
from image to image as a function of the water turbidity, the seasonal 
changes in vegetation (for example, the greening ‘leaf-out’ period 
in the spring and autumnal senescence in the fall) and atmospheric 
conditions that affect the relative intensities of light measured in 
the near-infrared versus red wavelengths of light. However, regard-
less of these seasonal changes and atmospheric correction effects, 
it is always true that the strongest gradient in the NDVI images is 
between the vegetated riverbank and the active channel (Extended 
Data Fig. 6). Therefore, as a second pre-processing step, we fit a simple 
two-component Gaussian mixture model to the distribution of NDVI 
values in each image to differentiate the vegetated floodplain from 
the unvegetated channel. Finally, we compute the image gradient 
of the fuzzy-classified map generated from the Gaussian mixture 
model to highlight the location of the riverbank. These image gradi-
ent maps are the input to the sub-pixel image-correlation algorithm 
described above.

Channel identification. We developed an automated pipeline for 
channel extraction and the identification of riverbanks from satellite  
imagery. The pipeline uses a combination of thresholding, morphologi-
cal opening operations and skeletonization. It is implemented in MAT-
LAB (see ‘Code availability’). Briefly, the NDVI is calculated following 
equation (18) and then the image is thresholded to the 10th percentile of 
the NDVI. The result is a binary mask that separates unvegetated pixels 
(principally rivers and lakes) from the other pixels. Next, we perform 
a morphological opening operation (with a disk-structuring element 
of size 5 pixels = 50 m) to eliminate the small channels from the binary 
water mask. We then identify the river from the other water features 
(for example, lakes) in the water mask using a connected-component 
analysis. Finally, we identify the river centreline by skeletonizing the 
river mask.

https://www.planet.com/
https://www.planet.com/


Calculating river curvature. We follow ref. 24 and compute channel 
curvature (which is the inverse of the radius of curvature, R) as:

R
x y y x

x y

1
=

′ ″ − ′ ″

( ′ + ′ )
(19)2 2 3/2

in which x′ and x″ represent the first-order and second-order deriva-
tives of x, respectively. In equation (19), we use the x and y coordinates 
of the channel centreline, extracted at 10-m intervals and smoothed 
with a Savitzky–Golay finite impulse response smoothing filter24,50 with 
polynomial order 3 and frame length of 33. The frame length is chosen 
on the basis of the chip width, n = 32, plus 1 to ensure that the frame 
length is an odd integer50. Note that the curvature (equation (19)) has 
units of m−1. We multiply the curvature in equation (19) by the channel 
width to obtain the local ‘normalized curvature’ (see equation (25)), 
which is dimensionless.

Extracting robust erosion rates from noisy time series
We perform the sub-pixel riverbank offset detection algorithm 
described in Extended Data Fig. 6 between every successive pair of 
images in the PlanetScope time series. The result is a 61-element 1D 
time series of inferred bank displacements for each eroding bank loca-
tion along the Koyukuk River. Note that, although our algorithm can 
detect riverbank displacements on the order of one-tenth the pixel 
size (0.3 m), the reported uncertainty in the georeferencing of the 
PlanetScope images is <10 m root mean square error (typically <5 m 
root mean square error) (https://www.planet.com/). Therefore, if 
uncorrected, image-to-image co-registration errors can overwhelm 
the signal of riverbank erosion.

To obtain more robust erosion rates from the PlanetScope time 
series, we make use of the fact that the Fourier methods (Extended 
Data Fig. 6) are so computationally efficient that it is tractable to meas-
ure the bank displacements not just between successive images, but 
between every image to every other image. Thus, instead of 61 pairwise 
comparisons (in which the first image is compared with itself), we per-
form 61 × 61 = 3,721 pairwise comparisons. Although this decision 
makes the computational cost of performing the time-series analysis 
scale like O m( )2  rather than  O m( ), in which m is the number of images, 
the advantage of this approach is that it allows us to perform two types 
of filtering—stacking and bracketing—that help us see through the 
noise of image-to-image co-registration errors and extract robust ero-
sion records.

