

1 **Reactivity of 5-methylpyridyl-2-selenolate with platinoid metal**
2 **precursors: Isolation of tri and hexanuclear complexes via Se-Se**
3 **and Se-C bond cleavage**

4 Saili Vikram Lokhande^a, Atharva Yeshwant Kulkarni^a, Afsar Ali Siddiki^a,
5 Raymond J. Butcher^b, Rohit Singh Chauhan^{a*}

6 *^aDepartment of Chemistry, K. J. Somaiya College of Science and Commerce, Vidyavihar,*
7 *Mumbai 400077, India.*

8 *^bDepartment of Chemistry, Howard University, Washington DC, 20059, United States.*

9 *Email: rohit.chauhan@somaiya.edu*

10 **Abstract**

11 A series of palladium (II) and platinum (II) selenolate complexes have been isolated
12 depending upon the nature of the phosphine ligand. The substitution reaction of
13 $[\text{PdCl}_2(\text{PPh}_3)_2]$ with two equivalents of $\text{NaSeC}_5\text{H}_3(5\text{-Me})\text{N}$ resulted in the hexanuclear
14 complex $[\text{Pd}_6\text{Br}_{0.87}\text{Cl}_{1.13}\{2\text{-SeC}_5\text{H}_3(5\text{-Me})\}_2(\text{PPh}_3)_6]$ (**1a**) whereas a chelated compound
15 $[\text{Pt}\{\kappa\text{-Se, }\kappa\text{-N: SeC}_5\text{H}_3(5\text{-Me})\text{N}\}\{\text{SeC}_5\text{H}_3(5\text{-Me})\text{N}\}(\text{PPh}_3)]$ (**1b**) has been obtained in the case
16 of $[\text{PtCl}_2(\text{PPh}_3)_2]$. However, chelated phosphine as an ancillary ligand with a similar reaction
17 by using $[\text{PtCl}_2(\text{P}\cap\text{P})]$ ($\text{P}\cap\text{P} = \text{dppm, dppe}$) yielded *cis*-configured monomer $[\text{Pt}\{2\text{-SeC}_5\text{H}_3(5\text{-Me})\text{N}\}_2(\text{P}\cap\text{P})]$. The trinuclear complexes $[\text{M}_3(\mu\text{-Se})_3(\text{dppp})_3]^{2+}$ [$\text{M} = \text{Pd}$ (**2d**), Pt
18 (**2e**)] were isolated by reactions of $[\text{MCl}_2(\text{dppp})]$ ($\text{M} = \text{Pd, Pt}$) with $\text{NaSeC}_5\text{H}_3(5\text{-Me})\text{N}$ via
19 facile cleavage of Se-C bond in presence of chlorinated solvents. All the synthesized
20 complexes have been characterized by elemental analyses, ^1H , $^{31}\text{P}\{^1\text{H}\}$, $^{77}\text{Se}\{^1\text{H}\}$ NMR
21 spectroscopy. The molecular structure of complexes $[\text{Pd}_6\text{Br}_{0.87}\text{Cl}_{1.13}\{2\text{-SeC}_5\text{H}_3(5\text{-Me})\}_2(\text{PPh}_3)_6]$ (**1a**) and $[\text{Pt}\{2\text{-SeC}_5\text{H}_3(5\text{-Me})\text{N}\}_2(\text{dppm})].\text{C}_6\text{H}_5\text{CH}_3$ (**2a**) were determined by
22 single crystal X-ray diffraction analyses.

25 **1. Introduction**

26 A thirst to understand the reactivity of hybrid organoselenolate ligand systems has
27 made this area of research quite intriguing. Within the plethora of organochalcogen
28 chemistry, group 10 metal chalcogenolate complexes have attracted much attention due to
29 their interesting structural motifs [1-3] and rich reactivities [4]. The promising relevance of
30 derived complexes in cross coupling reactions [5, 6], material science [7] and electrocatalysis
31 [8] has made this field evolving time to time.

32 Laitinen et al., have studied the reactions between $[M(PPh_3)_4]/[MCl_2(dppe)]$ ($M =$
33 Pd, Pt) and Th_2E_2 ($E = Se, Te$). A variety of products viz. $[Pd_6Te_4(Th)_4(PPh_3)_6]$,
34 $[Pt_3Te_2(Th)(PPh_3)_5]Cl$, $[Pd_2(SeTh)_4(PPh_3)_2]$, $[Pt(SeTh)_2(PPh_3)_2]$, $[M(SeTh)_2(dppe)]$ ($M = Pd,$
35 Pt) had been isolated depending upon the nature of phosphine as well as chalcogen atom [9-
36 11]. The treatment of $[Pt_2X_2(\mu-Cl)_2(PR_3)_2]$ on NaEPy ($E = S, Se$) exclusively gave
37 $[PtX(Epy)(PR_3)]_n$ ($X = Cl$ or Ar; $PR_3 = Pet_3, PMe_2Ph, PMePh_2$ or PPh_3 ; $n = 1,2$). In chlorinated
38 solvent, compounds showed dynamic equilibrium between $[Pt_2Cl_2(\mu-Spy)_2(PR_3)_2]$ and
39 $[PtCl(\kappa-S, N-Spy)(PR_3)]$ [12]. However, the reaction of $[PdCl_2(PPh_3)_2]$ with $NaSeAr$ ($Ar = Ph,$
40 Th) resulted in a trinuclear $[Pd_3Se(SePh)_3(PPh_3)_3]$ and hexanuclear complex
41 $[Pd_6Cl_2E_4(EAr)_2(PPh_3)_6]$ ($Ar = Ph, Th$). In contrast, a similar reaction with a platinum
42 precursor is reported sluggish in nature and expected outcome obtained. In some of the cases,
43 serendipitous isolation of complexes $[Pt(2-Te-C_5H_4N)_2Te(PPh_3)]$, $[Pt\{2-Te-C_5H_3(3-$
44 R\}N)_2(dppe)] ($R = H, Me$) and $[Pt_3(\mu-E)_2(P\cap P)_3]$ ($E = Se, Te$) has been reported [13-15].
45 The synthesis of $[PdI(TePy-2)(I_2TePy-2)_2]$ using diiodine adduct of bis-2-pyridyltelluride
46 and a crude palladium powder was described by Ceching and collaborators [16]. The reaction
47 of bis(4-pyridyl)diselenide/ditelluride with $[M(OTf)_2]$ ($M = cis-[Pt(PEt_3)_2]^{2+}$ or $cis-$
48 $[Pd(dppe)]^{2+}$ yielded supramolecular Pd(II) and Pt(II) complexes having formula $[M(\mu_2-4,4'-$
49 py_2E_2)]_n(OTf)_{2n} ($E = Se, Te$) [17]. Moreover, these hybrid ligands were used to stabilize

50 macrocyclic complexes of the type $[\text{Pd}(\text{P} \cap \text{P})(4\text{-Sepy})]_n \text{X}_n$ ($\text{P} \cap \text{P} = \text{dppe, dppf and Xantphos}$;
51 $n = 2, 4$) which showed promising reactivity for Suzuki cross-coupling reactions [18]. In this
52 sequential development, pyridyl dichalcogenide based ligands are well explored and
53 competitive cleavage between E-E and E-C bond assisted in isolating coordination clusters
54 which have intriguing electronic properties. Hence, the presence of soft chalcogen atom as
55 well as hard nitrogen donor atom in the back bone of pyridyl selenolate ligand system made
56 it quite interesting.

57 With this prospect, we studied the reactions of $[\text{PdCl}_2(\text{P} \cap \text{P})]$ ($\text{P} \cap \text{P} = 2 \text{ PPh}_3, \text{dppm}$,
58 dppe, dppp) with 5-methyl pyridyl-2-selenolate ligand systems and investigated the effect of
59 phosphine on the nuclearity. The outcomes are discussed as herein.

60 **2. Experimental**

61 *2.1 Chemicals*

62 All the manipulations were carried out under nitrogen atmosphere using standard
63 Schlenk line techniques. The solvents used during the course of reactions were distilled by
64 standard procedures. Palladium(II) chloride, potassium tetrachloroplatinate(II), triphenyl
65 phosphine, 1,1-bis(diphenylphosphino)methane (dppm), 1,2-bis(diphenylphosphino)ethane
66 (dppe), 1,3-bis(diphenylphosphino)propane (dppp), sodium borohydride, were purchased
67 from Sigma Aldrich and applied without purification. The precursor complex $[\text{MCl}_2(\text{P} \cap \text{P})]$
68 ($\text{M} = \text{Pd, Pt}; (\text{P} \cap \text{P}) = 2 \text{ PPh}_3, \text{dppm, dppe, dppp}$) [20] and the ligand 5,5'-Dimethyl-2,2'-
69 dipyridyl diselenide [21] were synthesized as reported in the literature.

70 *2.2 Instrumentation*

71 The ^1H , $^{31}\text{P}\{^1\text{H}\}$ and $^{77}\text{Se}\{^1\text{H}\}$ NMR spectra were recorded on Bruker Avance-II
72 spectrometer on scanning frequency 400, 161.96 and 76.3 MHz respectively. ^1H NMR spectra
73 were referenced with the solvent peak of chloroform at $\delta = 7.26$ ppm, externally to Ph_2Se_2 (δ
74 = 463 ppm relative to Me_2Se) in CDCl_3 for $^{77}\text{Se}\{^1\text{H}\}$ NMR. FTIR spectra of complexes were

75 studied using KBr pellet on PerkinElmer FTIR model spectrophotometer over a range of
76 4000-400 cm⁻¹. Elemental analyses were carried out on a Thermo Fisher EA1112 CHNS
77 analyzer.

