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ABSTRACT: Here, we present FLiPPR, or FragPipe LiP (limited proteolysis) Processor, a tool
that facilitates the analysis of data from limited proteolysis mass spectrometry (LiP-MS)
experiments following primary search and quantification in FragPipe. LiP-MS has emerged as a
method that can provide proteome-wide information on protein structure and has been applied
to a range of biological and biophysical questions. Although LiP-MS can be carried out with
standard laboratory reagents and mass spectrometers, analyzing the data can be slow and poses
unique challenges compared to typical quantitative proteomics workflows. To address this, we
leverage FragPipe and then process its output in FLiPPR. FLiPPR formalizes a specific data
imputation heuristic that carefully uses missing data in LiP-MS experiments to report on the most
significant structural changes. Moreover, FLiPPR introduces a data merging scheme and a
protein-centric multiple hypothesis correction scheme, enabling processed LiP-MS data sets to be
more robust and less redundant. These improvements strengthen statistical trends when
previously published data are reanalyzed with the FragPipe/FLiPPR workflow. We hope that
FLiPPR will lower the barrier for more users to adopt LiP-MS, standardize statistical procedures for LiP-MS data analysis, and
systematize output to facilitate eventual larger-scale integration of LiP-MS data.
KEYWORDS: limited proteolysis, structural proteomics, computational tools, data analysis workflow, bioinformatics

■ INTRODUCTION
Structural proteomics is an expanding subfield within the space
of proteomics that aims to explore protein structure, dynamics,
and stability in a global, unbiased manner. The field is defined
by several emerging methods that convert structural
information into mass and abundance, enabling mass
spectrometry data to measure structural information of many
distinct proteins in a complex mixture. Four leading structural
proteomic methods include hydrogen−deuterium exchange
(HDX),1−3 methionine oxidation methods (e.g., SPROX),4,5
fast photochemical oxidation of proteins (FPOP),6,7 and
limited proteolysis mass spectrometry (LiP-MS).8−10 In these
methods, regions within proteins that are solvent-accessible are
labeled, respectively, by deuteration at backbone amides, by
oxidation at methionine from H2O2, by oxidation at any amino
acid from HO radicals, or by cleavage from a broad-spectrum
protease.11 Cross-linking mass spectrometry (XL-MS) is
another method that can provide rich structural information
in the form of residue−residue contacts (which can serve as
distance restraints),12−15 though it differs from the other
methods in that it requires sequencing low-abundance cross-
linked peptides, creating a unique set of technical
challenges.16,17
Among the labeling-based methods, LiP-MS has emerged as

a popular structural approach because it has a few key
advantages (e.g., residue-level resolution, proteome-wide
coverage) without some drawbacks that affect other methods

(e.g., need for specialized purpose-built instruments, need to
identify rare low-abundance species). In its modern form
(devised by Feng et al.9), the experimentalist subjects a
complex mixture of proteins to a pulse of proteolysis with a
broad-spectrum protease (typically Proteinase K, also referred
to as PK) under native conditions, causing solvent-accessible
or unstructured portions within proteins to get cleaved (Figure
1A).9 Afterward, the sample is subjected to in-solution trypsin
digest under denaturing conditions, which produces a mixture
of tryptic and half-tryptic peptides that are sequenced by LC-
MS/MS. The nontryptic cut-site of each half-tryptic peptide
reveals a residue that was solvent-accessible in the parental
protein. LiP-MS is a very accessible structural proteomic
method because, in most samples, half-tryptic peptides are
numerous, abundant, and do not require specialized search
settings to identify. Data-dependent acquisition (DDA)8,18 and
data-independent acquisition (DIA)10,19 workflows have both
been implemented. So far, it has been applied to probe a range
of biological and biophysical questions at the proteome scale,
such as metabolic rewiring in response to nutrients,19 aging in
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yeast,20 aging in rodents,21 thermostability,22 and protein
folding,18,23 among others.
A LiP-MS study is usually designed as a quantitative

experiment in which two (or more) closely related samples are
generated and subjected to the same workflow; half-tryptic
peptides that are present with significantly different abundan-
ces between two sample types represent locations associated
with a structural change (strictly speaking, a change in
proteolytic susceptibility) between the respective conditions.
Most studies to date have employed area-under-the-curve
label-free quantification (LFQ) to assess these abundance
differences, with a few studies applying SILAC quantification
or isobaric mass tag methods instead.5,8,24,25 Some key
advantages of LFQ-based quantification are its high dynamic
range and remarkable ability to independently assess missing
features in distinct conditions (or replicates),26,27 which has
outsized importance in LiP-MS and can provide very insightful
information if used judiciously.

The experimental details to prepare samples for LiP-MS
have been carefully developed and advanced by Picotti and co-
workers,10 and we have used them with minor modifications in
our adaptation of the method to study protein refolding (see
the Experimental Section). On the data analysis side, however,
we have found that several developments from our lab have
been valuable. While the relevance of these improvements was
first realized in the context of our ongoing studies applying
LiP-MS to protein folding, we believe they would be useful for
LiP-MS studies in general, and here we report a computational
tool called FLiPPR (FragPipe LiP-MS Processor) to formalize
our data analysis workflow and facilitate its adoption by the
structural proteomics community.
First, FLiPPR seamlessly accepts output from FragPipe

(Figure 1A), an open software suite developed by the
Nesvizhskii lab that has fast, powerful, and state-of-the-art
algorithms for spectral search (MSFragger)28,29 and label-free
quantification with FDR-controlled match between runs
(IonQuant) to analyze both DDA- and DIA-based studies.28,30

Figure 1. Summary of LiP-MS workflow and processing in FLiPPR. (A) The top row is a simple schematic of LiP-MS sample preparation, featuring
a control condition (red) and a test condition (blue) simultaneously subjected to limited proteolysis (LiP) by Proteinase K (PK) and then
complete trypsinolysis. The second row represents data handling in the FLiPPR pipeline: raw mass spectra are searched and quantified in FragPipe,
and the ions file is processed by FLiPPR, which produces a range of outputs featured in the third row. (B and C) How FLiPPR treats missing data
at the ion level. Case i: if quantifications are available for an ion in all replicates of test and control, then averages are calculated, and the P-value is
assessed with a two-tailed t test. Case ii: if one quantification is missing in either the test or the control, the missing value is dropped, and the P-
value is assessed with a two-tailed t test comparing n to n − 1 values. Case iii: if all the values are missing in either the control or the test (in the
example shown in B, it is the control) and all the values are present in the other condition, then the ion is considered “all-or-nothing” (AON). The
n missing values are filled by Gaussian imputation, then averages are calculated as in case i; P-values are calculated with a one-tailed test. All other
permutations of missing data result in an ion being disqualified.