The pairwise bank displacements computed from each image to 
every other image can be visualized in matrices such as that in Extended 
Data Fig. 7. In the matrix E(x, y) shown in Extended Data Fig. 7, each 
row (y) represents a different template image and each column (x) 
represents a different search image. Along the diagonals, images are 
compared with themselves, so the estimated offsets are 0. The triangles 
on either side of the matrix diagonal are mirror images of each other 
(related through a negative sign):

E x y E y x( , ) ≈ − ( , ) (20)

For example, position (1, 40) compares image 1 as the reference image 
to image 40 as the search image, whereas position (40, 1) compares 
image 40 as the reference image to image 1 as the search image. In 
principle, the approximate equality in equation (20) should be exact. 
However, because we follow ref. 31 and use different taper functions 
for the template and search images (V1 and V2 in equation (17)), E(x, y) 
and −E( y, x) can differ slightly from each other. When E(x, y) and −E( y, x) 
diverge substantially, the bank offset measurement is not robust and we 
reject the measurement. Thus, computing E(x, y) and −E( y, x) separately 
is a way to detect and remove outliers.

As a simple experiment to illustrate how we handle the data in E(x, y), 
we create a synthetic time series of riverbank erosion based on the 

discharge climatology for the Koyukuk River (Extended Data Fig. 1a) 
and the model for entrainment-limited erosion (equation (6)). Extended 
Data Fig. 7c shows the instantaneous erosion rate and Extended Data 
Fig. 7d shows the cumulative bank displacement from 2016 to 2022. 
We then sample the cumulative displacement curve at the times of our 
PlanetScope image acquisitions. The matrix in Extended Data Fig. 7e 
shows the bank offsets extracted from this synthetic, noise-free dataset. 
The blocky appearance of the displacement matrix is the result of the 
limited temporal resolution of our image time series. Note that the 
bank offsets in Extended Data Fig. 7e change monotonically with time. 
Our real (noisy) data have non-monotonic jumps, which are largely the 
result of co-registration errors (Extended Data Fig. 7f). Our goal is to 
find the most probable monotonic erosion record that underlies (gives 
rise to) our noisy observations. We achieve this through: (1) stacking; 
(2) bracketing; and (3) Markov chain Monte Carlo (MCMC) simulations.

Stacking. Each row of the matrix E(x, y) represents the time series 
of bank displacements constructed by comparing each image in the 
PlanetScope dataset (see Supplementary Table 1) (the ‘search’ image) 
to the same ‘template’ image. For example, the first row of Extended 
Data Fig. 7e compares every image to the image acquired on 31 August 
2016. The second row compares every image to the image acquired on 
4 September 2016 and so on. Thus, averaging the relative displacement 
sequences encoded by each row of E(x, y) (which we refer to here as 
stacking) helps to reduce noise associated with co-registration errors 
in the template image.

Bracketing. Note that co-registration errors in the search image are 
not reduced by the stacking procedure above, as each column of E(x, y) 
has the same search image (so every row being stacked has the same 
co-registration error in the x position of E(x, y)). To make the recon-
structed displacement time series more robust to errors in the search 
image co-registration, we compute the cumulative displacements 
through each row of E(x, y) while skipping every other column, every 
two columns, every three columns, every four columns and so on. 
Thus, the estimated cumulative displacement at any time t in the time  
series is bracketed by displacement estimates that were made from 
the images surrounding the image acquired at time t but not from that  
image at time t itself.

MCMC sampling to identify monotonic paths through the bank- 
position time series. Finally, we impose the constraint that the cumu-
lative displacement record should be a monotonic function of time. 
The assumption here is that—in most cases—a riverbank should not 
transition from eroding to accreting over the course of our 6-year obser
vational window. Thus, non-monotonic back-stepping of the bank 
position is most probably the result of unmitigated co-registration 
errors (Extended Data Fig. 7h). We seek the most probable monotonic 
path through the cumulative displacement time series (Extended Data 
Fig. 7h). This problem is similar to the task of constructing a geological 
age model for a sequence of stratigraphic layers51–54. Steno’s principle 
of superposition states that each successive stratigraphic layer should 
be younger than the one before it. This geological constraint helps 
us reduce the uncertainties of depositional ages of horizons dated 
using radioisotopic measurements51. In the example of constructing 
a geological age model, we can perform a random walk through the 
sequence of radioisotopic ages (which are a function of height in a 
stratigraphic column) with the constraint that the age can either get 
younger or stay the same—but not get older—as we move our way up 
the stratigraphic column51–54. We perform the same type of procedure 
using our cumulative displacement time series (Extended Data Fig. 7i).