78 The single crystal X-ray data for [Pd₆Br_{0.87}Cl_{1.13}{2-SeC₅H₃(5-Me)}₂(PPh₃)₆] (**1a**)
79 and [Pt{2-SeC₅H₃(5-Me)N}₂(dppm)] (**2e**) were collected using Rigaku Oxford Diffraction
80 Synergy S and Bruker D8 Venture diffractometer respectively. To determine structural
81 parameters Cu-K α (λ = 1.54184 Å) and Mo-K α radiation (λ = 0.71073 Å) were used for
82 complex **1a** and **2e**; respectively. Data acquisition as well as extraction of data was
83 accomplished by utilizing Bruker Apex-3 and Bruker SAINT software packages using a
84 narrow-frame algorithm (or CrysallisPro for those structures collected on the Synergy S
85 diffractometer). The crystal structures were solved by utilizing Olex2 with the help of
86 SHELXT [19] structure solution program by employing intrinsic phasing methods and crystal
87 structure refinement was done with the SHELXL [20] refinement package by putting into use
88 least squares minimization. Refinement of all non-hydrogen atoms were completed with the
89 help of anisotropic thermal parameters. Molecular structure of complexes **1a** and **2a** were
90 visualised using Mercury 2020.1.0 [20]. In case of complex [Pd₆Br_{0.87}Cl_{1.13}{2-SeC₅H₃(5-
91 Me)}₂(PPh₃)₆] (**1a**), crystal quality was not the best and preliminary examination showed
92 crystals of twinned nature. The crystallographic and structural determination data are given
93 in **Table 1**.

94 **Table 1:** Crystallographic and structural determination data for [Pd₆Br_{0.87}Cl_{1.13}{2-SeC₅H₃(5-
95 Me)}₂(PPh₃)₆] (**1a**) and [Pt{2-SeC₅H₃(5-Me)N}₂(dppm)].C₆H₅CH₃ (**2a**)

Complex	[Pd ₆ Br _{0.87} Cl _{1.13} {2-SeC ₅ H ₃ (5-Me)} ₂ (PPh ₃) ₆]	[Pt{2-SeC ₅ H ₃ (5-Me)N} ₂ (dppm)].C ₆ H ₅ CH ₃
Chemical formula	C ₁₂₀ H ₁₀₂ Br _{0.87} Cl _{1.13} N ₂ P ₆ Pd ₆ Se ₆	C ₈₁ H ₇₆ N ₄ P ₄ Pt ₂ Se ₄
Formula weight	2979.69	1935.35

Crystal size (mm ³)	0.136 X 0.072 X 0.026	0.231 X 0.201 X 0.098
Crystal system	monoclinic	monoclinic
Space group	P 21/n	P 21/n
Unit cell dimensions		
a(Å)	14.05760(10)	20.526(3)
b(Å)	22.5305(3)	13.8632(16)
c(Å)	17.7371(2)	27.118(3)
β(°)	96.4920(10)	93.048(4)
Volume (Å ³)	5581.75(11)	7705.8(15)
ρ _{calcd.} (g/cm ³)	1.773	1.668
Z	2	4
μ (mm ⁻¹)/F(000)	11.681 / 2911	5.644 / 3768
Limiting indices	-17 ≤ h ≤ 11 -28 ≤ k ≤ 27 -22 ≤ l ≤ 22	-25 ≤ h ≤ 25 -17 ≤ k ≤ 14 -33 ≤ l ≤ 34
Θ for data collection (°)	3.184-77.857	2.417-26.473
No. of reflections collected	11370	64033
No. of independent reflections (R _{int})	11370 (0.1006)	15744 (0.0694)
Data/restraints/parameters	11370/1380/830	15744/0/798
Final R ₁ , wR ₂ indices [I>2σI]	0.1150, 0.2373	0.0418, 0.0946

R ₁ , wR ₂ (all data)	0.1472, 0.2566	0.0667, 0.1049
Goodness of fit on F ²	1.163	1.034

96 2.3 *Syntheses of complexes*

97 2.3.1 *Synthesis of [Pd₆Br_{0.87}Cl_{1.13}{2-SeC₅H₃(5-Me)}₂(PPh₃)₆] (1a)*

98 A dichloromethane solution (15 cm³) of [PdCl₂(PPh₃)₂] (140 mg, 0.20 mmol) was
 99 added to a methanolic solution of NaSeC₅H₃(5-Me)N [freshly prepared *in situ* by the reaction
 100 of bis(5-methyl-2-pyridyl)diselenide (68 mg, 0.20 mmol) and NaBH₄ (15 mg, 0.40 mmol) in
 101 10 cm³ methanol. The resultant mixture was stirred for 7 hours at room temperature. The
 102 ensuing solution was passed through G-3 assembly and the filtrate was dried in *vacuo*. The
 103 residue was extracted in toluene which on slow evaporation gave red crystals of complex **1a**
 104 (Yield 65 mg, 11%) m.p.: 280°C (dec.). Anal. Calcd. for C₁₂₀H₁₀₂N₂Br_{0.87}Cl_{1.13}Se₆P₆Pd₆: C,
 105 47.19; H, 3.40; N, 0.91% Found: C, 47.25; H, 3.42; N, 0.92%. IR (KBr, cm⁻¹): 3747 (m), 3405
 106 (m), 3052 (m), 2921 (m), 2287 (w), 2168 (m), 2049 (w), 1982 (m), 1586 (m), 1432 (s), 1183
 107 (m), 1092 (s), 691 (s), 534 (m), 418 (m). ¹H NMR (CDCl₃) δ: 1.96 (s, 6H, CH₃), 7.44-7.48
 108 (m, 25H, Ph), 7.53-7.57 (m, 25H, Ph), 7.65-7.70 (m, 40H, Ph), 8.23 (s, 1H, C₅H₃N), 8.25 (s,
 109 1H, C₅H₃N).

110 2.3.2 *Synthesis of [Pt{κ-Se, κ-N: SeC₅H₃(5-Me)N}{SeC₅H₃(5-Me)N}(PPh₃)]* (1b)

111 To a methanolic solution (10 cm³) of NaSeC₅H₃(5-Me)N [prepared *in situ* from
 112 reduction of bis(5-methyl-2-pyridyl)diselenide (86 mg, 0.25 mmol) by a methanolic solution
 113 (10 cm³) of NaBH₄ (19 mg, 0.50 mmol)], a toluene suspension (5 cm³) of [PtCl₂(PPh₃)₂] (200
 114 mg, 0.25 mmol) was added with stirring at room temperature which continued for 4 hours.
 115 The solvents were evaporated under vacuum and the residue was washed with diethyl ether
 116 followed by hexane to obtain titled complex (Yield 139 mg, 68.8%) m.p.: 219°C (dec.). Anal.
 117 Calcd. for C₃₀H₂₇N₂Se₂PPt: C, 45.07; H, 3.40; N, 3.50% Found: C, 45.11; H, 3.43; N, 3.48%.
 118 IR (KBr, cm⁻¹): 3345 (m), 3049 (m), 2916 (m), 2853 (w), 2320 (w), 2167 (w), 2113 (w), 2023

119 (w), 1984 (w), 1677 (w), 1584 (m), 1543 (w), 1450 (s), 1434 (s), 1355 (m), 1267 (m), 1184
120 (w), 1131 (m), 1088 (s), 997 (s), 943 (m), 821 (s), 744 (m), 694 (s), 541 (w), 508 (s), 456 (w).
121 ^1H NMR (CDCl₃) δ: 1.99 (s, 3H, CH₃), 2.14 (s, 3H, CH₃), 7.31-7.38 (m, 13H, Ph), 7.64-7.68
122 (m, 8H, Ph), 8.02 (s, 1H, C₅H₃N), 8.06 (s, 1H, C₅H₃N); $^{31}\text{P}\{^1\text{H}\}$ NMR (CDCl₃) δ: 7.21 ($^1\text{J}_{\text{Pt-P}}$
123 = 3819 Hz); $^{77}\text{Se}\{^1\text{H}\}$ NMR (CDCl₃) δ: 208, 102 ppm.

124 2.3.3 *Synthesis of [Pt{2-SeC₅H₃(5-Me)N}₂(dppm)] (2a)*

125 A toluene suspension of [PtCl₂(dppm)] (150 mg, 0.23 mmol) was added to a
126 methanolic solution of NaSeC₅H₃(5-Me)N [prepared *in situ* from reduction of bis(5-methyl-
127 2-pyridyl)diselenide (79 mg, 0.23 mmol) by a methanolic solution (10 cm³) of NaBH₄ (17
128 mg, 0.46 mmol)] in toluene-methanol mixture (20 cm³) at room temperature for 4 hours. The
129 reaction mixture was dried under vacuum and the product was extracted in acetone to afford
130 a yellow solid of **2a**. (Yield: 139 mg, 66%) m.p. 205°C (dec.). Anal. Calcd. for
131 C₃₇H₃₄N₂P₂Se₂Pt: C, 48.22; H, 3.72; N, 3.04%; Found: C, 48.29; H, 3.80; N, 3.11%. IR (KBr,
132 cm⁻¹): 3342 (s), 3047 (m), 2916 (m), 2227 (w), 2183 (w), 2082 (w), 1979 (w), 1951 (w), 1662
133 (w), 1583 (m), 1431 (s), 1356 (s), 1269 (m), 1129 (w), 1086 (s), 941 (m), 816 (m), 784 (m),
134 731 (m), 691 (s), 548 (w), 506 (m), 463 (m). ^1H NMR (CDCl₃) δ: 1.67 (br, 2H, -CH₂), 1.90
135 (s, 6H, CH₃), 7.28-7.33 (m, 5H, Ph), 7.38-7.44 (m, 14H, Ph), 7.78-7.83 (m, 5H, Ph), 8.7 (br,
136 2H, C₅H₃N); $^{31}\text{P}\{^1\text{H}\}$ NMR (CDCl₃) δ: -51.27 ppm ($^1\text{J}_{\text{Pt-P}} = 2691$ Hz).

