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1. Introduction

Let V denote a complex vector space. Write P(V) for the ring of polynomial functions 

on V and D(V) for the algebra of constant coefficient differential operators. Together, 

P(V) and D(V) generate the algebra of polynomial-coefficient differential operators on 
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V, denoted by PD(V). Note that PD(V) is just the Weyl algebra with polynomial 

part equal to P(V). Now suppose that V is a k-module where k is a complex reductive 

Lie algebra. The study of invariants inside PD(V) with respect to the action of k yields 

beautiful results at the intersection of representation theory, invariant theory and special 

functions.

In [3], Bershtein studies this setup in the quantum case where V = MatN , the vector 

space of N × N matrices, and k is the Lie subalgebra of sl2N generated by two copies 

of slN and the Cartan element hN connecting the two. The quantum Weyl algebra 

PDq(MatN ) in [3] is a normalized version of the algebra Pol(MatN )q introduced and 

studied by Shklyarov, Sinel’schchikov, and Vaksman ([27], [28]) as part of the theory 

of quantum bounded symmetric domains. In this context, Pol(MatN )q is a ∗-algebra. 

Moreover, the Uq(k)-module action for Pol(MatN )q is inherited from its structure as a 

Uq(suN,N )-module. Here, Uq(suN,N ) is the Hopf ∗-algebra with underlying Hopf algebra 

equal to Uq(sl2N ).

In this paper, we construct a new family of quantum Weyl algebras associated to 

symmetric pairs (g, k) of Type AI, Type AII, and the Type A diagonal case. The poly-

nomial part is a quantum version of P(V), where V is an affine space which contains 

the standard realization of the homogeneous space G/K as an orbit. Here G, K are the 

Lie groups corresponding to g, k. This vector space V consists of symmetric matrices in 

Type AI, skew symmetric matrices in Type AII, and all matrices in the Type A diagonal 

case. The construction takes advantage of the theory of quantum symmetric pairs as 

developed by Noumi in terms of reflection equations ([20]) and by the first author in 

terms of generators and relations ([18], [19]). The relations for the resulting quantum 

Weyl algebras resemble those of PDq(MatN ).

The motivation for looking at these three types of symmetric pairs is their connection 

to Jordan algebras that leads to a rich invariant theory in the classical setting. In a follow-

up paper ([13]), we study the quantum Capelli operators, which are invariants inside the 

quantum Weyl algebras with respect to a quantum analog of U(k), and determine their 

eigenvalues. These operators satisfy vanishing and Weyl group invariance properties as in 

[23] and [16]. In particular, the quantum Weyl algebras presented here provide a natural 

setting for quantum versions of results due to the second author (see for example [22], [10]

and [11]). Similar results on Capelli operators have been obtained in the Lie superalgebra 

setting (see [1], [24], [25], and [26]).

In order to construct these quantum Weyl algebras, we first provide a new method 

for creating the algebra PDq(MatN ) as a Uq(glN )-bimodule instead of the Uq(suN,N )-

module structure of [3] and [28]. Using this version of PDq(MatN ), it is straightfor-

ward to produce a quantum Weyl algebra for non-square matrices Matn×m that is a 

Uq(gln) ⊗ Uq(glm)-module algebra. The resulting Uq(gln) ⊗ Uq(glm)-module algebra, 

PDq(Matn×m), is studied in [12] where a quantum analog of the double commutant 

property and the first fundamental theorem of invariant theory are proved.

Our approach for defining PDq(MatN ) has some of the same ingredients as in [28]

and [29]. Indeed, R-matrices, the algebra of quantized functions Oq(MatN ) on N × N
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matrices, and an invariant bilinear form play a role in these references as well as in this 

paper. However, we take here a more intensive algebraic approach based on the theory of 

twisted tensor products and their PBW deformations (see [6], [30], and [31]). One of the 

nice aspects of our approach is that the Uq(glN )-bimodule structure for PDq(MatN ) is 

inherited from the bimodule structures of Oq(MatN ) and Oq(MatN )op in a natural way 

via the twisted tensor product formulation.

Our methods yield four twisted tensor products of Oq(MatN ) and Oq(MatN )op. The 

definition of the twisting map is based on the R-matrix defined by the standard vector 

representation for Uq(glN ) and resembles – though is not the same as – a quantum 

double (see Section 6.4). These four twisted tensor products can each be viewed as 

graded algebras since all defining relations are homogeneous. Using a Uq(glN ) bi-invariant 

bilinear form and a refined version of criteria due to Walton and Witherspoon (see [30], 

and Section 8.2), we show that two of these twisted tensor products can be deformed 

into quantum analogs of the Weyl algebra that respect the Uq(glN )-bimodule structure. 

Moreover one of the deformations is isomorphic to PDq(MatN ) as an algebra.

Denote the generators for Oq(MatN ) by tij , 1 ≤ i, j ≤ N and the generators for 

Oq(MatN )op by ∂ij , 1 ≤ i, j ≤ N . Let R0 denote the R-matrix defined by the standard 

vector representation for Uq(glN ) (see (10)) and set R1 = (R0)−1
21 . These results can be 

summed up as follows.

Theorem A. There is a twisted tensor product Aυ,σ = Oq(MatN ) ⊗τυ,σ
Oq(MatN )op for 

each υ, σ ∈ {0, 1}, with the following relations derived from the twisting map τυ,σ:

∂eatfb =
∑

j,k,d,l

(Rt2

σ )dl
fe(Rt2

υ )jk
batdj∂lk

for all e, a, f, b, where t2 denotes the transpose in the second component. Each Aυ,σ

inherits a Uq(glN )-bimodule structure from Oq(MatN ) and Oq(MatN )op. Moreover, when 

υ = σ, Aυ,υ admits a PBW deformation Wυ,υ that preserves the bimodule structure and 

W00
∼= PDq(MatN ) as algebras.

Using Theorem A and the methods developed for its proof, we obtain analogous results 

for the three sets of symmetric pairs under consideration. In particular, let g = gln in 

Type AI, gl2n in Type AII, and gln ⊕ gln in the Type A diagonal case. Write θ for the 

involution defining the quantum symmetric pair for each of these three families and so 

k = gθ (see Section 5.1). Let Bθ be the corresponding coideal subalgebra of Uq(g) which 

is a quantum analog of U(k) as defined in [19] (see also [17]). Let Pθ be the algebra of 

quantized functions on the affine space V associated to the homogeneous space defined by 

g, k. This algebra Pθ is a large subalgebra of the right Bθ invariants inside of Oq(Matn)

in Type AI, Oq(Mat2n) in Type AII, and Oq(Matn ⊕Matn) in the Type A diagonal case. 

Similarly, the quantum algebra of constant coefficient differential operators Dθ consists 

of almost all of the right Bθ invariants inside the opposite algebra of these quantized 

function algebras.
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Write xij for the generators of Pθ and dij denote the generators of Dθ. We construct 

four twisted tensor products of Pθ and Dθ by embedding slightly bigger versions of 

these algebras inside large graded algebras formed using combinations of the Aυ,σ, υ, σ ∈

{0, 1}. In analogy to the MatN setting, we identify a left Uq(g) and right Bθ invariant 

bilinear form and again use the fine-tuned version of the criteria of ([30]) to create 

quantum analogs of Weyl algebras. This yields the following result similar to Theorem 

A in the symmetric pair setting.

Theorem B. For each υ, σ ∈ {0, 1}, there is a twisted tensor product Aθ
υ,σ = Pθ ⊗τθ

υ,σ
Dθ

with the following relations derived from the twisting map τθ
υ,σ:

dabxef =
∑

r,w,p,q,z,y,m,l

(Rt2

σ )wr
zq (Rt2

σ )pq
ma(Rt2

υ )zy
fl (Rt2

υ )ml
eb xpwdry

for all e, a, f, b. Each Aθ
υ,σ inherits a left Uq(g) and trivial right Bθ module structure 

from Pθ and Dθ. Moreover, when υ = σ, Aθ
υ,υ admits a PBW deformation Wθ

υ,υ that 

preserves the module structures and is a quantum analog of the Weyl algebra associated 

to the homogeneous space defined by (g, k).

Recall that the relations for Oq(MatN ) can be expressed in a compact matrix format 

using the Faddeev-Reshetikhin-Takhtajan construction of quantized function algebras. 

We express the relations for the algebras of Theorem A using similar matrix equations 

(see Sections 4.2 and 6.3). For the three families of symmetric pairs, the relations for Pθ

can also be expressed in matrix format. In this setting, the relations closely resemble the 

reflection equations and Pθ is a quotient of a reflection equation algebra (see Proposi-

tion 5.10). For Types AI and AII, this result traces back to [20]. We show the generators 

of Pθ in the diagonal case also satisfy reflection equation type relations. Passing to the 

quantum Weyl algebras, we see that the relations, including the ones in Theorem B, can 

all be expressed in matrix format in such a way that they resemble reflection equations.

In the diagonal case, it turns out that there also are isomorphisms Pθ
∼= Oq(Matn)

and Wθ
00

∼= PDq(Matn) as algebras. Moreover, this becomes a Uq(gln)-bimodule isomor-

phism by converting the right action of Uq(gln) on PDq(Matn) to a left action on Wθ
00. 

Similar isomorphisms in the diagonal case hold for the other graded and non-graded 

algebras of Theorems A and B (see Corollary 7.7).

Note that the three families of symmetric pairs in this paper are each closely connected 

with a Hermitian symmetric pair using the correspondence of [10], Section 1. On the other 

hand, Pol(MatN )q is part of a larger family of quantum algebras associated to Hermitian 

symmetric pairs (see [28]). Explicit generators and relations for Pol(Matsym
2 )q where 

Matsym
2 is the space of 2 × 2 symmetric matrices can be found in [4]. A straightforward 

analysis shows that Pol(Matsym
2 )q does not agree with the corresponding quantum Weyl 

algebra studied here (see Remark 8.12). One of the problems is that the constant terms 

showing up in Pol(Matsym
2 )q are not all equal. Hence, it is not even clear how to convert 
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Pol(Matsym
2 )q into a quantum Weyl algebra by normalizing the generators as is done for 

Pol(MatN )q in [3].

Many of the results of this paper rely on general properties of R-matrices not specific 

to Type A. Thus it is likely that these methods yield quantum Weyl algebras for other 

symmetric pairs, especially the classical ones that have definitions via reflection equa-

tions. It would be expected that such Weyl algebras would be deformations of twisted 

tensor products of two algebras Pθ and Dθ just as for the three types studied here. 

Moreover, these two algebras, Pθ and Dθ, are likely to be quotients of reflection equa-

tion algebras. There are other quantum Weyl algebras in the literature built from two 

algebras, one corresponding to the polynomials and the other to the differentials, with 

reflection equation type relations. At the end of the paper, we discuss two such instances; 

neither look like they are related to the Weyl algebras presented here (see Remark 8.13).