Identification and removal of seasonal biases using measured dis-
placements at slowly eroding banks. As shown in Extended Data 
Fig. 6, a critical step in our workflow is the transformation of the original 

https://www.planet.com/
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multispectral image (RGB-NIR) to a greyscale image that accentuates 
the image gradient at the channel–floodplain boundary. This spectral 
transformation should mute the variation in image intensity resulting 
from changes in water turbidity, river stage, soil water content and so 
on over the course of the season, such that the position of the channel–
bank boundary is always the strongest feature (contrast) in the image. 
We find that the NDVI (equation (18)) is a simple band transformation 
that accomplishes this goal (Extended Data Fig. 6). However, to ensure 
that changes in water level or vegetation greenness and so on do not bias 
the results of our seasonal reconstructions of erosion rates (Extended 
Data Fig. 7), we compute the bank offset matrix for all relatively ‘static’ 
bank locations along the 450-km reach of the Koyukuk River (Extended 
Data Fig. 9), defined as those banks that have eroded or accreted <1 m 
over the 6-year time series. Displacements from co-registration errors 
(the {Δx, Δy} shifts from image to image) largely cancel out by stacking 
the displacement observations from many banks (see Supplementary 
Fig. 1). However, inferred displacements caused by water-level drops 
for example will not disappear during stacking, because a water-level 
drop would be measured as bank accretion no matter what orientation 
the riverbank is in (Supplementary Fig. 1). Therefore, seasonal patterns 
of erosion/accretion in our stacked dataset from all slowly eroding/
accreting banks probably reflect seasonal biases in our detection of 
the channel–floodplain boundary and are therefore removed from 
our displacement matrix:

E x y E x y E x y( , ) = ( , ) − ( , ) (21)cor orig slow

in which Ecor(x, y) is the corrected pairwise displacement matrix, 
Eorig(x, y) is the original (uncorrected) pairwise displacement matrix 
and Eslow(x, y) is the stacked pairwise displacement matrix for all slowly 
eroding/accreting banks (≤1 m of change detected over our 6-year 
observational window).

Capturing the spatial pattern of riverbank erosion
Phenomenological models for river meandering and the ‘upstream 
adjusted curvature’. It has long been observed from field55–58, labora-
tory59 and remote-sensing24,60 observations that the rate of riverbank 
erosion is not constant along a meandering river but instead focused 
at the river bends57. This spatial focusing of river migration rate is the 
result of stress gradients developed between the inner and outer edges 
of a meander bend, which drive differential erosion and deposition of 
sediment49,56,58,61,62. The first field observations suggested that there 
was a non-monotonic relationship between river curvature and migra-
tion rate57; migration rates peaked when the radius of curvature is two 
to three times the channel width57. This relationship was reproduced 
in subsequent studies63–66. However, as pointed out by Furbish40 and  
others, comparing bank erosion rates to the local river curvature 
(Extended Data Fig. 9) neglects the cumulative aspect of how river 
curvature affects near-bank shear stresses40. River curvature must be 
sustained for some distance in order for the high-velocity filament 
of flow in the river channel to be displaced towards the outer bend, 
increasing the local velocity gradient and thus the shear stress on the 
outer bank40,42,49. Thus, two river bends with the same radius of curva-
ture can have different migration rates40. Likewise, the bank erosion 
rate at the entrance to a bend should be less than the migration rate at 
the downstream side of the bend40 (Fig. 1f). This cumulative behaviour 
of river curvature is captured empirically/phenomenologically by 
convolutional models such as the model of Howard and Knutson39. 
The bank migration rate, M(s), is modelled as:
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in which s is the along-river coordinate system (longitudinal distance),  
ζ is the distance upstream from the point of interest and G(ζ) is a 

weighting function that decays exponentially upstream from the point 
of interest:

G ζ( ) = e (23)αζ−

The α term in equation (23) controls the rate of decay of the influence 
of the upstream curvature and it can be parameterized as a function 
of the friction factor, Cf (dimensionless), and the water depth, H (m) 
(refs. 24,39):

α C H= 2 / (24)f

The term M0(s) represents what Howard and Knutson39 refer to as 
the ‘nominal’ migration rate, that is, the rate that would be observed 
if migration were only a function of local curvature. The simplest func-
tional dependence for M0(s) is39:
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in which k (m yr−1) is a migration rate constant, W (m) is the channel 
width and R (m) is the local radius of curvature. We refer to the dimen-
sionless ratio W/R as the ‘local normalized curvature’. In equation (22), 
Ω and Γ are constants (−1 and 2.5, respectively)39.

The intuition underlying the Howard and Knutson39 model (equa-
tion (22)) is the same as that shown in the cartoon in Fig. 1f; the river 
migration rate depends not only on the local curvature but also on 
the river curvature upstream of the point of interest. However, the 
influence of the neighbouring curvature declines as we move farther 
from the point of interest. This intuition is confirmed by theoretical 
models in which bank erosion is considered to be a linear function of 
the near-bank excess velocity, which can be approximated using the 
shallow water equations49.