137 2.3.4 *Synthesis of [Pd{2-SeC₅H₃(5-Me)N}₂(dppe)] (2b)*

138 Prepared similar to method **2a** using bis(5-methyl-2-pyridyl)diselenide (89 mg, 0.26
139 mmol), sodium borohydride (20 mg, 0.52 mmol) and [PdCl₂(dppe)] (150 mg, 0.26 mmol)
140 (Yield: 146 mg, 66%) m. p. 182°C (dec.). Anal. Calcd. for C₃₈H₃₆N₂Se₂P₂Pd: C, 53.89; H,
141 4.28; N, 3.31% Found: C, 53.58; H, 4.12; N, 3.28%. IR (KBr, cm⁻¹): 2628 (m), 2427 (m),
142 2311 (m), 2271 (m), 2200 (m), 1450 (s), 1436 (s), 1362 (m), 1187 (m), 1101 (s), 1095 (s),
143 1024 (m), 983 (s), 875 (m), 818 (m), 746 (m), 712 (m), 691 (s), 525 (s), 439 (s). ^1H NMR

144 (CDCl₃) δ: 2.11 (s, 6H, CH₃), 2.26 (d, ¹J_{P-H} = 30 Hz, 4H, -CH₂), 6.62 (d, ¹J = 5.4 Hz, 2H),
145 7.29-7.37 (m, 10H, Ph), 7.39-7.44 (m, 10H, Ph), 7.78-7.55 (m, 2H, Ph), 8.92 (br, 2H, C₅H₃N);
146 ³¹P{¹H} NMR (CDCl₃) δ: 52.60 ppm; ⁷⁷Se{¹H} NMR (CDCl₃) δ: 263.09 ppm (d, ²J_{P-Se} =
147 95.54 Hz)

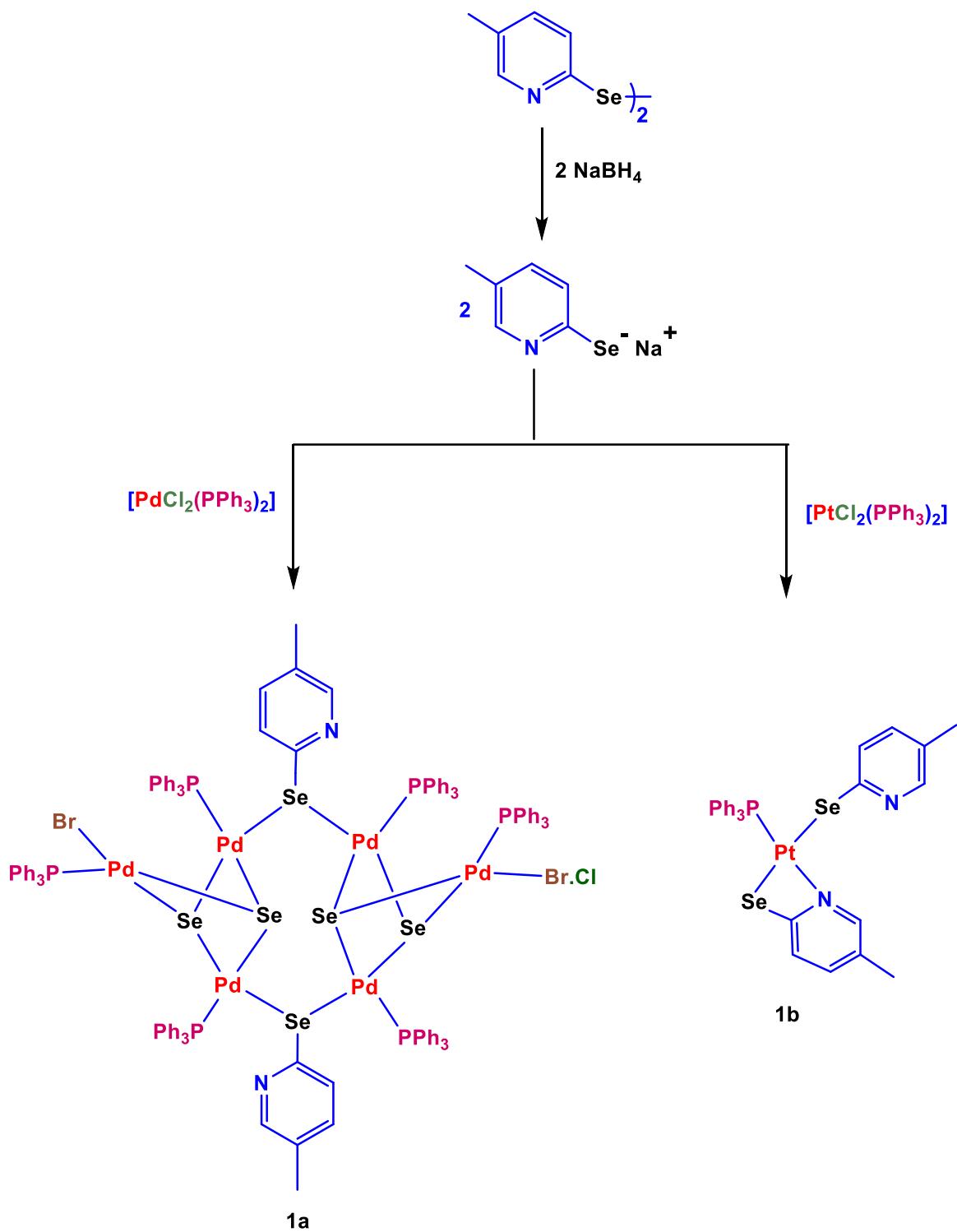
148 2.3.5 *Synthesis of [Pt{2-SeC₅H₃(5-Me)N}₂(dppe)] (2c)*

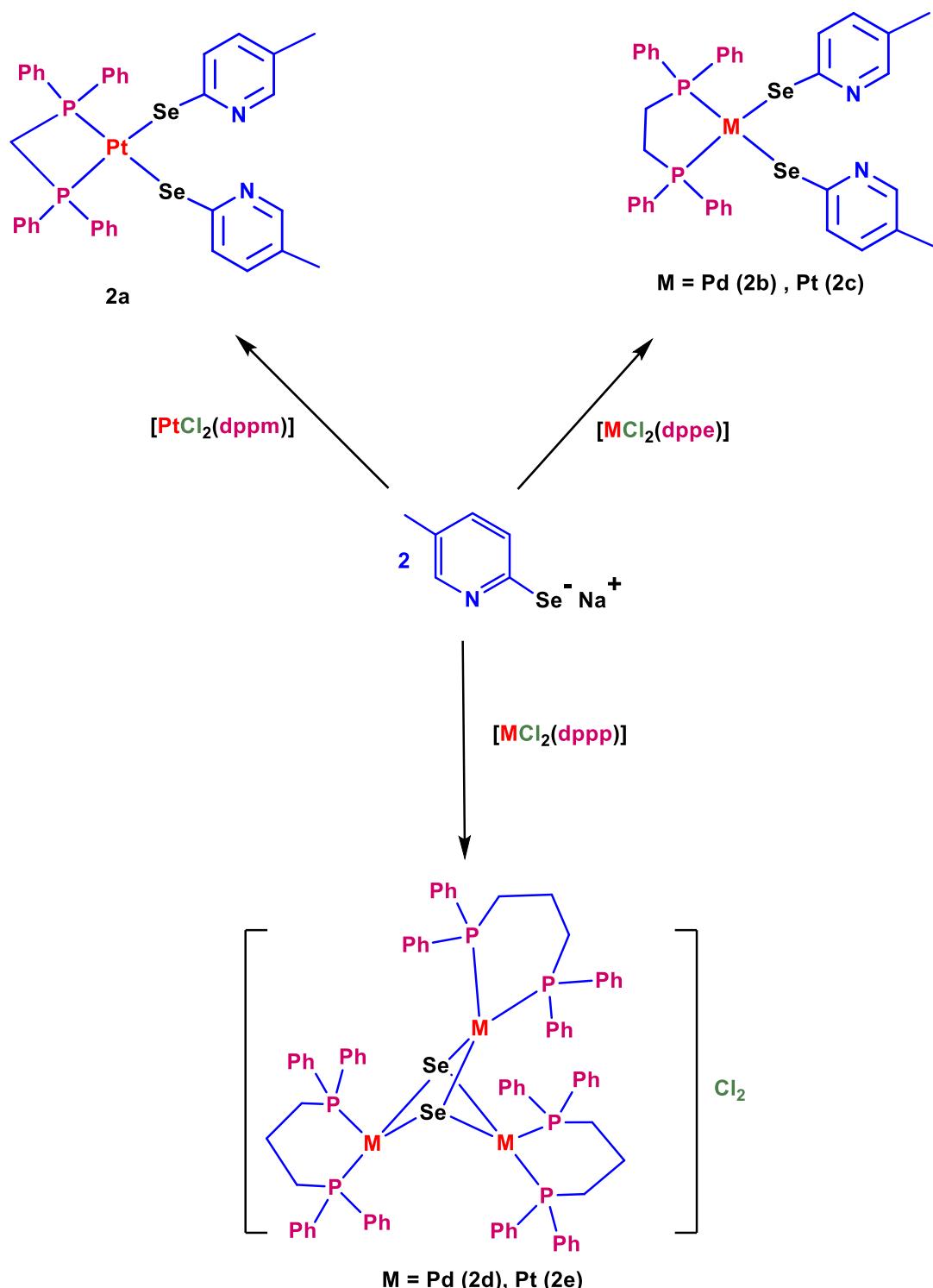
149 Prepared similar to method **2a** using bis(5-methyl-2-pyridyl)diselenide (82 mg, 0.24
150 mmol), sodium borohydride (18 mg, 0.48 mmol) and [PtCl₂(dppe)] (160 mg, 0.24 mmol)
151 (Yield: 152 mg, 66%) m.p. 191°C (dec.). Anal. Calcd. for C₃₈H₃₆N₂Se₂P₂Pt: C, 48.78; H, 3.88;
152 N, 2.99% Found: C, 48.71; H, 3.82; N, 2.97%. IR (KBr, cm⁻¹): 3342 (s), 3047(m), 2913 (m),
153 2111 (w), 1913 (w), 1654 (w), 1581 (m), 1545 (w), 1432 (s), 1356 (m), 1270 (m), 1130 (m),
154 1085 (s), 996 (s), 816 (s), 747 (m), 688 (s), 528 (s), 478 (m). ¹H NMR (CDCl₃) δ: 1.88 (br,
155 4H, -CH₂), 2.00 (s, 6H, CH₃), 7.30-7.39 (m, 12H, Ph), 7.74-7.83 (m, 12H, Ph), 8.28 (s, 2H,
156 C₅H₃N); ³¹P{¹H} NMR (CDCl₃) δ: 45.06 ppm (¹J_{Pt-P} = 3038 Hz).