This paper is organized as follows. Section 2 introduces basic notation concerning 

Hopf algebras, vector spaces and root systems in Type A. We turn our attention to 

the quantized enveloping algebra of glN in Section 3. After reviewing the definition of 

Uq(glN ) and its associated vector representation ρ, we describe properties of the universal 

R-matrix R and determine the image of R under ρ and related maps. These images and 

their relation to R are crucial in our construction of quantum Weyl algebras.

Section 4 is devoted to the quantized function algebra on matrices using the standard 

FRT construction. Our presentation here takes a module perspective as compared to the 

usual coalgebra point of view. This way, we can track the Uq(glN )-bimodule actions from 

underlying vector space to Oq(MatN ) as well as to its opposite algebra Oq(MatN )op. The 

three families of symmetric pairs are introduced in Section 5 along with a specification of 

the involution θ for each type and the quantum analog Bθ of U(k) in terms of generators. 

The quantum function algebra Pθ and differential algebra Dθ are described and analyzed 

both from an algebraic and representation theoretic point of view. It is here that we see 

for all three types, Pθ and Dθ are just quotients of reflection equation algebras.

In Section 6, we define twisted tensor products based on dual pairings and use them 

to form four graded versions Aυ,σ of quantum Weyl algebras. The twisted tensor product 

formulation takes advantage of the bialgebra structure of Oq(MatN ) and its opposite. 

However, the resulting twisted tensor products do not admit an obvious bialgebra struc-

ture (see Section 6.4). Although only two of the twisted tensor products Aυ,σ can be 

extended to non-graded quantum Weyl algebras, all four play a role in constructing 

quantum Weyl algebras for the three families of quantum symmetric pairs under consid-

eration.

Section 7 creates four twisted tensor products that glue together Pθ and Dθ. Note that 

the algebra generated by Pθ and Dθ inside of Aυ,σ is not isomorphic to a twisted tensor 

product and in particular contains additional terms such as sums of terms of the form 

tij∂kl. (This happens in the classical case as well.) The desired twisted tensor products 

are formed by embedding (possibly bigger versions) of Pθ and Dθ inside algebras created 

using combinations of twisting maps from Section 6.
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The final section, Section 8, specifies bilinear forms relating the differential and poly-

nomial parts for both the space of matrices MatN and the homogeneous spaces arising 

from the three families of symmetric pairs. These bilinear forms are Uq(glN ) bi-invariant 

in the first setting and left Uq(g) invariant in the second setting. The key method of 

this section is a refined version of a criteria introduced by Walton and Witherspoon in 

[30] for producing PBW deformations. This criterion allows us to check whether or not 

the deformations produced by these bilinear forms yield quantum analogs W and Wθ

of the Weyl algebra satisfying the crucial property that multiplication defines a vector 

space isomorphism from Oq(MatN ) ⊗ Oq(MatN ) (resp. Pθ ⊗ Dθ) to W (resp. Wθ). As 

mentioned above and explained further in this final section, this happens for precisely 

two of the graded quantum Weyl algebras both in the matrix and the homogeneous space 

settings.

2. Background and notation

2.1. Hopf algebras and bialgebras

Many of the algebras we consider in this paper are either bialgebras or Hopf algebras. 

So they come equipped with a coproduct Δ and a counit ε; Hopf algebras also have 

an antipode map S. We use Sweedler notation writing Δ(a) =
∑

a(1) ⊗ a(2) for the 

coproduct of an element a.

Let H be a Hopf algebra. A bialgebra A is a left H-module algebra if

h · ac =
∑

(h(1) · a)(h(2) · c)

for all h ∈ H and a, c ∈ A. The analogous definition works for right H-module algebras. 

Given left H-modules M and M ′, a scalar-valued bilinear form 〈·, ·〉 on M × M ′ is called 

a (left) H-invariant bilinear form provided

∑

〈a(1) · m, a(2) · r〉 = ε(a)〈m, r〉

for all a ∈ H, m ∈ M and r ∈ M ′. Right H-invariant bilinear forms are defined in a 

similar fashion. If M and M ′ are H-bimodules then we say that the bilinear form is 

H-bi-invariant if it is H-invariant with respect to both the right and left actions.

2.2. Tensor product basics

Unless otherwise specified, tensor products are over the base field which is C(q) where 

q is an indeterminate. Given a tensor product of two vector spaces, let T denote the flip 

map which interchanges the tensor components (i.e. T (a ⊗ b) = b ⊗ a)).

Let N be a positive integer and write MatN for the set of N×N matrices over C. Every 

element in MatN ⊗ MatN can be expressed as a linear combination of tensors of matrix 
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units eij ⊗ ekl. Write t1 for the transpose in the first component and t2 for the transpose 

in the second component so that (eij ⊗ ekl)
t1 = eji ⊗ ekl and (eij ⊗ ekl)

t2 = eji ⊗ elk.

Consider C =
∑

C(1) ⊗ C(2) ∈ MatN ⊗ MatN . Write Cij for the operator acting 

on a tensor product of r vector spaces all of dimension N in such a way that the first 

component of C acts on the ith vector space and the second component of C acts on the 

jth vector space. In particular, Cij is the sum of r-long tensor products of matrices with 

C(1) in position i and C(2) in position j and the identity in all other positions. Note that 

C = C12 and T (C) = C21.

2.3. Vector space notation

Let V be a vector space with a distinguished basis v1, . . . , vN . Define the action of 

the matrix unit eij on V by eijvk = δjkvi for each k = 1, . . . , N . Consider the element 

C =
∑

i,j,k,l cij
kleik ⊗ ejl in MatN ⊗ MatN and note that

C · (vk ⊗ vl) =
∑

s,t

cst
klesk ⊗ etl(vk ⊗ vl) =

∑

s,t

cst
klvs ⊗ vt

The action of the linear transformation on V ⊗ V defined by C can be expressed in 

compact form as

V ⊗ V → C · (V ⊗ V ). (1)

We have analogous notions for matrices acting on the right. For instance, let W be 

another N -dimensional vector space with basis w1, . . . , wN and set wkeij = δikwj for all 

i, j, k. The map

W ⊗ W → (W ⊗ W ) · C (2)

sends (wa ⊗ wb) to (wa ⊗ wb) · C where

(wa ⊗ wb) · C =
∑

j,s

(wa ⊗ wb)mab
jseaj ⊗ ebs =

∑

j,s

(wj ⊗ ws)mab
js .

We often encounter maps similar to (1) and (2) with the extra involvement of a 

reordering of vector spaces. This reordering is expressed using subscripts to denote the 

position of a particular vector space. For example, V ⊗ V can be written as V(1) ⊗ V(2)

while T (V ⊗ V ) is written as V(2) ⊗ V(1). This subscript notation enables us to express 

maps arising from a combination of matrix actions and tensor component permutations 

in a compact form along the lines of (1) and (2). For example, the map

V(2) ⊗ W(2) ⊗ V(1) ⊗ W(1) → C13 · (V(1) ⊗ W(1) ⊗ V(2) ⊗ W(2)) · C24

sends vk ⊗ wl ⊗ vi ⊗ wj to 
∑

s,t,a,b mst
ik(vs ⊗ wa ⊗ vt ⊗ wb)mjl

ab for all k, l, i, j.
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2.4. Roots and weights

Let ε1, . . . , εN denote a fixed orthonormal basis for R
N with respect to the inner 

product (·, ·). The set of positive simple roots for the root system of Type AN−1 consists 

of αi = εi − εi+1 for i = 1, . . . , N − 1. The dominant integral weights for the root system 

of glN is the set ΛN consisting of those λ = λ1ε1 + · · · + λN εN where each λi ∈ Z and 

λ1 ≥ λ2 ≥ · · · ≥ λN .

3. Quantized enveloping algebra for glN

3.1. Basic definitions

Let q be an indeterminate. The Drinfeld-Jimbo quantized enveloping algebra Uq(glN )

is an algebra over C(q) generated by K±1
ε1

, . . . , K±1
εN

, E1, . . . , EN−1, F1, . . . , FN−1 subject 

to the algebra relations as stated in [20] (see also [15], Section 10). Given an integer linear 

combination β =
∑N

i=1 βjεj , write Kβ for the product Kβ1
ε1

· · · KβN
εN

. Set Ki = Kαi
=

Kεi
K−1

εi+1
for i = 1, . . . , N − 1. The subalgebra of Uq(glN ) generated by

K±1
1 , . . . , K±1

N−1, E1, . . . , EN−1, F1, . . . , FN−1

is the quantized enveloping algebra Uq(slN ).

Both Uq(glN ) and Uq(slN ) are Hopf algebras with coproduct Δ, counit ε, and antipode 

S defined on generators by

• Δ(Ei) = Ei ⊗ 1 + Ki ⊗ Ei, ε(Ei) = 0 and S(Ei) = −K−1
i Ei

• Δ(Fi) = Fi ⊗ K−1
i + 1 ⊗ Fi, ε(Fi) = 0 and S(Fi) = −FiKi

• Δ(K) = K ⊗ K, ε(K) = 1 and S(K) = K−1 for all K = Kβ , β ∈
∑

j Zεj .

Here, we follow the notation in [17] (and [20]) so that our definition of the symmetric 

pair coideal subalgebras is consistent with this and many of the other papers in the 

subject. However, we will also be quoting basic results on quantum groups from [15]. 

Although the algebra structure is the same for these references, the Hopf structure in 

[15] is the opposite one from [17] and thus in this paper. We will automatically adjust, 

interchanging tensor components when necessary, formulas taken from [15].

The adjoint action of Uq(glN ) on itself is defined by (ad g) · a =
∑

g(1)aS(g(2)) for all 

a, g ∈ Uq(glN ). For generators, the adjoint action takes the following form.

(ad Ei) · a = Eia − KiaK−1
i (ad Fi) · a = FiaKi − FiKi (adKεj

) · a = Kεj
aK−1

εj

for all i = 1, . . . , N − 1 and j = 1, . . . , N .

The Hopf algebra Uq(glN ) admits an algebra antiautomorphism that preserves the 

coalgebra structure defined by
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K	
εi

= Kεi
E	

j = q−1FjKj F 	
j = qK−1

j Ej (3)

for j = 1, . . . , N − 1 and i = 1, . . . , N . It should be noted that this algebra antiautomor-

phism is closely related to the one used to define the Hopf ∗ structure on Uq(glN ). The 

difference is that the map a �→ a	 is an algebra map over C(q) while a �→ a∗ is conjugate 

linear. The fact that these two maps agree on the real part of Uq(glN ) allows us to quote 

properties based on a �→ a∗ and use them instead in the context of the map a �→ a	.

The map 
 ◦ S is the algebra isomorphism that satisfies

(S(Ej))	 = −q−1Fj (S(Fj))	 = −qEj (S(K±1
εi

))	 = K∓1
εi

and 
 ◦ S−1 is the algebra isomorphism such that

(S−1(Ej))	 = −qFj (S−1(Fj))	 = −q−1Ej (S−1(K±1
εi

))	 = K∓1
εi

(4)

for j = 1, . . . , N − 1 and i = 1, . . . , N . Since 
 preserves the coalgebra structure while S

sends the coalgebra structure to its opposite, 
 ◦ S sends Uq(glN ) to Uq(glN )cop. By [15], 

Section 1.2.7, we have 
 ◦ S ◦ 
 = S−1.

