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1. Introduction

Let V denote a complex vector space. Write &2(V) for the ring of polynomial functions

on V and Z(V) for the algebra of constant coefficient differential operators. Together,

PZ(V) and 2(V) generate the algebra of polynomial-coefficient differential operators on
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V, denoted by #22(V). Note that #2(V) is just the Weyl algebra with polynomial
part equal to #(V). Now suppose that V is a &-module where ¢ is a complex reductive
Lie algebra. The study of invariants inside & 2(V) with respect to the action of ¢ yields
beautiful results at the intersection of representation theory, invariant theory and special
functions.

In [3], Bershtein studies this setup in the quantum case where V = Maty, the vector
space of N x N matrices, and ¢ is the Lie subalgebra of slyy generated by two copies
of sly and the Cartan element hy connecting the two. The quantum Weyl algebra
P Py(Maty) in [3] is a normalized version of the algebra Pol(Maty), introduced and
studied by Shklyarov, Sinel’schchikov, and Vaksman ([27], [28]) as part of the theory
of quantum bounded symmetric domains. In this context, Pol(Maty), is a x-algebra.
Moreover, the U, (#)-module action for Pol(Maty ), is inherited from its structure as a
Uy (sun, n)-module. Here, U, (sun n) is the Hopf *-algebra with underlying Hopf algebra
equal to Uy (slon).

In this paper, we construct a new family of quantum Weyl algebras associated to
symmetric pairs (g,€) of Type Al, Type AIIL, and the Type A diagonal case. The poly-
nomial part is a quantum version of &?(V), where V is an affine space which contains
the standard realization of the homogeneous space G/K as an orbit. Here G, K are the
Lie groups corresponding to g, t. This vector space V consists of symmetric matrices in
Type Al, skew symmetric matrices in Type AII, and all matrices in the Type A diagonal
case. The construction takes advantage of the theory of quantum symmetric pairs as
developed by Noumi in terms of reflection equations ([20]) and by the first author in
terms of generators and relations ([18], [19]). The relations for the resulting quantum
Weyl algebras resemble those of Z%,(Maty ).

The motivation for looking at these three types of symmetric pairs is their connection
to Jordan algebras that leads to a rich invariant theory in the classical setting. In a follow-
up paper ([13]), we study the quantum Capelli operators, which are invariants inside the
quantum Weyl algebras with respect to a quantum analog of U(), and determine their
eigenvalues. These operators satisfy vanishing and Weyl group invariance properties as in
[23] and [16]. In particular, the quantum Weyl algebras presented here provide a natural
setting for quantum versions of results due to the second author (see for example [22], [10]
and [11]). Similar results on Capelli operators have been obtained in the Lie superalgebra
setting (see [1], [24], [25], and [26]).

In order to construct these quantum Weyl algebras, we first provide a new method
for creating the algebra & %7,(Maty) as a Uy(gly)-bimodule instead of the Uy (sun n)-
module structure of [3] and [28]. Using this version of #%,(Maty), it is straightfor-
ward to produce a quantum Weyl algebra for non-square matrices Mat,, x,,, that is a
Uq(gl,) @ Uq(gl,,)-module algebra. The resulting Uy(gl,,) ® Uq(gl,,)-module algebra,
P Dy(Maty xm), is studied in [12] where a quantum analog of the double commutant
property and the first fundamental theorem of invariant theory are proved.

Our approach for defining & %,(Maty) has some of the same ingredients as in [28]
and [29]. Indeed, R-matrices, the algebra of quantized functions O,(Maty) on N x N
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matrices, and an invariant bilinear form play a role in these references as well as in this
paper. However, we take here a more intensive algebraic approach based on the theory of
twisted tensor products and their PBW deformations (see [6], [30], and [31]). One of the
nice aspects of our approach is that the U,(gly)-bimodule structure for #%,(Maty) is
inherited from the bimodule structures of O,(Maty) and O,(Maty)°P in a natural way
via the twisted tensor product formulation.

Our methods yield four twisted tensor products of O,(Maty) and O,(Maty)°P. The
definition of the twisting map is based on the R-matrix defined by the standard vector
representation for U,(gly) and resembles — though is not the same as — a quantum
double (see Section 6.4). These four twisted tensor products can each be viewed as
graded algebras since all defining relations are homogeneous. Using a U, (gl,) bi-invariant
bilinear form and a refined version of criteria due to Walton and Witherspoon (see [30],
and Section 8.2), we show that two of these twisted tensor products can be deformed
into quantum analogs of the Weyl algebra that respect the U, (gl )-bimodule structure.
Moreover one of the deformations is isomorphic to & %Z,(Maty) as an algebra.

Denote the generators for O4(Maty) by t;;,1 < 4,5 < N and the generators for
Oq(Maty)°P by 05,1 <i,j < N. Let Ry denote the R-matrix defined by the standard
vector representation for U,(gly) (see (10)) and set Ry = (Ry); - These results can be
summed up as follows.

Theorem A. There is a twisted tensor product A, » = Oy(Maty) @7, , Of(Maty)? for
each v,o € {0,1}, with the following relations derived from the twisting map Ty o:

8eatfb = Z (Rtaz)?le(Rl;z)thdjalk

Jik,d,l

for all e,a, f,b, where ty denotes the transpose in the second component. Each A, »
inherits a Uq(gly)-bimodule structure from Oy(Maty) and Oy(Maty)°P. Moreover, when
v =0, Ay admits a PBW deformation W,, ., that preserves the bimodule structure and
Woo =2 PP,(Matn) as algebras.

Using Theorem A and the methods developed for its proof, we obtain analogous results
for the three sets of symmetric pairs under consideration. In particular, let g = gl,, in
Type Al gl,,, in Type AIl, and gl,, @ gl,, in the Type A diagonal case. Write 6 for the
involution defining the quantum symmetric pair for each of these three families and so
t = g% (see Section 5.1). Let By be the corresponding coideal subalgebra of U,(g) which
is a quantum analog of U(£) as defined in [19] (see also [17]). Let &y be the algebra of
quantized functions on the affine space V associated to the homogeneous space defined by
g, t. This algebra & is a large subalgebra of the right By invariants inside of O,4(Mat,,)
in Type AL, O,(Mats,,) in Type AII, and O,(Mat,, ®Mat,,) in the Type A diagonal case.
Similarly, the quantum algebra of constant coefficient differential operators %y consists
of almost all of the right By invariants inside the opposite algebra of these quantized
function algebras.
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Write x;; for the generators of & and d;; denote the generators of Zy. We construct
four twisted tensor products of &y and %y by embedding slightly bigger versions of
these algebras inside large graded algebras formed using combinations of the A, », v,0 €
{0,1}. In analogy to the Maty setting, we identify a left U,(g) and right By invariant
bilinear form and again use the fine-tuned version of the criteria of ([30]) to create
quantum analogs of Weyl algebras. This yields the following result similar to Theorem
A in the symmetric pair setting.

Theorem B. For each v,o € {0,1}, there is a twisted tensor product .Af,’g =P ®ro Do

with the following relations derived from the twisting map Tg,o.'

dater = Y (BE)Ly (REL(RE) T (RE) o 2puwdyy
W,P,q,2,Y,m,l

for all e,a, f,b. Each A? _ inherits a left Uy(g) and trivial right B module structure

v,0

from Py and Py. Moreover, when v = o, Afj)v admits a PBW deformation ij,v that

preserves the module structures and is a quantum analog of the Weyl algebra associated
to the homogeneous space defined by (g, t).

Recall that the relations for O,(Maty) can be expressed in a compact matrix format
using the Faddeev-Reshetikhin-Takhtajan construction of quantized function algebras.
We express the relations for the algebras of Theorem A using similar matrix equations
(see Sections 4.2 and 6.3). For the three families of symmetric pairs, the relations for 2y
can also be expressed in matrix format. In this setting, the relations closely resemble the
reflection equations and P is a quotient of a reflection equation algebra (see Proposi-
tion 5.10). For Types Al and ATI, this result traces back to [20]. We show the generators
of Py in the diagonal case also satisfy reflection equation type relations. Passing to the
quantum Weyl algebras, we see that the relations, including the ones in Theorem B, can
all be expressed in matrix format in such a way that they resemble reflection equations.

In the diagonal case, it turns out that there also are isomorphisms &y = O,(Mat,,)
and W§, = 29,(Mat,,) as algebras. Moreover, this becomes a U, (gl,,)-bimodule isomor-
phism by converting the right action of U,(gl,,) on #%,(Mat,,) to a left action on W§,.
Similar isomorphisms in the diagonal case hold for the other graded and non-graded
algebras of Theorems A and B (see Corollary 7.7).

Note that the three families of symmetric pairs in this paper are each closely connected
with a Hermitian symmetric pair using the correspondence of [10], Section 1. On the other
hand, Pol(Maty ), is part of a larger family of quantum algebras associated to Hermitian
symmetric pairs (see [28]). Explicit generators and relations for Pol(Mat3”™), where
Mat3¥™ is the space of 2 x 2 symmetric matrices can be found in [4]. A straightforward
analysis shows that Pol(Mat3’™), does not agree with the corresponding quantum Weyl
algebra studied here (see Remark 8.12). One of the problems is that the constant terms
showing up in Pol(Mat5¥™), are not all equal. Hence, it is not even clear how to convert
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Pol(Mat3¥™), into a quantum Weyl algebra by normalizing the generators as is done for
Pol(Maty ), in [3].

Many of the results of this paper rely on general properties of R-matrices not specific
to Type A. Thus it is likely that these methods yield quantum Weyl algebras for other
symmetric pairs, especially the classical ones that have definitions via reflection equa-
tions. It would be expected that such Weyl algebras would be deformations of twisted
tensor products of two algebras %y and %y just as for the three types studied here.
Moreover, these two algebras, &y and %y, are likely to be quotients of reflection equa-
tion algebras. There are other quantum Weyl algebras in the literature built from two
algebras, one corresponding to the polynomials and the other to the differentials, with
reflection equation type relations. At the end of the paper, we discuss two such instances;
neither look like they are related to the Weyl algebras presented here (see Remark 8.13).

This paper is organized as follows. Section 2 introduces basic notation concerning
Hopf algebras, vector spaces and root systems in Type A. We turn our attention to
the quantized enveloping algebra of gl in Section 3. After reviewing the definition of
U, (gl ) and its associated vector representation p, we describe properties of the universal
R-matrix R and determine the image of R under p and related maps. These images and
their relation to R are crucial in our construction of quantum Weyl algebras.

Section 4 is devoted to the quantized function algebra on matrices using the standard
FRT construction. Our presentation here takes a module perspective as compared to the
usual coalgebra point of view. This way, we can track the U, (gl )-bimodule actions from
underlying vector space to O4(Maty) as well as to its opposite algebra Oy (Maty)°P. The
three families of symmetric pairs are introduced in Section 5 along with a specification of
the involution @ for each type and the quantum analog By of U(#) in terms of generators.
The quantum function algebra £y and differential algebra %y are described and analyzed
both from an algebraic and representation theoretic point of view. It is here that we see
for all three types, &y and Yy are just quotients of reflection equation algebras.

In Section 6, we define twisted tensor products based on dual pairings and use them
to form four graded versions A, , of quantum Weyl algebras. The twisted tensor product
formulation takes advantage of the bialgebra structure of O,(Maty) and its opposite.
However, the resulting twisted tensor products do not admit an obvious bialgebra struc-
ture (see Section 6.4). Although only two of the twisted tensor products A, , can be
extended to non-graded quantum Weyl algebras, all four play a role in constructing
quantum Weyl algebras for the three families of quantum symmetric pairs under consid-
eration.

Section 7 creates four twisted tensor products that glue together #y and Zy. Note that
the algebra generated by &y and % inside of A, , is not isomorphic to a twisted tensor
product and in particular contains additional terms such as sums of terms of the form
ti;O0r- (This happens in the classical case as well.) The desired twisted tensor products
are formed by embedding (possibly bigger versions) of &y and %y inside algebras created
using combinations of twisting maps from Section 6.
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The final section, Section 8, specifies bilinear forms relating the differential and poly-
nomial parts for both the space of matrices Maty and the homogeneous spaces arising
from the three families of symmetric pairs. These bilinear forms are U, (gly) bi-invariant
in the first setting and left U,(g) invariant in the second setting. The key method of
this section is a refined version of a criteria introduced by Walton and Witherspoon in
[30] for producing PBW deformations. This criterion allows us to check whether or not
the deformations produced by these bilinear forms yield quantum analogs YW and Wy
of the Weyl algebra satisfying the crucial property that multiplication defines a vector
space isomorphism from Og(Maty) ® Oq(Maty) (resp. Pp @ Zy) to W (resp. Wy). As
mentioned above and explained further in this final section, this happens for precisely
two of the graded quantum Weyl algebras both in the matrix and the homogeneous space
settings.

2. Background and notation
2.1. Hopf algebras and bialgebras

Many of the algebras we consider in this paper are either bialgebras or Hopf algebras.
So they come equipped with a coproduct A and a counit e¢; Hopf algebras also have
an antipode map S. We use Sweedler notation writing A(a) = > aq) ® a(z) for the
coproduct of an element a.

Let H be a Hopf algebra. A bialgebra A is a left H-module algebra if

h-ac= Z(h(l) . a)(h(g) : C)

for all h € H and a,c € A. The analogous definition works for right H-module algebras.
Given left H-modules M and M’, a scalar-valued bilinear form (-,-) on M x M’ is called
a (left) H-invariant bilinear form provided

> laqy - m, ag) 1) = ela)(m,r)

for all a € H, m € M and r € M’'. Right H-invariant bilinear forms are defined in a
similar fashion. If M and M’ are H-bimodules then we say that the bilinear form is
H-bi-invariant if it is H-invariant with respect to both the right and left actions.

2.2. Tensor product basics

Unless otherwise specified, tensor products are over the base field which is C(g) where
q is an indeterminate. Given a tensor product of two vector spaces, let 7 denote the flip
map which interchanges the tensor components (i.e. T(a ® b) =b® a)).

Let N be a positive integer and write Maty for the set of N x N matrices over C. Every
element in Maty ® Maty can be expressed as a linear combination of tensors of matrix
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units e;; ® ex;. Write ¢; for the transpose in the first component and ¢, for the transpose
in the second component so that (e;; ® ex)"* = ej; ® ey and (e;; ® eg)™ = ej; @ ey,
Consider C' = 20(1) ® C(2) € Maty @ Maty. Write Cj; for the operator acting
on a tensor product of r vector spaces all of dimension N in such a way that the first
component of C acts on the i*" vector space and the second component of C acts on the
4t vector space. In particular, C}; is the sum of r-long tensor products of matrices with
C(1) in position i and C(9) in position j and the identity in all other positions. Note that

C = 012 and T(C) = 021.
2.3. Vector space notation

Let V be a vector space with a distinguished basis vy, ...,vy. Define the action of
the matrix unit e;; on V' by e;;vr, = d;,v; for each k = 1,..., N. Consider the element
C =3, ki Cmeik ®eji in Maty ® Maty and note that

C- (v ®v) Z ciesk @ eq(ve ® vy) Z Chivs ® vy

s,t

The action of the linear transformation on V ® V defined by C can be expressed in
compact form as

VoV = C-(VaVl). (1)

We have analogous notions for matrices acting on the right. For instance, let W be
another N-dimensional vector space with basis wi, ..., wy and set wye;; = d;;w; for all
1,7, k. The map

WeoW - WeW)-C (2)
sends (wq ® wp) to (we ® wy) - C' where

(we @ wyp) - C = Z(wa ® wb)m‘;feaj ® eps = Z(wj ® ws)mji’

758 Jis

We often encounter maps similar to (1) and (2) with the extra involvement of a
reordering of vector spaces. This reordering is expressed using subscripts to denote the
position of a particular vector space. For example, V' @ V' can be written as V(1) ® V(g)
while 7(V @ V') is written as V() ® V(1y. This subscript notation enables us to express
maps arising from a combination of matrix actions and tensor component permutations
in a compact form along the lines of (1) and (2). For example, the map

Vig) @ Wigy @ Vioy @ Wy = Ciz - (Vi) @ Wy @ Vig) ® Wg)) - Cag

sends v ® w; @ v; @ w; to Zs’t,a,b mii(vs ® we @ vy ® wb)milb for all k,1,14, 7.
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2.4. Roots and weights

Let €1,...,en denote a fixed orthonormal basis for R with respect to the inner
product (+,-). The set of positive simple roots for the root system of Type Ay _; consists
of oy =¢; —¢;41 fori=1,..., N —1. The dominant integral weights for the root system
of gl is the set Ay consisting of those A = Aje; + - -+ + Ayeny where each A; € Z and
A > A2 2> AN

3. Quantized enveloping algebra for gln;
3.1. Basic definitions

Let ¢ be an indeterminate. The Drinfeld-Jimbo quantized enveloping algebra Uy, (gly)
is an algebra over C(q) generated by Keill, ... ,Kjfvl, Ei,...,En_1, F1,...,Fy_1 subject
to the algebra relations as stated in [20] (see also [15], Section 10). Given an integer linear
combination 8 = Zfil Bjej, write K for the product Kfll Kfj{y Set K; = K, =
KeiK;il for ¢ =1,...,N — 1. The subalgebra of U,(gly) generated by

+1 +1
K. K& BE\,...,Ex_1,F1,...,Fx_,

is the quantized enveloping algebra U, (sly).
Both U, (gl ) and U, (sly) are Hopf algebras with coproduct A, counit €, and antipode
S defined on generators by
e A(B)=E;®1+K,®FE;, ¢(E;)=0and S(E;) = —K; 'E;
(F)=F®K '+1®F;, ¢(F;) =0and S(F;) = —-FK;
(K)=K®K,e(K)=1and S(K)=K ! forall K = Kg,3 € > Zej.

> b B

Here, we follow the notation in [17] (and [20]) so that our definition of the symmetric
pair coideal subalgebras is consistent with this and many of the other papers in the
subject. However, we will also be quoting basic results on quantum groups from [15].
Although the algebra structure is the same for these references, the Hopf structure in
[15] is the opposite one from [17] and thus in this paper. We will automatically adjust,
interchanging tensor components when necessary, formulas taken from [15].

The adjoint action of U,(gly) on itself is defined by (ad g) -a = > g1yaS(g(2)) for all
a,9 € Uy(gly). For generators, the adjoint action takes the following form.

(ad E;) -a = Eia — K;aK; ' (ad F})-a = FaK; — FE; (adK))-a =K aK_'
forallt=1,....,N—1land j=1,...,N.

The Hopf algebra U,(gly) admits an algebra antiautomorphism that preserves the
coalgebra structure defined by
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K' =K, E=q'FK; F}=qK;'E (3)

forj=1,...,N—1landi=1,...,N. It should be noted that this algebra antiautomor-

phism is closely related to the one used to define the Hopf * structure on U,(gly). The

difference is that the map a + a’ is an algebra map over C(q) while a + a* is conjugate

linear. The fact that these two maps agree on the real part of U,(gly) allows us to quote

properties based on a — a* and use them instead in the context of the map a — a.
The map o S is the algebra isomorphism that satisfies

(S(E)) = —¢'F;  (S(F))* = —qB; (S(EZH)) = KT
and § o S~1! is the algebra isomorphism such that
(STHE) = —qF; (STHE)) = —q 'EB; (STHEL) = KT (4)

forj=1,...,N—1andi=1,...,N. Since § preserves the coalgebra structure while S
sends the coalgebra structure to its opposite, §0.S sends U, (gly) to Uy (gly)°P. By [15],
Section 1.2.7, we have o Sof = S~

We will also find it helpful to use the h-adic version of the Drinfeld-Jimbo algebra,
Un(gly), associated to gly. Recall that Uy (gly) is an algebra over C[[h]] generated by
E,Fy,H,, i=1,...,N—1,j=1,...,N such that

[He,,He,] =0, [He, E]=0i;E;, [He,F;]=—0iF;,

and the remaining relations, as well as the Hopf algebra structure, agrees with that of
U,(gly) with K, replaced by e"H< and g replaced by e”. The map 4 extends to U (gly)
with H? = H,, all 4.

Just as in the classical case, the weights in Ay parametrize the finite-dimensional
simple U, (gly)-modules. We write L(\) for the simple module of highest weight A. All
modules in this paper are of type 1 (see for example [15], Section 6.2).

3.2. Vector representations

As in [20] (see also [15] Section 8.4.1), the vector representation p for U,(gly) is
defined by

p(Ke,) = qeii+ Y ejji=1,2,....n
J#i

p(E;) =eiiv1, p(F) =eiy15, i=1,2,...,N—1
Let V' be the vector space with basis {vi,...,vn} and set e;pv; = O v; for all i, j, k.