157 2.3.6 *Synthesis of [Pd₃(μ-Se)₂(dppp)₃]Cl₂ (2d)*

158 A benzene suspension of [PdCl₂(dppp)] (100 mg, 0.17 mmol) was added to a
159 methanolic solution (15 cm³) of NaSeC₅H₃(5-Me)N [prepared *in situ* from reduction of bis(5-
160 methyl-2-pyridyl)diselenide (58 mg, 0.17 mmol) and NaBH₄ (13 mg, 0.34 mmol) in
161 methanol]. The reaction mixture was stirred for 4 hours at room temperature and dried under
162 vacuum. The residue was extracted in dichloromethane to obtained red crystals of complex
163 **2c**. (Yield: 81 mg, 27%) m. p. 279°C (dec.). Anal Calcd. for C₈₁H₇₈Se₂P₆Cl₂Pd₃: C, 54.49; H,
164 4.40%; Found: C, 54.42; H, 4.45%. IR (KBr, cm⁻¹): 3988 (w), 3913 (w), 3885 (w), 3726 (w),
165 3341 (s), 3046 (m), 2919 (m), 2166 (w), 1981 (w), 1655 (w), 1586 (w), 1433 (s), 1344 (m),
166 1271 (m), 1130 (w), 1092 (m), 997 (m), 943 (m), 823 (m), 743 (m), 693 (m), 511 (m), 431
167 (m). ¹H NMR (CDCl₃) δ: 1.63 (s, 12H, -CH₂), 1.71 (s, 6H, -CH₂), 7.34-7.48 (m 30H, Ph),
168 7.54-7.59 (m, 15H, Ph), 7.65-7.70 (m, 15H, Ph); ³¹P{¹H} NMR (CDCl₃) δ: -2.98 ppm.

169 2.3.7 *Synthesis of [Pt₃(μ-Se)₂(dppp)₃]Cl₂ (2e)*

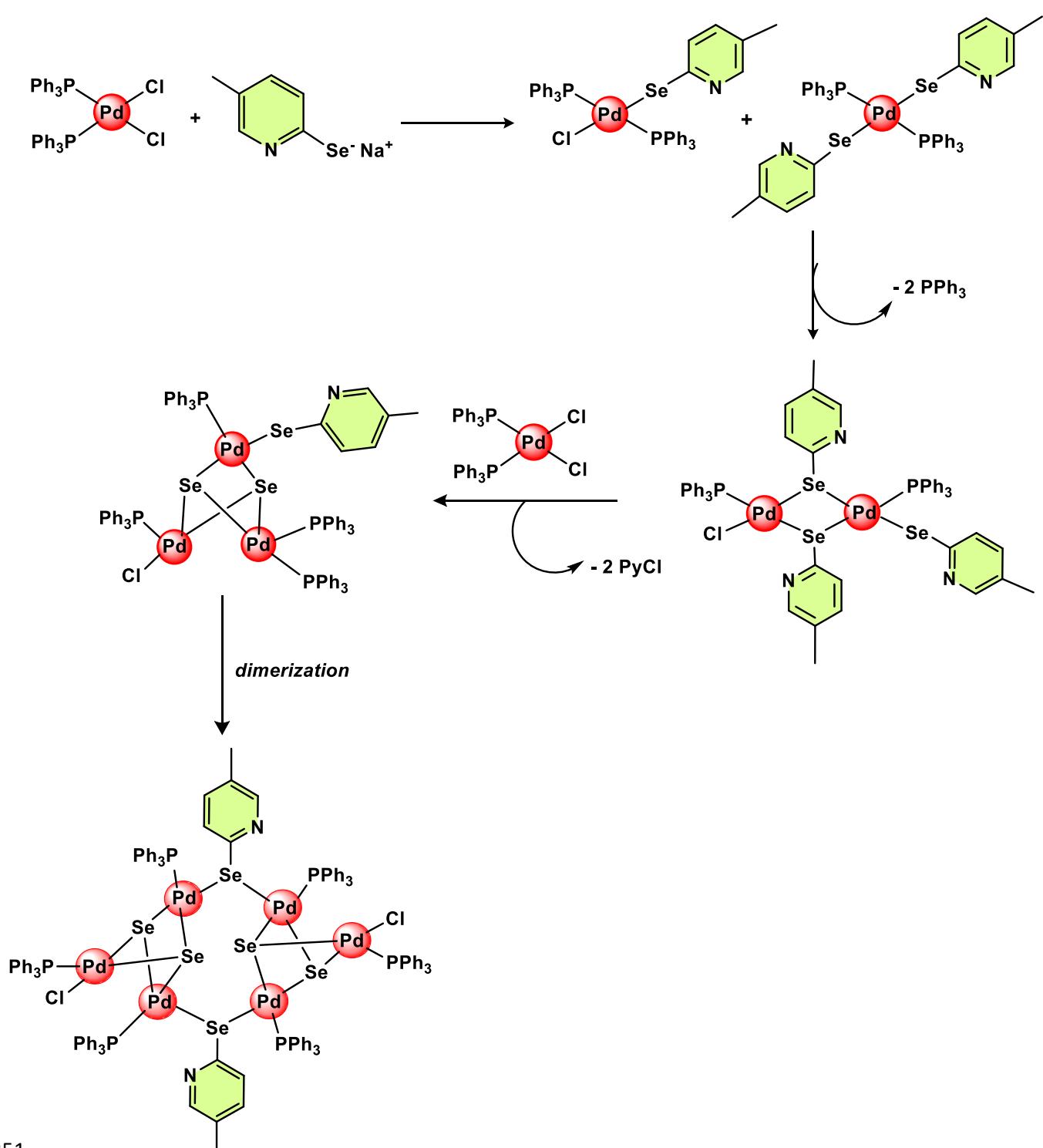

170 Compound **2e** was prepared similar to method **2d**, using bis(5-methyl-2-
171 pyridyl)diselenide (62 mg, 0.18 mmol), sodium borohydride (14 mg, 0.36 mmol) and
172 [PtCl₂(dppp)] (125 mg, 0.18 mmol) (Yield: 110 mg, 29%) m.p. 297°C (dec.). Anal. Calcd.
173 for C₈₁H₇₈Se₂P₆Cl₂Pt₃: C, 47.42; H, 3.83% Found: C, 47.48; H, 3.90%. IR (KBr, cm⁻¹): 3854
174 (w), 3639 (w), 3362 (s), 3049 (m), 2918 (m), 2319 (w), 2167 (w), 2033 (w), 1970 (m), 1623
175 (m), 1589 (m), 1433 (s), 1311 (w), 1273 (w), 1236 (w), 1186 (w), 1157 (m), 1099 (s), 972
176 (m), 919 (w), 835 (m), 795 (w), 747 (m), 694 (s), 511 (s). ¹H NMR (CDCl₃) δ: 1.69 (s, 12H,
177 -CH₂), 1.75 (s, 6H, -CH₂), 7.38-7.51 (m, 30H, ph), 7.66-7.71 (m, 15H, ph), 7.75-7.80 (m,
178 15H, ph); ³¹P {¹H} NMR (CDCl₃) δ: -11.60 ppm (¹J_{Pt-P} = 3007 Hz); ⁷⁷Se {¹H} NMR (CDCl₃)
179 δ: 127.7 ppm.


180 **3. Results and discussion**

181 The treatment of [PdCl₂(PPh₃)₂] with two equivalents of NaSeC₅H₃(5-Me)N (freshly
182 prepared by reduction of 5-methyl-2-pyridyl)diselenide with NaBH₄ in methanol) resulted in
183 an unexpected hexanuclear species [Pd₆Br_{0.87}Cl_{1.13}{2-SeC₅H₃(5-Me)}₂(PPh₃)₆] (**1a**) (**Scheme**
184 **1**). The IR spectrum showed all possible bands ranging from 3747 cm⁻¹ to 418 cm⁻¹. The peak
185 at 3052 cm⁻¹ corresponds to C–H stretching frequency and an absorption at 1092 cm⁻¹ reflects
186 the C–C bond. The ³¹P {¹H} NMR spectrum of complex **1a** displayed several resonances in
187 solution. Probably, complex **1a** disintegrates in solution into several species which makes the
188 spectrum inconclusive. M. S. Hannu-Kuure et al. reported similar findings for the formation
189 of [Pd₆Cl₂Se₄(SePh)₂(PPh₃)₆] via treatment of [PdCl₂(PPh₃)₂] with PhSe⁻ [21]. On the other
190 hand, by performing same reaction with [PtCl₂(PPh₃)₂], a chelated compound of composition
191 [Pt{κ-Se, κ-N: SeC₅H₃(5-Me)N} {SeC₅H₃(5-Me)N}(PPh₃)] (**1b**) was obtained. The
192 mentioned complex showed a resonance at δ = 7.21 ppm flanked by ¹J(Pt-P) coupling constant
193 of 3819 Hz in its ³¹P {¹H} NMR spectrum and well in range to the reported values [22, 23].