We will also find it helpful to use the h-adic version of the Drinfeld-Jimbo algebra, 

Uh(glN ), associated to glN . Recall that Uh(glN ) is an algebra over C[[h]] generated by 

Ei, Fi, Hεj
, i = 1, . . . , N − 1, j = 1, . . . , N such that

[Hεi
, Hεj

] = 0, [Hεi
, Eεj

] = δijEi, [Hεi
, Fj ] = −δijFi,

and the remaining relations, as well as the Hopf algebra structure, agrees with that of 

Uq(glN ) with Kεi
replaced by ehHεi and q replaced by eh. The map 
 extends to Uh(glN )

with H	
εi

= Hεi
all i.

Just as in the classical case, the weights in ΛN parametrize the finite-dimensional 

simple Uq(glN )-modules. We write L(λ) for the simple module of highest weight λ. All 

modules in this paper are of type 1 (see for example [15], Section 6.2).

3.2. Vector representations

As in [20] (see also [15] Section 8.4.1), the vector representation ρ for Uq(glN ) is 

defined by

ρ(Kεi
) = qeii +

∑

j �=i

ejj , i = 1, 2, . . . , n

ρ(Ei) = ei,i+1, ρ(Fi) = ei+1,i, i = 1, 2, . . . , N − 1.

Let V be the vector space with basis {v1, . . . , vN } and set eikvj = δkjvi for all i, j, k. 

The space V becomes the (left) module for the vector representation ρ via the action 

defined by avj = ρ(a)vj for all j = 1, . . . , n and all a ∈ Uq(glN ). As a Uq(glN )-module, 
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V is isomorphic to the irreducible module L(ε1) with highest weight generating vector 

v1.

Let W be another N -dimensional vector space with basis {w1, . . . , wN } where wjeki =

δjkwi for all i, j, k. Give W a right Uq(glN )-module structure defined by wk ·a = wk(ρ(a))

for all k and a ∈ Uq(glN ). The Uq(glN )-module W is a right dual to the left Uq(glN )-

module V with pairing 〈wj , vk〉 = δjk such that

〈wj , avk〉 = 〈wj , ρ(a)vk〉 = 〈wjρ(a), vk〉

for all j, k and a ∈ Uq(glN ).

Note that we can move the right action of Uq(glN ) on W to a left action. Indeed, since 

ρ(a) is a matrix, we have wjρ(a) = ρ(a)
t
wj where here t is just the standard transpose 

on N × N matrices. A straightforward check using the definition of ρ and 
, we see that

ρ(a)
t

= ρ(a	)

for all a ∈ Uq(glN ). Thus acting on the right via the matrix representation ρ is the same 

as acting on the left using the matrix representation ρ ◦ 
.

We can also define a left dual for the Uq(glN )-module V and a right dual for the 

Uq(glN )-module W as follows. Let V ∗ be the vector space with basis {v∗
1 , . . . , v∗

N } and 

define a linear map from V to V ∗ that sends vi to v∗
i all i = 1, . . . , N . This allows us to 

define a (left) Uq(glN )-module action on V ∗ via

(a · v)∗ = (S(a))	 · v∗ (5)

for all v ∈ V and a ∈ Uq(glN ). Similarly, let W ∗ be the right Uq(glN )-module dual to 

the right module W with basis {w∗
1 , . . . , w∗

N } such that

(w · a)∗ = w∗ · (S−1(a))	 (6)

for all w ∈ W and a ∈ Uq(glN ). It follows that elements a of Uq(glN ) act on elements of 

V ∗ using the matrix ρ((S(a))	) = (ρ ◦ 
 ◦ S)(a). A similar analysis shows that elements 

a of Uq(glN ) act on elements of W ∗ on the right via the matrix (ρ((S−1(a))	)) = (ρ ◦ 
 ◦

S−1)(a).

We can extend ρ to Uh(glN ) in a way that is compatible with its definition on Uq(glN )

by insisting that the image of Ei and Fi is the same under ρ as defined above and 

ρ(Hεi
) = eii for i = 1, . . . , N . Thus V can also be viewed as a (left) Uh(glN )-module 

with Hεk
vi = δkivi for all i, k. Analogous assertions hold for W , V ∗, and W ∗.

Using the definition of ρ and the formulas for 
 ◦ S, we see that (ρ ◦ 
 ◦ S) defines the 

representation specified by

(ρ ◦ 
 ◦ S)(Kεk
) = q−1ekk +

∑

j �=k

ejj , (ρ ◦ 
 ◦ S)(Hεk
) = −ekk
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(ρ ◦ 
 ◦ S)(Ei) = −q−1ei+1,i, and (ρ ◦ 
 ◦ S)(Fi) = −qei,i+1

for k = 1, . . . , N and i = 1, . . . , N − 1. Similar formulas hold for (ρ ◦ 
 ◦ S−1).

3.3. The universal R-matrix

Recall that Uh(glN ) comes equipped with a universal R-matrix R. The matrix R is an 

invertible element in a completion of Uh(glN )⊗Uh(glN ) that satisfies the Quantum Yang-

Baxter Equation R12R13R23 = R23R13R12 along with compatibility relations with the 

coproduct (see [15], Chapter 8 for more details).

Let M and M ′ be left Uq(glN )-modules. As explained in [15], 8.1.2, the map T ·(TM ⊗

TM ′)(R) defines a left Uq(glN )-module isomorphism from M ⊗ M ′ to M ′ ⊗ M given by

m ⊗ m′ → T · ((TM ⊗ TM ′)(R)(m ⊗ m′)) =
∑

i

TM ′(yi)m
′ ⊗ TM (xi)m (7)

where R =
∑

i xi ⊗ yi and TM , TM ′ define the respective Uq(glN ) left representations. 

Similarly, if M and M ′ are right Uq(glN )-modules, then there is a right module isomor-

phism taking M ⊗ M ′ to M ′ ⊗ M given by

(m ⊗ m′) →T ·
(

(m ⊗ m′) · (T ′
M ⊗ T ′

M ′)(R−1)
)

(8)

where T ′
M , T ′

M ′ define the right representations on M and M ′ respectively. Since R−1
21

is also a universal R-matrix for Uq(glN ) ([15], Proposition 1), R can be replaced with 

R−1
21 in each of the above isomorphisms to get other isomorphisms of Uq(glN )-modules.

An explicit formula for the universal R-matrix for Uh(glN ) is (see [15] Section 8.3.2, 

Theorem 17 and Remarks 6 and 7 for more details),

R = exp

(

h
N

∑

i=1

Hεi
⊗ Hεi

)

∞
∑

r1,...,rm=0

m
∏

j=1

q
1
2

rj(rj+1) (1 − q−2)rj

[rj ]q!
F

rj

βj
⊗ E

rj

βj
(9)

Here, exp is the power series version of the exponential function, [r]q! is the q-factorial 

at r as defined in [15], Section 2.1.1, and Eβj
, Fβj

are the root vectors associated to the 

positive root βj defined using Lusztig’s braid group automorphisms.

One can give explicit formulas for the root vectors using q commutators as in [15], 

Section 7.3.1. In particular, define the q commutator by [a, b]q = ab − qba for all 

a, b ∈ Uq(glN ). The analogous definition holds for q replaced by q−1. Set Ei,i+1 =

Ei and Fi+1,i = Fi. Inductively define

Ei,j+1 = [Ei,j , Ej,j+1]q and Fj+1,i = [Fj+1,j , Fj,i]q−1 .

Then up to nonzero scalar multiples, Ei,j+1 is the root vector Eβij
and Fj+1,i is the root 

vector Fβij
where βij = αi + · · · + αj . Moreover these scalars are inverses to each other 

and so Fj+1,i ⊗ Ei,j+1 = Fβij
⊗ Eβij

.
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Lemma 3.1. For all i, j with 1 ≤ i < j ≤ N , we have ρ(Eij) = eij and ρ(Fji) = eji.

Proof. Recall that ρ(Ei,i+1) = ρ(Ei) = ei,i+1 and ρ(Fi+1,i) = ρ(Fi) = ei+1,i. Hence the 

first two equalities of the lemma hold for j = i + 1. Now assume they hold for j − 1 with 

j − i > 1. Then

ρ(Eij) = ρ([Ei,i+1, Ei+1,j ]q) = [ei,i+1, ei+1,j ]q = eij

since ei+1,jei,i+1 = 0 and the second equality follows by induction. A similar induction 

argument establishes the second equality. �

3.4. Images of the universal R-matrix

Define the matrix R by

R =
∑

1≤i≤N

qeii ⊗ eii +
∑

1≤i<j≤N

(eii ⊗ ejj + ejj ⊗ eii) + (q − q−1)
∑

1≤j<i≤N

eij ⊗ eji

(10)

This matrix can be written as

R =
∑

i,j,k,l

rij
kleik ⊗ ejl

where

• rii
ii = q, rij

ij = 1 for all i, j, with i �= j.

• rij
ji = (q − q−1) for all j < i.

• rts
ji = 0 for all other choices of s, t, i, j.

The next lemma relates the image of the universal R-matrix to R under maps involving 

ρ. The argument follows closely a similar computation for slN in [15], Section 8.4.2.

Lemma 3.2. The image of R as given in (9) under ρ ⊗ ρ is the matrix R (10) and the 

image of R under both (ρ ⊗ 
 ⊗ S) ⊗ (ρ ⊗ 
 ⊗ S) and (ρ ⊗ 
 ⊗ S−1) ⊗ (ρ ⊗ 
 ⊗ S−1) is R21.

Proof. Since ρ(Hεi
) = eii we have

(ρ ⊗ ρ)(
∑

i

Hεi
⊗ Hεi

) =
∑

i

eii ⊗ eii

and hence
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(ρ ⊗ ρ)(exp

(

h

n
∑

i=1

Hεi
⊗ Hεi

)

) = exp(h

N
∑

i=1

eii ⊗ eii)

= exp(heii ⊗ eii) +
∑

1≤j<i≤n

(eii ⊗ ejj + ejj ⊗ eii)

= qeii ⊗ eii +
∑

1≤j<i≤N

(eii ⊗ ejj + ejj ⊗ eii)

Using Lemma 3.1, we see that for i > j

(ρ ⊗ ρ)
(

expq((1 − q−2)(Fij ⊗ Eji))
)

= expq[(1 − q−2)(eij ⊗ eji)] = 1 + (q − q−1)(eij ⊗ eji) (11)

where expqx =
∑∞

r=0 qr(r+1)/2xr/[r]q!. Observe that terms of degree 2 or higher in the 

final term of (11) vanish because eijeij = ejieji = 0 for i �= j. Therefore

(ρ ⊗ ρ)(
∏

1≤j<i≤N

(

expq((1 − q−2)(Fij ⊗ Eji))
)

=
∏

1≤j<i≤N

(

1 + (q − q−1)(eij ⊗ eji)
)

= 1 +
∑

1≤j<i≤N

(q − q−1)(eij ⊗ eji)

because for j < i and k < l we cannot have both ejiekl and elkeij nonzero. Hence,

(ρ ⊗ ρ)(R)

= (qeii ⊗ eii +
∑

1≤j<i≤N

(eii ⊗ ejj + ejj ⊗ eii))
∏

1≤i<j≤N

(1 + (q − q−1)(eij ⊗ eji))

which equals R of (10) as claimed.