Accounting for the cumulative effects of curvature rather than 
just the local curvature makes the sigmoidal relationships shown in 
Extended Data Fig. 9c–f reduce to a simple first-order (quasi-linear) 
relationship24,60 between the bank erosion rate, E (m yr−1), and what we 
refer to as the ‘lag-adjusted dimensionless curvature’24,60 (Extended 
Data Fig. 9h–l). The lag-adjusted dimensionless curvature (C) is 
defined using the convolutional formulation of Howard and Knutson39  
(equations (22)–(25)):
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Equation (26) simply modifies the local normalized curvature (W/R) 
by the weighting function G(ζ) that decays exponentially upstream from 
the point of interest. On the basis of equation (22), the bank migration 
rate, M, is a simple linear function of the lag-adjusted dimensionless 
curvature (C):

M kC= (27)

in which k (m yr−1) is the same migration rate constant as in equa-
tion (25). In Figs. 1 and 2, we compute the lag-adjusted dimensionless 
curvature (C) (equation (26)) using measurements of river width and 
river curvature. We then compare C with the observed migration rates 
to quantify k. The quantity k conveys how fast river migration proceeds 
for a given amount of river curvature. This parameter thereby removes 
the first-order control of river geometry (curvature) in setting local 
river migration rates24 (Figs. 1 and 2) and highlights the role of bank 
material properties.

Field evaluation of near-surface permafrost map. To evaluate the  
accuracy of the Pastick et al.32 Alaska-wide permafrost map for our study 



area along the Koyukuk River (Fig. 2), we used a permafrost probe to 
collect n = 176 permafrost presence/absence and active layer thickness 
observations during field expeditions to the Koyukuk River in July 2018 
(n = 137), June 2022 (n = 2) and October 2022 (n = 37)67 (Extended Data 
Fig. 8). Our ground-truth observations suggest that applying a simple 
classification threshold value of 40% to the Pastick et al.32 permafrost 
probability map can identify permafrost presence/absence with an 
average accuracy of 69% (Extended Data Fig. 10).

Data availability
The Sentinel-2 satellite images used to extract the 2016–2022 migration 
rates shown in Fig. 1 are freely available from the European Space Agency 
on data portals such as the Copernicus Open Access Hub (https:// 
scihub.copernicus.eu/). The PlanetScope images used for the seasonal 
time-series analysis (Fig. 3) are available from Planet Labs (https://
www.planet.com). The stream gauge data in Extended Data Fig. 2 are 
available from the United States Geological Survey (https://waterdata.
usgs.gov/nwis). The permafrost map used in Fig. 2 and Extended Data 
Fig. 10 is from ref. 32 and is made available by the United States Geo-
logical Survey (https://www.sciencebase.gov/catalog/item/5602ab5a
e4b03bc34f5448b4). Our spatial measurements of riverbank erosion 
from the Sentinel-2 and PlanetScope time-series analysis (Figs. 1–3) are 
packaged on the NSF Arctic Data Center68: https://doi.org/10.18739/
A2HM52M6Q. Our field observations of permafrost presence/absence 
(Extended Data Fig. 10) from summer 2018 and fall 2022 are published 
on the ESS-DIVE repository67 (https://doi.org/10.15485/2204419).