The space V becomes the (left) module for the vector representation p via the action
defined by av; = p(a)v; for all j =1,...,n and all a € U,(gly). As a Uy(gly)-module,
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V' is isomorphic to the irreducible module L(e;) with highest weight generating vector
V1.

Let W be another N-dimensional vector space with basis {w1,...,wx} where Wjer; =
dkw; for all 4, j, k. Give W a right U, (gl )-module structure defined by wy-a = wi(p(a))
for all k and a € Uy(gly). The Uy(gly)-module W is a right dual to the left U,(gly)-
module V' with pairing (w;,vx) = 6;; such that

(wj, avy) = (wj, p(a)vg) = (w;p(a), vk)

for all j,k and a € Uy(gly).

Note that we can move the right action of U, (gl ) on W to a left action. Indeed, since
p(a) is a matrix, we have wj;p(a) = p(a)twj where here ¢ is just the standard transpose
on N x N matrices. A straightforward check using the definition of p and b, we see that

for all a € U,(gly). Thus acting on the right via the matrix representation p is the same
as acting on the left using the matrix representation p o f.

We can also define a left dual for the U,(gly)-module V and a right dual for the
Uq(gly)-module W as follows. Let V* be the vector space with basis {v],...,v}} and
define a linear map from V to V* that sends v; to v} alli =1,..., N. This allows us to
define a (left) U,(gly)-module action on V* via

(a-v)* = (S(a))* - v* (5)

for all v € V and a € Uy(gly). Similarly, let W* be the right U,(gly)-module dual to
the right module W with basis {wj], ..., w}} such that

(w-a)* =w*- (57 (a))* (6)

for all w € W and a € Uy(gly). It follows that elements a of U, (gly) act on elements of
V* using the matrix p((S(a))?) = (pofo S)(a). A similar analysis shows that elements
a of U,(gly) act on elements of W* on the right via the matrix (p((S~!(a))?)) = (pofo
S7)(a).

We can extend p to Uy (gly) in a way that is compatible with its definition on U, (gly)
by insisting that the image of E; and F; is the same under p as defined above and
p(H,) = ey for i = 1,...,N. Thus V can also be viewed as a (left) Uy (gly)-module
with H., v; = dxv; for all 4, k. Analogous assertions hold for W, V*, and W*.

Using the definition of p and the formulas for o S, we see that (pofo S) defines the
representation specified by

(pohoS)(Ke)=q teru+ Y ey, (polhoS)(He,) = —ex
J#k
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(poloS)(E;)=—q "eiy1i, and (pofoS)(F) = —qeiit1

fork=1,...,Nandi=1,...,N — 1. Similar formulas hold for (pofoS~1).
3.3. The universal R-matrix

Recall that Uy, (gl ) comes equipped with a universal R-matrix R. The matrix R is an
invertible element in a completion of Uy (gl )@Uy (gly) that satisfies the Quantum Yang-
Baxter Equation R12R13R23 = Ro3R13R12 along with compatibility relations with the
coproduct (see [15], Chapter 8 for more details).

Let M and M’ be left U, (gl )-modules. As explained in [15], 8.1.2, the map 7 - (Ta ®
T )(R) defines a left Uy(gly)-module isomorphism from M ® M’ to M’ @ M given by

m@m' =T (Ty @ Tar)(R)(m @ m) = 3 Tp(y)m' @ Ty (@iym - (7)

(2

where R = >, x; ® y; and Ty, Ty define the respective Ug(gly) left representations.
Similarly, if M and M’ are right U, (gl )-modules, then there is a right module isomor-
phism taking M ® M’ to M’ @ M given by

(mem') =T (meom) (Ty; @ T )(R™)) (8)

where T}, Ty, define the right representations on M and M’ respectively. Since Rot
is also a universal R-matrix for Uy(gly) ([15], Proposition 1), R can be replaced with
R;ll in each of the above isomorphisms to get other isomorphisms of U, (gl )-modules.

An explicit formula for the universal R-matrix for Uy (gly) is (see [15] Section 8.3.2,
Theorem 17 and Remarks 6 and 7 for more details),

N > LA ( )(l—q_Q)TJ'
= 515(r;+1 T T
R=exp|hy Ho®He | > J[a™ B
1

i=1 71 Tm=0j=1

Here, exp is the power series version of the exponential function, [r],! is the g-factorial
at r as defined in [15], Section 2.1.1, and Epg,, Fjs; are the root vectors associated to the
positive root [; defined using Lusztig’s braid group automorphisms.

One can give explicit formulas for the root vectors using ¢ commutators as in [15],
Section 7.3.1. In particular, define the ¢ commutator by [a,b], = ab — gba for all
a,b € Uy(gly). The analogous definition holds for ¢ replaced by ¢~'. Set E; ;41 =
E; and Fiy1,; = F;. Inductively define

Eiji1=[Eij, Ejjlg and Fjip1; = [Fjga,5, Fyilg-1

Then up to nonzero scalar multiples, E; ;11 is the root vector Eg,; and F}j.1; is the root
vector Fj,. where Bij = oy + - - + oj. Moreover these scalars are inverses to each other
and so Fji1; @ By ji1 = Fp,; @ Ep,;.
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Lemma 3.1. For alli,j with 1 <i < j < N, we have p(E;;) = e;; and p(Fj;) = €j;.

Proof. Recall that p(E; 1) = p(E;) = €;541 and p(Fiy1:) = p(Fi) = e;41,;. Hence the
first two equalities of the lemma hold for 5 = ¢+ 1. Now assume they hold for j — 1 with
7 —14>1. Then

p(Eij) = p([Eii+1, EBiv1,5lg) = [€iit1, €it1,5]q = €4y

since e;j+1,5€5,5+1 = 0 and the second equality follows by induction. A similar induction
argument establishes the second equality. O

3.4. Images of the universal R-matriz

Define the matrix R by

R= Z qei; Q e + Z (i ®ej; +ej; Dei)+ (¢ — qfl) Z eij & €j;
1<i<N 1<i<j<N 1<j<i<N
(10)

This matrix can be written as
_ i
R= § , Theik @ €ji
1,5,k,l

where

e rii=gq, 1 =1foralli,j, withi#j.
. rﬂ =(q—q7') forall j <.

R 7";29 = 0 for all other choices of s, t,1, j.

The next lemma relates the image of the universal R-matrix to R under maps involving
p. The argument follows closely a similar computation for sly in [15], Section 8.4.2.

Lemma 3.2. The image of R as given in (9) under p ® p is the matriz R (10) and the
image of R under both (p@1®S) @ (p@1®S) and (p@iRS )@ (p@4® S~ is Roy.

Proof. Since p(H,,) = e;; we have

(p® P)(Z H, ®H,) = Zeii ® ey

3

and hence
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n N
(p @ p)(exp (hz He, @ Hef,>) =exp(h ) eii ® eii)

=1 =1

= exp(he“- ® 61'7;) + Z (e“- ® €54 + €jj ® eii)

1<j<i<n

= qe€ii @ ey + Z (eii ®ejj +ej; ® €is)
1<j<i<N

Using Lemma 3.1, we see that for i > j
(p® p) (exp,((1 — ¢ %) (Fi; ® Ejs)))
= expy[(1 — ¢ %) (eij @ eji)] = 1+ (¢ — g7 ') (eij ® e5i) (11)

where exp,z = >07  ¢""t1/227 /[r] 1. Observe that terms of degree 2 or higher in the
final term of (11) vanish because e;;e;; = ej;e;; = 0 for i # j. Therefore

pap)( I (xp(1—aDF;0E:))= [[ (@+@—a")(e;@en)

1<j<i<N 1<j<i<N

=1+ Z (a—a " )ei @ezi)

1<j<i<N

because for j < ¢ and k <l we cannot have both ej;er; and e;e;; nonzero. Hence,

(p@p)(R)

= (geii ® €ii + Z (eii @ ej; +ej; ® €is)) H (14 (g =g (e ©eji))

1<j<i<N 1<i<j<N

which equals R of (10) as claimed.
By [15], Proposition 2, (S ® S)(R) = R. Clearly, we also have (S~! ® S71)(R) = R.
Hence

(re1eS) (o s))(R)

(p@h)®(p1))(R)
=((poheS (et s )(R).

Thus, to complete the lemma, it is sufficient to show that ((p®@ ) ® (p®))(R) = Ra;.
Recall that p o fi(a) = p(a)’. Therefore

(P @ (p@N)R) = ((p®p)(R)"" = R
It follows from direct inspection of the formula for R in (10) that R"* = Ry;. O

The next lemma evaluates R with respect to other combinations of p, pofo S and
pogoS~h
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Lemma 3.3. Let R be the matriz defined in (10). We have

(i) ((poloS8)®p)(R) = (Ry')"

(ii) ((pot 05)®p)(R21) R
(iii) (p® (pofoS™H)(R ) (Ry )™
(iv) (ﬂ®(,00b05 MRy = Rtl

Proof. By [15], Proposition 2, (S ® Id)(R) = R~ and (Id ® S)(R™!) = R. It follows
that

(potoS)®p)(R) = ((poh) @ p)(R™)

The same assertion holds for R replaced by R2_11 since the latter is also a universal
R-matrix. Hence we prove (i) and (ii) by determining the image of R and Rg; under

(pol) ®p.
Using the fact that (pof)(a) = p(a)’ and Lemma 3.2, we see that

t1

(pon) @R = ((p@p)R™)" = ((bep)(R) )" = (RT)" = (Ry')".

Similarly,

((pol) ® p)(Ra1) = ((p® p)(Ra1))"* = (Ran)!* = R,

This proves (i) and (ii).
Since (S ® S)(R) = R ([15], Proposition 2), we have

((p@(poloSTNR)™ = (p' @ (pobkoSTH(R) = ((po)®(pooSTH)(R)
=((poo8)®(po)(R) = ((polhoS)®p)(R)">

Therefore ((p®@ (poloS™H)(R)) = ((pofoS)®p)(R)1t2. Using the same argument,
this equality holds with R replaced with R,;'. Thus assertions (iii) and (iv) follow from
applying t1t2 to (i) and (ii). O

4. Quantized functions on matrices
4.1. FRT construction

We review here the basics about the Faddeev-Reshetikhin-Takhtajan (FRT) construc-
tion of quantized functions on N x N matrices. A good reference for additional details
is [15], Chapter 9.

Let ¢ be an s-dimensional representation of U, (gly) and set R = ((®()(R). Let M
be the s2-dimensional vector space spanned by the m;j,1 < 4,5 <s. The FRT bialgebra
A(R,) is the quotient of the tensor algebra T'(M) by the ideal generated by
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ik
Y (R)Smija @ mpy — Y max @ myj(Re)y, (12)
Jk jk

for all 4, j, a, b and coalgebra structure inherited from T'(M) so that A(m;;) =, mix @
my; and €(m;;) = d;; for all ¢, j.

4.2. Algebra structure

When ¢ = p, R, = (p® p)(R) = R and the FRT bialgebra A(R,) is the quantized
function algebra Oy(Maty) on N x N matrices. In this case, M can be identified with
V ® W and each m;; with v; ® w;. Moreover, we write ¢;; for the image of m;; in A(R,).
Using the explicit formula for entries of R, relations (12) at ¢ = p become

(i) trite; = qtrjtis tintje = qtixtin (i < )
(i) tutr; = thytis tijto — tatiy = (@ — ¢ Ditgita (0 < kyj <)

Set T' = (t;;), the matrix with ij entry equal to t;;. Set T1 =T ® Id and To = Id @ T.
As in [15], Section 9.1.1, these relations can be written in matrix form as

RT\T> = TyT\ R. (13)

It is straightforward to check that the map ¢ defined by

L(tiz) = tji (14)

for all 4,5 = 1,...,n defines an algebra automorphism of Oy,(Maty). It is well-known
(see for example [21], Theorem 1.4) that Oy(Maty) has a PBW type basis consisting of
elements of the form

mM114pM12 MIN £M21 1 M22 MmaN MmN1 MNN
bt N b T ety BN NN (15)

Examining the relations, we see that each ¢;; can be replaced with ty_; y—; in (15) and
yield another set of monomials that form a basis for Oy(Maty).

Applying T to both sides of (13) provides an equivalent set of equations in matrix
form Ro1ToT7; = T1T5Ro1. Multiplying on the left and right of both sides by R;ll and
then switching the sides gives us R2_11T V1 = T2T1R2_11. In other words, the same FRT
construction using the universal R-matrix R;ll instead of R, results in the same algebra
O,(Maty). Applying the map ¢ to both sides yields yet another formulation of these
relations RT{T} = TAT}R.
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4.3. Module realization

Recall that V' is a left Uy(gly)-module and W is a right U,(gly)-module. Using the
coproduct for Ug(gly), M becomes a Uy(gly)-bimodule and its tensor algebra T'(M)
becomes a Ug(gly)-bimodule algebra.

Lemma 4.1. The algebra O,(Maty) is a Ug(gly)-bimodule algebra with left action defined
by

By tiyry = Oiktij,  Fi-tij = Oirtipry,  Ke, - tij = ¢t
and right action defined by
tij - Bk = Ojktijer,  tijn- Fe = Ogtij,  tij - Ko, = ¢%mtiy,

forri,5=1,....,N and k =1,..., N — 1. Moreover, the right action is related to the
left via t;; - a = 1(a® - t;;) for all a € Uy(gly) and i,j € {1,...,N}.

Proof. Taking ¢ = p and noting that (R%?2 )g; = Rﬁ, we can rewrite (12) in this case
as

Z(Rtm){;(vj @ wy) ® (Ve @ wp) — Z(vd Qwg) R (v & wj)T(Rt1t2)Z‘§~
Jik j.k

By Lemma 3.2, we have (p ® p)(Ra1) = R, It follows that (p ® p)(Ri2) = T (R"!2).
Thus, the combined relations for all choices of a, b, d, [ correspond to the map of vector
spaces

Ra1 - (Vo) @ Wi2)) @ (Vi) @ Wiyy) = (V1) @ W(1)) @ (V(2) @ W(2)) - Raa.  (16)

In particular, these relations are simply the difference of a typical element preceding the
arrow in (16) with its image after the arrow. If we ignore the contributions from W, this
becomes

Ra1 - (Vi) ® V(1)) = V(1) @ V) (17)

Recall that V is a left U,(gly)-module defined by the representation p and that by
Lemma 3.2 we have (p ® p)(R) = R. Furthermore, by (7), the map

Viy @ Vigy — T - ((p®p)(R) (Vi) ® Vig))) = Ra1 - (V(2) ® V1))

is an isomorphism of left U, (gl )-modules. It follows that (17) and hence (16) is invariant
under the left action of U,(gly) and hence O,(Maty) inherits the structure of a left
U, (gl )-module algebra from T'(M).
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For the right action, we ignore the contributions from V in (16). Using (8) with R;ll
instead of R in this mapping, we see that the map

Wi @ Wy = T - (W) @ W) - (0@ p)(Ran))

is an isomorphism of right U,(gly)-modules. It follows that (16) is invariant under the
right action of Uy(gly ). Thus O, (Maty) inherits the right U, (gl )-module algebra struc-
ture from T'(M).

Explicit formulas for this bimodule action on the generators of O,(Maty) follow
directly from the explicit formulas for the actions on V and W derived from the definition
of p. The final assertion is easily checked using (3). O

Let O4(Matn)°? denote the bialgebra with the same coalgebra structure and opposite
multiplication as O4(Maty). Write 0;;, 1 < 4,5 < N for the generators of Ogy(Maty )
so that the map sending ¢;; to 0;;, which we denote by ¢;; — ti; = 0;;, for all 4,7 is
an algebra anti-isomorphism and coalgebra isomorphism. The bialgebra O,(Maty )P is
also an FRT bialgebra. In this case, M = V* ® W*, m;; = vj ® w] for each ,7j, and
0;; is the image of m;; when we pass from the tensor algebra of M to the FRT algebra
A(Ropos)- Set P equal to the matrix with ij entry equal to 0;; and write P; for P ® Id
and P, for Id @ P. The relations for O4(Matn)°? can be written in matrix form as

Ry PPy = Py P Ry (18)

Just as for the ¢;;, the map ¢ : Oy(Maty)? — O4(Maty)°P defined on generators by
1(0i;) = 0j; all 4,7 is an algebra isomorphism.

Lemma 4.2. The algebra Oy(Mat ) is a Uq(gly)-bimodule algebra with left action given
by

By 0y = =0ixq '0iy15,  Fi-0ip1; = —0ikqdij, Ko, - 05 = q°"0ij,
and right action given by
Oijar - Ex = —6kq0ij,  0ij- Fx = =0jq " 0ijy1,  Oij - Ke, = ¢ %y,

forr,i,j=1,...,N and k =1,...,N — 1. Moreover, the right action is related to the
left via 9;j - a = v(a” - 0j;) for all a € Uy(gly) andi,j € {1,...,N}.

Proof. By Lemma 3.2, we have ((p®5®5)®(p@5®5))(R) = Ra;1. The proof is identical
to the proof of Lemma 4.1 with R replaced by Rg; and p replaced by pofjoS. O

It is straightforward to check that the U, (gly)-bimodule structures of O,(Maty) and
0,(Mat )P are related by the following formulas (a - f)* = (S(a))?- f* and (f - a)* =
- (S7Y(a))? for all f € Oy(Maty) and all a € U,(gly)-
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5. Quantum homogeneous spaces
5.1. Three families

In this section, we consider three families of symmetric pairs g, £ where g is a complex
Lie algebra, @ is an involution of g, and ¢ = g’. In each case, § takes the form =
—JztJ~! for an appropriate matrix J. We give the generators for the fixed subalgebras
U() in terms of standard Chevalley generators. Afterwards, we specify the generators
for the right coideal subalgebras Bg(b) of U,(g) which are quantum analogs of U (£). Here,
we follow the presentation in [17] with the obvious extension from the semisimple case
to the reductive setting. Note that the b stands for nonzero parameters b = (b1, ..., bn,)
that correspond to Hopf algebra automorphisms of Uy(g). In particular, the quantum
analogs given below are all related to each other via Hopf algebra automorphisms. In
the presentation below, all Lie algebras are complex and we omit C from the notation.

Type AL: g = gl,, and 6 is defined by 6(x) = —z' for all z € gl(n) and J = I,
the n x n identity matrix. In terms of Chevalley generators, 6(e;) = —fi, 6(fi) = —e;
and O(h.;) = —he; each i = 1,...,n —1 and j = 1,...,n. Hence ¢ is generated by
e;— fi,i=1,...,n—1. Passing to the quantum case, By(b) is generated by F; fbiEiKi_l,
fori=1,...,n—1.

Type AIL: g = gl,,, and 6 is defined by 6(z) = —Jz'J~! where

n
J = g €2k—1,2k — €2k, 2k—1-
k=1

In this case, we have
e 0(ei) =€, 0(fi) = fi,0(hi) = h; for i =1,3,...,2n — 1
o O(e;) = —[fi-1,[fi+1, fi]] for i even.
o O(hey, ) = —he,, fori=1,... n.

Hence ¢ is generated by h;, e;, f; for i odd and f; — [fi—1, [fi, fi+1]] for i even. Passing to
the quantum case, we have that By(b) is generated by

o KF' E;, F; for i odd
. Bz = Fz - bl((ad Ei*lEiJrl)Ei)Ki_l = Fz - bi[Eifly [Ei+1’Ei}q]in_1 for 7 even.

Type A diagonal case: g = gl,, @ gl,, viewed as the Lie subalgebra of gl,, consisting

gl, O
0 gl,

of block diagonal matrices

and @ is defined by
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x 0) 2t 0\, [(—yt 0
()= (6 2=

n
0 I,
7= etmntennn= (2 ).
k=1

where

Using this notation, the set of Chevalley generators for gl,, @ gl,, is the union of two sets,
the first consisting of the generators for the first copy of gl,, and the second consisting
of the generators for the second copy of gl,,. We write this as e, f, he,; for the first copy

of gl,, and e, fnik, he, ., for the second copy where k =1,...,n—1and j=1,...,n.
Note that @ satisfies 0(f;) = —enti, O(fnyi) = —€i,0(he;) = —he,,, fori=1,...,n—1
and j = 1,...,n. Hence, £ is generated by f; — enti, frnti — €i, and €; — €,4; for
i =1,...,n — 1. Passing to the quantum case, the corresponding quantum symmetric

pair coideal subalgebra By(b) is generated by

Bi = Fz — biEn—i-iKi_l; Bn—‘,—i =Fnyi— b’LEZKT:-i{Z’ and (K;1K€n+j)i1
fori=1,...,n—1land j=1,...,n.