By [15], Proposition 2, (S ⊗ S)(R) = R. Clearly, we also have (S−1 ⊗ S−1)(R) = R. 

Hence

((ρ ⊗ 
 ⊗ S) ⊗ (ρ ⊗ 
 ⊗ S))(R) = ((ρ ⊗ 
) ⊗ (ρ ⊗ 
))(R)

= ((ρ ⊗ 
 ⊗ S−1) ⊗ (ρ ⊗ 
 ⊗ S−1))(R).

Thus, to complete the lemma, it is sufficient to show that ((ρ ⊗ 
) ⊗ (ρ ⊗ 
))(R) = R21. 

Recall that ρ ◦ 
(a) = ρ(a)
t
. Therefore

((ρ ⊗ 
) ⊗ (ρ ⊗ 
))(R) = ((ρ ⊗ ρ)(R))
t1t2 = Rt1t2

It follows from direct inspection of the formula for R in (10) that Rt1t2 = R21. �

The next lemma evaluates R with respect to other combinations of ρ, ρ ◦ 
 ◦ S and 

ρ ◦ 
 ◦ S−1.
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Lemma 3.3. Let R be the matrix defined in (10). We have

(i) ((ρ ◦ 
 ◦ S) ⊗ ρ)(R) = (R−1
21 )t2

(ii) ((ρ ◦ 
 ◦ S) ⊗ ρ)(R−1
21 ) = Rt2

(iii) (ρ ⊗ (ρ ◦ 
 ◦ S−1))(R) = (R−1
21 )t1

(iv) (ρ ⊗ (ρ ◦ 
 ◦ S−1))(R−1
21 ) = Rt1

Proof. By [15], Proposition 2, (S ⊗ Id)(R) = R−1 and (Id ⊗ S)(R−1) = R. It follows 

that

((ρ ◦ 
 ◦ S) ⊗ ρ)(R) = ((ρ ◦ 
) ⊗ ρ)(R−1)

The same assertion holds for R replaced by R−1
21 since the latter is also a universal 

R-matrix. Hence we prove (i) and (ii) by determining the image of R and R21 under 

(ρ ◦ 
) ⊗ ρ.

Using the fact that (ρ ◦ 
)(a) = ρ(a)
t

and Lemma 3.2, we see that

((ρ ◦ 
) ⊗ ρ)(R−1) =
(

(ρ ⊗ ρ)(R−1)
)t1

=
(

((ρ ⊗ ρ)(R))−1
)t1

= (R−1)t1 = (R−1
21 )t2 .

Similarly,

((ρ ◦ 
) ⊗ ρ)(R21) = ((ρ ⊗ ρ)(R21))
t1 = (R21)t1 = Rt2 .

This proves (i) and (ii).

Since (S ⊗ S)(R) = R ([15], Proposition 2), we have

((ρ ⊗ (ρ ◦ 
 ◦ S−1))(R))t1 = (ρt ⊗ (ρ ◦ 
 ◦ S−1))(R) = ((ρ ◦ 
) ⊗ (ρ ◦ 
 ◦ S−1))(R)

= ((ρ ◦ 
 ◦ S) ⊗ (ρ ◦ 
))(R) = ((ρ ◦ 
 ◦ S) ⊗ ρ)(R)t2 .

Therefore ((ρ ⊗ (ρ ◦ 
 ◦ S−1))(R)) = ((ρ ◦ 
 ◦ S) ⊗ ρ)(R)t1t2 . Using the same argument, 

this equality holds with R replaced with R−1
21 . Thus assertions (iii) and (iv) follow from 

applying t1t2 to (i) and (ii). �

4. Quantized functions on matrices

4.1. FRT construction

We review here the basics about the Faddeev-Reshetikhin-Takhtajan (FRT) construc-

tion of quantized functions on N × N matrices. A good reference for additional details 

is [15], Chapter 9.

Let ζ be an s-dimensional representation of Uq(glN ) and set Rζ = (ζ ⊗ ζ)(R). Let M

be the s2-dimensional vector space spanned by the mij, 1 ≤ i, j ≤ s. The FRT bialgebra 

A(Rζ) is the quotient of the tensor algebra T (M) by the ideal generated by
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∑

j,k

(Rζ)ld
jkmja ⊗ mkb −

∑

j,k

mdk ⊗ mlj(Rζ)jk
ab, (12)

for all i, j, a, b and coalgebra structure inherited from T (M) so that Δ(mij) =
∑

k mik ⊗

mkj and ε(mij) = δij for all i, j.

4.2. Algebra structure

When ζ = ρ, Rρ = (ρ ⊗ ρ)(R) = R and the FRT bialgebra A(Rρ) is the quantized 

function algebra Oq(MatN ) on N × N matrices. In this case, M can be identified with 

V ⊗ W and each mij with vi ⊗ wj . Moreover, we write tij for the image of mij in A(Rρ). 

Using the explicit formula for entries of R, relations (12) at ζ = ρ become

(i) tkitkj = qtkjtki, tiktjk = qtjktik (i < j)

(ii) tiltkj = tkjtil, tijtkl − tkltij = (q − q−1)tkjtil (i < k; j < l)

Set T = (tij), the matrix with ij entry equal to tij . Set T1 = T ⊗ Id and T2 = Id ⊗ T . 

As in [15], Section 9.1.1, these relations can be written in matrix form as

RT1T2 = T2T1R. (13)

It is straightforward to check that the map ι defined by

ι(tij) = tji (14)

for all i, j = 1, . . . , n defines an algebra automorphism of Oq(MatN ). It is well-known 

(see for example [21], Theorem 1.4) that Oq(MatN ) has a PBW type basis consisting of 

elements of the form

tm11

11 tm12

12 · · · tm1N

1N tm21

2,1 tm22

22 · · · tm2N

2N · · · tmN1

N1 · · · tmNN

NN . (15)

Examining the relations, we see that each tij can be replaced with tN−i,N−j in (15) and 

yield another set of monomials that form a basis for Oq(MatN ).

Applying T to both sides of (13) provides an equivalent set of equations in matrix 

form R21T2T1 = T1T2R21. Multiplying on the left and right of both sides by R−1
21 and 

then switching the sides gives us R−1
21 T1T2 = T2T1R−1

21 . In other words, the same FRT 

construction using the universal R-matrix R−1
21 instead of R, results in the same algebra 

Oq(MatN ). Applying the map ι to both sides yields yet another formulation of these 

relations RT t
1T t

2 = T t
2T t

1R.



666 G. Letzter et al. / Journal of Algebra 655 (2024) 651–721

4.3. Module realization

Recall that V is a left Uq(glN )-module and W is a right Uq(glN )-module. Using the 

coproduct for Uq(glN ), M becomes a Uq(glN )-bimodule and its tensor algebra T (M)

becomes a Uq(glN )-bimodule algebra.

Lemma 4.1. The algebra Oq(MatN ) is a Uq(glN )-bimodule algebra with left action defined 

by

Ek · ti+1,j = δiktij , Fk · tij = δikti+1,j , Kεr
· tij = qδir tij ,

and right action defined by

tij · Ek = δjkti,j+1, ti,j+1 · Fk = δjktij , tij · Kεr
= qδjr tij ,

for r, i, j = 1, . . . , N and k = 1, . . . , N − 1. Moreover, the right action is related to the 

left via tij · a = ι(a	 · tji) for all a ∈ Uq(glN ) and i, j ∈ {1, . . . , N}.

Proof. Taking ζ = ρ and noting that (Rt1t2)jk
ld = Rld

jk, we can rewrite (12) in this case 

as

∑

j,k

(Rt1t2)jk
ld (vj ⊗ wa) ⊗ (vk ⊗ wb) −

∑

j,k

(vd ⊗ wk) ⊗ (vl ⊗ wj)T (Rt1t2)ba
kj .

By Lemma 3.2, we have (ρ ⊗ ρ)(R21) = Rt1t2 . It follows that (ρ ⊗ ρ)(R12) = T (Rt1t2). 

Thus, the combined relations for all choices of a, b, d, l correspond to the map of vector 

spaces

R31 · (V(2) ⊗ W(2)) ⊗ (V(1) ⊗ W(1)) → (V(1) ⊗ W(1)) ⊗ (V(2) ⊗ W(2)) · R24. (16)

In particular, these relations are simply the difference of a typical element preceding the 

arrow in (16) with its image after the arrow. If we ignore the contributions from W , this 

becomes

R21 · (V(2) ⊗ V(1)) → V(1) ⊗ V(2) (17)

Recall that V is a left Uq(glN )-module defined by the representation ρ and that by 

Lemma 3.2 we have (ρ ⊗ ρ)(R) = R. Furthermore, by (7), the map

V(1) ⊗ V(2) −→ T · ((ρ ⊗ ρ)(R)(V(1) ⊗ V(2))) = R21 · (V(2) ⊗ V(1))

is an isomorphism of left Uq(glN )-modules. It follows that (17) and hence (16) is invariant 

under the left action of Uq(glN ) and hence Oq(MatN ) inherits the structure of a left 

Uq(glN )-module algebra from T (M).
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For the right action, we ignore the contributions from V in (16). Using (8) with R−1
21

instead of R in this mapping, we see that the map

W(2) ⊗ W(1) → T ·
(

(W(2) ⊗ W(1)) · (ρ ⊗ ρ)(R21)
)

is an isomorphism of right Uq(glN )-modules. It follows that (16) is invariant under the 

right action of Uq(glN ). Thus Oq(MatN ) inherits the right Uq(glN )-module algebra struc-

ture from T (M).

Explicit formulas for this bimodule action on the generators of Oq(MatN ) follow 

directly from the explicit formulas for the actions on V and W derived from the definition 

of ρ. The final assertion is easily checked using (3). �

Let Oq(MatN )op denote the bialgebra with the same coalgebra structure and opposite 

multiplication as Oq(MatN ). Write ∂ij , 1 ≤ i, j ≤ N for the generators of Oq(MatN )op

so that the map sending tij to ∂ij , which we denote by tij → t∗
ij = ∂ij , for all i, j is 

an algebra anti-isomorphism and coalgebra isomorphism. The bialgebra Oq(MatN )op is 

also an FRT bialgebra. In this case, M = V ∗ ⊗ W ∗, mij = v∗
i ⊗ w∗

j for each i, j, and 

∂ij is the image of mij when we pass from the tensor algebra of M to the FRT algebra 

A(Rρ◦	◦S). Set P equal to the matrix with ij entry equal to ∂ij and write P1 for P ⊗ Id

and P2 for Id ⊗ P . The relations for Oq(MatN )op can be written in matrix form as

R21P1P2 = P2P1R21. (18)

Just as for the tij , the map ι : Oq(MatN )op → Oq(MatN )op defined on generators by 

ι(∂ij) = ∂ji all i, j is an algebra isomorphism.