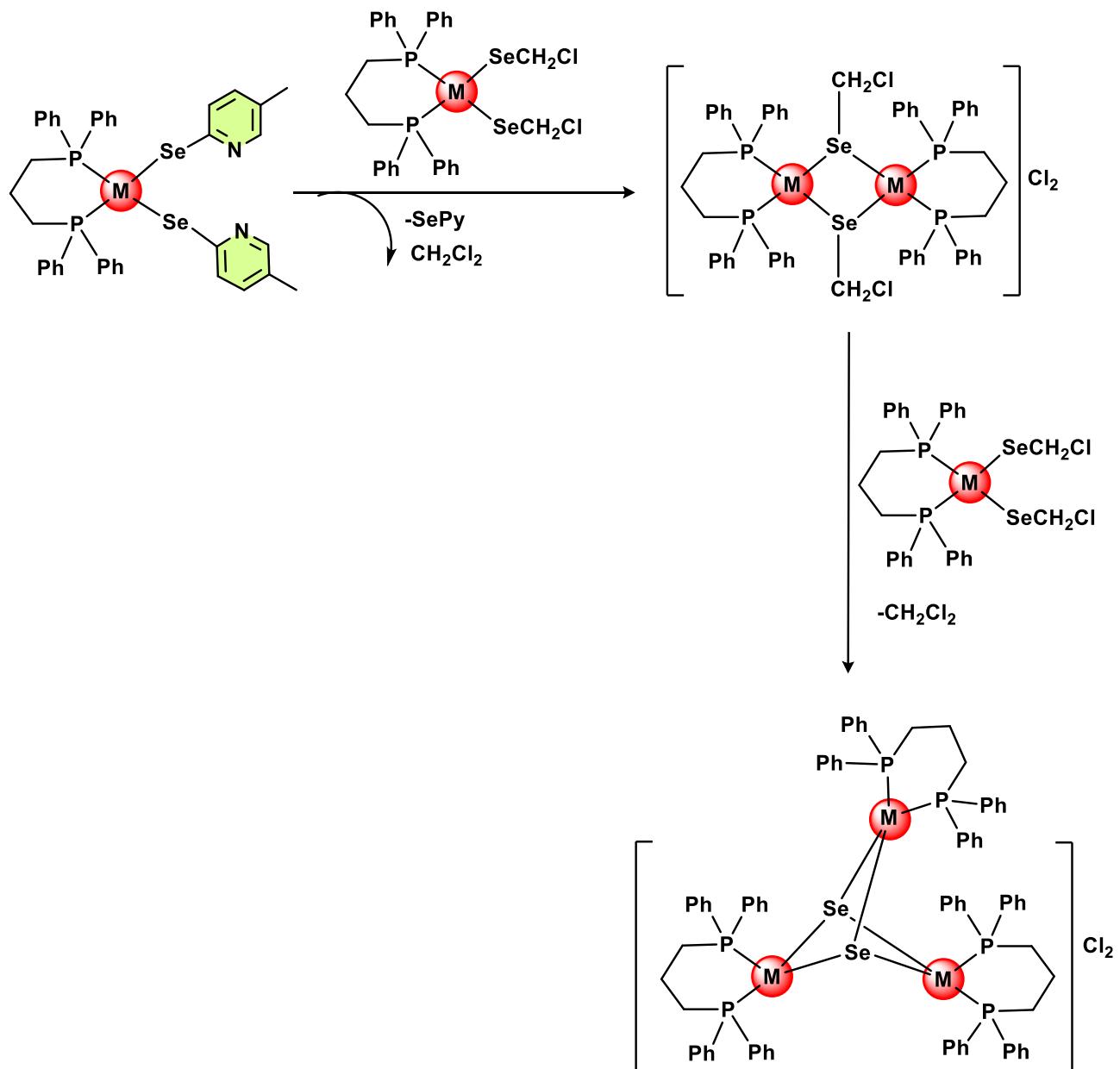
194 Shielded chemical shift and higher coupling constant indicates the presence of pyrimidyl
195 nitrogen *trans* to phosphine. An appearance of resonance at 208 ppm in $^{77}\text{Se}\{^1\text{H}\}$ NMR
196 corroborated to chelating selenolate ligand *trans* to phosphorous atom whereas the peak at
197 102 ppm supported the non-chelated selenolate molecule.

198 The reaction of $[\text{PtCl}_2(\text{P}\cap\text{P})]$ $\text{NaSeC}_5\text{H}_3(5\text{-Me})\text{N}$ in 1:2 ratio gave *cis* configured
199 mononuclear complex $[\text{Pt}\{2\text{-SeC}_5\text{H}_3(5\text{-Me})\text{N}\}_2(\text{dppm})]$ (**2a**) which showed a singlet at $\delta =$
200 -51.27 ppm ($^1\text{J}_{\text{Pt-P}} = 2691$ Hz) in $^{31}\text{P}\{^1\text{H}\}$ NMR spectrum (**Scheme 2**). S. Miranda and
201 coworkers observed a signal at -49.4 ppm ($^1\text{J}_{\text{Pt-P}} = 2800$ Hz) for the complex *trans*- $[\text{Pt}(\text{S-}$
202 $\text{C}_4\text{H}_3\text{SN}_2)_2(\text{dppm})]$ [24]. Similar reaction with $[\text{MCl}_2(\text{dppe})]$ ($\text{M} = \text{Pd, Pt}$) gave products of
203 the type $[\text{M}\{2\text{-SeC}_5\text{H}_3(5\text{-Me})\text{N}\}_2(\text{dppe})]$ [$\text{M} = \text{Pd}$ (**2b**), Pt (**2c**)]. The $^{31}\text{P}\{^1\text{H}\}$ NMR spectrum
204 of complexes **2b** and **2c** exhibited single resonances at $\delta = 52.60$ and $\delta = 45.06$ ppm
205 respectively which are in good conformity to the earlier reported work [25]. However,
206 changing the diphosphine with 1,3-bis(diphenylphosphino)propane (dppp) in $[\text{MCl}_2(\text{dppp})]$
207 ($\text{M} = \text{Pd, Pt}$) afforded a selenido bridged trinuclear complexes $[\text{Pd}_3(\mu\text{-Se})_2(\text{dppp})_3]\text{Cl}_2$ (**2d**)
208 and $[\text{Pt}_3(\mu\text{-Se})_2(\text{dppp})_3]\text{Cl}_2$ (**2e**) on extraction in dichloromethane. An identical behaviour has
209 been observed for the formation of $[\text{Pd}_3(\mu\text{-Se})_2(\text{dppe})_3]^{2+}$ [26]. The prominent peaks at 1655
210 cm^{-1} and 1623 cm^{-1} are attributed to $\text{C}=\text{C}$ stretching in IR spectra of complexes **2d** and **2e**
211 respectively. The $^{31}\text{P}\{^1\text{H}\}$ NMR spectra of complex **2d** revealed one resonance at $\delta = -2.98$
212 ppm suggesting the presence of chemically and magnetically equivalent phosphorus of the
213 coordinated dppp. The peak at $\delta = -11.60$ ppm has been observed for the $[\text{Pt}_3(\mu\text{-}$
214 $\text{Se})_2(\text{dppp})_3]\text{Cl}_2$ (**2e**) and magnitude of $^1\text{J}_{\text{Pt-P}}$ coupling (3007 Hz) is significantly reduced
215 compare to the value for $[\text{PtCl}_2(\text{dppp})]$ ($^1\text{J}_{\text{Pt-P}} = 3420$ Hz) but well matches with literature
216 complex [15]. The selenido ligands also showed equivalence of all selenium nuclei as only
217 one ^{77}Se resonance ($\delta = 127.7$ ppm) has been found in $^{77}\text{Se}\{^1\text{H}\}$ NMR spectrum for complex
218 **2e** which is quite deshielded as compared to 5,5'-Dimethyl-2,2'-dipyridyl diselenide.


225

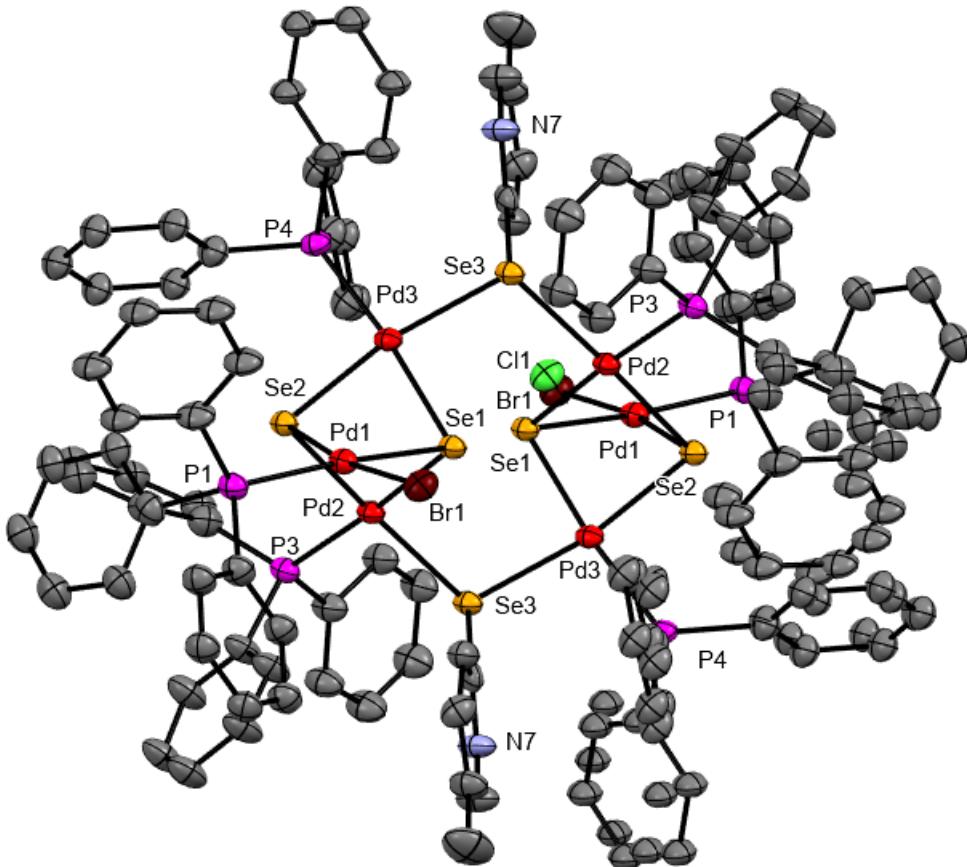
226 **Scheme 2:** Reactions of $[MCl_2(P \cap P)_2]$ ($M = Pd, Pt$) [$(P \cap P) = dppm, dppe, dppp$] with sodium
 227 salt of 5-methyl-2-pyridylselenolate
 228 *Mechanistic reaction pathway*