In the remainder of the paper, we frequently use the rank of the Lie algebra g to
specify various parameters. This rank, denoted rank(g), is just the dimension of the
Cartan subalgebra of g. For the Type Al family, this rank is n. It is 2n for Type AII as

well as for the diagonal family.
5.2. Invariant elements

To simplify notation, we write & = O,(Maty) in Type AI (with N = n) and Type
AIT (with N = 2n) and let & = Oy(Mat,,) ® O,(Mat,,) for diagonal type. We represent
the generators of & using t,; for all three families and write T' = (¢;;), the matrix with 4, j
entry equal to ¢;;. This is the standard way for the first two families. For the diagonal
type, tij, i,7 = 1,...,n are generators of the first copy of O,(Mat,,) and tp+in+j,
1,7 =1,...,n are the generators of the second copy. Moreover ¢; ,,1; = ty4s,; = 0 for all
i,j=1,...,n.

Using Lemma 4.1, we give & the structure of a U,(g)-bimodule. Again, for Types Al
and AII, this is standard. For the diagonal type, the U,(g)-bimodule structure is set so
that the first copy of Uy(gl,,) (i.e. the one generated by the E;, F;, K;Fl, 1=1,...,n—1,
j =1,...,n) acts on both the left and the right on the copy of O;(Maty) generated
by the ¢;;, 1 < 4,5 < n, just as in Lemma 4.1. The left and right action of the second

copy of U,(gl,) (where here we take as generators E,i;, Fyii, KZ2 Ji=1,...,n— 1,

€ntj’
j=1,...,n) on the copy of Oy(Mat,,) generated by the ¢4 nt;, 1 <1,j < n, is also the
same, where here, each term with an ¢ subscript is replaced with a term using ¢ +n as
subscript. We also insist that elements of the first copy of U,(gl,,) act trivially on each

element of the second copy of O4(Mat,,) and vice versa.
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For Types Al and AIl, set Ry equal to the matrix defined by (10) where N = n in
Type Al and N = 2n in Type AIl. The reflection equation associated to the families of
Type AT and AII is the matrix equation defined as in [20] by

Ry Jy R Jy = JoRE Jy Ry (19)

where J is a rank(g) x rank(g) matrix, I is the rank(g) x rank(g) identity matrix, J; =
J® I and Jy = I ® J. By [20], the following solutions to these reflection equations

n

Jmy(a) = arere and  Jiy(a) = ap(ear—1.25 — qear26-1)
k=1 k=1

are used in the construction of quantum symmetric pairs, the first in Type Al and the
second in Type AII. Here, n refers to the number of parameters, not the size of the
matrix. In particular, for both solutions, a = (a1, ...,a,) is an n-tuple of nonnegative
scalars.

We can also define an R-matrix in the diagonal setting and the associated reflection
equations. In particular, for the diagonal family, let Ry be the 4n? x 4n? matrix with

entries
. rngtn i iing itn
(Rg)i = (RQ)Z+Z,JI+Z =7y and (R9)§+Z,§‘ - (Rg)z,;‘+z =1
fori,j7 =1,...,n and all other entries equal to 0. Note that in the diagonal case, R4 can

be viewed as a block diagonal matrix with diagonal entries (R, I,,2, I,,2, R). Moreover,
this is the R-matrix associated with the U,(g) representation (Vo ® C(g)) @ (C(q) ® V1)
where V; is the standard representation associated to the i*" copy of U,(gl,,) inside of
Uq(g) and C(g) is the trivial representation.

The algebra & is a quotient of the FRT matrix defined by Ry with all matrix entries
tij+n and t;y, ;,fori, j =1,...,n,set to zero. Using the similarity between the reflection
equation in Type Al and the diagonal type, it is straightforward to check that the
matrices J(,)(a) defined by

n

J(n) ((l) = Z ak(ek,n—l-k + en+k,k)
k=1

satisfies the reflection equations with respect to the matrix Ry.

We frequently write J(a) for Ji,)(a) where the subscript n, which equals the length
of the tuple a, can be understood from context. Let J* be the submatrix of J(a) corre-
sponding to the term with coefficient a;. We further write Jﬁs for the r, s entry of J*
viewed as a matrix. Set

Lij (a) = Zak (Z tirjﬁstjs> (20)
k=1 7,8
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for each choice of 7, j and each n-tuple (ay, ..., a,). These terms can be written explicitly
for each family as

> ohet Aktirtjk for Type Al
oy ) sy an(tigk—1tj 26 — qti2rt;2k—1) for Type AII
zij(a) =
2221 aptintinyr fori <n <j for the diagonal type
Y ke Aktintrtji for i >n>j for the diagonal type

These elements can also be expressed in matrix form as
X(a) =TJ(a)T"

where X (a) is a matrix with entries z;;(a) of size n x n in Type AI and 2n x 2n in both
type AIl and the diagonal type. For the diagonal family, ¢;;, commutes with ¢;,, 4, for
all 4, k, 7, 7. Hence

n n
Tijin(a) = Z aptikljyn k+n = Z artjtn ktnlik = Tjtn,i(a)
k=1 k=1
forall e <n < j.

In the next lemma, we determine the relationship between the n-tuple a and the n-
tuple b so that z;;(a) is invariant with respect to the right action of By(b). Moving the
right action to the left, one could deduce this from [20], Proposition 2.3 for Types Al and
AIl. However, it would still be necessary to translate between the Noumi construction
of right coideal subalgebras based on J(a) to the By of this paper. By [18], Section 5
(see also [19], Theorem 7.5), these two families are essentially the same. However, the
matching between parameters a and b has only been made explicit in Type AI (see [20],
Section 2, equation (2.21)). It is easier to determine this matching directly using the
action of the generators for By(b). This is the approach taken in the proof of the next
lemma.

Lemma 5.1. The elements x;;(a), 1 < i,j < rank(g) are right By(b) invariants of & if
and only if foru=1,...,n—1,

(i) by = ay1ayt in Type AT
(i) bou = ¢Paysr1a,t in Type AIL

(iii) by = qaur1ayt in the diagonal type.

Proof. To make the notation somewhat easier to read, we suppress the a and write x;;
for x;;(a) throughout this proof. It follows from Lemma 4.1 that

(tir ' KT])<tJS : K’r]) = an+nstirtjsv (21)
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for all 7,7, 7,s and all n = 3", nre, with n, € Z. Hence z;; - K, = (K,)z;; = x;; if and
only if 7, +n, = 0 for all choices of r and s with ¢;,¢;, showing up as a summand of z;;.
Using the description of elements of the form K, in By(b) combined with the explicit
formulas for the x;;, it is straightforward to check that this condition on 7 holds for all
K, € By(b). Note that this is independent of the choice of by and ag.

We now evaluate the action of the other generators of By(b) on the z;;(a). By
Lemma 4.1, we have

(tz'rt ’s) . Fu = (tir . Fu)(ts . qul) + tir(t's . Fu))
J J J
= 57',u+1q65’u+176su tiutjs + 6s,u+1ti'r'tju- (22)
A similar computation yields
(tirtjs) B, = 6Tuti,u+1tjs + 5suq6ru_6hu+ltirtj,u+1~ (23)

In case (i), B, = F,, — b,E, K, ' and z;; = Y, agtixt . Hence, it follows from (21),
(22), (23) that

Zij - By = qOusi1tintjusi + Gugitiuritiu — bubuts ut1tju — buutiutyuti-

Thus z;; - B, = €(By)z;; = 0 if and only if b, = ayr1a, ! for each u. For case (iii),
B, =F,—b,E,K;! where v/ = u+n if u < n and v’ = u — n otherwise. This gives us
Lij Bu = 6u§n (au—&-ltiutlj,u’—i-l - q_lbuautiutj,u’—i-l)

+ 6u>n (au+1ti,u+1tj,u’ - qilbuauti,u+1tj,u’) .

Hence, z;; - B, = 0 if and only if b, = qayira;t foru=1,...,2n.
We only need to finish case (ii). Using (22), we see that
(tiok—1tjon — qtioktion—1;) - Fu = 6o us1 (tiutju — 90 tiutju) =0
; 7, 12k L3, J ; j j

for u odd and for all k. Hence z;; - F;, = 0 for all v odd. A similar argument shows that
x5 - 2, = 0 for all u odd.

It remains to determine conditions for x;; - Ba, = 0 for w = 1,...,n — 1. Recall that
Bay = Foy — bay((ad Egy—1Foy11)FEau) Ky, By (22), we have

(tigk—1tj26 — qti2ntjon—1) - Fou = 02k—1,2u41ti 2utj,2u+2 — QO2k—1,2u+1ti,2u+21;,2u-
(24)

A straightforward computation using the formulas for the adjoint action yields

(ad E2u71E2u+1)E2u = E2u71[E2u+17 E2u]q—1 - q_l[EzuH, EQu}q—lEZufl
€ ¢ EsyEaui1Eau—1 + E2y—1Uq(g) + E2u1Uq(g).  (25)
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We showed earlier that x;; - Fay4+1 = 0. Hence,
((ad Es,_ 1E2u+1)E2u)K2u = Tgj * ( 72E2uE2u+1E2u—1K2_u1)'

Note that ¢4 2r—1 - E = 0 whenever E € E9,U,(g) + Ea2y—1Uq(g). Similarly, t, o, - E =0
for all E € E9,_1U4(g) + E2ut1Uq(g). Hence for allu =1,...,n — 1, we have

A(EyyEoyt1E2u-1) = Koy Koyt1E2u—1 @ EoyFoyy1 + EoyKoy—1Eoy+1 @ Eoy_1 +Y

where Y =3y, ®y, is a term in Uy(g) ® U,y(g) such that

D (i1 yr) (b2 - 9) =0 and Y (tion - yr) (tion-1-y)) =0

T T

for all k. Hence x;; - ((ad Egu,lEguH)Egu)K;ul equals

q 2 Z ag(ti2k—1 K2uK2u+1E2uflK27u1)(tj,2k : EzuE2u+1K{u1)
k

—q! Z ar(tiok - B2uKou—1Fou1 K3} ) (tok—1 - Bau_1K5,))
3

-3 2
= (¢ auti2utj2ut2 — ¢ “Guli2utatjou)-

This combined with (24) implies that z;; - Ba,, equals

-3 -2
Au1ti 2utj 2ut2 — QAutitigutatjou — (@ b2uuti 2utjout2 — ¢ “baututi 2utat;ou),
and so by, = q3au,1a;1 forallu=1,...,n—1 as claimed. O

Set 2 = 27°P. In particular, write 2 = O,(Maty)°? in Type Al (with N = n) and
Type AII (with N = 2n) and let 2 = O,(Mat,,)? ® O,(Mat,,)°? in the diagonal setting.
Using Lemma 4.2, 2 is given a U,(g)-bimodule structure for Types Al and AIL In the
diagonal setting, for k = 1,2, the k' copy of U,(gl,) acts on the k" copy O,(Mat,,)°P
as detailed in Lemma 4.2 and trivially on the other copy.

For each n-tuple (c1,...,¢p), set

dij(c) Z <Zawﬁ ) (26)

Comparing (26) to (20) yields that (z;;(c))* = d;j;(c
(S7Y(g))t = (f - g) for all f € & and g € Uy(g) (

)
of Section 4). The next result is an analog of Lemma 5.1 with the ¢;; replaced by the 0;;.

c¢) for all 4,j. Recall that f* -
as in the discussion at the end

Lemma 5.2. The elements d;;(c), 1 < i,j < rank(g) are right Be(b) invariants if and
only if foru=1,...,n—1 we have
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(i) by, = q_QC;ilcu in Type Al
(ii) bou =g
(iii) b, = qilc;}rlcu for the diagonal type.

c;}rlcu in Type AIl

Proof. Given K, in By, we have (S™1(K,))? = K, ' Hence by Lemma 5.1 and its proof,

dij(c) - Ky = ((wji(0)) - K, 1)* = (z:(¢)* = dij(c)

for all K, € By independent of the relationship between the n-tuples b and c.
It follows from (4) that

STHF, — ¢ W By K = =7 By 4 ¢ b Fu K,
= _q26“’/m’b;’1 (Fu/ - q_25u/’ubu’EuKu71(Ku/Ku_l))Ku
= _q25u/,ub;/1 (Fu, _ bu, (Ku’Kgl)Equ;l)Ku

Now consider Type AI with ' = w and the diagonal type with v/ = u+nor v’ = u—n. In
both cases, we have K, K ' € By and so by the previous paragraph, d;;(c) - K, K;' =1
for all n-tuples ¢. Hence, the above computation shows that

dij(c) - (Fuy — by B K1) = 0 if and only if zj;(c) - (F, — ¢* b, By K, ') = 0.

By Lemma 5.1 (i), the latter equality holds in Type AI provided ¢~ 2b,' = c,q1c, !
This proves (i). For the diagonal type, the latter equality holds provided b, ! = gc, 1 1c,*
which is equivalent to (iii).

For Type AII, it follows from (4) that x;;(c) - E2y—1 = 0 implies d;;(c) - Fay—1 = 0
for v = 1,...,n. The same holds for the roles of Fs,_1 and Fb,_; interchanged.
Hence, we only need to analyze the action terms of the form By, = Fy, —
bay ((ad Egu,lEguH)Egu)K?_ul. Using (23), we get

dij(c) - Fa = —q " ((zji(c) - Eay)?

= —q_l(z ek (tok—1tion — qtjartize-1) - Bou)"
k

-1
—q cu(tj2u—1ti2ut1 — qtj2ut1tizu—1)"

Arguing as in the proof of Lemma 5.1, we have

dij(c) - ((ad Ezy—1E2u+1)Fau) K3, = dij(c) - ¢ 2 (Bay Byt 1 E2u—1)K5,)

=q7 Z cr(0i ok - KouKou—1EB2u+1K5,)(0j 261 - B2uFou-1K5,)")
%

—q! Z cx (05 261 - EzuK2u+1E2u—1K2_ul)(3j,2k By K51
%
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= Cut10i,2u+10j,20u—1 — qCu+10i,2u—10} 2u+1

Hence

dij (C) : B2u = _q_lcu(ai,2u+1a',2u—1 - qai,2u—la',2u+1)

- b2ucu+1(8i,2u+laj,2u—l - qai,Zu—laj,Qu—i-l)
Thus d;j(c) - Bay = 0 when by, = q_lcuc;il which proves (ii). O

Using Lemmas 4.1 and 5.2, we can choose parameters a and ¢ so that they are com-
patible with the parameters b at the same time. In other words, assume that the n-tuple
a has been chosen using the conditions of Lemma 4.1 so that x;;(a) is right invariant
with respect to the action of By(b). Then setting ¢, = ¢~ 2“a; ! in Type AL ¢, = ¢~ *a,*
in the diagonal setting and ¢, = ¢~*“"2a; ! in Type AIl for all u = 1,...,n yields right
invariant elements d;;(c). Write this choice of ¢ as a’. Expanding these elements out as

we did for the x;;(a) with respect to the n-tuple a gives us

Sor 1 q kag 030 for Type Al
diy(a') = | Zk=1 ¢ 20,1 (05200 201 — qDi2k-1052¢)  for Type Al
i =
S @ *a; 010 gk, for i <m < j for diagonal type
22:1 quka,zlﬁ'i’w_k@jk fori>n>j for diagonal type

For the remainder of the paper, we make a choice for a and b parameters in order to
make the arguments easier. These parameters can be easily converted into another set
using Hopf algebra automorphisms of Uy(g). In particular, we choose a1 =--- =a,, =1
for each of the three cases. Note that this means for u = 1,...,n we have b, = 1 in Type
Al by, = ¢* in Type AlL and b, = ¢ in the diagonal setting. Set z;; = x;;(1,...,1) and
dij = d;;((1,...,1)"). Note that we can write both z;; where the summand no longer
depends on k, just r and s where J, 5 is the coefficient of e, in the matrix J. Indeed, it
is easy to see directly from (20) and the choice of a that

Tij = § tir']r,stjs~
8

One further checks from the formulas for d;;(a’) above that for the choice of a’ that

dij = Z q_aniTJT,sajs

T,

where § = s in Types AI and AII and for the diagonal type § = s for s < n, and
3 =s—n for s > n+ 1. Note that we are expressing d;; in terms of the matrix J and
not its transpose as above. This makes no difference in Types Al and the diagonal type
since in both these cases, J = J¢. On the other hand, for Type AII, we have
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q—4k+28

i2k-1052k — 4~ 40 2005011 = —¢~ g (D

i 2k0j,2k—1 — 405 2k—10j,2k) -
In other words, this expression for d;; differs from the earlier one by a scalar multiple,
namely —¢~!. Thus, without loss of generality, we may use this new formula based on J
instead of the earlier one using J*.

5.8. Module realization

Let &y be the subalgebra of & generated by the z;;, for 1 < 4,5 < rank(g) where
here we are setting x;; = 0 in the diagonal case for all 7, j satisfying ¢ — 7 < n. Similarly,
let Zp be the subalgebra of Z generated by the d;; with the same restriction as above.
Both of these algebras are generated by right By invariant elements. It follows from the
next lemma that the entire algebras &y and %y are right invariant with respect to the
action of By. It should be noted that a priori this result is not obvious since By is not a
bialgebra.

Lemma 5.3. Let u and v be elements of a Uy(g)-bimodule A such that both are invariant
with respect to the right action of By. Then the same is true for the product uv.

Proof. Let M™ denote the algebra generated by those E; for which F; € By and write T
for the group-like elements in BgNU,(g). It is straightforward to see from their description
in Section 5.1 that the elements B, can be written in the form F, + ((ad Z;)Ep)) K !
for some choice of Z;* € M™. It follows from the definition of the comultiplication A for
U,(g) that

€ B, @141 By + (Kpi) K, ' = 1) @ [(adZ) By K1) + My @ Uy(g)
+ Uq(9) @ My

A(B;) = A(F, + [(adZ;F) By 1K)

where M, denotes the augmentation ideal of M. Hence
A(Br) € (Bp)+ @ Ug(g) + Uyg(8) @ (Bo)+ (27)
for each B, € By. On the other hand, given K € Ty, we have
AK)=K@K=K-1)9K+1(K—-1)+1®1.
It follows that
A(K) € 181+ (By)y © Uyla) + Ugls) & (Bo)y (28)

for all K € Tp. Recall that €(K) = 1 and €(B,) = 0 for all choices of K € Ty and all r.
Therefore by (27) and (28), uv-b € e(b)uv+ (u- (Bp)+)A+ A(v- (Bp)+) = e(b)uw for the



G. Letzter et al. / Journal of Algebra 655 (2024) 651-721 677

generators of By as given in Section 5.1. Thus wwv is right invariant with respect to the
action of Byg. O

The next lemma shows that the subspace of &y spanned by the z;; is a left U,(g)-
submodule of &?. Thus P inherits the structure of a left U,(g)-module algebra from
& . The analogous assertion holds for %y and its subspace spanned by the d;;. To make
the notation easier, we set z;; = 0 = d;; whenever either ¢ or j is in the set {0, rank(g)}.

Lemma 5.4. The (left) action of Uy(g) on the subalgebra Py is defined by the formulas

5pi—6
E, xij =0i—1,Ti—1,j +0j—1.,4

7.,i71xi)j—1
S A .
Frwij = 0irq” 70 i+ 0r i 41
Sis+0js
Ke, - xij = q" 7wy

and the (left) action of Uy(g) on the subalgebra Py is defined by the formulas

Fp-diyy=—(g" 0 7%00=16,_y odi 1 j — ¢*0;—1,di j—1)
By dij = —(q " Sirdit1j +q" 0O 1650d; 1)
K, - dij =q %% dy

foralli,j,s € {1,...,rank(g)}, 1 <r <n-—11n Type AL, 1 <r <2n —1 in Type Al
1<r<n—-1landn+1<r<2n-—1 in the diagonal case, and either i < n < j or
Jj <mn <1iin the diagonal case.