Lemma 4.2. The algebra Oq(MatN )op is a Uq(glN )-bimodule algebra with left action given 

by

Ek · ∂ij = −δikq−1∂i+1,j , Fk · ∂i+1,j = −δikq∂ij , Kεr
· ∂ij = q−δir ∂ij ,

and right action given by

∂i,j+1 · Ek = −δjkq∂ij , ∂i,j · Fk = −δjkq−1∂i,j+1, ∂ij · Kεr
= q−δjr ∂ij ,

for r, i, j = 1, . . . , N and k = 1, . . . , N − 1. Moreover, the right action is related to the 

left via ∂ij · a = ι(a	 · ∂ji) for all a ∈ Uq(glN ) and i, j ∈ {1, . . . , N}.

Proof. By Lemma 3.2, we have ((ρ ⊗
 ⊗S) ⊗(ρ ⊗
 ⊗S))(R) = R21. The proof is identical 

to the proof of Lemma 4.1 with R replaced by R21 and ρ replaced by ρ ◦ 
 ◦ S. �

It is straightforward to check that the Uq(glN )-bimodule structures of Oq(MatN ) and 

Oq(MatN )op are related by the following formulas (a · f)∗ = (S(a))	 · f∗ and (f · a)∗ =

f∗ · (S−1(a))	 for all f ∈ Oq(MatN ) and all a ∈ Uq(glN ).
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5. Quantum homogeneous spaces

5.1. Three families

In this section, we consider three families of symmetric pairs g, k where g is a complex 

Lie algebra, θ is an involution of g, and k = gθ. In each case, θ takes the form x �→

−JxtJ−1 for an appropriate matrix J . We give the generators for the fixed subalgebras 

U(k) in terms of standard Chevalley generators. Afterwards, we specify the generators 

for the right coideal subalgebras Bθ(b) of Uq(g) which are quantum analogs of U(k). Here, 

we follow the presentation in [17] with the obvious extension from the semisimple case 

to the reductive setting. Note that the b stands for nonzero parameters b = (b1, . . . , bm)

that correspond to Hopf algebra automorphisms of Uq(g). In particular, the quantum 

analogs given below are all related to each other via Hopf algebra automorphisms. In 

the presentation below, all Lie algebras are complex and we omit C from the notation.

Type AI: g = gln and θ is defined by θ(x) = −xt for all x ∈ gl(n) and J = In, 

the n × n identity matrix. In terms of Chevalley generators, θ(ei) = −fi, θ(fi) = −ei

and θ(hεj
) = −hεj

each i = 1, . . . , n − 1 and j = 1, . . . , n. Hence k is generated by 

ei −fi, i = 1, . . . , n −1. Passing to the quantum case, Bθ(b) is generated by Fi −biEiK
−1
i , 

for i = 1, . . . , n − 1.

Type AII: g = gl2n and θ is defined by θ(x) = −JxtJ−1 where

J =
n

∑

k=1

e2k−1,2k − e2k,2k−1.

In this case, we have

• θ(ei) = ei, θ(fi) = fi, θ(hi) = hi for i = 1, 3, . . . , 2n − 1

• θ(ei) = −[fi−1, [fi+1, fi]] for i even.

• θ(hε2i−1
) = −hε2i

for i = 1, . . . , n.

Hence k is generated by hi, ei, fi for i odd and fi − [fi−1, [fi, fi+1]] for i even. Passing to 

the quantum case, we have that Bθ(b) is generated by

• K±1
i , Ei, Fi for i odd

• Bi = Fi − bi((ad Ei−1Ei+1)Ei)K
−1
i = Fi − bi[Ei−1, [Ei+1, Ei]q]qK−1

i for i even.

Type A diagonal case: g = gln ⊕ gln viewed as the Lie subalgebra of gl2n consisting 

of block diagonal matrices

(

gln 0
0 gln

)

and θ is defined by
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θ

(

x 0
0 y

)

= −J

(

xt 0
0 yt

)

J−1 =

(

−yt 0
0 −xt

)

where

J =
n

∑

k=1

ek,n+k + en+k,k =

(

0 In

In 0

)

.

Using this notation, the set of Chevalley generators for gln ⊕gln is the union of two sets, 

the first consisting of the generators for the first copy of gln and the second consisting 

of the generators for the second copy of gln. We write this as ek, fk, hεj
for the first copy 

of gln and en+k, fn+k, hεn+j
for the second copy where k = 1, . . . , n − 1 and j = 1, . . . , n. 

Note that θ satisfies θ(fi) = −en+i, θ(fn+i) = −ei, θ(hεj
) = −hεn+j

for i = 1, . . . , n − 1

and j = 1, . . . , n. Hence, k is generated by fi − en+i, fn+i − ei, and εj − εn+j for 

i = 1, . . . , n − 1. Passing to the quantum case, the corresponding quantum symmetric 

pair coideal subalgebra Bθ(b) is generated by

Bi = Fi − biEn+iK
−1
i , Bn+i = Fn+i − biEiK

−1
n+i, and (K−1

εj
Kεn+j

)±1

for i = 1, . . . , n − 1 and j = 1, . . . , n.

In the remainder of the paper, we frequently use the rank of the Lie algebra g to 

specify various parameters. This rank, denoted rank(g), is just the dimension of the 

Cartan subalgebra of g. For the Type AI family, this rank is n. It is 2n for Type AII as 

well as for the diagonal family.

5.2. Invariant elements

To simplify notation, we write P = Oq(MatN ) in Type AI (with N = n) and Type 

AII (with N = 2n) and let P = Oq(Matn) ⊗ Oq(Matn) for diagonal type. We represent 

the generators of P using tij for all three families and write T = (tij), the matrix with i, j

entry equal to tij . This is the standard way for the first two families. For the diagonal 

type, tij , i, j = 1, . . . , n are generators of the first copy of Oq(Matn) and tn+i,n+j , 

i, j = 1, . . . , n are the generators of the second copy. Moreover ti,n+j = tn+i,j = 0 for all 

i, j = 1, . . . , n.

Using Lemma 4.1, we give P the structure of a Uq(g)-bimodule. Again, for Types AI 

and AII, this is standard. For the diagonal type, the Uq(g)-bimodule structure is set so 

that the first copy of Uq(gln) (i.e. the one generated by the Ei, Fi, K
±1
εj

, i = 1, . . . , n − 1, 

j = 1, . . . , n) acts on both the left and the right on the copy of Oq(MatN ) generated 

by the tij , 1 ≤ i, j ≤ n, just as in Lemma 4.1. The left and right action of the second 

copy of Uq(gln) (where here we take as generators En+i, Fn+i, K
±1
εn+j

, i = 1, . . . , n − 1, 

j = 1, . . . , n) on the copy of Oq(Matn) generated by the tn+i,n+j, 1 ≤ i, j ≤ n, is also the 

same, where here, each term with an i subscript is replaced with a term using i + n as 

subscript. We also insist that elements of the first copy of Uq(gln) act trivially on each 

element of the second copy of Oq(Matn) and vice versa.
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For Types AI and AII, set Rg equal to the matrix defined by (10) where N = n in 

Type AI and N = 2n in Type AII. The reflection equation associated to the families of 

Type AI and AII is the matrix equation defined as in [20] by

RgJ1Rt1

g
J2 = J2Rt1

g
J1Rg (19)

where J is a rank(g) × rank(g) matrix, I is the rank(g) × rank(g) identity matrix, J1 =

J ⊗ I and J2 = I ⊗ J . By [20], the following solutions to these reflection equations

J(n)(a) =
n

∑

k=1

akekk and J(n)(a) =
n

∑

k=1

ak(e2k−1,2k − qe2k,2k−1)

are used in the construction of quantum symmetric pairs, the first in Type AI and the 

second in Type AII. Here, n refers to the number of parameters, not the size of the 

matrix. In particular, for both solutions, a = (a1, . . . , an) is an n-tuple of nonnegative 

scalars.

We can also define an R-matrix in the diagonal setting and the associated reflection 

equations. In particular, for the diagonal family, let Rg be the 4n2 × 4n2 matrix with 

entries

(Rg)ij
kl = (Rg)i+n,j+n

k+n,l+n = rij
kl and (Rg)i+n,j

i+n,j = (Rg)i,j+n
i,j+n = 1

for i, j = 1, . . . , n and all other entries equal to 0. Note that in the diagonal case, Rg can 

be viewed as a block diagonal matrix with diagonal entries (R, In2 , In2 , R). Moreover, 

this is the R-matrix associated with the Uq(g) representation (V0 ⊗ C(q)) ⊕ (C(q) ⊗ V1)

where Vi is the standard representation associated to the ith copy of Uq(gln) inside of 

Uq(g) and C(q) is the trivial representation.

The algebra P is a quotient of the FRT matrix defined by Rg with all matrix entries 

ti,j+n and ti+n,j , for i, j = 1, . . . , n, set to zero. Using the similarity between the reflection 

equation in Type AI and the diagonal type, it is straightforward to check that the 

matrices J(n)(a) defined by

J(n)(a) =
n

∑

k=1

ak(ek,n+k + en+k,k)

satisfies the reflection equations with respect to the matrix Rg.

We frequently write J(a) for J(n)(a) where the subscript n, which equals the length 

of the tuple a, can be understood from context. Let Jk be the submatrix of J(a) corre-

sponding to the term with coefficient ak. We further write Jk
r,s for the r, s entry of Jk

viewed as a matrix. Set

xij(a) =
n

∑

k=1

ak

(

∑

r,s

tirJk
r,stjs

)

(20)
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for each choice of i, j and each n-tuple (a1, . . . , an). These terms can be written explicitly 

for each family as

xij(a) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∑n
k=1 aktiktjk for Type AI

∑n
k=1 ak(ti,2k−1tj,2k − qti,2ktj,2k−1) for Type AII

∑n
k=1 aktiktj,n+k for i ≤ n < j for the diagonal type

∑n
k=1 akti,n+ktjk for i > n ≥ j for the diagonal type

These elements can also be expressed in matrix form as

X(a) = TJ(a)T t

where X(a) is a matrix with entries xij(a) of size n × n in Type AI and 2n × 2n in both 

type AII and the diagonal type. For the diagonal family, tik commutes with tj+n,r+n for 

all i, k, j, r. Hence

xi,j+n(a) =

n
∑

k=1

aktiktj+n,k+n =

n
∑

k=1

aktj+n,k+ntik = xj+n,i(a)

for all i ≤ n < j.