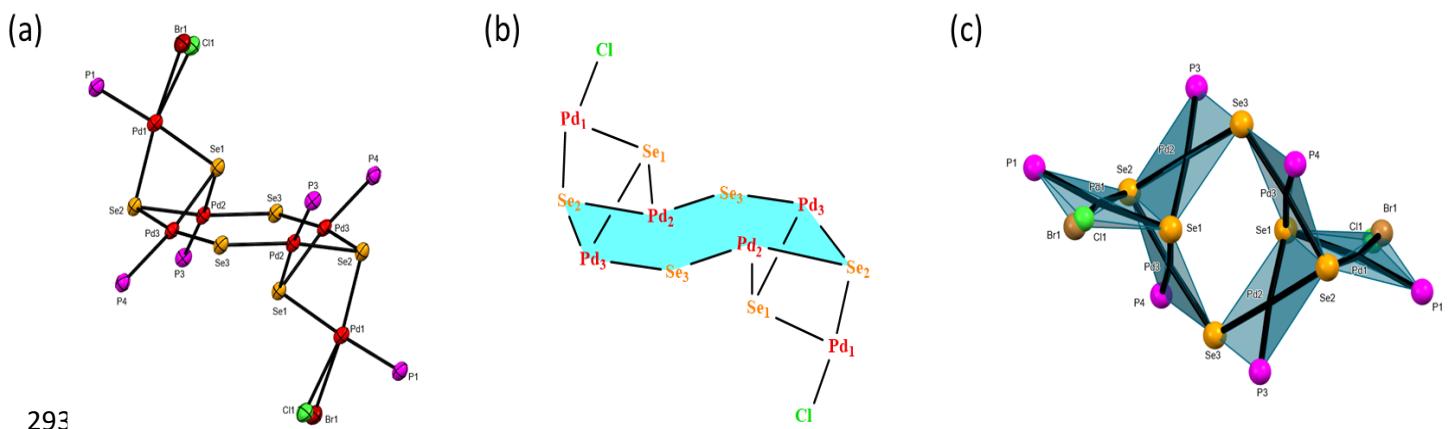
229 An isolable product from the reaction between $[\text{PdCl}_2(\text{PPh}_3)_2]$ and $\text{SeC}_5\text{H}_3(5\text{-Me})$ is
230 the hexanuclear complex **1a**. In this case, a mononuclear metal selenolate complex formed
231 initially as transient species which dimerizes through corner sharing to result in binuclear
232 moieties. The latter dimerized product on combination with $[\text{PdCl}_2(\text{PPh}_3)_2]$ assisted in
233 forming a trinuclear product. This conceivably dimerizes with edge sharing to afford the
234 Pd_6Se_6 core of the hexanuclear coordination cluster. Brennan et al., proposed similar
235 mechanistic prospects in isolating homoleptic hexanuclear complex $[\text{Pd}_6\text{Te}_6(\text{PEt}_3)_8]$. Various
236 combinations of mononuclear derivatives on condensation, yielded dinuclear complexes
237 which on reacting with the mononuclear unit $[\text{PdCl}_2(\text{PPh}_3)_2]$ resulted in trinuclear product.
238 Dimerization of this trinuclear specie afforded a hexanuclear complex $[\text{Pd}_6\text{Cl}_2\{2\text{-SeC}_5\text{H}_3(5\text{-Me})\}_2(\text{PPh}_3)_6]$ (**Scheme 3**).
239


240 The formation of the trinuclear coordination cluster $[\text{M}_3(\mu\text{-Se})_2(\text{dPPP})_3]^{2+}$ ($\text{M} = \text{Pd}$,
241 Pt) is quite interesting. Probably, *cis* configured mononuclear complex combines with another
242 same mononuclear molecule to result in a nucleophilic binuclear transient species $[\text{M}_2(\mu\text{-SeAr})_2(\text{dPPP})_2]^{2+}$ ($\text{M} = \text{Pd}, \text{Pt}$). An existence of such isostructural moieties $[\text{Pt}_2(\mu\text{-S})_2(\text{P} \cap \text{P})_2]$
243 ($\text{P} \cap \text{P} = \text{dppe}, \text{dPPP}$) of nucleophilic behaviour are highly susceptible towards chlorinated
244 solvents which is well proposed in literature [27]. It seems in our case, binuclear species
245 $[\text{M}_2(\mu\text{-SeAr})_2(\text{dPPP})_2]^{2+}$ ($\text{M} = \text{Pd}, \text{Pt}$) disintegrates in chlorinated solvent to facilitate the
246 cleavage of the Se–C bond resulting in a trinuclear complex. Moreover, strain free six
247 membered ring projected by chelating phosphine “dPPP” leads metallophilic core $\{\text{M}_2\text{Se}_2\}$
248 more widen up for nucleophilic attack on solvent [28]. (**Scheme 4**)
249

250

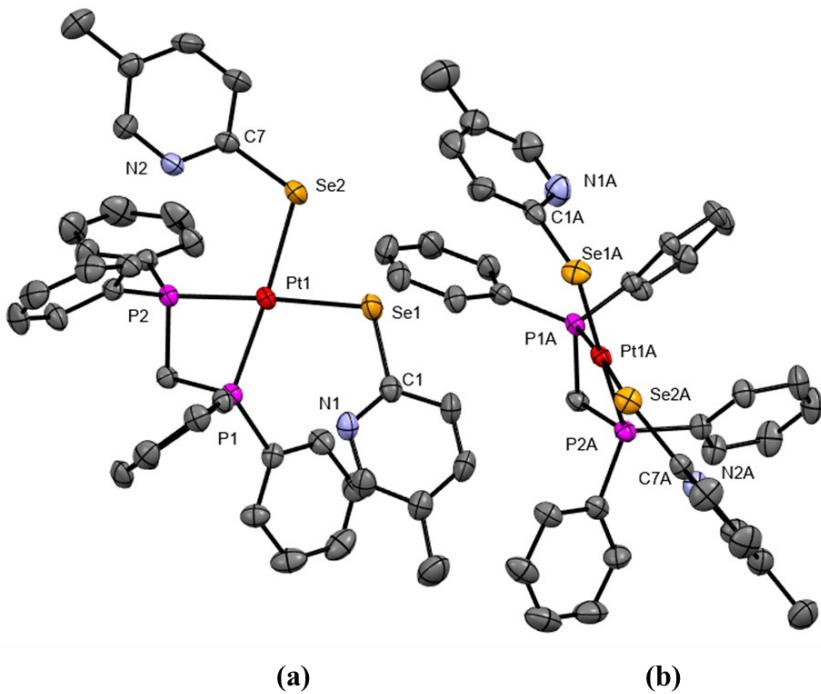
252


Scheme 3: Plausible mechanism for the formation of hexanuclear cluster **1a**


261 The cluster $[\text{Pd}_6\text{Br}_{0.87}\text{Cl}_{1.13}\{2\text{-SeC}_5\text{H}_3(5\text{-Me})\}_2(\text{PPh}_3)_6]$ (**1a**) crystallized out in
262 monoclinic space group, in which the two Pd_3Se_2 fragments are consolidated via two $[\{2\text{-SeC}_5\text{H}_3(5\text{-Me})\}_2]$
263 bridging ligands to frame a cyclic hexanuclear moiety. The later
264 framework seems to provide an inherent structure comprising of six distorted square planar
265 Pd atoms. 8 of the 12 Pd and Se atoms are configured into essential planar parallelogram. The
266 structure is comprised of two Pd_3Se_2 core atoms having convergent evolution from the
267 structure of the trinuclear $[\text{M}_3\text{E}_2(\text{P}\cap\text{P})_3]$ ($\text{M} = \text{Ni, Pd, Pt}; \text{P}\cap\text{P} = \text{dppe}$) [14, 29] and
268 pentanuclear $[\text{M}'\{[\text{M}(\text{P}\cap\text{P})]_2(\mu_3\text{-Se})_2\}_2]^{2+}$ ($\text{M}' = \text{M} = \text{Pd}; \text{M}' = \text{Pt}, \text{M} = \text{Pd Pt}; \text{E} = \text{Se, Te};$
269 $\text{P}\cap\text{P} = \text{dppe}$) compounds [30-32]. Considering the bonding patterns around the Pd atoms, the
270 hexanuclear species have two different coordination environments via, (a) one PPh_3 , two
271 selenium and one chlorine, (b) three bridged selenium and one PPh_3 .