Proof. It follows from the formulas for the action on the ¢;; as given in Lemma 4.1 that

ET . (tiatjb) == (Er N tia)tjb + (Kr : tia)(Er : (tjb)
= Oi1rtiotatjp + 05107 O it 1y
Fy - (tiatjo) = (Fy - tia) (B - o) +tig1,a(Fr - ()

—08;r+0;

= 0irq IVt ,atje + Ojrtiatit1e

and
Ke, - (tiatjp) = (Ke, - tia) (Ke, - tjp) = ¢" T ity

for all choices of a and b. Note that x;; is a sum of terms of the form t;4t;,. Hence
the action of E, on the z;; and the F,., K. on the z;; follow directly from the above
formulas. The argument that checks the action of these elements on the d;; is similar. O

It is straightforward to check from the above lemma that »_, ; C(q)z;; forms a simple
module for the action of Uy(g). In Type AI, this module is isomorphic to L(2¢;) with
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highest weight generating vector x1;. In Type AII, this module is isomorphic to L(ej +e€3)
with highest weight generating vector x15. For diagonal type, this module is isomorphic
to L(€1 +€541) with highest weight generating vector z1 1. Similarly, 37, ; C(g)d;; is a
simple module generated by the lowest weight vector dy, of weight —e; — €, where r = 1
in Type AI, r =2 in Type AIl, and r = n 4+ 1 in diagonal type.

5.4. Algebra structure

The next result establishes relations satisfied by the x;;. For Type Al and AII this is
just [20], Proposition 4.4 with a slight change in notation.

Proposition 5.5. The elements x;;, i,j = 1,...,rank(g) satisfy the following linear rela-
tions

1) 2y =qrj; alll <i<j<mnin type

i) @y = quj all 1 <i<j<nintype Al

(ii) @y; = —q @y for all 1 <i < j<2n and z; =0 for all i in type AIL

(iil) @i j4n = Tjtn,i ond Tij = Tign j+n =0 for alli,j=1,...,n in the diagonal type

and the quadratic relations expressed in matriz form by
Ry X 1Ry Xy = X, R X1 R, (29)
where X is the rank(g) x rank(g) matriz with ij entry x;;.

Proof. By [20], Proposition 4.4, the z;; satisfy the relations obtained from (29) in type
AT and in type AIL Here we are using the fact that Rj; in the notation of [20] is the same
as Rjs in the notation of this paper. Moreover, since the diagonal type is also defined
using a solution to the reflection equations, the proof in [20] carries over to this family
as well.

Relations (i), (ii) are also part of [20] Proposition 4.4; both can be deduced in a
straightforward manner from the relations for the ¢;;. Relations in (iii) follow from
the fact that t;1, j+, commutes with ty; and ¢; j4n = tj4n: = 0 for all 4,7,k,1 in
{1,...,n}. O

Let us take a closer look at relation (29). Recall that X; = X ® I. Hence (X1)% = x4,
if b = d and is 0 otherwise. Similarly, (X2)% = 244 if @ = ¢ and 0 otherwise. The Id, hk
entry of the left hand side of (29) is

(R9X1R31X2)2dk = Z (Rg)é‘(é(Xl)iZ(Rg)ZZ(Xﬁ% = Z (Rg)é‘(éxja(Rg)Zika

7,s,a,bu,v J,8,a,v

The Id, hk entry of the right hand side of (29) can be evaluated in the same way yielding
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(XoRG XaR)i = Y (X2)f(Re)fi (X1)ib (B = D was(Ry)fy wau(Ro)iy

7,8,a,b,uv s,a,b,u

Hence

Z (Rg)%zja(Rg)Zizvk = Z de(Rg)?bszau(Rg)Zz (30)

7,8,a,v s,a,b,u

for all I,d, h, k.

Lemma 5.6. For diagonal type, relation (29) is equivalent to the set of matrix relations
RX, X5 = Xo X1 R where R is the matriz defined by (10) and X is the n x n matriz with
ij entry x; j4n fori,j=1,...,n.

Proof. The matrix of relations defined by (29) can be broken into four submatrices
of relations consisting of all [,d, h, k entries where [ and d are each chosen to lie in
either {1,...,n} or {n+1,...,2n}. These submatrices turn out to correspond to either
RX X5 = XuX R or RX! X, = X! X!R. As explained in Section 4.2, these two relations
are equivalent.

We explain how to go from the submatrix consisting of those relations corresponding
to the I, d, h, k entries of (29) under the assumption 1 <, d < n to the relation RX X, =
X5 X1 R. The proof for the other submatrices is similar. Since Ry is the block diagonal
matrix (R, In2xn2, In2xn2, R), we have (Rg)i% # 0 implies that {j,s} = {I,d}, and,
moreover, in this case (Rg)é‘ds = réfi. It follows that all choices of j and s appearing in
the left hand side of (30) must satisfy 1 < j,s < n. Moreover, xj, # 0 implies that
n+1 < a < 2n. This condition on a combined with the fact that 1 < s < n ensures
that (Ry)" # 0 if and only if a = h and v = s, and, moreover, when this happens,
we get (Rg)"s = 1. This also implies the only values of h and v for which the left hand
side is nonzero must satisfy n +1 < h < 2n and 1 < v < n. Thus x,; # 0 ensures
that n + 1 < k£ < 2n. Hence the original assumptions on [ and d, namely 1 < [,d < n,
guarantee that the left hand side of (30) is nonzero only if n + 1 < h, k < 2n.

The same type of analysis shows that we only get nonzero terms showing up in (30)
provided one of the following conditions hold:

e 1<l d<nandn+1<hk<2n
e I1<lk<nandn+1<h,d<2n
e 1<h,d<nandn+1<I[k<2n
e 1<hk<nandn+1<I,d<2n

Lets return to the first case, namely 1 < [l,d < n and n+ 1 < h,k < 2n. We showed

above that (Ry)"s = 1if a = h and v = s and 0 otherwise. A similar argument yields

(Rg)® = 1 provided a = I, s = b and is 0 otherwise. On the other hand, again as

as
explained above, (Rq)}4 = rlt and a similar argument gives us (Rq)} = rji where here

we are using the fact that s = b.. Thus (30) is
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E TisTinTsk = E TdsTiulpy
Jss ERA

Hence the set of all such equalities together under these assumptions gives us RX, X, =
XQX 1R. The arguments for the other cases are similar. O

We now turn our attention to Types Al and AIl and so Ry is just the R-matrix R as
in (10) with entries 7). Recall that 7} = q% for all 4, j, ri= (g~ q~ 1) for j < i and
all other r% equal 0. Hence, we can rewrite (30) as

Ty + (g — g7 1) (" Sacizante + ¢° SacntiaThg + di<ndaci(q — ¢ V) TaTnk)
— qéhk-‘rélkl'dkmlh
+ (g —a ) (¢ Gcrzazrn + " Sh<ranie + Si<ndnar(q — ¢~ ) Tazne)

Moving all but the first term of the left hand side to the right hand side, this relation
can be rewritten as

Uy g, = ¢ gz + (Shek — 6a<1)@®™ (0 — ¢ ) TanTu
+ 81<n(Onek — a<)(q — ¢ )2 xqzn, + ¢ S (q — ¢ V) Taz,

— @ 84n(q — ¢ )T 1az - (31)

In [20], the algebra generated by the x;; in Type Al (resp. Type AlI) is referred to as
a quantized function algebra on the space of symmetric matrices (resp. skew symmetric
matrices). The next lemma gives explicit relations for these Type Al and Type AIL
quantum functions algebras. It should be noted, that in Type Al, the algebra generated
by the z;; is the same as the quantum analog of the function algebra on symmetric
matrices studied in [14] (see also [2], Section 3).

Lemma 5.7. In Type AI, we have

q_Zxdkxlh ifd=Il=k<h

q_lxdkxlh ifd=Il<k<h

4 *TarTin ifd<l=k=h

q ' zapain ifd<l<k=h

q_lxdkxlh — (q — ql_l)xdhxlk ifd<l=k<h

o TarXinh — (@ — q 7 )TanTik ifd<l<k<h
Tihdk = TdkTiph — q_(l(q2 — qZZ)LL‘dhmkl if d = k’ < l = h
TakLih — (q2 - q*Q)xdhxkl fd=k<l<h

TadkTlh — qil(q2 — qu)xdhxkl fd<k<l=h

zapzin — (¢ — ¢ (@ wanve + vaze,) fd<k<l<h
TdkTlh ifd<l<h<k

TAkTlh ifd<l=h<k

and for Type AII, we have
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q ' zapain ifd=Il<k<h

g wakan ifd<l<k=nh

o q Y rapzin ifd<l=k<h
Hhdk Tarrn — (@ — ¢~ Y aanzi ifd<l<k<h
TakTip + (q — qil)(qxdhﬂfkl — delajkh). ifd<k<l<h

TdkTih ifd<l<h<k

Proof. We prove the lemma in Type AIl. The proof in Type Al is similar, albeit some-
what more computationally involved.

Since x;; = 0 for all 7 in Type AIIl, we must have | < h and d < k in all cases. Note
also that z;; = —qx;; for all ¢ < j. Assume in addition that d <! < k < h. Formula (31)
simplifies to

U zinrae = Tz — daci(q — ¢ ) zanzin — Sa<i(q — ¢ V) Tan
+ 01<k(q — ¢ zaiwen — da<cn(q — ¢~ V)T hr- (32)

If d =1 < k < h, this further simplifies to qripxar = Tarzip. If d < 1 < k = h, (32)
becomes

-1 -1
TinTak = qLdkTih — (q —4q )xdhﬂﬂm =q TqkTip

which yields the same equality as in the previous case. For d <l = k < h, (32) reduces
to

Tintae = qraetin +q(q¢ — ¢ ) razen — ¢ — ¢ zazen
= qrarin — (¢ — ¢ DZa®n = ¢ ‘Tarzin
with the last equality following because | = k, thus verifying this case. Now assume

d <1 <k < h. Note that q(¢ — ¢ 1)? + (¢ — ¢ ) — ¢*(¢ — ¢~*) = 0. Hence, under this
assumption, (32) is equivalent to

TihTdk = TaeZTin — (@ — ¢ Hwanzu, + q(q — a Y rarkn
+(q— ¢ Draren — ¢*(¢ — ¢ Hrazin
= zakTin — (¢ — ¢ ") TanTik,

which is the fourth entry of the relations for Type AII.
Now consider d < k < I < h. For this case (31) can be rewritten as

TinTar = TaxZin + q(q — q71)$dh$kl +q(q - q71)217dl17kh - q2(q - q71)$dz$kh

= zarrin + q(q — ¢ Dranri — (@ — ¢ Tz,

This takes care of the penultimate case. For the final case, assume that d <[ < h < k.
We simplify (31) with respect to these assumptions, yielding
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TihTdk = TdpTih + (q - q_l)xdlxkh - (q - q_l)ffldirhk~

Using the facts that xx, = —qanr and 2y = —qz g1, we see that the last two terms vanish
which leaves us with x;pzqr = Tgrxp as claimed. 0O

Define subalgebras of &y by Pi_1)n4s = C(q)[z11,212,... 2] for 7 = 1,...,n and
s =r,...,n in Type Al and P, _1)on4s = C(q)[z12,213,... 2] for r = 1,...,2n and
s =r+1,...,2n in Type AIIL It is well known that the quantized function algebra
0O,(Maty) can be expressed as an iterated Ore extension (see for example [8], Example
3.4)). By Proposition 5.5, & in the diagonal setting satisfies the relations of O,(Maty)
and hence Py is an iterated Ore extension in this setting. A consequence of the next
result is that 2y can also be expressed as an iterated Ore extension in Types Al and
AIL

Lemma 5.8. In Types Al and All, the x;; satisfy the following g-type commuting property

(Lh,d, k)

TipTar — q° TarTin € Pu—1ym4n—1 (33)

where m = n in Type AL, m = 2n in Type AIl, d < k, | < h, (d,k) is less than (I, h)
in the lexicographic ordering, and s(l,h,d,k) is a function from {1,2,...,m}* to the
integers.

Proof. Tt is straightforward to check that (33) holds for all cases using the explicit
relations given in Lemma 5.7. O

Recall the PBW basis for O,(Maty ) as described in Section 4.2. We use this basis to
verify that certain sets of monomials form PBW basis for &7 in each of the three cases.

Lemma 5.9. The following monomials form a basis for Py:

(i) Type AIL:

mi1 ,,.M12 Min ,M22 ,,1M23 man
L1 Ly ™ Ly Log "Lag™ " Loy 0T

Mp—1,n—1 xmn—l,nxmnn
n—1l,n—1 “n—1n “nn

(ii) Type AII:

mi2

T mM1,2n _Ma3, M4 m2 2n mM2n—1,2n
12

mi3
Lyg ™ "Xy on Loz " Tog " Tooy " Lop_192n
(iii) Diagonal type:

man Mn1 Mnn

mi1 mi2 Min ,.M21 ma2
Tynt1T127 L1 onLantr1P2ny2 " Lo on " Tpnt1 " Tnon

as each m;; Tuns over nonnegative integers. Moreover, we also get a basis if the order of
the monomials in the terms above is reversed.
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Proof. It follows from Lemma 5.8 that the above monomials span the algebra &y in
Type Al and AII. By Proposition 5.5, the same is true for the diagonal type. Hence, we
need only check linear independence of the proposed basis elements.

Consider first the Type Al case. Set Z;; = >, tixt;r for each i,j. We proceed by
induction on n, assuming that monomials as in (1_) with z;; is replaced by Z;; form a
basis for the subalgebra generated by x;;,¢ > 2,j > 2. Since there is only one monomial,
ZTnn, for ¢ > n, j > n, the base case is clearly true.

Let S be the subalgebra of O,(Maty) generated by ¢;;,4 > 2,7 > 1. It is straight-
forward to check from the relations of O,(Maty ), that t11 ¢ S. Moreover, O,(Maty) =
> >0 t11S and, as vector spaces, this sum is isomorphic to a direct sum. Suppose that
Y = 0 where Y is defined by

Y = A X e g 34
11 nn
m

and the sum runs over tuples m = (mi1,...,My,) so that each product in the z;;
appearing in the right-hand side of (34) is a basis element as described in (i). Set |mq| =
mi1 + mig + -+ - + m, and M = max,, 4, 20 M1 + |m1]. Set

Y = Z A (E11t11) " (B11t21) ™22 - - - (B1atpa) " ahe?? - - - e
mi1+|mi|=M

and note that Y € Y/ 4+ 3 _,,t1;S. Hence Y = 0 implies that Y’ = 0.

We can express Y’ as a sum of right K., eigenvectors with eigenvalues of the form
q° where s is an integer. Let M’ = min,, o, £0,my,+|m,|=m |m1| and let §” = {m, a,, #
0,m11+|m1| = M, |m1| = M'}. The eigenvector with smallest exponent in the eigenvalue
is

Y = Z A (B11t11)" 4 (B11t01) ™2 - - - (f11tp1) " To522 - - - T
meS’’

Hence Y = 0 implies that Y/ = 0. Given an n-tuple w, write S, = {m € §"|m; = w}.
We can express Y as a sum ) Y. where

Yo = Z(tlltn)wl(tntm)w"’ o (tiatnn) Z ATy - Ty

W meS/)

It follows from the form of the PBW basis for O,(Maty) that Y = 0 implies Y, = 0

each w. By the inductive assumption, we get a,, = 0 for all m € S/

v, & contradiction.

This proves the linear independence of the basis elements listed in (i).

For (ii), we assume that Y is defined similarly to (34) where the sum runs over tuples
m = (miz, M3, ..., Man_1,2n) S0 that each product in the z;; appearing in the right-
hand side of (34) is a basis element as described in (ii). As in case (i), S is the subalgebra
generated by the ¢;; with i > 2 and j > 1. We have Y € Y’ + 3 __, ], S where
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I m m Map, 2 M Man,
Y= > am(tantan) ™ (fratsn) ™2 -+ (fratan 2) "2y - apzna
|y |=M

and M = max, q,,20 |m1|. The argument now follows as in case (i) using the decompo-
sition of Y’ into a sum of eigenvectors with respect to the right action of K.

Now consider case (iii). Suppose that Y is defined as in (34) where the sum runs over
tuples m = (mq1,M12, ..., Myy) so that each product in the z;; appearing in the right-
hand side of (34) is a basis element as described in (iii). Note that the Y can be expressed
as a sum of eigenvectors with respect to the right action of K., . The eigenvector with
eigenvalue ¢° where s is maximum is

Y = Z am(tlntn-i-l,Qn)mn ce (tnnt2n,2n)mnn (35)
m

Hence Y = 0 implies Y’ = 0. Recall that in this case, we are viewing the ¢,;,1 <i <n
as generators for the first copy of Oy(Maty) and ¢ty jyn,1 < 4,7 < n for the second
copy. In particular, each t;; commutes with each ty4p 4y for all 1 < 4,4, k,1 < n. Thus
we can rewrite Y’ as

I E miy m, mi1 Mpn
Y'= amtln e tnrzmthrl,Qn e t?n,Zn
m

It follows from the description of the PBW basis for Oy(Maty) that Y = 0 implies that
each a,, = 0, which establishes linear independence for case (iii).

The final assertion is proved in the same way by reversing the order of the ¢;; terms
in each of the above monomials. O

The next lemma provides a nice algebraic description of the algebras &y for all three
cases. It should be noted that this result is implicit in [20] in Types AI and AIIL In
particular, one could prove this result using specialization techniques combined with
the similarity of the structure of these algebras as U,(gl,,)-bimodules and their classical
counterparts.

Proposition 5.10. The map sending each Z;; to x;; defines an algebra surjection from the
free algebra C(q){(Zi;,1 < i,j < rank(g)) to P with kernel equal to the ideal generated
by the following elements

(ii) &ij + ¢ &y for alli < j and & for all i in Type AIL

(iil) @i jan — &jtn,i and Zij, jﬁ+i7"+j for gll i,j~= 1,....n inNdz'agonal type.

(iv) the matriz entries of Ry X1 Ry Xo — XoRI X1 Ry where X is the rank(g) x rank(g)
matriz with ij entry Z;;.
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Moreover mn the diagonal case, (iv) is equivalent to the set of matriz entries of RX1X2 -

X2X1R where X' is the n x n matriz with ij entry ©; j4n fori,j=1,...,n.

Proof. It follows from Lemmas 5.9 and 5.8 that there are no additional relations satis-
fied by the z;; beyond those listed in Proposition 5.5. The final assertion follows from
Lemma 5.12. O

Recall that in defining the x;;, we took a particular choice of the n-tuple a, namely
a = (1,...,1) and set each x;; = x;;(1,...,1). It should be noted that if we picked
another choice, the resulting elements would still satisfy the same relations as given in the
above proposition. This is because different choices correspond to algebra automorphisms
of #.

Recall also that the antialgebra automorphism * sending each ¢;; to d;; has the fol-
lowing impact on the x;;: (z;;(a))* = d;;(a) for all n-tuples a. This does not mean that
xj; = d;j since x;; and d;; are defined using different, though related, n-tuples. However,
just as in the case of the x;;(a), we have that the algebra generated by the d;; is isomor-
phic to the algebra generated by d;;(a) for all n-tuples a. Thus, the map z;; to d;; for all
i, j defines an algebra antiautomorphism from &y to %y. Using this antiautomorphism,
it is straightforward to deduce the following result for Zy directly from Proposition 5.10.

Proposition 5.11. The _map sending each czw to dij defines an algebra surjection from
the free algebra C(g){d;;,1 < 4,j < n) to Dy with kernel equal to the ideal of relations
generated by the following elements

(i) d, lij —q 1d” all i < j in type Al

(ii) d” + qdﬂ for alli < j and dy; for all i in type AIL

(iil) dij4n — dj+n ; and d”7 dZJrn gan foralli,j=1,...,n in diagonal type.

(iv) the matriz entries of R DgRtlDl Dle DQRQ in types AI and AII where D is
the rank(g) x rank(g) matriz with ij entry d;;.

Moreover m the dzagonal setting, (iv) is equivalent to the set of matriz entries of

RDng DngR where D s the n X n matriz with ij entry d; Gtn-

In the diagonal setting, using Proposition 5.10, we have that & is isomorphic as an
algebra to O4(Mat,,) via the map sending z; j4n to ¢;;. Lemma 5.4 shows that this is
an isomorphism of left U,(gl,,)-modules using the first copy of Uy(gl,,). The next result
shows that this map is actually a U,(gl,,)-bimodule algebra isomorphism where the right
action of Uy(gl,) on O4(Mat,,) corresponds to the left action of the second copy of
Uy(gl,) on Py.