In the next lemma, we determine the relationship between the n-tuple a and the n-

tuple b so that xij(a) is invariant with respect to the right action of Bθ(b). Moving the 

right action to the left, one could deduce this from [20], Proposition 2.3 for Types AI and 

AII. However, it would still be necessary to translate between the Noumi construction 

of right coideal subalgebras based on J(a) to the Bθ(b) of this paper. By [18], Section 5 

(see also [19], Theorem 7.5), these two families are essentially the same. However, the 

matching between parameters a and b has only been made explicit in Type AI (see [20], 

Section 2, equation (2.21)). It is easier to determine this matching directly using the 

action of the generators for Bθ(b). This is the approach taken in the proof of the next 

lemma.

Lemma 5.1. The elements xij(a), 1 ≤ i, j ≤ rank(g) are right Bθ(b) invariants of P if 

and only if for u = 1, . . . , n − 1,

(i) bu = au+1a−1
u in Type AI

(ii) b2u = q3au+1a−1
u in Type AII.

(iii) bu = qau+1a−1
u in the diagonal type.

Proof. To make the notation somewhat easier to read, we suppress the a and write xij

for xij(a) throughout this proof. It follows from Lemma 4.1 that

(tir · Kη)(tjs · Kη) = qηr+ηstirtjs, (21)
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for all i, r, j, s and all η =
∑

k ηkεk with ηk ∈ Z. Hence xij · Kη = ε(Kη)xij = xij if and 

only if ηr + ηs = 0 for all choices of r and s with tirtjs showing up as a summand of xij . 

Using the description of elements of the form Kη in Bθ(b) combined with the explicit 

formulas for the xij, it is straightforward to check that this condition on η holds for all 

Kη ∈ Bθ(b). Note that this is independent of the choice of bk and ak.

We now evaluate the action of the other generators of Bθ(b) on the xij(a). By 

Lemma 4.1, we have

(tirtjs) · Fu = (tir · Fu)(tjs · K−1
u ) + tir(tjs · Fu))

= δr,u+1qδs,u+1−δsutiutjs + δs,u+1tirtju. (22)

A similar computation yields

(tirtjs) · Eu = δruti,u+1tjs + δsuqδru−δr,u+1tirtj,u+1. (23)

In case (i), Bu = Fu − buEuK−1
u and xij =

∑

k aktiktjk. Hence, it follows from (21), 

(22), (23) that

xij · Bu = qau+1tiutj,u+1 + au+1ti,u+1tju − buauti,u+1tju − qbuautiutj,u+1.

Thus xij · Bu = ε(Bu)xij = 0 if and only if bu = au+1a−1
u for each u. For case (iii), 

Bu = Fu − buEu′K−1
u where u′ = u + n if u < n and u′ = u − n otherwise. This gives us

xij · Bu = δu≤n

(

au+1tiutj,u′+1 − q−1buautiutj,u′+1

)

+ δu>n

(

au+1ti,u+1tj,u′ − q−1buauti,u+1tj,u′

)

.

Hence, xij · Bu = 0 if and only if bu = qau+1a−1
u for u = 1, . . . , 2n.

We only need to finish case (ii). Using (22), we see that

(ti,2k−1tj,2k − qti,2ktj,2k−1j) · Fu = δ2k,u+1

(

tiutju − qq−1tiutju

)

= 0

for u odd and for all k. Hence xij · Fu = 0 for all u odd. A similar argument shows that 

xij · Eu = 0 for all u odd.

It remains to determine conditions for xij · B2u = 0 for u = 1, . . . , n − 1. Recall that 

B2u = F2u − b2u((ad E2u−1E2u+1)E2u)K−1
2u . By (22), we have

(ti,2k−1tj,2k − qti,2ktj,2k−1) · F2u = δ2k−1,2u+1ti,2utj,2u+2 − qδ2k−1,2u+1ti,2u+2tj,2u.

(24)

A straightforward computation using the formulas for the adjoint action yields

(ad E2u−1E2u+1)E2u = E2u−1[E2u+1, E2u]q−1 − q−1[E2u+1, E2u]q−1E2u−1

∈ q−2E2uE2u+1E2u−1 + E2u−1Uq(g) + E2u+1Uq(g). (25)
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We showed earlier that xij · E2u±1 = 0. Hence,

xij · ((ad E2u−1E2u+1)E2u)K−1
2u = xij ·

(

q−2E2uE2u+1E2u−1K−1
2u

)

.

Note that ta,2k−1 · E = 0 whenever E ∈ E2uUq(g) + E2u−1Uq(g). Similarly, ta,2k · E = 0

for all E ∈ E2u−1Uq(g) + E2u+1Uq(g). Hence for all u = 1, . . . , n − 1, we have

Δ(E2uE2u+1E2u−1) = K2uK2u+1E2u−1 ⊗ E2uE2u+1 + E2uK2u−1E2u+1 ⊗ E2u−1 + Y

where Y =
∑

r yr ⊗ y′
r is a term in Uq(g) ⊗ Uq(g) such that

∑

r

(ti,2k−1 · yr)(tj,2k · y′
r) = 0 and

∑

r

(ti,2k · yr)(tj,2k−1 · y′
r) = 0

for all k. Hence xij · ((ad E2u−1E2u+1)E2u)K−1
2u equals

q−2
∑

k

ak(ti,2k−1 · K2uK2u+1E2u−1K−1
2u )(tj,2k · E2uE2u+1K−1

2u )

− q−1
∑

k

ak(ti,2k · E2uK2u−1E2u+1K−1
2u )(tj,2k−1 · E2u−1K−1

2u )

= (q−3auti,2utj,2u+2 − q−2auti,2u+2tj,2u).

This combined with (24) implies that xij · B2u equals

au+1ti,2utj,2u+2 − qau+1ti,2u+2tj,2u − (q−3b2uauti,2utj,2u+2 − q−2b2uauti,2u+2tj,2u),

and so b2u = q3au−1a−1
u for all u = 1, . . . , n − 1 as claimed. �

Set D = Pop. In particular, write D = Oq(MatN )op in Type AI (with N = n) and 

Type AII (with N = 2n) and let D = Oq(Matn)op ⊗Oq(Matn)op in the diagonal setting. 

Using Lemma 4.2, D is given a Uq(g)-bimodule structure for Types AI and AII. In the 

diagonal setting, for k = 1, 2, the kth copy of Uq(gln) acts on the kth copy Oq(Matn)op

as detailed in Lemma 4.2 and trivially on the other copy.

For each n-tuple (c1, . . . , cn), set

dij(c) =
n

∑

k=1

ck

(

∑

r,s

∂irJk
s,r∂js

)

. (26)

Comparing (26) to (20) yields that (xji(c))∗ = dij(c) for all i, j. Recall that f∗ ·

(S−1(g))	 = (f · g)∗ for all f ∈ P and g ∈ Uq(g) (as in the discussion at the end 

of Section 4). The next result is an analog of Lemma 5.1 with the tij replaced by the ∂ij .

Lemma 5.2. The elements dij(c), 1 ≤ i, j ≤ rank(g) are right Bθ(b) invariants if and 

only if for u = 1, . . . , n − 1 we have
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(i) bu = q−2c−1
u+1cu in Type AI

(ii) b2u = q−1c−1
u+1cu in Type AII

(iii) bu = q−1c−1
u+1cu for the diagonal type.

Proof. Given Kη in Bθ, we have (S−1(Kη))	 = K−1
η . Hence by Lemma 5.1 and its proof,

dij(c) · Kη = ((xji(c)) · K−1
η )	 = (xji(c))∗ = dij(c)

for all Kη ∈ Bθ independent of the relationship between the n-tuples b and c.

It follows from (4) that

S−1(Fu − q2δu′,u−1b−1
u′ Eu′K−1

u )	 = −q−1Eu + q2δu′,ub−1
u′ Fu′Ku

= −q2δu′,ub−1
u′ (Fu′ − q−2δu′,ubu′EuK−1

u′ (Ku′K−1
u ))Ku

= −q2δu′,ub−1
u′ (Fu′ − bu′(Ku′K−1

u )EuK−1
u′ )Ku.

Now consider Type AI with u′ = u and the diagonal type with u′ = u +n or u′ = u −n. In 

both cases, we have Ku′K−1
u ∈ Bθ and so by the previous paragraph, dij(c) ·Ku′K−1

u = 1

for all n-tuples c. Hence, the above computation shows that

dij(c) · (Fu′ − bu′EuK−1
u ) = 0 if and only if xji(c) · (Fu − q2δu′,ub−1

u′ Eu′K−1
u ) = 0.

By Lemma 5.1 (i), the latter equality holds in Type AI provided q−2b−1
u = cu+1c−1

u . 

This proves (i). For the diagonal type, the latter equality holds provided b−1
u = qcu+1c−1

u

which is equivalent to (iii).

For Type AII, it follows from (4) that xji(c) · E2u−1 = 0 implies dij(c) · F2u−1 = 0

for u = 1, . . . , n. The same holds for the roles of E2u−1 and F2u−1 interchanged. 

Hence, we only need to analyze the action terms of the form B2u = F2u −

b2u((ad E2u−1E2u+1)E2u)K−1
2u . Using (23), we get

dij(c) · F2u = −q−1((xji(c) · E2u)	

= −q−1(
∑

k

ck(tj,2k−1ti,2k − qtj,2kti,2k−1) · E2u)	

= −q−1cu(tj,2u−1ti,2u+1 − qtj,2u+1ti,2u−1)∗

Arguing as in the proof of Lemma 5.1, we have

dij(c) · ((ad E2u−1E2u+1)E2u)K−1
2u = dij(c) · q−2(E2uE2u+1E2u−1)K−1

2u

= q−2
∑

k

ck(∂i,2k · K2uK2u−1E2u+1K−1
2u )(∂j,2k−1 · E2uE2u−1K−1

2u )

− q−1
∑

k

ck(∂i,2k−1 · E2uK2u+1E2u−1K−1
2u )(∂j,2k · E2u+1K−1

2u )
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= cu+1∂i,2u+1∂j,2u−1 − qcu+1∂i,2u−1∂j,2u+1

Hence

dij(c) · B2u = −q−1cu(∂i,2u+1∂j,2u−1 − q∂i,2u−1∂j,2u+1)

− b2ucu+1(∂i,2u+1∂j,2u−1 − q∂i,2u−1∂j,2u+1)

Thus dij(c) · B2u = 0 when b2u = q−1cuc−1
u+1 which proves (ii). �

Using Lemmas 4.1 and 5.2, we can choose parameters a and c so that they are com-

patible with the parameters b at the same time. In other words, assume that the n-tuple 

a has been chosen using the conditions of Lemma 4.1 so that xij(a) is right invariant 

with respect to the action of Bθ(b). Then setting cu = q−2ua−1
u in Type AI, cu = q−2ua−1

u

in the diagonal setting and cu = q−4u+2a−1
u in Type AII for all u = 1, . . . , n yields right 

invariant elements dij(c). Write this choice of c as a′. Expanding these elements out as 

we did for the xij(a) with respect to the n-tuple a gives us

dij(a′) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∑n
k=1 q−2ka−1

k ∂ik∂jk for Type AI

∑n
k=1 q−4k+2a−1

k (∂i,2k∂j,2k−1 − q∂i,2k−1∂j,2k) for Type AII

∑n
k=1 q−2ka−1

k ∂ik∂j,n+k for i ≤ n < j for diagonal type
∑n

k=1 q−2ka−1
k ∂i,n+k∂jk for i > n ≥ j for diagonal type

For the remainder of the paper, we make a choice for a and b parameters in order to 

make the arguments easier. These parameters can be easily converted into another set 

using Hopf algebra automorphisms of Uq(g). In particular, we choose a1 = · · · = an = 1

for each of the three cases. Note that this means for u = 1, . . . , n we have bu = 1 in Type 

AI, b2u = q3 in Type AII, and bu = q in the diagonal setting. Set xij = xij(1, . . . , 1) and 

dij = dij((1, . . . , 1)′). Note that we can write both xij where the summand no longer 

depends on k, just r and s where Jr,s is the coefficient of ers in the matrix J . Indeed, it 

is easy to see directly from (20) and the choice of a that

xij =
∑

r,s

tirJr,stjs.