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.3c00887
J. Proteome Res. 2024, 23, 2332−2342

2333

https://pubs.acs.org/doi/10.1021/acs.jproteome.3c00887?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.3c00887?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.3c00887?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.3c00887?fig=fig1&ref=pdf
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.3c00887?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Most DDA-based LiP-MS studies to date (including ours)
have employed Proteome Discoverer31 to perform search and
LFQ (via the Minora feature detector node), though we have
found that this workflow has been rate-limiting, particularly for
studies that cross-compare an extensive set of conditions (e.g.,
LFQs with >9 raw files) which run very slowly. Indeed, our
initial motivation for developing FLiPPR was to facilitate a
shift to FragPipe to analyze LiP-MS data.
Second, FLiPPR implements a unique treatment of missing

data tailored to LiP-MS. Sometimes, when a protein undergoes
a large structural transition, core regions that were completely
inaccessible to Proteinase K can become proteolytically
susceptible (as shown in the case of Figure 1A); this results
in a situation in which a half-tryptic peptide will be detected
only in samples containing the structurally altered conforma-
tion but will be absent in samples containing the native
conformation, resulting in missing data. A process is necessary
to distinguish this scenario (where the missing data are
informative (e.g., Figure 1B, case iii)) from scenarios where
missing data should instead prevent a feature from being
included in an analysis.
Third, LiP-MS is fundamentally a “peptide-centric”

technique, and so data compression, propagation of error,
and data disagreement must be considered from the level of
ions to modified peptides to peptides, and as we argue here,
ultimately to cut-sites (cf. Figure 2). Since most quantitative
proteomics studies focus on the protein level and have an
additional “protective” layer to buffer against noise by
averaging across peptides, data processing for LiP-MS raises
unique concerns not addressed by commercial software
packages.
Finally, we have found that correlating the outcome of LiP-

MS experiments with biophysical and structural features (such
as percent disorder, isoelectric point, and domain structure)
has helped illuminate key trends, and so far we have
accumulated these metadata on a case-by-case basis. However,
since many of these biophysical traits can now be calculated
(or predicted) from sequence alone, valuable metadata can be
generated in an automated manner, which we anticipate will be
constructive for scaling up the interpretation of structural
proteomics across species and clades. In summary, FLiPPR
creates a pipeline that formalizes some of the subtle data
analysis considerations we have devised in our experience of
working with LiP-MS data. Hence, we expect FLiPPR will
contribute to standardizing the analysis workflow for this
emerging and exciting proteomic technique by building off a
popular, free platform.

■ COMPUTATIONAL SECTION

Inputs
The inputs into FLiPPR are the output directories generated
by LFQs in FragPipe using IonQuant (Figure 1A). Suggested
modifications to FragPipe’s default parameters specific for LiP-
type experiments are provided in Table S1 and are discussed
further in the Supporting Information (cf. Figure S1). The
LFQ experiment should minimally consist of six separate raw
spectra files comprising three replicates of at least two
conditions, a test and a control condition each subjected to
the limited proteolysis sample preparation protocol (see the
Experimental Section). Although FLiPPR is compatible with
any number of replicates per condition (N ≥ 1), lower
statistical significance is expected from analyses with fewer

than three replicates per condition. Experimental designs can
sometimes involve a single test condition or multiple test
conditions that are all compared to a common control
condition. FLiPPR can process both situations; in either
case, LFQs in FragPipe are calculated with all raw spectra files
and submitted with the naming convention shown in Figure
S2.
LiP-MS studies are frequently conducted as two parallel

experiments: the “LiP experiment”, which consists of samples
subjected to pulse-proteolysis with Proteinase K and then fully
digested with trypsin, as well as a parallel “TrP experiment” in
which the samples are treated identically except pulse-
proteolysis is skipped and they are only digested with trypsin.
The TrP experiment is analyzed at the protein level and
addresses whether protein abundances have changed between
the test and control conditions.9,10 This TrP experiment is
important because the abundance differences between the half-
tryptic peptides in the LiP experiment convolve changes in
proteolytic susceptibility with changes in overall protein
abundance, an effect that must be controlled. If there is a
significant change in protein abundance between a test and
control condition, ion fold changes are normalized by the
protein fold changes. Figure S2 illustrates how FragPipe output
from the TrP normalization experiment is incorporated into
the FLiPPR pipeline.

Figure 2. Three merging schemes for ion data. The top row
represents five distinct ions that can be grouped together in three
ways. (A) Ions that differ in charge state for the same modified
peptide can be merged. (B) Modified peptides that differ in a specific
modification (such as methionine oxidation) but correspond to the
same base peptide can be merged. (C) Peptides that correspond to
the same Proteinase K cut-site can be merged. LiP-MS analyses
typically merge ions to the peptide level; FLiPPR introduces further
merging to the cut-site level.