Lemma 5.12. For diagonal type, the map ¢ defined by (tij) = xij4n all i,j with 1 <
1,7 <n is a Uy(gl,)-bimodule algebra isomorphism from O,(Mat,,) onto Py where
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Yla-ti;) =a- ;4 and P(tj; - a?) = v(a) - zij4n (36)

for alli,j € {1,...,n}, where y is the map from the first copy of Uy(gl,,) to the second
defined by ’Y(Er) = EnJrra'V(Fr) = Fyir, and V(Kes) = K. forallr,s, € {17 s an}'

€nts

Proof. By the discussion proceeding the proposition, we only need to show that the right
action of Uy (gl,,) on O4(Mat,,) corresponds to the left action of v(U,(gl,,)) on Py using
the second equality in (36). This follows from the method for converting the right action
of U,(gl,,) on O,(Mat,,) into a left one using Lemmas 4.1. O

Note that the above argument can be easily tweaked to apply to Zy. More precisely,
in the diagonal case, %y is isomorphic as a bimodule algebra to O4(Mat,,)°? via the map
sending 0;; to d; j1n for all ¢, j satisfying 1 < 4,5 <n.

6. Graded Weyl algebras for matrices
6.1. Twisted tensor products

We consider here a particular type of twisted tensor products for bialgebras, though
the end result does not necessarily have a bialgebra structure. This twisted tensor product
is similar, but not the same as the construction for Drinfeld doubles as presented in [15],
Section 8. First, we recall the notions of twisted tensor products and dual pairings.

Let A and B be algebras over a field. The twisted tensor product, as defined in [6], is
an algebra C' with multiplication map m¢ along with two inclusion maps ¢4 and ¢t such
that mo (14 ®¢p) defines an isomorphism as vector spaces from A® B to C. The twisted
tensor product comes equipped with a twisting map 7 which is a linear map from B® A
to A ® B that satisfies

i) Tl®a)=a®land 7(b®1)=1®b
(i) me = (ma®@mp) o (Ids @ 7@ Idp)
(iii) To(mp@ma)=mco(T®7)o(Idg®@T®Ida)

where m 4 denotes multiplication for A, mp denotes multiplication for B, Idg is the
identity map on B and Id4 is the identity map on A. Moreover, the existence of a
twisting map is essential here. In other words, given a twisting map 7 (i.e. a linear map
that satisfies (i) and the map m¢ defined by (ii) that satisfies the constraints in (iii))
one can form a twisted tensor product A ®, B with multiplication m¢ as defined in (ii).

6.2. Dual pairing construction
In the next lemma, we use dual pairings as in the construction for Drinfeld doubles

and other forms of twisted tensor products in [15], Section 8. A dual pairing is a bilinear
map (-, -) from A x B to the scalars where A, B are bialgebras such that
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(a,1) = €(a) and (1,b) = €(b)
along with the following compatibility formulas with respect to comultiplication:
<AA(CL), b ® b2> = (a, b1b2> and <CL1 ® as, AB(()» = <a1a2, b> (37)

Lemma 6.1. Let A and B be two bialgebras with two pairings: u{-,-) is a dual pairing of
A and B and v{-,-) is a dual pairing of A and B°P. Then A ® B becomes a twisted
tensor product with twisting map defined by

T(b X a) = Z a(2) X b(2)v<a(1), b(1)>u<a(3), b(3)>.

Proof. For property (i), note that

r(b®1) Z1®b(2 v(L,bary)u(l, bez)) Z1®b(2 Je(bz) =1®b

for all b € B. A similar argument yields 7(1 ® a) = a® 1 for all a € A. As explained in
[6], Section 2.2, we make take (ii) as the definition for the multiplication map m¢ since
we have already verified that 7 satisfies (i). For property (iii), note that by [6], Proposi-
tion/Definition 2.3, this condition is equivalent to associativity. Moreover, associativity
follows as in the proof of [15], Section 8.2.1, Proposition 8. Indeed, [15], Section 8.2.1,
Proposition 8 focuses on a product whose only difference from the one here is the extra
assumption that u and v are convolution inverses. This additional assumption is not
needed for the proof of associativity. O

Let ¢ be an s-dimensional representation of U,(gly) and set R = (¢ ® {)(R) as in
Section 4.1. Let A(R¢) denote the FRT algebra defined by ¢ realized as a quotient of
tensor algebra T'(M) over the r? dimensional vector space M (as defined in Section 4.1).
Let & be another U,(gly) representation of dimension s and write A(R;) for the FRT
bialgebra defined by £ where Ry = (£ ® £)(R). For the construction of A(R¢), we use
the vector space M’ spanned by the variables m/
A(Rg) from A(R¢). Set Ree = (€@ &)(R).

Note that a bilinear pairing (-,-) on M x M’ extends uniquely to a dual pairing on
T (M) and T(M')°P by insisting that

i 1 < 4,7 < s in order to distinguish

(mij, 1> = 5ij and <]., m§d> = 5kl

for all 4, j, k, I and that (37) holds (using induction and properties of the coproduct which
ensure associativity). The next lemma provides us with dual pairings that can be used
to form twisted tensor products. Its proof follows closely the proof of [15], 10.1.7.

Lemma 6.2. Assume that (EQ&)(R)=To((®OMR). If ((R&E(R)=To((C®&)(R))
then the bilinear map y(-,-) defined by
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y{mij,my) = [(C®E)(R )]

can be uniquely extended to a dual pairing of the bialgebra A(R.) and A(R¢). Moreover,
the same result holds for R replace by Ry,

Proof. Define the bilinear map y from M x M’ to C(q) via

y(mij,my) = (Ree)li and  y(1,mj;) = y(ms;, 1) = 6;;

The bilinear form y(-,-) extends uniquely to a dual pairing, which we also denote by
y{-, ), of T(M) with T (M’) as explained before the lemma. We now argue as in the proof
of [15], Theorem 10.1.7, that y(-,-) induces the appropriate form on the corresponding
FRT bialgebras. To do this, we need to show that this form vanishes on the relations of
A(R¢) and A(R¢). Note that uniqueness is forced on us since we have specified y(-,-) on
scalars and terms in M’ and M and the remaining values follow from induction using
(37) just as they do on the tensor algebra level.

The ideal of relations Z = Z, for A(R¢) realized as a quotient of T'(M) is generated
by the elements Ifl‘f), for all I,d, a,b, where

T4 = > (Re)fumjamny — manmi; (Re)y,

jsh

For each [, d, a,b,r, s we have
(T, m)) = Z<R<>§%y<mmmhb,m; ) = y{manmuz, mi.) (Re)l
Z ROM Y (mijay Mo )y (map, mie) — y{(man, m )y (my, mi ) (Re)ly

Z Re)' (Re.e)Dh (Re)ik — (Ree)i(Re.e) (R
7,h.k

Hence y(Z!4 m

o, m.) equals the ldr, abs entry of the matrix

(Re)i2(Ree)1s(Ree)2s — (Ree)2s(Ree)13(Re)iz

This matrix equals (( ® ¢ ® £)(R12R13R23 — R23R13R12), which is just the image of the
Quantum Yang-Baxter Equation under (( ® ( ® &). Hence this matrix must equal the 0
matrix because R is a universal R-matrix. Thus, y(Z'¢,m! ) = 0 for all I, d, a,b,r, s and
soy(Z,M") =y({Z,T(M")) =0.

The ideal J = J¢ defining the relations for A(Ry) is generated by the elements

jab - Z(Rf) m m sb T m:ismgj(Rf)fzz

J»s
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for all I, d, a,b. Arguing as above, we see that y(m, Jé,‘f} equals

D (Re)“H(Re.e)is(Ree)td — (Re)is (Ree) i (Re)%s
7,8,k

By assumption, R¢ = T(R¢) and R¢ ¢ = T (R¢.¢). Hence, we can rewrite y(m,, J'¢) as

> (RO)%(Re )ik (Re.e)ls — (Ree)i(Re.e) % (Re)y?

Jis:k

= ((Ro)12(Re.¢)13(Re.e)2s — (Re.e)2s(Re.e)1s(Re)12) o

Using the Quantum Yang-Baxter Equation again, this reduces to 0 and so y(M,J) =
y(T (M), J) = 0. This completes the proof for R. Since R, is also a universal R-matrix,
the same analysis holds when R is replaced by Rgll. O

6.3. Four twisted tensor products

Recall that when ¢ = p, the FRT algebra A(R;) = O4(Maty) (see Section 4.2).
Similarly, as explained in Section 4.3, for £ = pofo S, we get A(Re) = Oy(Maty)°P.
In the next proposition, we construct four twisted tensor products of O,(Maty) and
O,(Matn)°P using these choices of ¢ and ¢. Recall the matrix R given in formula (10).
Set Ry = R" and Ry = ((Rgl)_l)t2.

Proposition 6.3. For each choice of v and o in {0,1}, there exist (unique) dual pairings
Vo (-, ) on Oy(Maty) and Oy(Maty)?? and u, (-, ) on Oy(Maty)°? and Oy(Maty) such
that

Vo (tij, On) = [R(,];’lc and  u,(tj, Op) = [Ru]élf

Moreover, the twisting map T, , defined by u,(-,-) and v, (-,-) as in Lemma 6.1 satisfies

Too(Oea @) = Y (Ro)fo(Ru)ibte ® O

J,k,d,l
and restricts to a linear isomorphism of Ei,j,kJ C(¢)0i; @t onto Zi,]gk,l C(Qtr @ 0ij.

Proof. By Lemmas 3.2 and 3.3, we have (p ® p)(R) = R, (pofioS)® (pofoS)(R) =
Ry = T(R), (pohoS)®p)(R) = (Ry')” and ((pofioS) @ p)(Ry') = R Tt is
straightforward to check from the explicit formula (10) for R that 7 ((R5,")??) = (Ry;')*
and T(R"2) = R!2. Thus ¢ = pofoS and £ = p satisfy the conditions of Lemma 6.2
with respect to the forms u,(-,-),v € {0,1}. Moreover, by Lemma 3.3, we see that

uo(ti;, O) = [(€ @ ORI = (R™)ji = (Ro)ji
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and

s (ti, On) = (€@ QRS = (By')™)j0 = (Ra)ih-

A similar argument yields that ¢ = p and ¢ = pofo S™! satisfies the conditions
of Lemma 6.2 with respect to the forms v,,v € {0,1}. Thus, by Lemma 6.2, the bi-
linear forms v, {-,-) can be extended uniquely to the stated dual pairings for v = 0, 1.
Furthermore, it follows from Lemma 3.3 that

voltij O) = [(C® &) (R = (R = (Ro)iy

and

viltiy, ) = [(C® N R = (R )5 = (Ru)ly

By the definition of the twisted tensor product O4(Maty) ®, , Og(Maty)? in
Lemma 6.1, we have

To,o(Oca @ tsp) = Z taj @ OV (tfd, Oct) Wy (tjn, Oka)-
d,j,l,k

The lemma now follows by plugging in the values for u,(-, ) and v,(-,-) as described
above and noting that both Ry and R; are invertible matrices. O

Given v, o € {0,1}, define algebras A, , as twisted tensor products
Av,cr - Oq(MatN) ®7‘v,a Oq(MatN)Op

where 7, , are the twisting maps from Proposition 6.3. The twisting map for A, , gives
us the following equalities

Deatyp = Y (RE2)JL(RE)] M taiOu (38)

dikod,l

for all e,a, f,b, where Ry = R and Ry = R;ll. Note that this equality combined with
the embeddings of O,(Maty) and O,(Maty)°P inside A, , define multiplication on this
twisted tensor product. Just as was done for O,(Maty) and Oy(Maty)°P (see (13) and
(18)), relations (38) can be put into matrix form as

P,Ty = RUT PR, (39)

Recall that both O,(Maty) and O,(Maty)°P are U,(gl,)-bimodule algebras. The
next result shows that these bimodule algebra structures extend to the twisted tensor
products of the above proposition.
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Proposition 6.4. For each v,o0 € {0,1}, the twisted tensor product A, , inherits a
U, (gl )-bimodule algebra structure from Oy(Maty) and Oz(Maty)°P.

Proof. Recall that as an algebra, O,(Maty) is a quotient of the tensor algebra T'(V @ W)
modulo the relations coming from the FRT construction. Similarly, O,(Maty ) is a
quotient of the tensor algebra T'(V* ® W*) modulo FRT relations. Thus A, , can be
viewed as a quotient of T(V @ W) ® T(V* @ W*) modulo three types of relations: the
relations for O, (Maty), the relations for O, (Matx)°P, and the relations that come from
the twisting map as in (38). We have already shown that the first two types of relations
are invariant under the left and right action of U,(gly). So we only need to check that
the extension of these actions preserves the relations coming from the twisted tensor
product.

The relations coming from the twisted tensor product can be lifted to the level of the
tensor algebra T(V @ W) @ T(V* @ W*) as

(W @w)) ® (vp@ws) — > (RE)L(R2)IE(va @ w)) @ (v @ wp).
3,k,d,l

These relations correspond to the mappings of vector spaces
(VoW e (VeW)— (R?)is(VeW)® (V@ W) (R )aa. (40)
By Lemma 3.3 and the facts that 7(R') = R*> and T((Ry,")"?) = (Ry;')*, we have
Ry=R"=((potoS)®p)(Ry') = (p® (potoS))(Ry,)
and

Ri=(Ry)"™ =((polioS)®p)(R) = (p® (pofoS))(Ra)

Another application of Lemma 3.3 yields RJ'™ = R = (p® (pohoS™1))(Ry') and
R = (RN = (p®@ (pohoS™))(R). Hence, we can rewrite (40) as

(V*eW)e(VeW) —TR )iz (VeW)e (V' aW"))  (Ryu  (41)

where Rp = Ry and Ry = R. By (7), the map V*®@V — R, (VaV*) = T(R,)-(VaV*)
is an isomorphism of left U,(gly)-modules for both ¢ = 0 and ¢ = 1. Similarly, by (8),
the map W* @ W — (W @ W*)Rl1'2 = (W @ W*) - (R,) is an isomorphism of right
Uq (gl )-modules for v € {0,1}. Thus (41) is a bimodule map with respect to the left
and right actions of Uy(gly) which means that the relations coming from the twisting
map are preserved by both the left and right action of Uy(gly) as desired. O

A linear map f : M — M’ of U,(gly)-modules is a U,(gly)-module map provided
that f(u-m) =u- f(m) for all m € M and u € U,(gly). Right module and bi-module
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maps are defined similarly. The next result shows that the twisting map is a module map
with respect to both the left and right action of U, (gly ).

Corollary 6.5. For each v,0 € {0,1}, the twisting map T, » is a Uy(gly) bi-module map
from Ei,j,k,l (C(q)aij &ty to Zi,j,k,l Clq)tr ® 8”

Proof. It follows from Proposition 6.4 and its proof that

Z C(@)(0ij @ trr — Tu,0(0ij @ trr))

ijikil

is a Uq(gly) sub-bimodule of

Z C(q)0i; Qtg + Z C(Qtr ® 04j-

,9,k,1 .3,k

This means that u - (0;; @ tg) — u - Ty,0 (055 @ tr;) is an element of this sub-bimodule for
all u € Uy(gly ). Note that u acting on the left defines a linear map on C(q)0;; ®t; while
Tu,o is a linear isomorphism of C(¢)0;; ® tx onto C(q)ty ® 0;;. Hence u - (055 ® tr) —
To,o(u - (0ij @ tg)) is the unique element of this sub-bimodule that is also contained in
w- (035 @tha) + 32, k1 C(@)th ® 0ij. Tt follows that u- 7y (95 @ tht) = Tu,0(u- (035 @ tp).
This shows that 7, , is a left module map. The proof for left replaced by right is the
same using right actions instead of left ones. O

The four twisted tensor products A, »,v,0 € {0,1} can be viewed as graded quantum
analogs of the Weyl algebra. Indeed, these algebras have an obvious grading using the
fact that all the relations are homogeneous with respect to the degree function defined
by deg(t;;) = deg(9;;) = 1 for all ¢, j. Moreover, it is straightforward to see that their
relations specialize to those of the graded Weyl algebra at ¢ = 1 (i.e. the constant terms
are dropped). In Section 8.2, we show how to transform two of these graded algebras
into non-graded ones which, in turn, can be viewed as quantum analogs of the Weyl
algebra. For now, we note that these four algebras fall into two classes via C-algebra
isomorphisms.

Write a for the image of a € C(g) under the C-automorphism of C(q) sending ¢ to
gt
Proposition 6.6. The map sending each scalar a to @, each t;; to txy—; n—; and each Ok
to On_k,N—i defines a C-algebra isomorphism from Ay to A1 and defines a C-algebra
isomorphism from Ay to Ajg.

Proof. Note that the map sending i to N — ¢ has the effect of switching order: i < j
becomes N —j < N —i. Note further that the set of relations in Section 4.2 for O,(Mat )
is equivalent to the same relations in (i), the same first relation of (ii) and the final relation
of (ii) replaced by
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f,‘jtkl — tkltz‘j = (q — q_l)tiltkj for i < k,j <l

since by the first relation of (ii), titx; = ti;ta for ¢ < k;j < I. Hence, applying the map
sending a to a and each ¢;; to ty_; n—; to the relations for Oy(Maty) as written out in
(i) and (ii) in Section 4.2, yields an equivalent set of relations. Thus, this map extends
to a C-algebra isomorphism on Og(Maty). A similar argument shows that the map
sending each scalar a to a and each 0;; to On_; n—; extends to a C-algebra isomorphism
on O,(Maty)P.

It remains to show that the combination of these two maps, which is just the map
described in the proposition, sends the relations defined by the twisting map of 79y to
that of 711 and the relations defined by the twisting map of 791 to that of 719. This can
be seen easily from the relations (38) derived from these twisting maps and the fact that
applying the map r — 7 to the entries of the matrix R'? yields ((Ry;')®)%. O

For Agg, the relations coming from the twisting map can be expanded out as follows.
For all a, b, c,d, we have

(1) Bcbtda = tdaé)cb if b 7é a and ¢ 75 d.

(ii) Ocblea = qleaOct + D pso(d — @ )teraOen if b # a and ¢ = d.

(iii) Ocatda = qtdaOca + Za/>a(q - qil)tda’aca’ if b=a and c # d.

(iv) Ocatea = q2tcaaca +4q Zc’>c(q - qil)tc’aac’a + QZa’>a(q - qil)tca’aca’
T wsa 2eseld— ¢ Y2twaBua if b=aand ¢ = d.

Using Proposition 6.6, it is easy to translate these relations into ones for Ay;. For the
other two cases, only one of the two inequalities a’ > a and ¢’ > ¢ is changed and the
powers of g showing up before the various summands are modified appropriately.

6.4. Comparison with other constructions

It is natural to ask whether the twisted tensor products of this section correspond
to a standard construction such as a quantum double or, more generally, a double cross
product (see for example [15], Chapters 8 and 10). For starters, as pointed out in its
proof, Lemma 6.1 is very similar to Proposition 8 in Section 8.2.1 of [15] used to define
quantum doubles. Moreover, the twisted tensor product of Lemma 6.1 resembles the one
for double cross product bialgebras (see Proposition 26 of Section 10.2.5 in [15]).

Despite these similarities, the algebras A, » are not double cross product bialgebras.
This can be verified in a straightforward manner using the fact that the double crossed
product admits a tensor product coalgebra structure (see [15] Proposition 26). In con-
trast, the map sending A’ : yz — Zy(l)x(l) ® Y(2)T(2) is not an algebra isomorphism of
Apo t0 Apo @ Ay o where y € Oy(Maty )P and z € Oy(Maty) for any choice of v, o
in {0, 1}. For instance, consider the case where 0 = v =0, y = O, T = tea, and a # b.
Assume that A’ is an algebra homomorphism. We have
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A/(acbtca) = Z acjtck & ajbtk:a

Jik
€ Z q1+26jktckacj ® tkaajb + Z C (q)tc/k’ac’j’ ® tk’aaj’b
ik (C’,k/,j’,k‘”,j”)GC

where C' is the set of 5-tuples (¢/, k', j', k", j") satisfying ¢ > ¢, k' > k, j/ > j, k" >
k,7"” > j with at least one of these inequalities strict (plus other conditions such as
k' =k and j/ = j unless k = j, etc.). On the other hand,

A (qtca cb + Z q—q 1 / ca)A/(ac’b)

c'>c
€ Z qtckacj X tkaajb + Z C(q)tc’kac’j ® tkaajb
J.k c'>c

By relation (ii) of Section 6.3 and the assumption that A’ is an algebra homomorphism,
these two values should be equal. But, since

D P 0 @ traOjp # D qlerOej @ traOsp
gk 3.k

these two values are not equal. Hence A’ is not an algebra homomorphism and does not
define a comultipication for Agg. A similar argument yields the same negative result for
Aj11; a somewhat more complicated argument establishes this result for the other two
possibilities A9 and Ap;.

7. Graded Weyl algebras for homogeneous spaces
7.1. Inverting a matriz related to R

The next two computational lemmas show how to invert R*? and related matrices.
These results will allow us to use the reflection equations in the construction of certain
twisting maps.