Code availability
Our methodology for measuring sub-pixel bank erosion, as well as 
our workflow for channel extraction and the measurement of channel 
morphometrics (width, radius of curvature, longitudinal distance and 
so on) (Fig. 1), is available on the NSF Arctic Data Center68: https://doi.
org/10.18739/A2HM52M6Q. The code is written in MATLAB.
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Extended Data Fig. 1 | Discharge and water temperature seasonality on  
the Koyukuk River (Alaska) and theoretical predictions for the timing of 
riverbank erosion. a, Discharge climatology for the Koyukuk River at Hughes 
(66.04696° N, 154.26097° W) based on data from the USGS streamflow station 
during the period 1962–1981 (Extended Data Fig. 7a). Note that 1 ft3/s is equal  
to approximately 0.028 m3/s. Discharge peaks during the spring freshet in late 
May to early June. Some years have a second discharge peak associated with 
August rains (Extended Data Figs. 3 and 7a). The Koyukuk River maintains very 
low discharge from late October to mid-May, when the surface of the river is 
frozen. b, Average water temperature time series from the USGS gauge at Pilot 
Station on the Yukon River (61.93369° N, 162.88293° W). The USGS gauge at 
Hughes does not record water temperature, which is why we rely on the Pilot 
Station temperature record. However, comparison of water temperatures 
measured by HOBO loggers deployed on the Koyukuk River near Huslia during 
the summers of 2022 and 2023 show that the water temperature at Pilot  
Station is a good proxy for the water temperature on the Koyukuk River. Water 
temperatures approach 0 °C during the river-ice ‘break-up’ and ‘freeze-up’ 
periods, and peak in mid-July, at a time when the water discharge approaches  
its summertime low (a). c–e, Theoretical predictions for the sub-seasonal 
patterns of riverbank erosion under the endmember scenarios that erosion  
is controlled by: ice gouging during break-up69–72 (c), the thawing of pore-ice  
in frozen bank sediments14,26,27,73 (d) and the ability for flowing river water to 
entrain bank sediment14,36–38 (e). The time series in c is an illustrative cartoon. 
The break-up period in May is probably the time of greatest erosive action from 
ice21, although the freeze-up period in October can proceed in fits and starts, 
during which thin ice lenses flow downstream and could erode thawed 
riverbanks. The uncertainty envelopes in d and e propagate the discharge  
and water temperature variability in a and b using Monte Carlo simulations.



Extended Data Fig. 2 | Illustration and justification for our method of 
estimating discharge on the Koyukuk River (which is missing gauge data 
during our study period from 2016 to 2022) based on the discharge time 
series from nearby rivers. a–e, Discharge records from USGS stream gauges  
at Hughes (66.04696° N, 154.26097° W) (a–e), Pilot Station (61.93369° N, 
162.88293° W) (a), Nenana (64.56494° N, 149.09400° W) (b), Stevens Village 
(65.87510° N, 149.72035° W) (c), Eagle (64.78917° N, 141.20009° W) (d), and 
Fairbanks (64.79234° N, 147.84131° W) (e). Note that 1 ft3/s is equal to 
approximately 0.028 m3/s. The discharge data for the Koyukuk River at 
Hughes are shown in brown and the discharge data from all other stations are 
shown in green. f–j, A zoom-in of the period 1977–1982, when all six stations 
were recording discharge data. Note the similarity in the hydrographs between 
the stations. We ask: can we use the historical period of overlap (f–j) to train a 
model that infers the discharge on the Koyukuk River given the hydrographs 

recorded at nearby stations? k, Consider the specific case of the streamflow 
recorded at Hughes, Pilot Station and Stevens Village. The Koyukuk River 
carries roughly 20% of the streamflow observed on the Yukon River at Stevens 
Village (c,h). Thus, the difference in discharge observed at Stevens Village 
versus Pilot Station (that is, before and after the confluence with the Koyukuk 
River, respectively) should encode information about the discharge from the 
Koyukuk River, modulated by a characteristic convolutional smoothing of the 
hydrograph from upstream to downstream. l, We use a simple neural network 
to infer the hydrograph from the Koyukuk River (which is not directly observed 
during our study period from 2016–2022) based on the hydrographs of the 
Yukon River at Stevens Village and Pilot Station (which have continuous 
observational records from 2016 to 2022). We train the neural network using 
the period of overlap when all three stations were collecting data from 1977  
to 1982 (Extended Data Fig. 3).
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Extended Data Fig. 3 | Training and implementation of our neural network 
used to infer the ‘missing’ discharge time series on the Koyukuk River 
based on the discharge records at Stevens Village and Pilot Station on the 
Yukon River (before and after the confluence with the Koyukuk River)—
see Extended Data Fig. 2. a–e, The neural network is trained using periods of 
overlap in the historical record when all three USGS streamflow stations were 
active. In a–e, the R2 values represent the model performance evaluated using 

leave-one-out cross-validation. The neural network predicts the historical 
discharge time series with a mean R2 of 0.82. f–j, Implementation of the neural 
network for estimating the Koyukuk River discharge records during the  
period 2017–2021. These datasets are used to make model predictions for the 
seasonal and interannual patterns of riverbank erosion under the thaw-limited, 
entrainment-limited and combined scenarios (Extended Data Fig. 4).