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.3c00887
J. Proteome Res. 2024, 23, 2332−2342

2334

https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.3c00887/suppl_file/pr3c00887_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.3c00887/suppl_file/pr3c00887_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.3c00887/suppl_file/pr3c00887_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.3c00887/suppl_file/pr3c00887_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.3c00887/suppl_file/pr3c00887_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.3c00887?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.3c00887?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.3c00887?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.3c00887?fig=fig2&ref=pdf
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.3c00887?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Missing Data Imputation and Differential Intensity
Analysis

FragPipe provides raw integrated ion counts for each
confidently sequenced precursor ion for all spectra files,
applying an FDR-based validation criteria to assign ion counts
to precursor ions whose peaks were not identified in the
parental spectra file but could be confidently “matched
between runs” across other spectra files. At this level, FLiPPR
applies a particular heuristic to managing missing data. The
heuristic is applied to the set of 2N ion counts (where N is the
number of replicates per condition that were conducted)
corresponding to each pairwise comparison between a test
condition and the control (Figure 1C). If all 2N ion counts are
available, a simple ratio of averages is tabulated, and a P-value
is calculated using a two-tailed t test with Welch’s correction
for unequal population variances (Figure 1C, case i). If one ion
count is missing, a ratio is still calculated, but rather than
treating the missing value as a zero (as commonly employed),
it is dropped, and the ratio and P-value are calculated using one
fewer replicate for either the test or control condition (Figure
1C, case ii). This treats the single missing value as missing at
random (MAR) and avoids artificially decreasing the calculated
mean.32,33 The maximum number of allowable missing values
for an ion to be further considered can be modified by the user
(default is one) and may be recommended in studies with
greater than three replicates per condition.
A special case arises if all the ion counts are missing for all

the replicates of one condition (either test or control; Figure
1C, case iii). This can be interpreted as arising from a scenario
where a portion of the protein is entirely inaccessible to
Proteinase K in the control condition and then becomes
accessible in the test condition (or vice versa). In our
experience with LiP-MS data, these situations carry among the
richest information since they report on large structural
changes.18,23 However, because arguing for an effect based
on missing data is fraught, a safeguard is employed requiring
that the ion missing in all replicates of one condition must also
be observed in all replicates of the other condition, for the
former to be considered missing not at random (MNAR). We
refer to these as “all-or-nothing” ions (Figure 1B, case iii). Any
other combination of missing data (either because there are
two missing ion counts or because one condition is missing all
data, and the other condition is missing even one ion count)
results in the ion being discarded and not used for
quantification for this test vs control comparison. For all-or-
nothing ions, a ratio is calculated as a ratio of averages after
Gaussian imputation for the three missing values (selected
from a normal distribution with a standard deviation of 103 and
a mean of 104; the mean is an approximation for the limit of
detection of a feature in a high-resolution MS1 scan on a Q
Exactive instrument, and the standard deviation reflects a
typical coefficient of variation for assigned features, cf. Figure
S1D). The parameters of the Gaussian imputation can be
changed by users based on their instrument’s sensitivity. The
P-value is calculated by a one-tailed Welch’s t test. At the end
of this step, a (ratio, P-value) pair is assigned to each “valid”
ion for each pairwise test/control comparison. Ions with too
many missing data are discarded.
Merging Data from Ions to Cut-Sites

Most proteomics experiments seek to measure quantitative
differences in protein abundance across conditions, but LiP-
MS seeks to measure quantitative differences in proteolytic

susceptibility at a particular cut-site. Consequently, there are
several distinct ions that can be combined and averaged from
the raw ion count level to the cut-site level (Figure 2). These
correspond to all the ions that map to a given modified peptide
(e.g., charge state 2+ or 3+), all the modified peptides that map
to a given peptide (e.g., oxidized-methionine or not), and all
the peptides that map to the same cut-site (e.g., the peptides
[G].D104IFAEMKATYR114.[Q] and [G].D104IFAEMK110.[A]
both report on the activity of Proteinase K between G103 and
D104 because they differ in regard to whether the subsequent
trypsin digest missed the cleavage at K110). An alternative
scenario where multiple peptides can encode the same cut-site
arises when both half-tryptic peptides created by Proteinase K
are sequenced (e.g. , [G].D104IFAEMK110.[A] and
[K].W99VNSG103.[D]).
For all the ions that can inform on the susceptibility at a

given cut-site, the (ratio, P-value) pairs for those ions are
collectively considered. If they all agree in direction (i.e., the
signs of the t test statistics are all the same), then the “overall”
ratio for the cut-site is calculated by taking the median of the
ratios of all ions that map to it, and the P-values are combined
with Fisher’s method to provide an updated (ratio, P-value) for
the cut-site. If there are two independent ions and they
disagree (e.g., the ion is more abundant in the test condition in
the 2+ charge state but more abundant in the control condition
in the 3+ charge state), then a median is still calculated, but the
P-value is set to 1, implying there is no confidence as to
whether this cut-site was more susceptible in the test or control
condition. These cut-sites are discounted from the tally of the
total valid cut-sites. If there are three ions, then a “majority
rules” heuristic is applied: the disagreeing ion is disregarded,
and the (ratio, P-value)s are only combined for the agreeing
ions. In practice, it is relatively rare for more than three ions to
be mapped to the same cut-site, but where this occurs, if a
majority (or all) of the ions agree in direction, they are
combined. If there is a tie, the P-value is set to 1.
In experimental designs with multiple test conditions, this

compression is carried out separately for each test-to-control
comparison. As shown in Figure 2, FLiPPR implements
merging at all three levels (e.g., merge all ions together that
map to the same modified peptide, peptide, or cut-site). The
lowest level of merging (to a modified peptide) could be useful
for studies focusing on PTMs and their effect on protein
structure. The middle level of merging (to a peptide) is the one
that historically we have used,18,23 as well as others.8−10,20−22

The highest level of merging (to cut-site), to the best of our
knowledge, is novel to this analysis workflow.
Metadata Integration

When provided with the same fasta file used as the search
database during the LFQ analysis, FLiPPR can supplement the
protein summary data with an array of metadata using open-
source packages available in Python. Mass, molecular weight,
length, and pI are obtained using Biopython.34 Protein
disorder is predicted using Metapredict35 with the default
disorder score thresholds. Optionally, protein domain
information can be supplemented from DomainMapper,36
though this requires that a user provide a DomainMapper
output. Moreover, when provided with DomainMapper
outputs, FLiPPR can perform advanced structural analyses by
mapping cut-sites to regions within domains or linkers.
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Output and Interpretation