Lemma 7.1. Suppose that a,v € {0,1} and a +v = 1. For all g,u € {1,...,n} with
g # u, we have

doa SIS =0 (42)
k=1

where Sy = Ry if v =0 and S, = (Ry)5 if v = 1.

Proof. We prove the lemma for @ = 1 and v = 0; the argument is easily modified for the

case @ = 0 and v = 1. Since Ry is block diagonal with diagonal entries (R, I,,2, I,2, R),
it is straightforward to reduce to the case where Ry = R.
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Note that (R'2)79 = rk Using the formulas for rkl given in Section 3.4, we have
(R2)¥ = q for k = g, (Rt2)99 = (¢g—q ') for k < g, and (R")%7 =0 for k > g. One
checks from these explicit formulas for the entries of R, that Ry' = Rht2 Where a—a
is the C-algebra isomorphism of C(q) sending ¢ to ¢~'. Hence ((Ry')*)kk = iku = ¢=1
for k = u, (Ry))!)EE = —(q—q~ 1) for k > u, and ((Ry")")E: =0 for k < u. It follows

that (42) holds for u > g. For u < g, we have

> a R (Ry)

k=1
i B CERE R Ve e U VR S e U DOy

u<k<g
g—1 g—1
_ 7q72u(q72 . 1) + q72g+2 q72k ) + q72k+2(q72 7 1)
k=u+1 k=u+1
which simplifies to
g—1 9
> -0+ D (-1 =0 O
k=u k=u-+1

Let G be the (rank g) x (rank g) diagonal matrix with k" entry G = ¢~ 2* for all
1 <k <rank g. Set G1 = G x I and G2 = I ® G where here I is the (rank g) x (rank g)
identity matrix.

Lemma 7.2. We have (R'2)™' = G1((Rg)3)")G1" = G2((Ry)2')")Gy . A similar
assertion holds for Ry replaced by (Rg)y; -

Proof. Using the formulas for the entries of R (Section 3.4), we see that (Rgz)gf; #0
provided one of the following two conditions hold

e c=canda=0»

o c#eand (a,b) = (ce).

Moreover, in the latter case, (Rg“)gé’ = 1. Hence, using Lemma 7.1, we have

[RgG1((Rg)o )15 = D _[RE1e[GIEEI(Re) o) ]5

= GarGbsq “IRE1GHI((Rg)ai) e + avdradarr D [REIEE((Ry)or)" I35

c

_fqg? ifa=rb=s
B 0 otherwise
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It follows that Rngl((Rg)gll)tl = (71 which proves the first equality. The other equality
as well as the versions with Ry replaced by (Rg)511 follow using a similar argument. 0O

7.2. Extended graded Weyl algebras

We construct here graded quantum Weyl Algebras for each of the three families of
symmetric pairs where the polynomial part is &2y. The starting point is the formation
of algebras which can be viewed as extended versions of the graded Weyl algebras of
Section 6.3. In particular, they are closely related to the algebras A, ..

Let O be the algebra generated by two copies of &, the first generated by ¢;; and
the second by t};, with no relations between the ¢;; and the ;. In other words, O is a
quotient of the tensor algebra T(M) @ T(M') = T(M & M’) by the ideal generated by
the ideals corresponding to the relations of the first and second copy of £2. Similarly, let
O°P be the algebra generated by two copies of 7 = &P, the first generated by 0;;, and
the second generated by 9;; with no relations between the 0;; and the J;;.

Given o, 8,v,0 € {0, 1}, define the map 74 54,0 from OP ® & to & ® O°P by

ToBv,0(Oca @tpp) = Ta p(Oca @tpp) and T pv,0(0eq @ tsp) = Tu.0(0pg @ trp)

foralle,a, f,bin {1,...,n}. By Section 6.3, the maps 7o 3 and 7, , define twisting maps
on O% @ &. Hence, 7o p,0,0 is a twisting map on O ® . Therefore, we can form the
twisted tensor product Ay v = & @4, 4, ., OP. The twisting relations can be put
into matrix format in analogy to the definitions of 4, , in Section 7.3. In particular, we
have

P Ty = ST P, Sg and PyTy = S{ Ty Py S (43)

where T' is the matrix with entries ¢;;, P is the matrix with entries 0;;, P’ is the matrix
with entries 0;;, S, = Ry if y =0 and S, = (Rg)y if v = 1.

Similarly, the map 7/, is a twisting map where

Byv,0

T(lx,ﬁ,v,o(aea @ tfp) = Ta,5(0ca @ tpp) and Téx,ﬂ,v,a(aea & t/fb) = Tp,0(Oea ® t/fb)'

Hence we can form the twisted tensor product A;, 5, , == O @,/ 5.0, Z- These relations
can also be put into matrix format as
Py = ST Py Sy and PyTy = S{MT{ Py S (44)

using the same notation as above where P’ is the matrix with entries 9 -
We are going to use the algebras to Aa g,0,0 and A, 5, ,
map on %y ® Py. To do this, we take a step back and consider the rank(g) x rank(g)

matrices D and X with 1j entries czij and Z;; respectively where the dij and Z;; can be

in order to identify a twisting

viewed as independent non-commuting variables. Alternatively, in the discussion below,
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we will be taking Jij to be either d;j or d;; and a similar statement holds for #;;. The
following lemma allows us to express what will be come the desired twisting map both
on the element level and in matrix form.

Lemma 7.3. The set of equalities

dafep = D (S2)eq (SRR (SE)F (S2 )i Epudry (45)

W,p,q,T,Y,m,l

for all a,b,e, f in {1,...,n} is equivalent to the matriz equality
Dy((Sh)™h2 X, = U X,8,Dy5%, (46)

where S, = Ry if v =0 and S, = (Rg)y if vy =1.
Proof. Reordering the right hand side of (45) yields

dafer = D (S)am(SE e (Xa)ah (Sa)id (D2)7y (S2)5

W,p,q,T,Y,m,l

Z (S St X1 S0 D2 S2) e

Applying (S/1)~! to both sides gives us

D (S5 ) davies = [SE X1Sa DySE) " (47)

e,b

We can rewrite the left hand side as

D (ST duner = S (D2)RE((SI) T (K0 = [Da((87) )Xl
eb eb

Plugging the last term on the right of the above equality into the left hand side of (47)
yields the desired matrix form (46). O

Both O and O° inherit the structure of a U,(g)-bimodule algebra from &7 and 2.
Here, we assume the action of Uy(g) on &’ and 2’ is exactly the same as for the
first copies with ¢;; replaced by t;j everywhere and similarly, each 0;; replaced by 81’»]».
Since the twisting maps 74 g, o, 5 € {0,1} induce relations that are bi- invariant with
respect to these actions, the same is true for the twisting maps 7, .0, and 7, ﬂ v,00

a,B,v,0 € {0,1}. Hence, the algebras A, g, and Al inherit a Ugy(g)-bimodule
structure from the subalgebras used to construct them.

o,B,v,0

Note that the algebra &y embeds inside Aq .00 via the inclusion of &y inside &
and Zp embeds inside of A’y g, , via the inclusion of %y inside 2 for each choice of
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a, B,v, and 0. We also consider subalgebras of invariants inside O and O°P with respect
to the action of By that are closely related to &2y and Zy. In particular, define xgj €O
and d;; € O by

=3 thdrtis and dj; = q ¥ 0,y .0, (48)

r,8

where § = s in Types Al and AlI; for diagonal type § = s for s < n, and § = s —n
when s > n + 1. Let & be the subalgebra of O generated by the z}; and let 7, be the
subalgebra of O°F generated by the d;.

Let X' be the rank(g) x rank(g) matrix with ij entry equal to z;; and let D’ be the
rank(g) x rank(g) matrix with ij entry equal to d};. It is straightforward to check that
X' =T'JT" while D’ = PGJ(P')! for all three families where J = J(1) is defined as in
Section 5.2 and G is the diagonal matrix defined in Section 7.2.

It follows from the arguments in Section 5.2 that each z; and each dj; is right invariant
with respect to the action of By. However, since there are no relatlons satisfied between
the t;; and the ¢, 4>
free algebra with these generators. The same assertion holds for Z; with the t' replaced
by the d;.

Recall the reflection equations (19). It is straightforward to check that J is a nonzero

we see that the algebra &) generated by the t;., 1 <i,j < n, is a

scalar multiple of J~! for all three families. Hence, we also have
Jgjolel = Rtg1 J1RyJo (49)

Given a matrix M with entries in C(q), write M for the image of M under the C-
algebra map sending ¢ to ¢~ !. It is also straightforward to check that J* is a nonzero
scalar multiple of J and R;M = (Rg)gll. Hence, applying the transpose and bar map
to both sides of (19) and (49) yields the same equations with Ry replaced by (Rg)s,"
everywhere.

Proposition 7.4. Set S, = Ry if y =0 and Sy = (Rg)2_11 ify=1.If B+ 0 =1, then the
subalgebra of As g, generated by Py and D satisfies the relations

diprer = D (S)wr(St2)ee, (S (St e pud,

TW,p,q,T,Y,m,l

for all a,b,e, f. Similarly, if 8+ o = 1, then the subalgebra of A’ generated by Dy
a,B,v,0
and P}, satisfies the relations

datly = Y (S (S (ST (S T dry

TW,D,q,T,Y,m,l

for all a,b,e, f.
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Proof. Applying (S%1)~! to both sides of the second equation of (43) yields
(S PTy = TL Py St
which is equivalent to
(P3((85) 71T = TaSs(P'); (50)

where (P")5 = Id @ (P')!. Note that applying the map ¢ = 1t to both sides of the
second equality of (43) becomes

(P)ST] = STy (P')3S¢2 (51)

where here we are using the fact that T} and (P’)% commute with each other.
We prove the proposition by using the matrix form of the equations given by
Lemma 7.3. In particular, expanding out the left hand side of (46) yields

Dy((S1) )2 X1 = (PaGada(P)}) (1)) (Ty I TY)
= PG Jy ((P)5((S5) 1)) Jh T}

v

Replacing the middle term by the right hand side of (50) and using the fact that 77
commutes with GoJs gives us

DL((SI)™H2 X = PyT1GaJoS,J1 (PLT]
Using (43) and (51) to rewrite the first two and last two matrices yields
DY (St x, = (snglpgsg) GaJoSy Ty (SETVH(P)LSE)
= ST PySE Gy (J2Se 1 S5H) Ty (P')5S1?

Using the reflection equation as presented before the proposition, we can replace
J2S,J1S% with St J1 S, Jo which yields

Dy((S{M) ™12 Xy = ST PSS Gy (S5 J15,02) Ti (P')5S12.
Since 8+ o = 1, Lemma 7.2 ensures that S[tf G5!t = G4 and so the above becomes
DL((SI ™2 X, = STy PoGo 1S, JoTh (PS5 = STy Jy PyGo S, Ty ' Jo(P')5 12

where the last equality follows from the fact that J; commutes with P>Gs.
The key to finishing the proof is showing that

GaS, = ((5%)7)"1 Gy (52)
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when 8+ o = 1. By Lemma 7.2, we have (Ry')®2GoR" = Go. Multiplying both sides
by ((Ry;1)?2)~! produces GoR! = ((Ry')"2)~'Go. Applying t; to both sides yields the
equality GoR = ((((Ry')*) ") Gy. This establishes (52) when S, = R and S = R,
This immediately extends to the diagonal type using the fact that R(g) = (R, I .2, 2, R)
in that setting. The other case (¢ = 1 and § = 0) is similar with the roles of R and Ry;'
interchanged.

Now using (52) we see that

SUTLIP((S5) ) GaTh ! o Py 82 = SLT1 I\ T So PyGaJo Py Si2 = St X180, D}S!

as desired. This proves the first set of equalities. The argument for the second set is very
similar using two copies of the polynomial part and only one copy of the partial part. O

7.8. Four twisted tensor products for homogeneous spaces

We introduce a family of twisting maps, and refer to each of them by 7¢  for o, v €

a,v

{0,1}, as follows. Let 7/ , be the map from 3, ., , C(q)di; ®Fp to > ikt C@) T ®d;j
defined by

0 o(day @Fep) = > (SP)Er(SI)RL (S (S Epw @ dry  (53)

™W,p,q,%,yY,m,l

for all a,b,e, f. Here, we let Jij be either d;j or d;; and similarly, ;; is either x;; or

;. Since both Zj and ) are free algebras, the map 75, extends to a twisting map

,U
from 2y ® P to Py @ Dy. Using this twisting map, we obtain a twisted tensor product
f@é Ko @é.

Assume that B 4+ o = 1. Recall that by construction, A, g.v,. is a twisted tensor
product. Since &y embeds in the first component and % in the second, we have that

multiplication induces an injection
Py R .@é = Aa,Bv,0-

By Proposition 7.4, the subalgebra of A, ., generated by &y and 7 is isomorphic to
the twisted tensor product & @.o = Zp. Similarly, the subalgebra of A, 4, , generated
by % and &) is isomorphic to the twisted tensor product 27 ®ro Do

/
ij
The defining ideal Zy is generated by the elements described in Proposition 5.10 where

Since ) is a free algebra generated by the z} ., we can realize &y as a quotient of 7.

each Z;; is replaced by x;] Similarly, %y can be realized as a quotient %,/ Jy where Jp
is the ideal of relations generated by elements read off of Proposition 5.11.

Proposition 7.5. Let 7 be one of the twisting maps TS’U for some choice of a,v € {0,1}.
Define two algebra maps by
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o p1: Py R Dy — Po s Dy is the identity on T and sends each :U;j to x;;
o o Py R Dy — Py Rr Dy sends d;j to d;; and is the identity on Z.

The kernel of ¢y is generated by Iy and the kernel of @9 is generated by Jy. More-
over, both maps are left U,(g)-module and right Bg-module maps and all elements under
consideration are invariant with respect to the right action of By.

Proof. The fact that these two maps are algebra homomorphisms with the desired kernels
follows immediately from the discussion preceding the lemma on various twisted tensor
products. The last assertion follows from the fact that A, g, and .A;’ B are both
two-sided U, (g)-modules and Py, Py, Dy, and I, are all left U, (g)-submodules and right
Bg-submodules with the latter action trivial. Moreover, by construction, these module
structures for each of the algebras under consideration are defined in the same way and

so compatible with these algebra maps. O

A consequence of the above proposition is that the ideal Zy “commutes” with elements
in 9. More precisely, we have d'Zy C Ty, for all d' € Z) and, moreover, ZpLy = Ly Y.
This is because the twisting map 78 ,, defines an isomorphism of D'y @ 2§ onto Z) ® 7,
which induces an isomorphism by the twisting map of D’y ® F onto Py ® 7). Hence
T(Zy @ Ip) = Ty ® Z). Analogous results hold for Jy. In particular, we have Jp &) =
PyJy. It follows that the ideal in &) @0 7 generated by Zy and Jp takes the form
ZyD' g+ P, Jp and is isomorphic via multipiication as vector spaces to ZyQ Zy+ Py Jp.
This ensures that the quotient &7 ®ro Py by the ideal ZyD'g + Py Ty is itself a twisted
tensor product of Py and . Thus we have the following result on twisted tensor
products of &y and Y.

Theorem 7.6. For each a,v € {0,1}, the map rfw defined by

ool @wep) = Y (SE)r (SR (SE)H (SE) i apw © oy

W, p,q,T,Y,m,l

is a twisting map from Py @ Py to Py R Dy where So = Ry and 51 = (Rg)2—11_ Moreover,
Py @0 Dy inherits the structure of a left U,(g)-module algebra and trivial right By-
module algebra from the subalgebras Py and Py.

Proof. This follows from the discussion above combined with the fact that the twisting
map 7(27“ preserves the left U,(g)-module and right Bg-module structures of Zy and

Jo. O

Note that Theorem 7.6 gives us four graded Weyl algebras for each of the three types
of homogeneous spaces &y. This is similar to the situation for the original quantum
graded Weyl algebras A, . associated to &?. In analogy to the original case, we set
Al =P ®o Dy for each o, v € {0,1}. The relations relating the z;; and the d;; can
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easily be read off of the definition of the twisting map Tg’v in Theorem 7.6. Namely, we
have

daaer = Y (S&)5 (St (ST (SE) i wpudry (54)

W,p,q,T,Y,m,l

for all a,b,e,f € {1,...,rank(g)} and where Sy = Ry and S; = (Rg)Q_ll. Using
Lemma 7.3, these relations can be put in matrix form in a way that resembles the reflec-
tion equations, or, more precisely, the relations for &2. For example, when a@ = v = 0,
we have

Dy((RG) ™) X1 R = Ry X1 Ry D

In the next result, we show that for the diagonal type, we recover the graded Weyl
algebras A, ., o, v € {0,1}.

Corollary 7.7. In the diagonal type, the subalgebra generated by Py and Dy inside of
Ao, for B+ 0 =1, is isomorphic to the graded quantum Weyl algebra Aq . via
the map ¢ sending each x; j4n to t;; and each d; jyn to O;;. Moreover this map is a
Uq(g)-bimodule algebra isomorphism where

Y(a-u) = a-y(u) and P(u-a*) = y(a) - P(u)

for all a € Uy(gl,,) and v in the subalgebra generated by Py and Dy where v is the map
from the first copy of Uy(gl,,) to the second defined by y(E,) = Enqr, Y(F;) = Fyyr, and
Y(Ke,) = Ke,,, forallr,s € {1,...,n}.

Proof. By Proposition 5.10, the map sending x; n4; to ¢;; is an isomorphism of
onto O4(Mat,,). Similarly, by Proposition 5.11, the map sending d;,+; to 0;; is an
isomorphism of %y onto O,(Mat,,)P.

We show below that

dapinTepin= Y (RE)VI(RE)VFrmind;iin (55)
rm,j,l
for all a,b,e,f in {1,...,n}. In other words, the elements de g4n, T p+n satisfy the

same twisted tensor product rules as O, and ty;. Thus, the map defined by sending
0i; to di j+n and each t;; to x; j1, is an algebra homomorphism. To see that this is an
isomorphism, we note that by Theorem 7.6, the map from %y ® %y to Afw induced by
multiplication is a vector space isomorphism. Therefore, multiplication induces a vector
space isomorphism from &y ® %y into Aq g, . Since (55) corresponds to the defining
twisting map for the twisted tensor product A, there are no additional relations then
those generated by the ideal including the relations satisfied by £y, those satisfied by
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P and the above relation relating de, and . Thus the proposition follows once we
establish (55).
By Theorem 7.6, we have

dupintosin= 3. (SE)Er(S2RL (S, (SE) e ntpudsy  (56)

TW,P,q,T,Y,m,l

for all a,b,e,f in {1,...,n} where the sum is over elements 7, w,p,q,z,y,m,l in
{1,...,2n}. Since e,b are both in {1,...,n}, we must have m = e and I = b+ n in

order for (552)?1;l+n to be nonzero. Moreover, it follows from the definition of R4 in the

diagonal type that (552)2212 = I:fis = 1. Hence (56) becomes

dajinTefin= Y (S2)ey (SE)RA(SE) T mppnpuwdry (57)

TW,T,P,q,Y
Since e € {1,...,n}, Te, is nonzero if and only if w € {n +1,...,2n}. On the other
hand, (S12)77,, 1 nZew # 0 implies that both x and y are also in {n+1,...,2n}. Hence

dry # 0 implies that 7 € {1,...,n}. Withw € {n+1,...,2n} and r € {1,...,n}, we get
(8%2)wr # 0 if and only if w = x, r = ¢, and (S%2)i7 # 1. Finally, since both e and a

are in {1,...,n}, the same must be true for p and ¢ in order for (S )24 to be nonzero.

Hence (57) becomes

dapinTefin = Y (SRS E AT ™y wrindry in (58)
w’,p,r,y’
Now (St Y " = (Riz)¥ and (S%2)28 = (Ri)24 for all values of a, e, p, g, w', 1/, f,b
in {1,...,n}. Thus (58) is the same as (55) up to a change of variables.
The bimodule isomorphism follows from Lemma 5.12 and its analog for 5. O

The next result shows that the C-algebra isomorphisms among the A, , of Proposi-
tion 6.6 extend to this setting for all three families. Recall that a denotes the image of

a € C(q) under the C-automorphism of C(g) sending ¢ to ¢~ .

Proposition 7.8. Set N = rank(g). The map sending each scalar a to a, x;; to TN—; N—j
(resp. xijin 10 Tn_ion—j) and dij to dn—; n—j (resp. dij to dyn_jon—;) defines a C-
algebra isomorphism from A§, to AY, and from A%, to A§; in Types Al and AII (resp.
diagonal type).