Extended Data Fig. 4 | Time series for quantifying annual erosion rates.  
a,b, Power-law regressions relating the water discharge, Qw, to the average 
flow depth (H) (a) and average flow velocity (U) (b) for the USGS station at 
Hughes. Each data point represents a field measurement from the USGS 
(mostly from the period 1962–1981). c, In situ water temperature observations 
from Pilot Station on the Yukon River. d, Water discharge time series for the 
Koyukuk River estimated from the neural network in Extended Data Fig. 3.  
e,f, Time series of average flow depth (H) and average flow velocity (U) 
constructed from the discharge dataset in d and the power-law fits in a and b. 
g, Predicted patterns of thaw-limited and entrainment-limited erosion based 
on equations (3)–(6) and the H and U time series in e and f. h, The minimum of 
the thaw-limited and entrainment-limited erosion curves in g. In g and h, the  
y axis gives the instantaneous erosion rate (that is, the total annual erosion 
that would occur if that rate were sustained for a full 365-day period). i–k, The 

integrated areas under the erosion rate curves (g and h) for thaw-limited (i), 
entrainment-limited ( j) and combined (k) erosion scenarios. l, The observed 
erosion rates for 2017–2021. Note that the model parameters in equations (3)–(6) 
are optimized separately for each scenario (i–k) to have the interannual 
erosion fingerprint best match the observations (l) (see Extended Data Fig. 1). 
Even after optimization, the thaw-limited and entrainment-limited endmembers 
can only replicate the interannual pattern of erosion with R2 of 0.44 and 0.57, 
respectively. The combined thaw and entrainment scenario reproduces the 
interannual pattern with R2 = 0.85. To account for the fact that the thaw-only, 
entrainment-only and combined thaw and entrainment models have different 
numbers of independent parameters (1, 2 and 3, respectively), we also compute 
the adjusted R2 value (see equation (15)). The Radj

2  metric includes a penalty for 
models with more parameters, yet it still supports the conclusion that the 
combined thaw and entrainment model best explains the data.
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Extended Data Fig. 5 | Simulations for how the reach-averaged riverbank 
erosion rates for the Koyukuk River may respond to changes in the total 
water discharge, the discharge seasonality, the water temperature, and 
the permafrost abundance in the riverbanks. We use the combined thaw- 
limited and entrainment-limited erosion model (Fig. 3), calibrated using our 
observations for the seasonal and interannual patterns of bank erosion, to 
explore changes in erosion rates in response to perturbations in total water 
discharge (Qw), discharge seasonality, and water temperature (Tw). Note that 
our perturbations to the discharge seasonality involve reallocating 0–30% of 
the water discharge from the first 30 days of ice-free conditions (mid-May to 

mid-June on the Koyukuk River) to the mid-summer (in this case, to the month 
of August). This experiment simulates reduced springtime discharge as a result 
of a smaller snowpack, compensated by increasing summertime rain8. Because 
we lack robust constraints on whether or how the ‘flashiness’ of the Koyukuk 
River hydrograph will change, we reallocate the seasonal discharge through 
simple linear scalings of the historical discharge records (Extended Data Fig. 2). 
The numbers in bold indicate the reach-averaged bank erosion rates in metres 
per year and the numbers in parentheses indicate the percent change relative 
to the modern (2016–2022) erosion rates.



Extended Data Fig. 6 | Methodology for measuring sub-pixel erosion along 
riverbanks. a, An illustration of the workflow for the sub-pixel detection of 
riverbank erosion. b,c, An example of the two Sentinel-2 images used to 
compute the migration of the Koyukuk River (2016–2022) in Extended Data 
Fig. 9. The crops in b and c show a region of the Koyukuk River near Huslia 
(65.6966° N, 156.3824° W). Note that the river stage and sediment load are 
higher on 30 August 2016 compared with 13 July 2022, causing the river colour 
(RGB values) and the position of the land–water boundary to be different in the 
two images. We want to make sure that our algorithm records the net migration 
of the river as a result of bank erosion, rather than the variable exposure of sand 
on the riverbanks resulting from rising and falling river stage. To do so, we 
transform the multispectral satellite image to the dimensionless NDVI band 
ratio (equation (18)). The NDVI accentuates the spectral difference between  
the river water and the vegetated floodplain while collapsing the spectral 
difference between unvegetated sand and river water. The result is that the 