FLiPPR produces five key output files for each test vs control
comparison: an ions file, a modified peptides file, a peptides
file, a cut-sites file, and a protein summary file.
Merged abundance ratios for each modified peptide, peptide,

and cut-site (as well as normalized abundance ratios) are
provided along with merged P-values and FDR corrected P-
values by the Benjami−Hochberg (BH) procedure for multiple
hypothesis testing.37 BH correction is applied on a per-protein
basis, meaning that the set of P-values for all quantified ion
counts for a given protein are subjected to FDR correction,
and this process is iterated separately (and independently) for
each protein. The logic for applying multiple hypothesis
correction in this way is the following: our null hypothesis is
that a protein is not structurally perturbed by the treatment in
the test condition relative to the control. Each quantified ion
provides an opportunity to reject this hypothesis. However, the
more ions that are quantified for a given protein, the higher the
likelihood that one of them will show a significant effect due to
chance. Hence, BH correction ensures that proteins are not
artificially easier to call structurally altered simply by having
higher coverage.
The protein summary file provides a high-level view of

which proteins were structurally altered by the treatment and
which ones were not. To do this, it counts the total number of
cut-sites (or peptides) that were quantified and how many
were significant according to a P-value and effect-size cutoff.
We generally use 2-fold as an effect-size cutoff (|log2(fold-
change)| > 1) and 0.01 as a P-value cutoff (or alternatively,
0.05 for BH-adjusted P-values). Historically, we granted large
effect sizes (|log2(fold-change)| > 6) a relaxed P-value cutoff
(of 0.016) and for consistency maintain this practice for the

non-BH-adjusted P-values, though this relaxation is not
necessary for BH-adjusted P-values. The user can decide
whether to make the assessment at the level of peptides or cut-
sites and whether to use adjusted or normal P-values. Our
current recommendation is to use adjusted P-values at the cut-
site level. To “call” a protein structurally altered, we typically
require that two or more cut-sites (or peptides) be significant.
Installing FLiPPR
Readers interested in using FLiPPR should clone the
reposi tory from GitHub at https://github.com/
FriedLabJHU/FragPipe-Limited-Proteolysis-Processor.
FLiPPR is built in Python and all its dependencies can be
installed through Python distributions and package managers.

■ RESULTS

Merging Peptides into Cut-Sites Improves Statistical
Confidence
Figure 3A shows a representative peptide-level volcano plot
from one of our LiP-MS experiments refolding the proteome
of E. coli. Each point represents a confidently identified and
quantified peptide. We typically find that half-tryptic peptides
are more abundant in refolded samples compared to native
(Figure 3B), a characteristic that is qualitatively consistent with
the notion that misfolded proteins are less well-packed and are
therefore more susceptible to PK than natively folded proteins.
In general, we find this feature any time the test condition is
one that “perturbs” proteins and have seen it in a number of
ongoing studies focusing on other variables. Following the fate
of the ca. 32,500 peptides quantified in this experiment (Figure
3C), we find that a relative minority (602) are discounted due
to the ions that merge into it showing inconsistent signals.

Figure 3. Analysis of LiP-MS at the peptide or cut-site level. (A) Representative volcano plot in which each dot represents a peptide quantified in
the experiment. Three specific peptides from E. coli isocitrate dehydrogenase are highlighted in red. Data are from the 1 min time point from
refolding assays on E. coli extracts and reflect the abundance ratio of refolded/native. Blue corresponds to half-tryptic peptides, and black to tryptic
peptides. (B) Histogram of peptide abundance ratios. Enrichment of half-tryptic all-or-nothings in the refolded form is frequently encountered after
global refolding or other test conditions that result in perturbed structures. (C) Accounting of the peptides. Dark gray = all peptides with sufficient
data to quantify; light gray = all “valid” peptides (e.g., discounting those with inconsistent ions); mustard = significant peptides based on effect-size
(>2-fold) and P-value (<0.01, or <0.016 if effect-size > 64); teal = significant peptides based on effect-size (>2-fold) and BH-adjusted P-value
(<0.05). (D−F) Same as panels A−C, except at the cut-site level rather than the peptide level. The cut-site at R153 in isocitrate dehydrogenase that
results from the merger of the three peptides shown in A is highlighted in red in panel D.
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FLiPPR keeps these “invalidated” peptides in the output for
completeness but sets their P-value to 1. A minority of these
peptides are deemed significant (mustard circle) by the cutoffs
required to call it structurally altered, and these are further
culled to a smaller set by FDR correction (teal circle).
FLiPPR introduces the idea of merging together peptides

that map to the same PK cut-site. Following this process, we
redraw the volcano plot and relative abundance histogram
(Figures 3D and 3E), where the points represent cut-sites
instead of peptides. One example, highlighted in red, shows a
scenario in which three separate peptides, none of which were
statistically significant on their own, admitted a significant cut-
site once the ions were merged by Fisher’s method. In this LiP-
MS experiment, there are 27,900 cut-sites (instead of 32,500
peptides), but 5,753 cut-sites are assessed as significant (Figure
3F; instead of 6,269 peptides). This slight reduction arises
primarily from “removing” duplicates, but it is noteworthy that
only 8% of significant peptides are lost even though 14% of the
peptides were merged. This difference occurs because some
peptides cross the threshold to significance when their data are
merged. Hence, we assess that using cut-sites instead of
peptides results in a data set with fewer duplications and more
“unique” significant sites detected.
Protein-Level Trends in LiP-MS Data Sets Become Sharper
and More Confident with FLiPPR Analysis