Proof. The diagonal case follows immediately from Corollary 7.7 and Proposition 6.6.
For Types Al and AIl, it is straightforward to check directly from the relations that
this map defines an isomorphism of %y onto itself. Using the C(g) antiautomorphism
defined by x;; — d;; (see the discussion preceding Proposition 5.11) we see that the same
result holds for Zy. It remains to show that the relations defined by the twisting map
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750 becomes that of 7f; and the ones defined by the twisting map 7{, becomes those of
Tgl under this mapping. The argument follows as in the proof of Proposition 6.6 using
the explicit form of these twisting maps given above. O

Using the formulas for the entries of R and Rj', one can expand out the relations
defined by the twisting map in Theorem 7.6 in Types Al and AIl. We won’t do a complete
expansion here, but instead, note important properties.

Corollary 7.9. The following inclusions hold for the quantum graded Weyl algebra ,Ago:

dopes — qéaf+6ae+5bf+6bcwefdab c Z (C(Q)$e’f’da’b’
(e’,f",a’,b")>(e,f,a;b)

for all a,b,e, f € {1,...,rank(g)} where

e a<bande< fin Type Al
e a<bande< fin Type AIl
e a<n<bande<n<f in diagonal type

and (¢/, f',a’, V') > (e, f,a,b) if and only if €’ > e, f' > f,a’ > a,b’ > b and at least one
of these inequalities is strict.

Proof. The corollary follows in the diagonal case using the explicit relations given at
the end of Section 6.3. Hence, we just consider Types Al and AlIl and so Ry = R where
N = n in Type Al and N = 2n in Type AIl. An examination of the formulas from
Section 4.2 yields (th)yj # 0 implies that k > 4 and [ > j. It follows that

(R™)gq (R™=)be, (R™) 5/ (R™)5 #0
implies that y > 1 >b,p>m >e,w >z > f, and r > ¢ > a. Hence
daptes = (R?) (B2 (R') 1y (R e pdas + X
where

X e Z (C(q)xe/f/da/b/.
(e’,f",a’,b")>(e, f,a,b)

The corollary now follows from the fact that (RtQ)gﬁ =¢%. O

Note that a version of Corollary 7.9 holds for A¢; with the coefficient gdas9ac+9bs+0be
replaced by g~ (%as0ect0s+0e) and the sum runs over tuples (¢/, f/,a’, V') satisfying the
opposite inequality (e, f,a,b) > (¢, f',a’,b).
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Remark 7.10. As explained in [8], O,(Maty) is a CGL extension and hence a quantum
nilpotent algebra. One checks using Lemma 5.7 that the same holds for &y for all three
families. It turns out that Af, is an example of a symmetric CGL extension (see [8],
Section 3.3) for each family. Certainly the previous result suggests that this is true. This
property can be verified via a complete expansion of the relations for Ago arising from
the twisting map that defines these algebras. Note that it is further shown in [8] that
O4(Maty) is an example of a quantum cluster algebra. We suspect the same is true for
Py as well as Af, for all three symmetric pair families.

8. Quantum Weyl algebras
8.1. An invariant bilinear form

The starting point for lifting the graded quantum Weyl algebras is to determine how
to introduce constant terms in the relations coming from the twisting map. This will be
accomplished using a U, (gly) bi-invariant bilinear form.

Lemma 8.1. The bilinear form (-,-) on (Z” C(q)0; ) (Z” C(q)ts ) defined by
<0ij,tsk> = 5i55jk fOT all i,j, S, k

is Uq(gly) bi-invariant with respect to the Uq(gly)-module structures on -, . C(q)d;;

and 3,  Cq)ti;

Proof. It is sufficient to check the properties of left and right invariance with respect to
the generators of Uy (gly ). For the left action, we have

<Ker : aijv Ker : tsk> = q_é’"(]é” <aij7t8k> - 62’56jk - E(Ker)<aij7tsk>~
for all r,i4, 5, s, k. Also, for all r,i, j, s, k we have
<Er : aija tsk> + <Kr : 8ija Er : tsk> = _q_lair<ai+1,j7 tsk> + q_6i7'+6i'r+l57’,5—1(81']'7 ts—l,k>

= —q 0 0i 1,80k + 4 0700105 10k
= 0ir0it1,s05 k(=g +q71) = 0= e(E)(Dij, tor).

Similarly, for all r, i, j, s, k we have

<F aZJ7K : > <alj7F t > —qq ~Oert0s, T+16z 1 7‘<ai—1,ja tsk> + 5sr<8ij; ts—i—l,k})
= 01,60k (—qq % 0iz1, + Osr)
= 52-,175(%]66”(—(](]_1 —+ 1) =0= G(FT)<aij,tsk>.

This establishes left invariance. A similar computation yields right invariance. O
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The bilinear form (-, ) can be translated into a linear map y: 32, ;1 ; C(¢)9i; @t —
C(q) defined by p(0;; @ tr) = (0sj,tw) for all ¢, j, k, 1. An immediate consequence of the
above lemma is that

p(u - (0 @ tsr)) = u- p(9ij ® tsk) = e(u)p(0ij & tok), (59)

for all u € U,(gl,,) and all ,7,s,k. The analogous equality holds for the right action.
Note that (59) and its right hand version ensure that p is a U,(gl,,) bi-invariant map
from Zi,j,s,k C0Oij ® tsr, to Zi’j’s,k Cte, ® 05 ® C(q).

For each choice of v,o € {0,1} and each a,b,e, f, we write W:,}:e,f for the relation
associated to a, b, e, f so that

Weye s = Oca @ tgp = Too(Oea O tf0) = Oca @t = (Ro)fe(Ru)ihtay © A
Jyk.d,l

for all a, b, e, f. By Proposition 6.3, the vector space spanned by the W;’b‘;,f fora,b, e, f €
{1,...,n} is a Uy(gl,,) sub-bimodule of 3=, ., ; C(q)0ij @t + 3, ; 1, C(@)tiy ® 0ij with
respect to the bimodule structure defined by Lemmas 4.1 and 4.2. We see that the same
holds when we add a scalar to each relation coming from the bilinear form.

Proposition 8.2. For each v, o, the vector space spanned by
W s = 11(0ea @tpo)| asbse, f€{L,... ,n}} (60)
is a Uq(gly)-sub-bimodule of 3=, ;1 C(q)0i5 @ tiw + 32, ;11 C(@)tu @ 9ij + C(q)-

Proof. Since the choice of v, 0 does not impact the proof, we drop the superscript from
W in the argument below. Note that for each e, a, f,b we have

Weafh € 0ca @tpp+ Y C(q)0ij ® Ly
ikl

Since
> C@di @t | 0| D Clo)ti; @ | =0,
ikl ikl

it suffices to show that the vector space spanned by {O0cq @ t s — 11(0ca @ t15)| a, b€, f €
{1,...,n}} is a Uy(gl,,)-bimodule. By (59),

U (Oea @tsy — ((Oea @tfp)) = U+ (ea @tgy) — fo(u - (Oea @typ))

for all u € Uy(gl,,) and all e, a, f,b. This proves invariance with respect to the left action
of U,(gl,,). The same argument works for the right action. O



G. Letzter et al. / Journal of Algebra 655 (2024) 651-721 707

8.2. A criteria for PBW deformations

Recall the notion of PBW deformations introduced in [5] for quadratic algebras and
generalized to other algebras in [31], and defined as follows.

Definition 8.3. Let D = U;enFi(D) be an filtered algebra and let E be a N-graded
algebra. The algebra D is called a PBW deformation of E if there is a filtered map
from E to D that defines an isomorphism of E onto grzD = @, Fi(D)/Fi-1(D) as
N-graded algebras. -

We are interested in the following scenario. Assume that A = T(Y)/(I) and B =
T(Z)/(J) where I is a subspace of Y ® Y and J is a subspace of Z® Z. Note that both A
and B are graded quadratic algebras. We further assume that both A and B are Koszul
algebras (see [5], Section 3, for a precise definition of Koszul).

Let 7(1,1) be a linear map that sends Z® Y to Y ® Z. Note that we can use 7(1,1) to
inductively define maps 7, ) from Z®™ @ Y®* by

Tim,s) = ({d @ Tm—1,6-1 @ 1d)(Tm-1,1 ® T1,5-1)(Id¥™ ) @ 1y @ (1d®571).

Now define a linear map 7 from T(Z)@T (V) to T(Y)®T(Z) by insisting that 7(1®a) =
a®1l, 7(b®1) =1®band 7(c®d) = T(ms(c®@d) for all c € Z¥™ and d € Y®5. We
can define multiplication on T(Z) ® T(Y) using the second property of twisting maps
(see Section 6.1). It is straightforward to check that 7 defines a twisting map from
T(Z)QT(Y) to T(Y)®T(2).

Assume further that 7 becomes a twisting map from B ® A to A ® B when passing
from T(Z) @ T(Y) to B® A and denote this induced twisting map by 7 as well. Set
E = A®; B and note that F is also a Koszul algebra ([30], Proposition 1.8). Furthermore,
we may identify F with T(Z@®Y)/(I+ J+ K) where K is the subspace of ZQY +Y ® 7
consisting of the elements w — 7(w) for w e Z QY.

Let p be a linear map from I 4+ J 4+ K to C(g) and define the algebra E,, by

E,=T(ZaY)/(r—up(r),rel+J+K). (61)

By [30] Theorem 2.4 (¢’), E,, is a PBW deformation of E if and only if p®@ Id = Id®
on

I+ J+K)(Z+Y)N(Z+Y)® [+ J+ K)).

(In the notation of [30] Theorem 2.4, u plays the role of K while k¥ = 0).

Now assume that p is defined as follows. Start with a linear map p from Z ® Y to
C(q). Extend p to a linear map from (Z +Y)® (Z +7Y) to C(g) by insisting that p is
identically 0 on both Z® Z and Y ® (Z +Y). Note that p restricts to a linear map on



708 G. Letzter et al. / Journal of Algebra 655 (2024) 651-721

I+ J+ K, since the latter is a subset of (Z+Y)®(Z+Y). Thus, we may take advantage
of the above criteria for PBW deformations based on the construction of E, above.

Since both p® Id and Id ® p vanishon Z® Z® Z+Y ® Y ® Y, the above PBW
deformation conditions become E,, is a PBW deformation of F if and only if y ® Id =
Id ® p on

(JY+K®Z)N(Z@K+Y ®.J))
and
(I®Z4+KY)N(ZeI+Y ®K))

The next result adapts [30], Theorem 2.4 (¢’), providing a particularly useful criteria for
when E,, is a PBW deformation of ' in various settings of this paper.

Lemma 8.4. Let p be a linear map from (Y + Z) @ (Y + Z) to C(q) that is zero on
YRY+Y®Z+Z®Z. The algebra E, is a PBW deformation of A ®, B if

(peld+Idep)(r®Id)(Ze1)=0 (62)

and
Ud@p+(peldIdeT))(JoY)=0. (63)

Proof. By definition, p ® Id vanishes on 7(Z ® I) since this space is a subspace of
Y ® Y ® Z. Similarly, p ® Id vanishes on (7 ® Id)(Z ® I) because it is a subspace of
Y ®Z®Y. Hence

(uRId)(Z@1)=(uelId)o(Id+1—7RI1d)(ZSI).
Similarly,
(Idouw)(rId)(ZxI)=Idou)o(—Id—7+ 7 Id)(Z®I).

Hence (62) is equivalent to u® Id— Id® p vanishes on (Id+7—7®I1d)(Z®1). A similar
analysis shows that (63) is equivalent to u®Id—Id®u vanishes on (Id+7—Id®7)(JQY).

Let a € (KQY+I®Z)N(Z®I+Y ® K). and write a = a1 + a2 + az where
@ €EYRY®RZ,a€YR®Z®Y,andaz € ZQY ®Y.Sincea e (KQY +1R® Z), we
must have a3 + a2 € K ® Y with ay = —(7 ® Id)(ag). Similarly, a € (Z@1+Y @ K)
ensures that as + a1 € Y ® K with a1 = —(Id ® 7)(az). These two conditions together
yield a; = (Id®7)(r®1d)(a3) = 7(as3). Hence a = (1 — (1 ® Id) + Id)as. In other words,

(K@Y +I02)N(Zeol+Y @K)C(d+T—7oId)(Z]).



G. Letzter et al. / Journal of Algebra 655 (2024) 651-721 709

A similar argument shows that
(JY+KZ2)N(ZK+Y®J)C(Id+7-Ide1)(I® Z).
The proof now follows by the discussion preceding the lemma. O

8.3. PBW deformations for matrices

We now turn our attention to specific twisted tensor product algebras introduced
earlier. In particular, we consider A = Oy,(Maty), B = Oy(Maty)?, E = Ay, = A®, B
where 7 =7, ,, for v € {0,1} and p is defined by the bilinear form of Lemma 8.1. As in
Section 4, we have that A is a quotient of the tensor algebra T'(Y) where Y =V @ W
and B is a quotient of the tensor algebra T'(Z) where Z = V* @ W*.

Abusing notation somewhat, we will take ¢;; as a basis for Y where we identify ¢;;
with v; ® w; for all 4,5 and 0;; for a basis of Z where 0;; is identified with v} ® w for
all 4, j. Note that the set of defining relations 7 in Y ® Y can be read off of (i) and (ii) of
Section 4.2. Recall the bilinear map p defined by the bilinear form (-, -) of Section 8.1.
The algebra T'(Y) is a Uy(gl,,)-bimodule via the action of Lemma 4.1 and T'(Z) is a
U,(gl,,)-bimodule via the action of Lemma 4.2.

Theorem 8.5. For both v = 0 and v = 1, the algebra E, is a PBW deformation of
E=A,,=A®; B where 1 =1,,, A=0,Maty) and B = Oy(Maty)°?. Moreover,
E,, inherits a Uy(gly)-bimodule structure from A and B.

Proof. By Lemmas 4.1 and 4.2, both I and J are Ug(gly)-sub-bimodules of T'(Y) ®
T(Z). By Proposition 8.2, the space K defined by 7 and p is a U,(gly) sub-bimodule of
T(Y) ® T(Z). This proves the last assertion of the theorem. For the first assertion, we
show that F, satisfies the criteria of Lemma 8.4.

By Corollary 6.5 and (59), both 7 and p are Ugy(gl) bi-invariant. Hence so is the map
pRId+ (Id® p) (T @ Id). Hence (p® Id+ (Id® u)(r ®1d))(2z ® y) = 0 implies the same
is true for z ® y replaced by u - (2 ® y) and by (2 @ y) - u for all u € Uy(gly).

For the remainder of the proof, we assume that v = 0. The proof for v = 1 is the
same up to easy modifications such as swapping dyy with d11. Now suppose that

(n@ld+(Idep) (T @ Id) (Ovy ®y) =0 (64)

for all y € I. Hence (u® Id+ (Id ® p)(1 @ Id)) (Fn—1 - (Ony ® y)) = 0 for all y € 1.
Note that

Fo1-(Onn®y)= (Fy_1-OnN) QK -y +Ovn @ Fn_1 -y
= —@ON-1,N ® Ki_l Y+ Oy ® Fno1-y.
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Since K; acts semisimply on Y ® Y and I is an U,y (gl ) invariant subspace, we have I =
K;'-1. Hence, it follows that (1 ® Id + (Id @ p)(t ® Id)) (On_1.x®y) =0 forally € 1.
By induction, (p ® Id+ (Id ® p)(7 ® Id)) (Ojn ®y) =0forall 1 <j < N andally € I.
Using the right action with Fj replaced by E; yields (¢ ® Id + (Id @ p) (17 ® Id)) (01 ®
y) =0 for all j, k and all y € I. Thus it is sufficient to establish (64) in order to prove
(62) with u = p and 7 = 7g0.

Note that the space I is spanned by the elements of } -, , ; ; C(¢)t;; ®tx corresponding
to the relations (i) and (ii) of O,(Maty) presented in Section 4.2. It follows from the
formulas for the entries of R in Section 3.4 that (Rt’“)ﬁv = riév = q‘sbN(Sjb(SNk and
(R2)fy =1 = @ N dnidgp. Hence, since v = 0, (38) becomes

T00(OnN @ tpp) = ¢V TN 1y @ O

at (e,a) = (N, N) for all f and b in the set {1,..., N}. It follows that the only term of
the form 0;; that shows up in the expression for (7 ® Id)(Onny ® y) is Onn for all y € 1.
Hence we need only show that p® Id — (Id ® ) (7 ® Id) vanishes on the subset of Z ® I
consisting of elements Oy n ® y where y is any element in the set

{tni QtNN — @tNN @ ENis tin QNN — NN Qtin| i =1,...,N — 1}.
We have
(k@ Id)(OnNN @tN,;i QtNN — qONN QINN @ tn;) = —q(1 @ tn;)

This final term is simply —qtn; viewed as an element in 7'(Z). Also

(Id ® p) (00 @ Id)(OnN @ tni @tNN — qONN @ ENN @ tNi)
=(Id® p)(gtn: ®ONN O tNN — NN @ ONN @ tni) = q(tni @ 1) = qtng

Thus (¢ ® Id) + (Id ® p)(700 @ Id) vanishes on all elements of the form Oyy Q@ tn; @
tnv —gONN @tnn @ty ;. The same argument with ¢y ; replaced by ¢; y terms shows the
analogous result is true for all elements of the form Onny®t; N @ty —gONN QNN Qi N
This proves (64) and hence (62) for 7 = 7. Criteria (63) for 7 = 717 is established using
a similar argument with dyn replaced by tyny. O

A natural question is whether a version of Theorem 8.5 holds for the other two alge-
bras Ag; and A;g. Unfortunately, such a deformation does not work using the invariant
bilinear form u. To get an idea of why this construction fails, consider (v,o) = (0,1).
Formula (38) becomes

7_01(81,N ® tfb) _ q76f1+6bNtfb ® alN

for (e, f) = (1, N) and any choice of f,b. We have
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(p@Id)(On @t @ty — qOIN @ty @ 1) = —qt1;

but

(Id ® p) (101 ® Id) (01N @ t1; @ Lin — qOIN @ tin ® t14)
=Id® ,U)(q_ltl,i ® 01N ®tin — gty ® 01y ®@t1;) = q Mty

and clearly —qt1; # ¢ 't1;. This means that when we replace (38) with the deformed
version using u, the element ¢1; ends up in the image of the ideal generated by the
relations for the ty;. In other words, t1; must be 0 in this deformation of the twisted
tensor product Ap;. Clearly, the end result is not a PBW deformation. Despite this
failure, we will find the twisted tensor products Ap; and Ajp to be essential in the
construction of quantum Weyl algebras for homogeneous spaces.

Write Wy for the deformation of Agg and Wy, for the deformation of Ay; as described
by Theorem 8.5. Note that Proposition can be easily extended to show that Wyy and
Wi are isomorphic as algebras. It turns out that W)y is isomorphic to the quantum
Weyl algebra & Z,(Maty) studied in [3] that is a normalized version of the algebra
Pol(Maty ), introduced in [28] in the context of quantum bounded symmetric domains.
The algebra #%,(Maty) is generated by 2;j, 2;,1 < i,j < N such that the z;; gener-
ate a subalgebra isomorphic to Oy(Maty ), the z;; generate a subalgebra isomorphic to
O4(Maty)°P, and

ZZaZfb = Z qu(evfalvd)R(a)bvkaj)Zde;k +5ef5ab (65)
7,n,d,l

for all e, a, f,b where

e R(iii,i) =1, R(i,j,i,7) =q " for all i, with i # j.
o R(iyi,j,7) = —(qg72—1) for all i < j.
e R(i,j,k,1) =0 for all other choices of j,i,5',4.

Note that (65) is just equality (6) of [3] (up to a change in variable name) but with the
scalar term missing a coefficient of (1 —¢?). As explained in [3], one can rescale the terms
Oeq and tg; so as to remove this coefficient. We have performed this rescaling in (65).

Proposition 8.6. The algebra Wyo is isomorphic to the algebra PP ,(Maty).