NDVI image is relatively insensitive to changes in water level (which expose or 
submerge unvegetated bars). Next, we extract an n × n-pixel chip, centred at  
the bank edge for the location of interest, from the image acquired at time 1.  
We extract an n × n-pixel chip at the same location in the image acquired at time 2. 
We use Fourier methods to take the 2D cross-correlation of the two image  
chips. The 2D cross-correlation spectrum, which we upsample by a factor of 10, 
peaks at a (Δx, Δy) value that records the estimated riverbank displacement 
between time 1 and time 2. Note that, given the relatively linear bank geometry 
(at least on the scale of the n × n-pixel chips), the cross-correlation spectrum 
has a ridge-like geometry rather than a sharp peak. Thus, when searching  
for the maximum in the 2D cross-correlation spectrum, we search along a  
vector that is perpendicular to the orientation of the riverbank (and therefore 
perpendicular to the ridge in the cross-correlation spectrum). d,e, Illustration 
of how we perform the methodology described in a for every position along the 
450-km reach of the Koyukuk River shown in Fig. 1b.
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Extended Data Fig. 7 | A synthetic dataset to illustrate our method  
of reconstructing erosion rates from pairwise bank displacement 
observations. a, Continuous discharge time series for the Koyukuk River from 
the USGS station at Hughes (1961–1982). b, Average annual discharge cycle 
based on the data in a. c, A simple synthetic time series for erosion rate based 
on equation (6) (the entrainment-limited endmember). The ‘instantaneous’ 
erosion rate gives the total annual erosion that would occur if that erosion rate 
were sustained for a 365-day period. The grey lines depict the times for which 
we have PlanetScope images (see Supplementary Table 1). d, The cumulative 
erosion from the synthetic curve in d. e, A pairwise displacement matrix 
computed from the synthetic cumulative erosion curve in d. f, An example real 
(noisy) displacement record. g, Stacking and bracketing of the displacement 
matrix leads to less noisy cumulative displacement records. Stacking refers  
to averaging the differential displacement time series along each column of  
the matrix in e. Bracketing refers to computing the cumulative displacement 
from every second column, every third column, every fourth column and so  
on. Stacking (averaging over the rows) makes the cumulative displacement 

estimates less sensitive to errors in the co-registration of the template image 
(rows of E(x, y)), whereas bracketing (skipping columns) makes the cumulative 
displacement estimates less sensitive to errors in the co-registration of the 
search image (columns of E(x, y)). h,i, Remaining noise in the stacked and 
bracketed cumulative erosion record (g) is reduced by imposing the constraint 
that the cumulative displacement time series should be a monotonic function 
of time; in most cases, an eroding riverbank should not switch from eroding to 
accreting over the course of our approximately 6-year analysis. Thus, temporary 
back-stepping of the bank position (h) is probably an error. i, We use MCMC  
to construct the most probable monotonic path through the cumulative 
displacement time series. j, Differentiating the record in i with respect to time 
yields an estimate for the instantaneous erosion rate. The green curve shows 
the synthetic curve used to generate the displacement matrix (e) and the grey 
curve gives the reconstructed erosion rate (shown as a stair-step plot rather 
than a continuous curve because our temporal observations are limited to the 
roughly ten cloud-free PlanetScope mosaics each year (Supplementary Table 1).



Extended Data Fig. 8 | Representative field photos of the Koyukuk River 
near Huslia (65.689° N, 156.381° W). a, Scroll bars are arcuate traces of the 
river’s former position recorded in the floodplain landscape. b, The inner bend 

of a channel (point bar) is accretionary, whereas its outer bend (cut bank) is 
erosional. c, A zoom-in on an erosional permafrost cut bank.
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Extended Data Fig. 9 | Spatial patterns of riverbank erosion on the Koyukuk 
River. This figure is similar to Fig. 1 but it shows the river migration rate as a 
function of both the local normalized river curvature (W/R, in which W is the 
river width (m) and R is the local radius of curvature of the channel (m)) (e–g) 
and the lag-adjusted normalized curvature, which is given by equation (26)  
(h–l). Note that the migration rate saturates at high values of local curvature  
in c–f, giving the curvature versus migration rate curves a sigmoidal shape. By 
contrast, the migration rate is a linear function of the lag-adjusted normalized 

curvature24. Notice that the y-axis scale in k and l is two times the scale in h–j.  
In other words, after the confluence of the two threads of the Koyukuk River  
at the location indicated by the black arrow in b, the curvature-normalized 
migration rate increases by a factor of 2. As in Fig. 1, the migration rates were 
measured by applying our sub-pixel offset algorithm to a pair of Sentinel-2 
images from 30 August 2016 and 13 July 2022. Here, as in Fig. 1, we quantify the 
migration rate using the displacement observed on the erosional side of the river 
(see Fig. 1e).