Our original work on refolding the E. coli proteome highlighted
the prevalence of nonrefoldability among soluble proteins18
and estimated that after 1 min of refolding, 56% of E. coli
proteins could return to native-like structures, a figure that
rises to 67% after providing 2 h to refold. To et al. also called
attention to the fact that differences in protein coverage are a
source of bias: proteins with more identified peptides are more
likely to be labeled as “structurally altered” because there are
more opportunities for a significant effect to be detected.
We sought to compare how these overall outcomes of the

experiment are affected by some of the differences in the
analysis implemented in FLiPPR (Figures 4A−4C). If we
analyze the data in a manner analogously to the original work
(Figure 4A), we find that refoldability levels go down (48% at
1 min and 53% at 2 h). This difference is in part due to
coverage bias, arising because FragPipe’s search (with
MSFragger) produces more identifications than ProteomeDis-
coverer v2.3 (with Sequest) does: namely, 31,900 and 31,800
peptides at 1 min and 2 h, respectively, versus 28,700 and
28,200 in ProteomeDiscoverer. As mentioned, proteins with
more identifications are “easier” to label as structurally altered,
which can be corrected by adjusting for multiple hypothesis
testing. Using adjusted P-values (Figure 4B), the refolding
propensities become closer to originally reported values (55%
at 1 min and 66% at 2 h), and these overall trends are not
appreciably changed if cut-sites are used instead of peptides
(Figure 4C).
Global protein refolding assays also demonstrated that

refoldability possessed clear correlations with other biophysical
and biochemical variables. For instance, from all the studies we
have conducted to date, a general theme has emerged that
proteins at the extrema of the pI range (the most acidic and the
most basic) refold more often than those whose pI values are
between 5−6 (mildly acidic proteins). Impressively, the pI
trend become much sharper when the exact same data were
analyzed in FLiPPR, taking advantage of the two key
improvements we have implemented. Based on the 5 min

time point, the original analysis showed that proteins whose pI
values are between 5−6 did not refold 46% of the time, a
fraction that decreases for the proteins in the <5 (37%, 0.80-
fold) or >10 (30%, 0.65-fold) pI ranges. Using FLiPPR (Figure
4D, red trace), the nature of acidic and basic proteins to refold
better is more striking. As before, the peak of nonrefoldability
(60%) occurs at pI 5−6, but this drops off more dramatically
for proteins with pI values <5 (40%, a 0.66-fold) or >10 (37%,
a 0.62-fold). The slopes become even steeper after FDR
correction has been incorporated (Figure 4D, blue trace).
Now, pI < 5 (pI > 10) proteins have nonrefoldability rates that
are 0.57-fold (0.47-fold) that of the maximum. If we accept as a
ground-truth that acidic and basic proteins are more refoldable
than those with pI 5−6 (as we have seen in all our studies to
date),18,23 then this implies that analyzing LiP-MS data with
FLiPPR provides a view that coheres much more closely to
physical reality.

Figure 4. Reanalysis of refoldability data with FLiPPR sharpens
trends. (A−C) Plots show the number of proteins (left y-axis) labeled
refoldable (black) and nonrefoldable (red) and the fractional
refoldability (right y-axis, gray boxes) as a function of refolding
time, depending on whether calls are made based on peptides without
Benjami−Hochberg FDR correction (A), with FDR correction (B),
or with FDR correction and after merging peptides to cut-sites (C).
Data correspond to E. coli refolding assays from ref 18 (PRIDE:
PXD025926). (D) Fraction of proteins nonrefolding after 5 min as a
function of protein isoelectric point (pI), based on the original
analysis (pink) or using FLiPPR using one of three schemes. Inset
shows that the P-value from the chi-square test against the null
hypothesis pI does not explain differences in refoldability. (E)
Fraction of peptides (or cut-sites for green symbols) that are assessed
as significantly different after 5 min of refolding, as a function of the pI
of the protein from which they came, as based on the original analysis
(pink) or using FLiPPR using one of three schemes. Inset shows that
the P-value from the chi-square test against the null hypothesis pI
does not explain differences in refoldability. (F) Same as D except
proteins are divided by molecular weight. (G) Same as E except
peptides are divided by the molecular weight of the protein from
which they came.
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Another metric that shows the FLiPPR-analyzed data set has
more discriminating power is the chi-square test on the null
hypothesis that pI does not explain differences in protein
refoldability. In the original publication, the P-value was placed
at 1.3 × 10−5; with FLiPPR it becomes closer to 10−11

(depending on whether peptides or cut-sites are used). We
emphasize here that this is purely from reanalyzing the exact
same raw mass spectra.
One of the signs that the pI-refoldability trend is robust is

that it is apparent at both the protein level (i.e., assessing
proteins as refoldable or not after grouping peptides/cut-sites
by protein) and at the individual peptide/cut-site level (i.e.,
not grouping these by protein and simply calculating the
percent that are significant for each category). At the peptide/
cut-site level, we find that FLiPPR produces much sharper
trends than the original analysis (Figure 4E), and the trends
become even more apparent as we introduce FDR correction
and peptide to cut-site merging. The strengthening of the
correlation is apparent in the chi-square tests as well.
The original work studying refoldability of E. coli proteins

documented an apparent trend whereby proteins of greater
molecular weight were more likely not to refold (Figure 4F,
pink trace). However, it was noted that this trend could be the
result of coverage bias. In general, the peptides assigned to
larger proteins were not more likely to be significant (Figure
4G, pink trace), though larger proteins do generally get more
peptides mapped to them, thereby making it more likely that
one of them would be significant. Reexamining this trend is
therefore a stringent test for whether our FDR correction can
“catch” this problem. Indeed, using FLiPPR with FDR
corrections (blue and green traces in Figure 4F), we find
that there is some correlation between molecular weight and
refoldability up to 40 kDa, but afterward, the trend is flat. This
is very well recapitulated at the peptide/cut-site level (Figure
4G), in which peptides are indeed more likely to be significant
in 30−40 kDa proteins than in proteins <20 kDa, but then the
trend reverts. This finding makes sense because 30−40 kDa is
the size of the largest single domains and our previous findings
have found that larger domains typically refold poorly; proteins
larger than this typically contain multiple domains. Hence, we
conclude that the more reliable and confident quantification
offered by FLiPPR improves downstream analysis of LiP-MS
data, and in the case of the present renalaysis of our original
study, firms up one finding (pI) and offers a reinterpretation of
another (molecular weight).
FLiPPR Enables Rapid Analysis of Data from Non-Model
Species, Facilitating Cross-Species Comparisons