One further checks from the formulas for dij(a′) above that for the choice of a′ that

dij =
∑

r,s

q−2ŝ∂irJr,s∂js

where ŝ = s in Types AI and AII and for the diagonal type ŝ = s for s ≤ n, and 

ŝ = s − n for s ≥ n + 1. Note that we are expressing dij in terms of the matrix J and 

not its transpose as above. This makes no difference in Types AI and the diagonal type 

since in both these cases, J = J t. On the other hand, for Type AII, we have
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q−4k+2∂i,2k−1∂j,2k − q−4kq∂i,2k∂j,2k−1 = −q−1q−4k+2 (∂i,2k∂j,2k−1 − q∂i,2k−1∂j,2k) .

In other words, this expression for dij differs from the earlier one by a scalar multiple, 

namely −q−1. Thus, without loss of generality, we may use this new formula based on J

instead of the earlier one using J t.

5.3. Module realization

Let Pθ be the subalgebra of P generated by the xij , for 1 ≤ i, j ≤ rank(g) where 

here we are setting xij = 0 in the diagonal case for all i, j satisfying i − j ≤ n. Similarly, 

let Dθ be the subalgebra of D generated by the dij with the same restriction as above. 

Both of these algebras are generated by right Bθ invariant elements. It follows from the 

next lemma that the entire algebras Pθ and Dθ are right invariant with respect to the 

action of Bθ. It should be noted that a priori this result is not obvious since Bθ is not a 

bialgebra.

Lemma 5.3. Let u and v be elements of a Uq(g)-bimodule A such that both are invariant 

with respect to the right action of Bθ. Then the same is true for the product uv.

Proof. Let M+ denote the algebra generated by those Ei for which Ei ∈ Bθ and write Tθ

for the group-like elements in Bθ∩Uq(g). It is straightforward to see from their description 

in Section 5.1 that the elements Br can be written in the form Fr + ((ad Z+
r )Ep(r))K

−1
r

for some choice of Z+
r ∈ M+. It follows from the definition of the comultiplication Δ for 

Uq(g) that

Δ(Br) = Δ(Fr + [(adZ+
r )Ep(r))]K

−1
r )

∈ Br ⊗ 1 + 1 ⊗ Br + (Kp(r)K
−1
r − 1) ⊗ [(adZ+

r )Ep(r))]K
−1
r ) + M+ ⊗ Uq(g)

+ Uq(g) ⊗ M+

where M+ denotes the augmentation ideal of M. Hence

Δ(Br) ∈ (Bθ)+ ⊗ Uq(g) + Uq(g) ⊗ (Bθ)+ (27)

for each Br ∈ Bθ. On the other hand, given K ∈ Tθ, we have

Δ(K) = K ⊗ K = (K − 1) ⊗ K + 1 ⊗ (K − 1) + 1 ⊗ 1.

It follows that

Δ(K) ∈ 1 ⊗ 1 + (Bθ)+ ⊗ Uq(g) + Uq(g) ⊗ (Bθ)+ (28)

for all K ∈ Tθ. Recall that ε(K) = 1 and ε(Br) = 0 for all choices of K ∈ Tθ and all r. 

Therefore by (27) and (28), uv · b ∈ ε(b)uv + (u · (Bθ)+)A + A(v · (Bθ)+) = ε(b)uv for the 
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generators of Bθ as given in Section 5.1. Thus uv is right invariant with respect to the 

action of Bθ. �

The next lemma shows that the subspace of Pθ spanned by the xij is a left Uq(g)-

submodule of P. Thus Pθ inherits the structure of a left Uq(g)-module algebra from 

P. The analogous assertion holds for Dθ and its subspace spanned by the dij . To make 

the notation easier, we set xij = 0 = dij whenever either i or j is in the set {0, rank(g)}.

Lemma 5.4. The (left) action of Uq(g) on the subalgebra Pθ is defined by the formulas

Er · xij = δi−1,rxi−1,j + δj−1,rqδri−δr,i−1xi,j−1

Fr · xij = δirq−δrj+δr,j−1xi+1,j + δjrxi,j+1

Kεs
· xij = qδis+δjsxij

and the (left) action of Uq(g) on the subalgebra Dθ is defined by the formulas

Fr · dij = −(q1+δrj−δr,j−1δi−1,rdi−1,j − q2δj−1,rdi,j−1)

Er · dij = −(q−1δirdi+1,j + q1−δri+δr,i−1δjrdi,j+1)

Kεs
· dij = q−δis−δjsdij

for all i, j, s ∈ {1, . . . , rank(g)}, 1 ≤ r ≤ n − 1 in Type AI, 1 ≤ r ≤ 2n − 1 in Type AII, 

1 ≤ r ≤ n − 1 and n + 1 ≤ r ≤ 2n − 1 in the diagonal case, and either i ≤ n < j or 

j ≤ n < i in the diagonal case.

Proof. It follows from the formulas for the action on the tij as given in Lemma 4.1 that

Er · (tiatjb) = (Er · tia)tjb + (Kr · tia)(Er · (tjb)

= δi−1,rti−1,atjb + δj−1,rqδir−δi−1,r tiatj−1,b

Fr · (tiatjb) = (Fr · tia)(K−1
r · tjb) + ti+1,a(Fr · (tjb)

= δirq−δjr+δj−1,r ti+1,atjb + δjrtiatj+1,b

and

Kεs
· (tiatjb) = (Kεs

· tia)(Kεs
· tjb) = qδis+δjstiatjb

for all choices of a and b. Note that xij is a sum of terms of the form tiatjb. Hence 

the action of Er on the xij and the Fr, Kεs
on the xij follow directly from the above 

formulas. The argument that checks the action of these elements on the dij is similar. �

It is straightforward to check from the above lemma that 
∑

i,j C(q)xij forms a simple 

module for the action of Uq(g). In Type AI, this module is isomorphic to L(2ε1) with 
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highest weight generating vector x11. In Type AII, this module is isomorphic to L(ε1+ε2)

with highest weight generating vector x12. For diagonal type, this module is isomorphic 

to L(ε1 + εn+1) with highest weight generating vector x1,n+1. Similarly, 
∑

i,j C(q)dij is a 

simple module generated by the lowest weight vector d1r of weight −ε1 − εr where r = 1

in Type AI, r = 2 in Type AII, and r = n + 1 in diagonal type.

5.4. Algebra structure

The next result establishes relations satisfied by the xij. For Type AI and AII this is 

just [20], Proposition 4.4 with a slight change in notation.

Proposition 5.5. The elements xij, i, j = 1, . . . , rank(g) satisfy the following linear rela-

tions

(i) xij = qxji all 1 ≤ i < j ≤ n in type AI

(ii) xij = −q−1xji for all 1 ≤ i < j ≤ 2n and xii = 0 for all i in type AII.

(iii) xi,j+n = xj+n,i and xij = xi+n,j+n = 0 for all i, j = 1, . . . , n in the diagonal type

and the quadratic relations expressed in matrix form by

RgX1Rt1

g
X2 = X2Rt1

g
X1Rg (29)

where X is the rank(g) × rank(g) matrix with ij entry xij.

Proof. By [20], Proposition 4.4, the xij satisfy the relations obtained from (29) in type 

AI and in type AII. Here we are using the fact that R′
21 in the notation of [20] is the same 

as R12 in the notation of this paper. Moreover, since the diagonal type is also defined 

using a solution to the reflection equations, the proof in [20] carries over to this family 

as well.

Relations (i), (ii) are also part of [20] Proposition 4.4; both can be deduced in a 

straightforward manner from the relations for the tij . Relations in (iii) follow from 

the fact that ti+n,j+n commutes with tkl and ti,j+n = tj+n,i = 0 for all i, j, k, l in 

{1, . . . , n}. �

Let us take a closer look at relation (29). Recall that X1 = X ⊗I. Hence (X1)ab
cd = xac

if b = d and is 0 otherwise. Similarly, (X2)ab
cd = xbd if a = c and 0 otherwise. The ld, hk

entry of the left hand side of (29) is

(RgX1Rt1

g
X2)ld

hk =
∑

j,s,a,b,u,v

(Rg)ld
js(X1)js

ab(Rg)ub
av(X2)uv

hk =
∑

j,s,a,v

(Rg)ld
jsxja(Rg)hs

avxvk

The ld, hk entry of the right hand side of (29) can be evaluated in the same way yielding
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(X2Rt1

g
X1Rg)ld

hk =
∑

j,s,a,b,u,v

(X2)ld
js(Rg)as

jb (X1)ab
uv(Rg)uv

hk =
∑

s,a,b,u

xds(Rg)as
lb xau(Rg)ub

hk

Hence

∑

j,s,a,v

(Rg)ld
jsxja(Rg)hs

avxvk =
∑

s,a,b,u

xds(Rg)as
lb xau(Rg)ub

hk (30)

for all l, d, h, k.

Lemma 5.6. For diagonal type, relation (29) is equivalent to the set of matrix relations 

RX̂1X̂2 = X̂2X̂1R where R is the matrix defined by (10) and X̂ is the n × n matrix with 

ij entry xi,j+n for i, j = 1, . . . , n.

Proof. The matrix of relations defined by (29) can be broken into four submatrices 

of relations consisting of all l, d, h, k entries where l and d are each chosen to lie in 

either {1, . . . , n} or {n + 1, . . . , 2n}. These submatrices turn out to correspond to either 

RX̂1X̂2 = X̂2X̂1R or RX̂t
1X̂t

2 = X̂t
2X̂t

1R. As explained in Section 4.2, these two relations 

are equivalent.