Extended Data Fig. 10 | Field validation of the near-surface permafrost 
map. a, Probability of near-surface (≤1 m depth) permafrost estimated by 
Pastick et al.32. b, Zoom-in to our area of field observations, in which we 
collected n = 176 permafrost probe measurements in July 2018 (n = 137), June 
2022 (n = 2) and October 2022 (n = 37). Blue dots indicate permafrost detected 
and red dots indicate no permafrost detected. c, A comparison between our 
permafrost ground-truth observations (b) and the permafrost probability 
estimates from Pastick et al.32 (an Alaska-wide permafrost map, calibrated 
using n = 16,786 statewide observations of near-surface permafrost, but no 
observations in the region shown in b). d, We explore the accuracy of the 
Pastick et al.32 permafrost map for the Koyukuk region based on applying a 

simple classification threshold (that is, classifying all pixels with a reported 
permafrost probability below the threshold as not permafrost and all pixels 
with a reported permafrost probability above the threshold as permafrost). 
We sweep through all possible threshold values, from 0% to 100%, and 
compute the true positive and true negative rates, as well as the total accuracy. 
e, The threshold value of 40% yields the highest total classification accuracy. 
The true-negative, false-negative, false-positive and true-positive values for 
this classification are shown in the confusion matrix in e. The satellite imagery 
in b is from Bing Maps Aerial, reprinted with permission from Microsoft 
Corporation.
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Extended Data Table 1 | Physical constants and parameters used for equations (3)–(6)

Note that the parameters A, M and τcrit are poorly constrained from the existing literature. In Extended Data Fig. 4i–k, we perform an optimization, allowing A, M and τcrit to adopt the values such 
that the estimated annual erosion over the period 2017–2021 best matches the observations for the Koyukuk River (Extended Data Fig. 4l). The thaw-limited model has the free parameter {A}, the 
entrainment-limited model has the free parameters {M, τcrit} and the combined model has all three free parameters {A, M and τcrit}. Note that the improvement in the goodness of fit (quantified 
through R2) from Extended Data Fig. 4i to Extended Data Fig. 4k could simply represent the increase in the number of tunable parameters from one (thaw-only) to two (entrainment-only) to three 
(combined thaw and entrainment). To try to address this effect arising from the change in the number of model parameters, we also compute the adjusted R2 value (see equation (15)), which 
includes a penalty for models with more parameters. Sources: refs. 9,15,27,37,38,74,75.


	Permafrost slows Arctic riverbank erosion

	Using space and time to constrain the role of permafrost

	The spatial pattern of bank erosion

	The sub-seasonal pattern of bank erosion

	The interannual pattern of bank erosion


	Resolving change at sub-pixel length scales

	Fourier methods for change detection

	Three tests of whether permafrost slows river migration

	The spatial pattern of bank erosion

	The sub-seasonal pattern of bank erosion

	Interannual variability of bank erosion


	Modelling future erosion behaviour

	Implications for a changing Arctic

	Online content

	﻿Fig. 1 Riverbank migration rates quantified for the approximately 450-km-long alluvial reach of the Koyukuk River near Huslia, Alaska.
	﻿Fig. 2 Spatial observations show that riverbank erosion rates are systematically slower in meanders that erode permafrost compared with those that erode unfrozen terrain.
	﻿Fig. 3 Model predictions for—and observations of—the temporal patterns of riverbank erosion.
	Extended Data Fig. 1 Discharge and water temperature seasonality on the Koyukuk River (Alaska) and theoretical predictions for the timing of riverbank erosion.
	Extended Data Fig. 2 Illustration and justification for our method of estimating discharge on the Koyukuk River (which is missing gauge data during our study period from 2016 to 2022) based on the discharge time series from nearby rivers.
	Extended Data Fig. 3 Training and implementation of our neural network used to infer the ‘missing’ discharge time series on the Koyukuk River based on the discharge records at Stevens Village and Pilot Station on the Yukon River (before and after the conf
	Extended Data Fig. 4 Time series for quantifying annual erosion rates.
	Extended Data Fig. 5 Simulations for how the reach-averaged riverbank erosion rates for the Koyukuk River may respond to changes in the total water discharge, the discharge seasonality, the water temperature, and the permafrost abundance in the riverbanks
	Extended Data Fig. 6 Methodology for measuring sub-pixel erosion along riverbanks.
	Extended Data Fig. 7 A synthetic dataset to illustrate our method of reconstructing erosion rates from pairwise bank displacement observations.
	Extended Data Fig. 8 Representative field photos of the Koyukuk River near Huslia (65.
	Extended Data Fig. 9 Spatial patterns of riverbank erosion on the Koyukuk River.
	Extended Data Fig. 10 Field validation of the near-surface permafrost map.
	Extended Data Table 1 Physical constants and parameters used for equations (3)–(6).