Work in our laboratory has focused on using LiP-MS as a tool
to interrogate protein folding on the proteome scale,18,23 with
a focus on addressing how “refoldable” proteins are; namely, if
they are globally unfolded in 6 M guanidinium chloride and
compelled to refold by dilution, how many proteins succeed in
this challenge and can assume a conformation identical to their
native ones that were never unfolded? We have found this can
be assessed in a high-throughput manner through LiP-MS, in
which the proteolysis pattern of a native extract and one that is
subjected to an unfolding/refolding cycle are compared. A
current goal of ours is to perform these assays on many
organisms to search for evolutionary trends in refoldability,
which in turn prompted us to build computational workflows
with higher speed and reliability. For this study, we have
refolded the proteome of Bacillus cereus (ATCC 14579)38

following an approach similar to those previously de-
scribed.18,23 The methods are described in full in the
Experimental Section. In brief, we grew triplicate cultures of
B. cereus to a final OD600 of 1.0, lysed by cryogenic
pulverization, subjected the lysates to global unfolding and
refolding, and performed limited proteolysis on the native
extract and the refolded ones. Refolding was monitored at
three time points following dilution: 1, 5, and 30 min.
In previous studies, acquisition of biochemical and

biophysical metadata for each protein provided an important
set of metadata which enabled correlates with refoldability to
be determined from LiP-MS experiments. However, we relied
on databases (EcoCyc39 for E. coli and SGD40 for yeast), which
are not available in general for nonmodel organisms. To make
metadata acquisition more streamlined and species-agnostic,
we have implemented in FLiPPR a basic infrastructure to
automate the acquisition of metadata using BioPython
prediction tools and UniProt. When we analyzed the refolding
LiP-MS data from B. cereus in FLiPPR, it was clear that
although its proteins refold on the whole more efficiently than
E. coli’s, several trends are conserved between the two
organisms while others are different. For instance, we find in
B. cereus that mildly acidic proteins (pI 5−6) are still among
the worst refolders (like E. coli), although one major point of
difference is that proteins at the extremes of the pI range (<5,
>10) are also relatively poor refolders, a behavior quite distinct
from E. coli (Figure 5A). Like E. coli, we find a relatively flat
dependence on molecular weight for proteins larger than 30
kDa (Figure 5B). Moreover, in both E. coli and B. cereus, we
find that proteins with no globular domains refold the best, and
there is a “shallow” additional challenge to refold as the
number of domains increases beyond one (Figure 5C).
Whether or not bacterial proteomes generally refold quite
poorly (like E. coli) or quite efficiently (like B. cereus) is a
question of current active research.

■ DISCUSSION
In recent years, FragPipe has become recognized as a leading
proteomics analysis platform which combines a fast and
sensitive search engine and several quantification algorithms
(with support for LFQ, SILAC, and TMT). It is also free, easy
to use, and supports both data-dependent acquisition (DDA)
and data-independent acquisition (DIA) modalities. Structural
proteomics, an emerging field within proteomics, currently
suffers from having a panoply of software pipelines which
hampers interoperability and standardization. For instance,
there are at least 10 different packages for analyzing cross-
linking mass spectrometry data.15 LiP-MS studies have
historically employed primarily ProteomeDiscoverer (for
DDA) and Spectronaut (for DIA) with less standardization
in how raw quantifications are processed. Likewise, FPOP data
has historically been analyzed in ProteomeDiscoverer with
user-defined workflows to handle the experiment’s specific
needs. Recently, a standardized workflow for FPOP experi-
ments in FragPipe was proposed42 showing that this platform
is well-suited to bring its numerous other strengths to bear in
structural proteomics. Our original goal in developing FLiPPR
was to create a pipeline that would facilitate using FragPipe to
analyze LiP-MS data. Following this goal, we have aimed to
build a tool that is easy to use, compatible with various
experimental designs, provides a range of useful outputs
(including those for quality control), and facilitates metadata
integration.
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LiP-MS has been applied to answer a range of biological and
biophysical questions. Our lab’s focus on protein refolding,
which can produce very divergent protein conformations, has
made us particularly sensitive to the importance of missing
data in LiP-MS and how much useful information can be
gained from them if used carefully. FLiPPR formalize these
heuristics into software that can be widely used for structural
proteomics. Compared to our previous work, we have
incorporated two further improvements: (1) a protein-centric
FDR correction to control for coverage bias and (2) a
hierarchy of data merging rules that enables quantification
from the ion level to the cut-site level. These two additions
create more robust and less redundant data sets. The result is
greater accuracy, which can be attested by sharper trends and
correlations upon reanalyzing earlier work on the E. coli
proteome (cf. Figure 5). As we proceed with LiP-MS
experiments on proteomes from more diverse organisms
(such as B. cereus, discussed here), we expect that the speed
and standardization offered by the FragPipe/FLiPPR pipeline
will prove invaluable.
There are several improvements we foresee adding to future

versions of FLiPPR. The Picotti lab introduced a mixed linear
model to perform normalizations that considers data from LiP

and TrP experiments collectively, rather than basing decisions
on whether to normalize by the TrP experiment unilaterally.10
In practice, we have found that when LiP-MS is applied to
biophysical questions (and the test and control conditions arise
from the same biological source but differentiate from each
other by treatments performed in vitro), normalization is less
critical and in some cases weakens the data by propagating
more error to the quantifications. On the other hand, we
acknowledge that careful normalization is required for some
biological studies and that this option should be added to
increase the generality of FLiPPR to other LiP-MS
applications.
A second outstanding question is how to apply LiP-MS to