272 The $\text{Pd}-\text{Se}_{\text{bridge}}$ bond lengths $[2.406(2) - 2.454(2) \text{ \AA}]$ $[\text{Pd}-(\mu_3\text{-Se})_{\text{avg}} = 2.434 \text{ \AA}]$ is
273 comparable with $[\text{Pd}_6\text{Cl}_2\text{Se}_4(\text{SePh})_2(\text{PPh}_3)]$ $[\text{Pd}-(\mu_3\text{-Se})_{\text{avg}} = 2.4311 \text{ \AA}]$ [21] and pentanuclear
274 fragment $[\text{Pd}'\{[\text{Pd}(\text{dppe})]_2(\mu_3\text{-Se})_2\}_2]^{2+}$ $[\text{Pd}-(\mu_3\text{-Se})_{\text{avg}} = 2.457(7) \text{ \AA}]$ [32] while shorter with
275 respect to high congeners of cluster $[\text{Pd}_6\text{Cl}_2\text{Te}_4(\text{TePh})_2(\text{PPh}_3)_6]$ $[\text{Pd}-(\mu_3\text{-Te})_{\text{avg}} = 2.592(1) \text{ \AA}]$
276 [33], $[\text{Pd}_6\text{Cl}_2\text{Te}_4(\text{TeTh})_2(\text{PPh}_3)_6]$ $[\text{Pd}-(\mu_3\text{-Te})_{\text{avg}} = 2.5931 \text{ \AA}]$ [34]. Promising observation in
277 complex **1a** is Pd-Se bond involving $[2\text{-SeC}_5\text{H}_3(5\text{-Me})\text{N}]$ as bridging ligands $[\text{Pd}(2)\text{-Se}(2) =$
278 $2.479 \text{ \AA}]$ is shorter than in $[\text{Pd}_6\text{Te}_6(\text{PEt}_3)_8]$ $[\text{Pd}(2)\text{-Te}(2) = 2.636(14) - 2.630(14) \text{ \AA}]$ [35]. The
279 Se-C bond length involved in bridging with $[\{2\text{-SeC}_5\text{H}_3(5\text{-Me})\text{N}\}]$ is 1.95 \AA is in the
280 expected range when compared to $[\text{Pd}_6\text{Cl}_2\text{Se}_4(\text{SePh})_2(\text{PPh}_3)]$ (1.927 \AA) but shorter than
281 $[\text{Pd}_6\text{Te}_4(\text{TeTh})_4(\text{PPh}_3)_6]$ ($2.113(8) \text{ \AA}$). The Pd-P distances (range = from $2.260(5)$ to $2.321(5)$)
282 while, the Pd(1)-Cl(1) bond length is $2.47(1) \text{ \AA}$. The three isosceles triangles formed within
283 the Pd_3Se_2 core i.e. $\text{Se}(1)\text{-Pd}(1)\text{-Se}(2)$, $\text{Pd}(3)\text{-Se}(1)\text{-Pd}(2)$ and $\text{Pd}(3)\text{-Se}(2)\text{-Pd}(2)$ are
284 78.53° , 79.86° and 80.75° , respectively which are quite acute in nature as a consequence bond
285 angle $\text{Se}(2)\text{-Pd}(2)\text{-Se}(3)$ is 172.38° which is quite obtuse.

286 The $\text{Pd}(1)\cdots\text{Pd}(2)/\text{Pd}(2)\cdots\text{Pd}(3)/\text{Pd}(1)\cdots\text{Pd}(3)$ are $3.260(17)/3.141(16)/3.393(16)$
 287 which are well within the range of Van der waal radii shows weak metallophilic interactions
 288 [36], whereas, the separation between two palladium atoms $\text{Pd}(2)-\text{Pd}(3)$ present in the
 289 parallelogram moiety are 4.062 \AA apart which is higher than the interaction range. There are
 290 close $\text{Se}(1)\cdots\text{Se}(2)/\text{Se}(1)\cdots\text{Se}(3)/\text{Se}(1)\cdots\text{Se}(3)$ contacts having distances $3.076/3.510/3.649 \text{ \AA}$
 291 which are well within the Van der waal radii [37, 38].


292

293

294 **Figure 1:** ORTEP diagram of $[\text{Pd}_6\text{Br}_{0.87}\text{Cl}_{1.13}\{2\text{-SeC}_5\text{H}_3(5\text{-Me})\}_2(\text{PPh}_3)_6]$ (**1a**) with atomic
295 number scheme. The ellipsoids were drawn at the 25% probability level.

296 The crystal lattice of complex $[\text{Pt}\{2\text{-SeC}_5\text{H}_3(5\text{-Me})\}_2(\text{dppm})]\text{C}_6\text{H}_5\text{CH}_3$ (**2a**)
297 contains two independent molecules that are slightly different from one another in terms of
298 bond lengths and bond angles. The structures comprise of a distorted square planar central
299 platinum atom defined by two selenolate ligands and one chelating dppm ligand in a *cis*
300 configuration. The two pyridyl rings adopt an *anti*-conformation in both the structures. Each
301 molecule has marginally different Pt–Se bond distances that are shorter than the complex of
302 tellurium analogue $[\text{Pt}(\text{TeMes})_2(\text{dppp})]\text{.3C}_6\text{H}_6$ but in good agreement with the reported
303 compound $[\text{Pt}(\text{SeC}_4\text{H}_3\text{N}_2(\text{PPh}_3)_2)\text{.2CH}_2\text{Cl}_2$ [23]. The Pt–P bond lengths are slightly smaller
304 than those in $[\text{Pt}(\text{Cl}_{0.5}\text{I}_{0.5})\{\text{C}_5\text{H}_3(3\text{-CONHPh})\text{N}\}(\text{PPh}_3)_2]\text{.HCl}$ (2.3221(7), 2.3057(7) Å) [39]
305 but in range with $[\text{Pt}(4\text{-TeC}_5\text{H}_4\text{N})_2(\text{dppe})]$ [40] (2.265(7), 2.262(7) Å),
306 $[\text{Pt}(\text{SeC}_4\text{H}_3\text{N}_2)_2(\text{dppm})]$ (2.2642(10) Å), $[\text{Pt}\{\text{SeC}_5\text{H}(4,6\text{-Me})\text{N}_2\}_2(\text{dppm})]\text{.CH}_2\text{Cl}_2$
307 (2.2550(12), 2.2523(13) Å) [41]. The Se–Pt–Se angles (79.98(2), 80.23(2)) in the molecules
308 (a) and (b) are largely deviated from the ideal value of 90°, also distinctly smaller than in
309 $[\text{Pt}(\text{Se}_2\text{C}_8\text{H}_{12})(\text{dppm})]$ (88.79°(4)) [42]. The observed P–Pt–P (72.74°(5) 72.92°(5)), bond
310 angles can be compared with the complex $[\text{Pt}(\text{SePh})_2(\text{dppm})]$ (73.68°(8)) [43] $[\text{Pt}(\text{S-}$
311 $\text{C}_4\text{H}_3\text{SN}_2)_2(\text{dppm})]$ (73.68 °(4)) [24].

(a)

(b)

312

313 **Figure 2:** ORTEP diagram of $[\text{Pt}\{2\text{-SeC}_5\text{H}_3(5\text{-Me})\text{N}\}_2(\text{dppm})]$ (**2a**) with atomic number
 314 scheme. The ellipsoids were drawn at the 25% probability level. Solvent molecule was
 315 omitted for clarity.

316 **Table 2:** Selected bond lengths (\AA) and bond angles ($^{\circ}$) for $[\text{Pd}_6\text{Br}_{0.87}\text{Cl}_{1.13}\{2\text{-SeC}_5\text{H}_3(5\text{-Me})\}_2(\text{PPh}_3)_6]$ (**1a**)

Pd(1)-Cl(1)	2.47(1)	Pd(1)-P(1)	2.321(5)
Pd(1)-Se(1)	2.454(2)	Pd(1)-Se(2)	2.406(2)
Pd(2)-Se(1)	2.451(2)	Pd(2)-Se(3)	2.479(2)
Pd(2)-Se(2)	2.435(2)	Pd(2)-P(3)	2.308(5)
Pd(3)-Se(1)	2.443(2)	Pd(3)-P(4)	2.260(5)
Pd(3)-Se(2)	2.415(2)	Pd(3)-Se(3)	2.482(2)
P(1)-Pd(1)-Cl(1)	96.6(10)	Cl(1)-Pd(1)-Se(1)	88.2(9)
Se(1)-Pd(1)-Se(2)	78.53(7)	Se(2)-Pd(1)-P(1)	96.40(14)

Cl(1)-Pd(1)-Se(2)	166.7(9)	P(1)-Pd(1)-Se(1)	171.71(14)
Se(1)-Pd(2)-Se(3)	95.50(8)	Se(3)-Pd(2)-P(3)	89.29(13)
P(3)-Pd(2)-Se(2)	97.03(13)	Se(2)-Pd(2)-Se(1)	78.02(7)
Se(1)-Pd(2)-P(3)	174.65(13)	Se(2)-Pd(2)-Se(3)	172.38(9)
Se(1)-Pd(3)-Se(3)#1	90.90(7)	Se(3)#1-Pd(3)-P(4)	95.59(14)
P(4)-Pd(3)-Se(2)	95.01(14)	Se(2)-Pd(3)-Se(1)	78.57(7)
Se(1)-Pd(3)-P(4)	172.28(14)	Se(2)-Pd(3)-Se(3)#1	169.39(8)
Pd(1)-Se(1)-Pd(2)	82.99(7)	Pd(1)-Se(1)-Pd(3)	87.73(7)
Pd(1)-Se(2)-Pd(2)	84.33(7)	Pd(1)-Se(2)-Pd(3)	89.47(8)
Pd(2)-Se(1)-Pd(3)	79.86(7)	Pd(2)-Se(2)-Pd(3)	80.75(7)
Pd(2)-Se(3)-Pd(3)#1	109.54		

318

319 **Table 3:** Selected bond lengths (Å) and bond angles (°) for [Pt{2-SeC₅H₃(5-
320 Me)N}₂(dppm)].C₆H₅CH₃ (**2a**)

Molecule (a)				Molecule (b)			
Pt1-P1	2.2602(14)	Pt1-P2	2.2671(14)	Pt1A-P1A	2.2637(14)	Pt1A-P2A	2.2595(14)
Pt1-Se1	2.4382(7)	Pt1-Se2	2.4392(7)	Pt1A-Se1A	2.4356(6)	Pt1A-Se2A	2.4472(7)
Se1-C1	1.906(7)	Se2-C7	1.897(6)	Se1A-C1A	1.899(7)	Se2A-C7A	1.905(6)
P1-Pt1-	72.74(5)	Se1-Pt1-Se2	79.98(2)	P1A-Pt1A-	72.92(5)	Se1A-Pt1A-	80.23(2)
P2				P2A		Se2A	
P1-Pt1-	104.12(4)	P2-Pt1-Se2	103.14(4)	P1A-Pt1A-	104.51(4)	P2A-Pt1A-	102.40(4)
Se1				Se1A		Se2A	
P1-Pt1-	175.85(4)	P2-Pt1-Se1	176.02(4)	P1A-Pt1A-	174.78(4)	P2A-Pt1A-	177.02(4)
Se2				Se2A		Se1A	

321 **4. Conclusions**

322 The substitution reactions of $[MCl_2(P\cap P)]$ ($M = Pd, Pt$) [$(P\cap P) = 2 PPh_3$, dppm,
323 dppe, dppp] with 2-pyridyl-5-methyl pyridine selenolates afforded various complexes,
324 ranging from chelated, trinuclear and hexanuclear nature of these products is depend upon the
325 nature of phosphines and available binding modes in hybrid ligand. These ligands exhibit
326 encouraging potential for building multinuclear complexes. Diversified structures and rich
327 coordination of such complexes facilitate to evolve the further research and explore their
328 reactivity in material chemistry.