Proof. A comparison of the entries of the matrix R as stated in Section 3.4 and the
elements R(a, b, ¢,d) defined above yields q_l(R“)‘;le = R(e, f,1,d) for all e, f,l, d. Hence
(65) agrees with the relations for Wy obtained from (38) with the deformation using . It
follows that the map Wyo — W sending ¢;;, 0;; to z;, z;; is an algebra isomorphism. 0O
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It should be noted that the Uy(gly) left module structure studied in this paper differs
from that of [28] and [3] and, moreover, these references do not include a right mod-
ule structure. Now by [28] (see Proposition 2.1), the map Ogy(Maty) ® Oy(Maty )P —
PP, Maty) defined by multiplication is an isomorphism of vector spaces. This fact
directly implies that Z2,(Maty) = Wy is a PBW deformation of Agg. So Theorem 8.5
is really a new proof for a result in [28]. However, the proof here has a number of ad-
vantages. It is less computational, it can be used to easily show that the other algebras
Ay.o,v # o do not admit such a PBW deformation (as explained above), and, perhaps
most importantly, it extends in a straightforward manner to the setting of quantum
homogeneous spaces.

8.4. Invariant bilinear forms for homogeneous spaces

Here we introduce invariant bilinear forms so as to deform the algebras Aiﬂ, to the
noncommutative setting (when o = v) in analogy to how we handled the algebras A, ..
For the regular quantum Weyl algebra, invariant meant with respect to the bimodule
action of Uy (gl ). For the three families of homogeneous spaces, by invariant, we mean
with respect to the left action of U,(g). In the diagonal setting, we can use Corollary 7.9
and the discussion following its proof to convert A%,  into Aq,. as Ug(gl,)-bimodules by
moving the action of one of the copies of Uy,(gl,,) from the left to the right. Hence, for
most of the proofs below, the diagonal type follows immediately from the regular one.

Recall the quantum Weyl algebra W, which is a deformation of the graded quantum
Weyl algebra Agg, as introduced in Section 8.3. By construction, both & and 2 are
Uq(g)-sub-bimodule algebras of Wyo. Hence, both &%y and % are left Uy (g) submodule
algebras of Wyy.

Let £ denote the left ideal of Wyo generated by the J;;. Since >, . C(q)0;; is a
U,(g)-bimodule, so is £. Note that Wy = £ & &. Moreover, if y € 2 and w € &
are homogeneous terms in the 0;; and ¢;; respectively and of the same degree, then
yw € L+ C(q). Thus, we can define a bilinear form

ZC(Q)dij X ZC(q)xij — C(q) (66)

by the formula
dijifuy — <dij7$uv> cl (67)
where (di;, Tyy) € C(q) for each 4, j, u,v.

Lemma 8.7. The bilinear form defined by (67) is left U,(g) and right By invariant.
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Proof. Note that £, the scalars C(q), and 3, ;, , C(q)dijzu, are left Uy(g)-modules.
Hence, the above map is a map of left U, (g)-modules. Since elements of U, (g) act trivially
(i.e. by the augmentation map) on C(q), we have

a-dijyy —€(a) - (dij, ty) €a-LCL

for all a € Uy(g). Now a - dijxu = (3 a) - dij)(ae) - Tuw) Hence, by definition, we have
(>_aq) - dij,ag) - Tuv) = €(a) - {dij, Tuy) as desired.

Note that both 3, ; C(g)di; and }; ; C(g)x;; are trivial right Bp-modules. Arguing
as in the proof of Lemma 5.3 and using the definition of invariant bilinear form, yields
that this bilinear form is right By invariant. O

Recall that a basis for >,  C(q)x; (resp. >, ; C(q)ds;) consists of those z;; (resp.
d;;) with ¢ € {1,...,n} and j > 4 in Type Al j > i in Type AIl, and j > n+ 1 in
diagonal type.

Proposition 8.8. There exists a unique left Uy(g) and right By invariant form (up to a
nonzero scalar multiple) such that

<dz’j7 x'uu> = qf&w 5iv(sju

foralli <j,v<wuin Type Al for alli < j, v < u in Type All, and for all i < n and
j > n+1in diagonal type.

Proof. By the discussion following Lemma 5.4, »-, - C(g);; is isomorphic to a simple
Uq(g)-module, which we refer to as L and }_, ; C(g)d;; is isomorphic to its dual L*.
Hence ), C(q)di;®@3°,; C(q)zi; = L*®L = End L as left U, (g)-modules. It follows that
there is a unique left one-dimensional U,(g)-submodule of >, ., C(q)di; ® wx. Since
both >_,. C(q)zi; and }_;; C(q)di; are trivial right By-modules, this one-dimensional
submodule must also be a trivial right Bs-module.

The map defined by (66) can be rewritten as a projection from >, ; C(q)dij @ Tuy
onto the scalars defined by dij ® Ty, — (dij, Tuy). This map can further be viewed as a
composition of the projection of the left hand side onto its one-dimensional submodule
followed by an isomorphism from this one-dimensional submodule to the one defined by
the bilinear form. This guarantees that the bilinear form is unique up to nonzero scalar.

We now turn to establishing the explicit formula for the bilinear form. In the diagonal
setting, this follows from Corollary 7.9 and Lemma 8.1 and the fact that d,, = 0 since
u < n < v. For Types Al and AII, we do this by viewing %y and £y as subalgebras
of Woo and compute the value of d;j;x,, module £ for each 4, j,v,u using the relations
presented at the end of Section 6.3.

First consider Type AL Assume that i < j and v < u. Recall that z,, = ¢" %" zy,.
It follows from the relations in Wy that 0; ,0;xtustss € L for k # s. Moreover
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(9ustu5 = ]. + Z (C(q)tulslaulsl

w' >u,8'>s

Hence, for ¢ < u' we have 0; st/ € L and for v < v/ we have ¢ t,s € L. Hence, if
i < jand v < u then 0; s0jstustvs € 0judin + L. Thus for ¢ < j and v < u we have

n n
dijou = q" " dijrun = (Y ¢ 0k0j) (Y tustvs)
k=1 s=1
n n
=q" 7 P 0 Oiturtor + L= O a7 )q 65650 + L
k=1 k=1

which proves the lemma in Type Al
For Type AIl, we have —qx,, = Ty, for u < v. Also, since x,, = 0 whenever u = v,

)

we may assume that d,, = 0 and so ¢~ °»» = 1 in the formula for the bilinear form. Note

that for ¢+ < j and v < u, we have 0; 21x-10; 2ktustor = djudivdor,s02k—1,» + L. For i < j
and v < u, we have d;;x,, equals

n
—q i = — <Z q (D 010501 — q_lai,2k8j,2k1)>

n
X ( (tu,25—1t1),2$ - qtu,QStq),25—1)>
s

n
=- Z(q_4k+1(8i,2kflaj,2k — ¢ 0i 210,26 —1) (tu2k—1tw 2k — qlu 2kt 2k—1)

= (—¢—q¢ g 16,60 + L
k=1

This proves the lemma in Type AIl. O

For each a, b, e, f, write Wf”;jff for the relation associated to a,b, e, f so that

Wl =dea @z — 78 5 (dea @ T 41)

a
for all a, b, e, f. By Proposition 7.5, the vector space spanned by the W(i’g”’;f fora,b, e, f €
{1,...,rank(g)} is a left Uy(g)-submodule of 37, ., , C(q)dij @z +3, ; 1., C(Q)zm @ dij
with a trivial By-module structure. Write y for the bilinear map from Zm,k’l C(g)dij @z
to C(q) defined by the bilinear form of Proposition 8.8.
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Proposition 8.9. For each v, o, the vector space spanned by

{W2afy = mldea @ wgo)| asbe, f € {1,... rank(g)}} (68)

is a left Uy(g) and trivial right Be-submodule of 3=, ;1 1 C(q)dij @z + 32, 1., C(@) T ®
dij + C(q).

Proof. For the left U,(g) action, the proof is the same as the proof for Proposition 8.2
using x;; instead of ¢;; and d;; instead of 0;;. The assertion about the right action follows
the discussion preceding the proposition. The trivial right action of By also follows using
elements b € By instead of elements u € U,(g) and the arguments in Proposition 8.2. O

8.5. PBW deformations for homogeneous spaces

In this section, we lift the graded algebras AZ’U to the non-graded setting using the
methods of Section 8.2. It should be noted that for diagonal type, this follows directly
from the isomorphism of Corollary 7.9 and the results in Section 8.2 up to consideration
of the right By action. Nevertheless, we include this case in the results below.

Write Py as a quotient T'(Y)/(I) and Py as a quotient T'(Z)/(J) where Y and J are
vector spaces and I and J are subvector spaces of T'(Y') and T'(Z) respectively spanned by
the defining relations for these algebras. Moreover, we only need to consider the quadratic
defining relations for %y and %y, and so I C Y ®Y,J C Z ® Z. This is because we
can take the vector spaces Y and Z to be isomorphic (via the natural quotient map) to
Yie(t,.myjes; C@ij and 3oy oy e C(q)di; respectively where S; = {i,...,n}
in Type AL, S; ={i+1,...,n} in Type AIl, and S; = {n +1,...,2n} in the diagonal
case. Hence both &y and %y are homogeneous quadratic algebras since Y and Z are
homogeneous quadratic ideals. Moreover, by Lemma 5.9, &y admits a PBW basis and
the same holds for %y via the anti-isomorphism relating the two algebras. Thus, by [32]
Theorem 3.1, both &y and %y are Koszul algebras.

As explained in the previous paragraph, the map from T'(Y) to &y is a vector space
isomorphism when restricted to the vector subspace Y of T'(Y'). Similarly, the map from
T(Z) to Dy restricts to an isomorphism of Z to its image inside of Zy. It follows that
the bilinear form of Proposition 8.8 can be lifted to bilinear forms on Y x Z. Write p for
the corresponding linear map from Y ® Z to C(q). Let E,, be the algebra defined as in
(61).

Theorem 8.10. For both v = 0 and v = 1, the algebra E, is a PBW deformation of
E = .Afw =A®; Buwheret =71% , A= Py and B = Dy. Moreover, E,, inherits a

v,V

(left) Uy(g)-module structure and a (right) trivial Bg-module structure from A and B.

Proof. The diagonal type follows from Corollary 7.7, Theorem 8.10 and Proposition 8.9.
So the focus here are on Types Al and AIl. We prove the theorem for v =0. The v =1
case is similar.
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By Lemma 5.4 and the discussion following its proof, Z  Cx;; is a simple left Uy(g)-
module generated by the lowest weight vector x,,, in type AI and g1 2y, in Type AIL
Furthermore, >, . Cd;; is a simple left Uy(g)-module with highest weight generating
vector d,,, in Type AT and dsp,—1 25, in Type AIL

Arguing as in the proof of Theorem 8.10, it is sufficient to show that (u® Id+ (Id ®
) (T ®Id)) vanishes on z®w for allv € T and (u®Id+ (Id®@ p)(Id® 7)) on w®y for all
w € J where z = dpy, and y = 2y, in Type Al and z = doy—1,2n, ¥ = T2n—1,2n in Type
ATI. We prove the first set of conditions using the assumptions on z and v. The proofs
for elements y and w are analogous.

By Theorem 7.6, we have

T(dnn ® fef) _ Z (th )wr(th )pq (th )wy(th)mlxpw ® dry (69)

TW,P,q,T,Y,m,l

Using the explicit formulas for the entries of R (see Section 4.2), we see that (R'2)? =

rét # 0 if and only if b = n and a = ¢. Moreover (R"2)%" =1 if n # a and (R'2)" = ¢
for n = a. If follows that in (69),l=n,e=m,y=n, f=z,¢q=n,p=e,r=n,w=f
and so

T(dnn ® xef) (th)fn(th)en(Rh)fn(Rtg)enxef ® dpn 25nf+25n€$ ef ® dpm
Similarly in Type AII, we have
T(d2n—1,2n ® xef) _ q4763,2n7176f,2n75f,27171x6f ® d2n—1,2n; (70)

for all e, f satisfying e < f.

The space [ is spanned by families of relations which can be deduced from Lemma 5.7.
For Type AI, using the fact that pu(dn, ® x;;) = 0 unless ¢ = n = j, we only need to
show that (u® Id+ (Id® p)(T ® Id)) vanishes on d,,, ® v where v is one of the following
relations in I:

o Tpp @ Xgn — q72$dn & Tpn for d < n.
o Tppn ®Tdp — Tak @ Tnp — qil(q2 — q’z)xdn ® Tpn for d < k < n.

Note that both p ® Id and (Id ® p)(T ® Id) vanish on dypp, ® gn @ Tk, for d <k <n
and hence we can ignore this term. By Proposition 8.8 and (69), we have

26](-77

(1t ® Id)(dpn @ (Tpn @ Tag — ¢ " Tap @ Tpn)) = (0 @ Id)(dnp @ Tpn @ Tak) = ¢ Tak

and

(Id ® p) (1 ® I1d))(dnn ® (Tnn @ Tae — q Py ® Tnn))
=(Id® 1) (¢ Tnn @ dpn @ Tak — Tak @ dnn @ Tnn)
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= —(Id (9 ,U/)(fl?dk & dnn ® xnn) = _q_lxdk

for all d and k satisfying d < k <mnand d < n. Thus (u® Id+ (Id® p)(T ® Id)) vanishes
on the desired elements in d,, ® I and thus on the entire set Z ® I in Type Al.

Now consider Type AIl. We need to show that (¢ ® Id+ (Id ® p)(7 ® Id) vanishes on
don—1,2n, ® v Where v is one of the following relations in I:

* Top—1,2n ® Tgon — q_ll‘dgn Q Top—1,2n for d < 2n — 1.

* Top-1,2n ®Xd2n—1 — q_ll‘dygnfl R Top—1,2n for d < 2n — 1.

o Ton—1,2n ® Tk — Tk @ Tan—120 — (¢ — ¢ ) (qZd2n @ Th2n—1 — Td2n—1 @ Tk 2,) for
d<k<2n-1.

Note that both (¢ ® Id) and (Id ® p)(T @ Id)) vanish on doy—1.2, ® (¢Ta,2n @ Tk 2n—1 —
ZTdon—1 @ Tk,2n) for d < k < 2n — 1. Hence it is sufficient to show that (¢ ® Id+ (Id ®
p) (7 ® Id)) vanishes on dap—1,2n ® (T2n—1,2n ® Tar, — g 21720200 @ Toy_1.9y,). We
have

(1t ® Id)(d2n—1.2n @ (Tan—1.2n @ Tar — ¢ 520170020000 @ o 1 0,))
= (p® Id)(don—1,2n ® Tan—1,2n @ Tax) = Tak

For the other term, using (70) we see that

(Id ® p) (1 @ Id)(dan—1.2n ® (Tan—1.90 @ Tag — ¢ &2 700200 0 @ Z9, 1 9,))
— —(Id ® M)(T Q Id)(q—ék,zﬂ—l—ék,z'nxdk ® m2n71,2n)) = —Tgk

for d < k and d < 2n — 1 as desired.

The arguments with the roles of x and d switched are similar as well as those for v =1
instead of v = 0. The final assertion follows from writing the twisted tensor product as
a quotient and applying Proposition 8.9. O

Note that Theorem 8.10 gives us two quantum Weyl algebras in the nongraded case
for Types Al and AII. The same holds for the diagonal family. Moreover, one checks as in
the discussion following Theorem 8.5 that the same construction does not extend to the
other two cases. We write W§, for the deformation of A4, and WY, for the deformation of
Af;. The graded equality relating the dup, and x.s as given in (54) becomes the following
in the nongraded case:

daver = Y (SE)Er(S2)P, (S (SE) B pwdry + 41 SacObs

TW,D,q,T,Y,m,l

for all a,b,e, f € {1,...,rank(g)} where Sy = Ry and S; = (Rg)gll. The next result,
which is a nongraded version of Corollary 7.9 for W, gives the general shape of what
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these expanded relations look like. A similar result holds for WY¢, with the opposite
inequalities.

Corollary 8.11. The following inclusions hold for the quantum Weyl algebra Wgo

dapes — qaaf+5ae+6bf+6bﬁxefdab _ q5ef5a65bf e Z C(q)Ter prdaryy
(e’,f",a’,b")> (e, f,a,b)

for all a,b,e, f € {1,... ,rank(g)} where

e a<bande< fin Type AI
e a<bande< f in Type AIl
e a<n<bande<n<f in diagonal type

and (¢/, f',a', V') > (e, f,a,b) if and only if €’ > e, f' > f,a’ > a,b’ > b and at least one
of these inequalities is strict.

Remark 8.12. Recall that in the diagonal case, the quantum Weyl algebra Wgo is iso-
morphic as an algebra to Wyy which in turn is the same as the quantum Weyl algebra
P Py(Maty) arising in the theory of quantum bounded symmetric domains ([3], [27],
[28]). It is natural to ask whether a similar isomorphism holds between the quantum
Weyl algebras of this paper for Types Al and AII and the corresponding ones arising
from the quantum bounded symmetric domain theory. For example, in Section 2 of [4],
generators and relations are given for Pol(Mat5”™),. One of the first issues that arises
in viewing this algebra as a quantum analog of the Weyl algebra on symmetric 2 x 2
matrices, is that the scalars that show up in the relations are different, and this difference
is not just by a power of q. Hence it is not clear how to normalize the generators of this
algebra as was done in [3] for Pol(Maty), in order to view Pol(Mats?™), as a quantum
analog of the Weyl algebra.

There are also problems on the graded level. Some of the relations match those of
WE, for n = 2 while others do not. In particular, it is straightforward to check that
the map x;; to z;; for ¢ > j defines an algebra isomorphism of &% onto the subalgebra
of Pol(Mat5”™), generated by the z;;. Since z;; + 2j; is an antiautomorphism, the
analogous assertion holds for %y. However, these isomorphisms extend to only some of
the relations involving the z;; and z;. For instance, a direct computation yields

o191 = ¢*wo1dar + ¢*(q — ¢ " )waadan + 1.
However, from [4], we see that

2201 = P 2125 +q(q — g7 )22, + (11— ¢°).
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Note that the coefficient of x9ada2 does not match z2023,. It is possible that being more
clever about the maps from & and % into Pol(Mat3’™), might yield an isomorphism
with Wgo on the graded level, but this is certainly not obvious.

Remark 8.13. Note that the defining relations for both &% and %y as given in Propo-
sitions 5.10 and 5.11 are closely related to the reflection equations. This makes these
two algebras into quotients of what are called reflection equation algebras. The relations
coming from the twisting map also resemble reflection equations (see Lemma 7.3 and
the discussion afterwards.)

There are other quantum Weyl algebras constructed using reflection equation type
relations in the literature and it is natural to ask whether there are any connections. For
instance, in [7] (see Definition 3.5) a quantum Weyl algebra for GLj is presented that
is built using two reflection equation algebras. However, the differential and polynomial
subalgebras in [7] are isomorphic and hence, the Weyl algebras in [7] differ from the ones
presented here. There are also interesting Weyl-like algebras studied in [9] also made up
of two reflection equation algebras. Once again, a comparison of the matrix relations of
[9] to the ones here reveal significant differences, so it seems unlikely that the algebras
in [7] and [9] are closely related to the Weyl algebras of this paper.
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Appendix A. Commonly used notation

We list here commonly used symbols and notation along with the first section (post
the introduction) in which each item appears.

Section 2.1: A €, S

Section 2.2: T, Maty, t1,to

Section 2.4: ¢;, (-, ), Ay

Section 3.1: Uy(gly), KZ', Ej, Fj, K;, Kg, (ad E;), (ad F), (ad Kc)), 1, Un(gly),
H.,, L(\)

Section 3.2: p, p(a)!, V, W, V* W* v;, w;, v}, w}, a*
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Section 3.3: R, Rgll, exp Eg,, Fg,, [a,blq, [a,b]q-1, Ei i1, Fig1, [r]g!

Section 3.4: R, rzkjl

Section 4.1: R:, A(R;), M, T(M), m;;

Section 4.2: R,, O,(Maty), ti;, T1, T, ¢

Section 4.3: O,(Maty)°?, 0,5, P, P, P2

Section 5.1: 0, B;, By(b), b;, rank(g)

Section 5.2: @, Rg, J(n)(a), Jl,JQ, J( ) Jk ‘]rs’ .IZU( ), .@, dij(C), Jr,s; Tij, dij, S
Section 5.3: @y, %y, X, X1, Xo, X,

Section 6.1: m¢, ma, mp, T

Section 6.2: u(-,-), v(-,-), Rc ¢, ¥(-, ")

Section 6.3: Ry, R1, uy(-,-), Vo (", "), To.w, Ave, G

Section 7.1: Sy, S1, G, G1,G>

Section 7.2: O, O, t;, 0}, Ta,p,0,01 AaBv,00 Tapver Aupwer Tigs dijy Py Dy
Section 7.3: 75, Afw

Section 8.1: W}7, f

Section 8.2: E,
Section 8.3: Wyo, Wh1

Section 8.4: L, Wg’:’]ﬁfb

Section 8.5: Wi, WY,
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