interrogate the effect of post-translational modifications
(PTMs) on protein structure. PTMs can profoundly impact
protein structure,43,44 and by extension their limited
proteolysis pattern, making LiP-MS a potential technique to
map this effect. For now, FLiPPR provides an output that
restricts merging to the modified peptide level, and users can
interrogate these files to see (for instance) if a phosphorylation
within a peptide results in a different outcome compared to the
same unmodified peptide. In practice, allostery can induce
structural changes far from the PTM site, which creates a
“proteoform problem”: a half-tryptic peptide associated with a
PTM need not be close to the PTM itself, and so sequencing
such a half-tryptic peptide would not provide enough
information to trace it back to the specific (set of) PTM(s)
that induced it. Due to this ambiguity, we recommend merging
over peptide modifications and regard LiP-MS experiments as
probing the “average” of all proteoforms for a given protein.
While separating peptide modifications more explicitly into
proteoform-specific categories is a functionality we plan to add,
we emphasize that new LiP-MS experiments (potentially of a
middle-down nature) will be needed to confidently assess the
effect of PTMs on structure.
In summary, we anticipate growth in the number and variety

of applications for LiP-MS and hope that FLiPPR will
contribute by lowering the barrier to adopt this structural
proteomic approach and standardizing statistical procedures
for LiP-MS data analysis.

■ EXPERIMENTAL SECTION

Culture and Lysis of Bacillus cereus (ATCC 14579)
Saturated overnight cultures of B. cereus cells (ATCC 14579)
were used to inoculate 3 × 100 mL (biological triplicate)
cultures in ATCC Medium 3 in 250 mL flasks at a starting
OD600 of 0.05. Cells were incubated at 37 °C with agitation
(220 rpm) to a final OD600 of 1.0, followed by centrifugation at
3000 g for 10 min at 4 °C. Supernatants were removed, and
cell pellets were flash frozen with liquid nitrogen for 30 s and
stored at −80 °C until further use.
Cell pellets were resuspended in 1 mL of native buffer (20

mM Tris pH 8.2, 150 mM KCl, 2 mM MgCl2) with the
addition of 20 units of DNase I (NEB M0303S) and protease
inhibitors (500 μM PMSF; Thermo Scientific 36978, 15 μM E-
64; Millipore Sigma E3132, 50 μM Bestatin; Millipore Sigma
B8385). Resuspended cells were flash frozen by slow drip over
liquid nitrogen followed by cryogenic pulverization with a
freezer mill (SPEX Sample Prep) over eight cycles consisting
of 1 min of grinding, 9 Hz, and 1 min of cooling. Pulverized
lysates were transferred to a 50 mL centrifuge tube and thawed
at 4 °C. Lysates where then transferred into 1.5 mL

Figure 5. Comparison of nonrefolding rates between two species. (A)
Fraction of proteins nonrefolding after 5 min as a function of protein
isoelectric point (pI), based on cut-sites with FDR correction for two
organisms, E. coli (ref 18) and B. cereus (data reported in this study).
pI is calculated in BioPython. (B) Fraction of proteins nonrefolding
after 5 min as a function of molecular weight (MW), based on cut-
sites with FDR correction for E. coli and B. cereus. MW is calculated in
BioPython. (C) Fraction of proteins nonrefolding after 5 min as a
function of number of domains, based on cut-sites with FDR
correction for E. coli and B. cereus. Domain assignment is determined
in DomainMapper.41
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microcentrifuge tubes and clarified at 16,000 g for 15 min at 4
°C to remove cellular membrane and debris. Clarified lysates
were then transferred into 3 mL Beckman Coulter Konical
tubes (Beckman Coulter C14307) in preparation for ultra-
centrifugation at 33,300 rpm at 4 °C for 90 min using a SW55-
Ti rotor without a sucrose cushion to deplete ribosomes.
These clarified supernatants were then transferred into new 1.5
mL microcentrifuge tubes and protein concentrations were
determined using a bicinchoninic acid assay (Rapid Gold BCA
Assay, Pierce) in a clear 96-well plate (Corning Falcon
353075) with a plate reader (Molecular Devices iD3). Using
the results from the BCA assay, the clarified lysates were
normalized to a protein concentration of 2.0 mg mL−1 using
the same native buffer (20 mM Tris pH 8.2, 150 mM KCl, 2
mM MgCl2). The normalized lysate is used as the starting
point for all the following workflows.
Preparation of Native and Refolded Lysates

Native lysates were prepared by diluting 58 μL of normalized
lysate with native buffer supplemented with 5.7 mg of
guanidinium chloride (GdmCl) and 15.4 μg of dithiothreitol
(DTT) such that the final composition of the native lysates
was 0.116 mg mL−1 protein, 20 mM Tris pH 8.2, 150 mM
KCl, 2 mM MgCl2, 0.1 mM DTT, and 0.06 M GdmCl in a 1
mL volume. These samples were prepared in biological
triplicate and allowed to incubate for at least 1 h at 25 °C
prior to limited proteolysis.
Unfolded lysates were prepared by concentrating 290 μL of

normalized lysate supplemented with 28.7 mg of GdmHCl and
77.1 μg of DTT (from a solution stock) in a Vacufuge Plus
(Eppendorf) to a final volume of 50 μL. The final composition
of the unfolded lysates was 11.6 mg mL−1 protein, 116 mM
Tris pH 8.2, 870 mM KCl, 11.6 mM MgCl2, 10 mM DTT, and
6 M GdmCl. These samples were prepared in biological
triplicate and allowed to incubate for at least 16 h at 25 °C
prior to refolding and subsequent limited proteolysis.
Refolded lysates were prepared by diluting 5 μL of unfolded

lysate into 495 μL of refolding buffer (19 mM Tris pH 8.2, 143
mM KCl, 1.9 mM MgCl2). The final composition of the
refolded lysates was 0.116 mg mL−1 protein, 20 mM Tris pH
8.2, 150 mM KCl, 2 mM MgCl2, 0.1 mM DTT, and 0.06 M
GdmCl in a 500 μL volume. These samples were prepared in
biological triplicate and allowed to incubate for 1, 5, and 30
min at 25 °C prior to limited proteolysis.
Limited Proteolysis and Mass Spectrometry Sample
Preparation