329 **Competing Interests**

330 The authors declare that they have no competing financial interests or personal
331 relationships that could have appeared to influence the work reported in this paper.

332 **Appendix A. Supplementary data**

333 CCDC 2326944, 2294251 for complexes $[Pd_6Br_{0.87}Cl_{1.13}\{2-SeC_5H_3(5-Me)\}_2(PPh_3)_6]$ and
334 $[Pt\{2-SeC_5H_3(5-Me)N\}_2(dppm)]$ respectively contains the supplementary crystallographic
335 data for this paper. These data can be obtained free of charge via
336 http://www.ccdc.cam.ac.uk/data_request/cif, from the Cambridge Crystallographic Data
337 Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail:
338 deposit@ccdc.cam.ac.uk

339 **Acknowledgements**

340 One of the authors Dr. Afsar Ali Siddiki is thankful to DST-SERB for providing grant
341 (TARE/2022/000220) to carry out this work. Authors are also thankful to Mr. Kamlesh
342 Sathpute from IIT Ropar for carrying out the single crystal XRD.

343 **Declarations**

344 **Ethical approval:** Not applicable.

345 **Funding:** One of the authors Afsar Ali Siddiki is thankful to DST-SERB for providing grant
346 (TARE/2022/000220) to carry out this work.

347 **Availability of data and materials:** The authors confirm that the data supporting the findings
348 of this study are available in electronic supplementary information.

349 **References:**

350 [1] R. Cargnelutti, R.F. Schumacher, A.L. Belladona, J.C. Kazmierczak, (2021). *Coord.*
351 *Chem. Rev.*, **426**, 213537.

352 [2] G. Kedarnath, V.K. Jain, (2013). *Coord. Chem. Rev.*, **257**, 1409-1435.

353 [3] M. Roca Jungfer, E. Schulz Lang, U. Abram, (2022). *Inorg. Chem.*, **61**, 3785-3800.

354 [4] V.K. Jain, (2020). *Dalton Trans.*, **49**, 8817-8835.

355 [5] A. Arora, P. Oswal, D. Sharma, A. Tyagi, S. Purohit, P. Sharma, A. Kumar, (2022).
356 *ChemistrySelect*, **7**, e202201704.

357 [6] P. Oswal, A. Arora, S. Gairola, A. Datta, A. Kumar, (2021). *New J Chem*, 4521449-
358 21487.

359 [7] S. Dey, J. Vimal, (2004). *Platin. Metals Rev*, **48**, 16-29.

360 [8] J.-W. Wang, W.-J. Liu, D.-C. Zhong, T.-B. Lu, (2019). *Coord. Chem. Rev.*, **378**, 237-261.

361 [9] R. Oilunkaniemi, R.S. Laitinen, M. Ahlgrén, (1999). *J. Organomet. Chem.*, **587**, 200-206.

362 [10] R. Oilunkaniemi, R.S. Laitinen, M. Ahlgrén, (2000). *J. Organomet. Chem.*, **595**, 232-
363 240.

364 [11] M. Risto, E.M. Jahr, M.S. Hannu-Kuure, R. Oilunkaniemi, R.S. Laitinen, (2007). *J.*
365 *Organomet. Chem.*, **692**, 2193-2204.

366 [12] S. Narayan, V.K. Jain, (1999). *Transit. Met. Chem.*, **24**, 409-413.

367 [13] R.S. Chauhan, G. Kedarnath, A. Wadawale, A. Muñoz-Castro, R. Arratia-Perez, V.K.
368 Jain, W. Kaim, (2010). *Inorg. Chem.*, **49**, 4179-4185.

369 [14] R.S. Chauhan, G. Kedarnath, A. Wadawale, A.L. Rheingold, A. Muñoz-Castro, R.
370 Arratia-Perez, V.K. Jain, (2012). *Organometallics*, **31**, 1743-1750.

371 [15] M. Keiji, T. Kazumitsu, I. Masato, K. Hiroshi, O. Seichi, (1998). *Inorganica Chim. Acta*,
372 **281**, 174-180.

373 [16] C.N. Cechin, G.F. Razera, B. Tirloni, P.C. Piquini, L.M. de Carvalho, U. Abram, E.S.
374 Lang, (2020). *Inorg. Chem. Commun.*, **118**, 107966.

375 [17] S. Dey, K.V. Vivekananda, N. Bhuvanesh, (2018). *Eur. J. Inorg. Chem.*, **2018**, 3579-
376 3586.

377 [18] P. Mane, A. Pathak, N. Bhuvanesh, S. Dey, (2021). *Inorg. Chem. Front.*, **8**, 3815-3829.

378 [19] G. Sheldrick, (2015). *Struct. Chem.*, **71**, 3.

379 [20] C.F. Macrae, I. Sovago, S.J. Cottrell, P.T. Galek, P. McCabe, E. Pidcock, M. Platings,
380 G.P. Shields, J.S. Stevens, M. Towler, (2020). *J. Appl. Crystallogr.*, **53**, 226-235.

381 [21] M.S. Hannu-Kuure, K. Palda'n, R. Oilunkaniemi, R.S. Laitinen, M. Ahlgren, (2003). *J.*
382 *Organomet. Chem.*, **687**, 538-544.

383 [22] Y. Nakatsu, Y. Nakamura, K. Matsumoto, S.i. Ooi, (1992). *Inorganica Chim. Acta*, **196**,
384 81-88.

385 [23] R.S. Chauhan, R.K. Sharma, G. Kedarnath, D.B. Cordes, A.M.Z. Slawin, V.K. Jain,
386 (2012). *J. Organomet. Chem.*, **717**, 180-186.

387 [24] S. Miranda, E. Cerrada, A. Luquin, A. Mendía, M. Laguna, (2012). *Polyhedron*, **43**, 15-
388 21.

389 [25] R.S. Chauhan, G. Kedarnath, A. Wadawale, A.M.Z. Slawin, V.K. Jain, (2013). *Dalton*
390 *Trans.*, **42**, 259-269.

391 [26] L.B. Kumbhare, V.K. Jain, R.J. Butcher, (2006). *Polyhedron*, **25**, 3159-3164.

392 [27] V.K. Jain, L. Jain, (2005) *Coord. Chem. Rev.*, **249**, 3075-3197.

393 [28] M. Capdevila, Y. Carrasco, W. Clegg, R. A. Coxall, P. González-Duarte, A. Lledós, J.
394 Antonio Ramírez, A. Ramírez, (1999). *J. Chem. Soc., Dalton Trans.*, 3103-3113.

395 [29] R.S. Chauhan, D. Oza, S. Nigam, A. Tyagi, S. Ansari, R.J. Butcher, S. Yadav, C. Dash,
396 (2022). *J. Mol. Struct.*, **1248**, 131368.

397 [30] K. Matsumoto, C. Nishitani, M. Tadokoro, S. Okeya, (1996). *J. Chem. Soc., Dalton*
398 *Trans.*, 3335-3336.

399 [31] C. Nishitani, T. Shizuka, K. Matsumoto, S. Okeya, H. Kimoto, (1998). *Inorg. Chem.*
400 *Commun.*, **1**, 325-327.

401 [32] A.Y. Kulkarni, S.V. Lokhande, A.A. Siddiki, R.S. Chauhan, R.J. Butcher, (2023). *J.*
402 *Clust. Sci.*,

403 [33] R. Oilunkaniemi, R.S. Laitinen, M. Ahlgrén, (2001). *J. Organomet. Chem.*, **623**, 168-
404 175.

405 [34] R. Oilunkaniemi, R.S. Laitinen, M. Ahlgrén, (2000). *J. Organomet. Chem.*, **595**, 232-
406 240.

407 [35] J.G. Brennan, T. Siegrist, S.M. Stuczynski, M.L. Steigerwald, (1990). *J. Am. Chem. Soc.*,
408 112 9233-9236.

409 [36] S.S. Batsanov, (2001). *Inorg. Mater.*, **37**, 871-885.

410 [37] H.P. Nayek, H. Niedermeyer, S. Dehnen, (2009). *Dalton Trans.*, 4208-4212.

411 [38] C.N. Cechin, A.V. Paz, P.C. Piquini, A.C. Bevilacqua, N.R. Pineda, N.V. Fagundes, U.
412 Abram, E.S. Lang, B. Tirloni, (2020). *Polyhedron*, **177**, 114315.

413 [39] R.S. Chauhan, G. Kedarnath, J.A. Golen, A.L. Rheingold, V.K. Jain, (2013). *J.*
414 *Organomet. Chem.*, **723**, 163-170.

415 [40] S. Dey, K.V. Vivekananda, A.P. Wadawale, V.K. Jain, N. Bhuvanesh, (2017).
416 *ChemistrySelect*, **2**, 5073-5079.

417 [41] R.S. Chauhan, G. Kedarnath, A. Wadawale, D.K. Maity, J.A. Golen, A.L. Rheingold,
418 V.K. Jain, (2013). *J. Organomet. Chem.*, **737**, 40-46.

419 [42] C.P. Morley, C.A. Webster, P. Douglas, K. Rofe, M. Di Vaira, (2010). *Dalton Trans.*,
420 **39**, 3177-3189.

421 [43] V.K. Jain, S. Kannan, R.J. Butcher, J.P. Jasinski, (1993). *J. Chem. Soc., Dalton Trans.*,
422 1509-1513.

423