A stock of PK solution was freshly prepared at a concentration
of 0.116 mg mL−1 Proteinase K in native buffer with 10%
glycerol. Triplicate limited proteolysis (LiP) samples of the
native and refolded conditions, for all time points, were then
generated by aliquoting 200 μL of each native or refolded
sample into new 1.5 mL microcentrifuge tubes containing 2 μL
of PK solution (1:100 enzyme:substrate mass ratio), quickly
aspirated 10 times, and incubated for exactly 1 min at 25 °C.
Samples were then transferred to a 110 °C mineral oil bath for
5 min to inactivate Proteinase K. Boiled samples were then
transferred into new 1.5 mL microcentrifuge tubes containing
150 mg of urea to achieve a final volume of 312 μL and 8 M
urea concentration. Triplicate trypsin-only (TrP) controls of
the native and refolded samples were generated in the same
way without the addition of PK solution. This process
generated the following 18 samples: 3 × Native_TrP, 3 ×

Refolded_TrP, 3 × Native_LiP, 3 × Refolded_1 min_LiP, 3 ×
Refolded_5 min_LiP, and 3 × Refolded_30 min_LiP.
All samples then received 6.24 μL of freshly prepared 500

mM DTT (final concentration 10 mM DTT) to reduce
disulfide bonds and were incubated for 30 min at 37 °C with
agitation at 700 rpm followed by 17 μL of freshly prepared 750
mM IAA (final concentration 40 mM IAA) and incubated for
45 min in the dark at 25 °C to alkylate reduced cysteines. Next,
2 μL of 0.116 mg mL−1 of LysC (NEB P8109) were added to
each sample and incubated for 2 h at 37 °C. Samples were then
diluted with 1005 μL of 100 mM ammonium bicarbonate
followed by 4 μL of 0.116 mg mL−1 of trypsin-ultra (NEB
P8101) and incubated at 25 °C for 16−24 h at 25 °C. Trypsin
was then quenched with 1% v/v trifluoroacetic acid prior to
desalting with Sep-Pak C18 1 cm3 cartridges (Waters).
Cartridges were first conditioned (2 × 1 mL 80% ACN,

0.5% TFA) and equilibrated (4 × 1 mL 0.5% TFA) before
samples were slowly loaded under a weak vacuum. The
columns were then washed (4 × 1 mL 0.5% TFA), and
peptides were eluted by the addition of 1 mL of elution buffer
(80% ACN, 0.5% TFA). During elution, vacuum cartridges
were suspended above 15 mL conical tubes, placed in a swing-
bucket rotor (Eppendorf 5910R), and spun for 5 min at 300 g.
Eluted peptides were transferred from Falcon tubes back into
new 1.5 mL microcentrifuge tubes and dried using a Vacufuge
Plus (Eppendorf). Dried peptides were stored at −80 °C until
analysis. For analysis, samples were vigorously resuspended in
0.1% FA in Optima water (ThermoFisher) to a final
concentration of 1 mg mL−1.
Mass Spectrometry Acquisition

Chromatographic separation of digests was carried out on a
Thermo UltiMate3000 UHPLC system with an Acclaim
Pepmap RSLC, C18, 75 μm × 25 cm, 2 μm, 100 Å column.
Approximately 1 μg of protein was injected onto the column.
The column temperature was maintained at 40 °C, and the
flow rate was set to 300 nL min−1 for the duration of the run.
Solvent A (0.1% FA) and solvent B (0.1% FA in ACN) were
used as the chromatography solvents.
The samples were run through the UHPLC system as

follows: peptides were allowed to accumulate onto the trap
column (Acclaim PepMap 100, C18, 75 μm × 2 cm, 3 μm, 100
Å column) for 10 min (during which the column was held at
2% solvent B). The peptides were resolved by switching the
trap column to be in-line with the separating column, quickly
increasing the gradient to 5% B over 5 min and then applying a
95 min linear gradient from 5% B to 25% B. Subsequently, the
gradient was increased from 25% B to 40% B over 25 min and
then increased again from 40% B to 90% B over 5 min. The
column was then cleaned with a sawtooth gradient to purge
residual peptides between runs in a sequence.
A Thermo Q-Exactive HF-X Orbitrap mass spectrometer

was used to analyze protein digests. A full MS scan in positive
ion mode was followed by 20 data-dependent MS scans. The
full MS scan was collected using a resolution of 120,000 (at m/
z 200), an AGC target of 3E6, a maximum injection time of 64
ms, and a scan range from 350 to 1500 m/z. The data-
dependent scans were collected with a resolution of 15,000 (at
m/z 200), an AGC target of 1E5, a minimum AGC target of
8E3, a maximum injection time of 55 ms, and an isolation
window of 1.4 m/z units. To dissociate precursors prior to
their reanalysis by MS2, peptides were subjected to an HCD of
28% normalized collision energies. Fragments with charges of
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1, 6, 7, or higher and unassigned were excluded from analysis,
and a dynamic exclusion window of 30.0 s was used for the
data-dependent scans.
Analyzing MS Data in FragPipe
FragPipe v20.0, along with MSFragger v3.8, IonQuant v1.9.8,
and Philosopher v5.0, were used to analyze raw mass spectra
with label-free quantification with match between runs
enabled. Default settings were used except those delineated
in Table S1. Namely, the peptide digest pattern was set to
semienzymatic, methionine oxidation and N-terminal acetyla-
tion were set as dynamic modification, and cysteine
carbamidomethylation was set as a static modification. The
workflows for B. cereus refolding and the reanalysis of
PXD025926 were set up according to the conventions set
forth in Figure S2B, wherein multiple LiP control−test pairs
are normalized to a single TrP control−test pair. FragPipe
outputs were then passed to FLiPPR v0.0.7 with the command
shown in Figure S2B. Output files from FLiPPR were then
further processed in Python to create summaries and graphical
representations of both data sets.

■ ASSOCIATED CONTENT
Data Availability Statement
The mass spectrometry proteomics data have been deposited
to the ProteomeXchange Consortium via the PRIDE partner
repository with the data set identifier PXD047776. Quantifi-
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