We explain how to go from the submatrix consisting of those relations corresponding 

to the l, d, h, k entries of (29) under the assumption 1 ≤ l, d ≤ n to the relation RX̂1X̂2 =

X̂2X̂1R. The proof for the other submatrices is similar. Since Rg is the block diagonal 

matrix (R, In2×n2 , In2×n2 , R), we have (Rg)ld
js �= 0 implies that {j, s} = {l, d}, and, 

moreover, in this case (Rg)ld
js = rld

js. It follows that all choices of j and s appearing in 

the left hand side of (30) must satisfy 1 ≤ j, s ≤ n. Moreover, xja �= 0 implies that 

n + 1 ≤ a ≤ 2n. This condition on a combined with the fact that 1 ≤ s ≤ n ensures 

that (Rg)hs
av �= 0 if and only if a = h and v = s, and, moreover, when this happens, 

we get (Rg)hs
av = 1. This also implies the only values of h and v for which the left hand 

side is nonzero must satisfy n + 1 ≤ h ≤ 2n and 1 ≤ v ≤ n. Thus xvk �= 0 ensures 

that n + 1 ≤ k ≤ 2n. Hence the original assumptions on l and d, namely 1 ≤ l, d ≤ n, 

guarantee that the left hand side of (30) is nonzero only if n + 1 ≤ h, k ≤ 2n.

The same type of analysis shows that we only get nonzero terms showing up in (30)

provided one of the following conditions hold:

• 1 ≤ l, d ≤ n and n + 1 ≤ h, k ≤ 2n

• 1 ≤ l, k ≤ n and n + 1 ≤ h, d ≤ 2n

• 1 ≤ h, d ≤ n and n + 1 ≤ l, k ≤ 2n

• 1 ≤ h, k ≤ n and n + 1 ≤ l, d ≤ 2n

Lets return to the first case, namely 1 ≤ l, d ≤ n and n + 1 ≤ h, k ≤ 2n. We showed 

above that (Rg)hs
av = 1 if a = h and v = s and 0 otherwise. A similar argument yields 

(Rg)lb
as = 1 provided a = l, s = b and is 0 otherwise. On the other hand, again as 

explained above, (Rg)ld
js = rld

js and a similar argument gives us (Rg)us
hk = rus

hk where here 

we are using the fact that s = b.. Thus (30) is



680 G. Letzter et al. / Journal of Algebra 655 (2024) 651–721

∑

j,s

rld
jsxjhxsk =

∑

s,u

xdsxlurus
hk

Hence the set of all such equalities together under these assumptions gives us RX̂1X̂2 =

X̂2X̂1R. The arguments for the other cases are similar. �

We now turn our attention to Types AI and AII and so Rg is just the R-matrix R as 

in (10) with entries rij
kl. Recall that rij

ij = qδij for all i, j, rij
ji = (q − q−1) for j < i and 

all other rab
cd equal 0. Hence, we can rewrite (30) as

qδld+δhdxlhxdk + (q − q−1)
(

qδhlδd<lxdhxlk + qδldδd<hxldxhk + δl<hδd<l(q − q−1)xdlxhk

)

= qδhk+δlk xdkxlh

+ (q − q−1)
(

qδhk δl<kxdlxkh + qδlhδh<kxdhxlk + δl<hδh<k(q − q−1)xdlxhk

)

Moving all but the first term of the left hand side to the right hand side, this relation 

can be rewritten as

qδld+δhdxlhxdk = qδhk+δlk xdkxlh + (δh<k − δd<l)q
δlh(q − q−1)xdhxlk

+ δl<h(δh<k − δd<l)(q − q−1)2xdlxhk + qδhk δl<k(q − q−1)xdlxkh

− qδldδd<h(q − q−1)xldxhk. (31)

In [20], the algebra generated by the xij in Type AI (resp. Type AII) is referred to as 

a quantized function algebra on the space of symmetric matrices (resp. skew symmetric 

matrices). The next lemma gives explicit relations for these Type AI and Type AII 

quantum functions algebras. It should be noted, that in Type AI, the algebra generated 

by the xij is the same as the quantum analog of the function algebra on symmetric 

matrices studied in [14] (see also [2], Section 3).

Lemma 5.7. In Type AI, we have

xlhxdk =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

q−2xdkxlh if d = l = k < h
q−1xdkxlh if d = l < k < h
q−2xdkxlh if d < l = k = h
q−1xdkxlh if d < l < k = h

q−1xdkxlh − (q − q−1)xdhxlk if d < l = k < h
xdkxlh − (q − q−1)xdhxlk if d < l < k < h

xdkxlh − q−1(q2 − q−2)xdhxkl if d = k < l = h
xdkxlh − (q2 − q−2)xdhxkl if d = k < l < h

xdkxlh − q−1(q2 − q−2)xdhxkl if d < k < l = h
xdkxlh − (q − q−1)(q−1xdhxkl + xdlxkh) if d < k < l < h

xdkxlh if d < l < h < k
xdkxlh if d < l = h < k

and for Type AII, we have
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xlhxdk =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

q−1xdkxlh if d = l < k < h
q−1xdkxlh if d < l < k = h
q−1xdkxlh if d < l = k < h

xdkxlh − (q − q−1)xdhxlk if d < l < k < h
xdkxlh + (q − q−1)(qxdhxkl − xdlxkh). if d < k < l < h

xdkxlh if d < l < h < k

Proof. We prove the lemma in Type AII. The proof in Type AI is similar, albeit some-

what more computationally involved.

Since xii = 0 for all i in Type AII, we must have l < h and d < k in all cases. Note 

also that xji = −qxij for all i < j. Assume in addition that d ≤ l ≤ k ≤ h. Formula (31)

simplifies to

qδldxlhxdk = qδhk+δlk xdkxlh − δd<l(q − q−1)xdhxlk − δd<l(q − q−1)2xdlxhk

+ δl<k(q − q−1)xdlxkh − δd<h(q − q−1)xldxhk. (32)

If d = l < k < h, this further simplifies to qxlhxdk = xdkxlh. If d < l < k = h, (32)

becomes

xlhxdk = qxdkxlh − (q − q−1)xdhxlk = q−1xdkxlh

which yields the same equality as in the previous case. For d < l = k < h, (32) reduces 

to

xlhxdk = qxdkxlh + q(q − q−1)2xdlxkh − q2(q − q−1)xdlxkh

= qxdkxlh − (q − q−1)xdlxkh = q−1xdkxlh

with the last equality following because l = k, thus verifying this case. Now assume 

d < l < k < h. Note that q(q − q−1)2 + (q − q−1) − q2(q − q−1) = 0. Hence, under this 

assumption, (32) is equivalent to

xlhxdk = xdkxlh − (q − q−1)xdhxlk + q(q − q−1)2xdlxkh

+ (q − q−1)xdlxkh − q2(q − q−1)xdlxkh

= xdkxlh − (q − q−1)xdhxlk,

which is the fourth entry of the relations for Type AII.

Now consider d < k < l < h. For this case (31) can be rewritten as

xlhxdk = xdkxlh + q(q − q−1)xdhxkl + q(q − q−1)2xdlxkh − q2(q − q−1)xdlxkh

= xdkxlh + q(q − q−1)xdhxkl − (q − q−1)xdlxkh.

This takes care of the penultimate case. For the final case, assume that d < l < h < k. 

We simplify (31) with respect to these assumptions, yielding
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xlhxdk = xdkxlh + (q − q−1)xdlxkh − (q − q−1)xldxhk.

Using the facts that xkh = −qxhk and xld = −qxdl, we see that the last two terms vanish 

which leaves us with xlhxdk = xdkxlh as claimed. �

Define subalgebras of Pθ by P(r−1)n+s = C(q)[x11, x12, . . . xrs] for r = 1, . . . , n and 

s = r, . . . , n in Type AI and P(r−1)2n+s = C(q)[x12, x13, . . . xrs] for r = 1, . . . , 2n and 

s = r + 1, . . . , 2n in Type AII. It is well known that the quantized function algebra 

Oq(MatN ) can be expressed as an iterated Ore extension (see for example [8], Example 

3.4)). By Proposition 5.5, Pθ in the diagonal setting satisfies the relations of Oq(MatN )

and hence Pθ is an iterated Ore extension in this setting. A consequence of the next 

result is that Pθ can also be expressed as an iterated Ore extension in Types AI and 

AII.

Lemma 5.8. In Types AI and AII, the xij satisfy the following q-type commuting property

xlhxdk − qs(l,h,d,k)xdkxlh ∈ P(l−1)m+h−1 (33)

where m = n in Type AI, m = 2n in Type AII, d ≤ k, l ≤ h, (d, k) is less than (l, h)

in the lexicographic ordering, and s(l, h, d, k) is a function from {1, 2, . . . , m}4 to the 

integers.

Proof. It is straightforward to check that (33) holds for all cases using the explicit 

relations given in Lemma 5.7. �

Recall the PBW basis for Oq(MatN ) as described in Section 4.2. We use this basis to 

verify that certain sets of monomials form PBW basis for Pθ in each of the three cases.

Lemma 5.9. The following monomials form a basis for Pθ:

(i) Type AI:

xm11

11 xm12

12 · · · xm1n

1n xm22

22 xm23

23 · · · xm2n

2n · · · x
mn−1,n−1

n−1,n−1 x
mn−1,n

n−1,n xmnn
nn

(ii) Type AII:

xm12

12 xm13

13 · · · x
m1,2n

1,2n xm23

23 xm24

24 · · · x
m2,2n

2,2n · · · x
m2n−1,2n

2n−1,2n

(iii) Diagonal type:

xm11

1,n+1xm12

12 · · · xm1n

1,2nxm21

2,n+1xm22

2,n+2 · · · xm2n

2,2n · · · xmn1

n,n+1 · · · xmnn

n,2n

as each mij runs over nonnegative integers. Moreover, we also get a basis if the order of 

the monomials in the terms above is reversed.
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Proof. It follows from Lemma 5.8 that the above monomials span the algebra Pθ in 

Type AI and AII. By Proposition 5.5, the same is true for the diagonal type. Hence, we 

need only check linear independence of the proposed basis elements.

Consider first the Type AI case. Set x̄ij =
∑

k≥2 tiktjk for each i, j. We proceed by 

induction on n, assuming that monomials as in (i) with xij is replaced by x̄ij form a 

basis for the subalgebra generated by xij, i ≥ 2, j ≥ 2. Since there is only one monomial, 

x̄nn, for i ≥ n, j ≥ n, the base case is clearly true.

Let S be the subalgebra of Oq(MatN ) generated by tij , i ≥ 2, j ≥ 1. It is straight-

forward to check from the relations of Oq(MatN ), that t11 /∈ S. Moreover, Oq(MatN ) =
∑

r≥0 tr
11S and, as vector spaces, this sum is isomorphic to a direct sum. Suppose that 

Y = 0 where Y is defined by

Y =
∑

m

amxm11

11 · · · xmnn
nn (34)

and the sum runs over tuples m = (m11, . . . , mnn) so that each product in the xij

appearing in the right-hand side of (34) is a basis element as described in (i). Set |m1| =

m11 + m12 + · · · + m1n and M = maxm,am �=0 m11 + |m1|. Set

Y ′ :=
∑

m11+|m1|=M

am(t11t11)m11(t11t21)m12 · · · (t11tn1)mnnxm22

22 · · · xmnn
nn

and note that Y ∈ Y ′ +
∑

s<M ts
11S. Hence Y = 0 implies that Y ′ = 0.

We can express Y ′ as a sum of right Kε1
eigenvectors with eigenvalues of the form 

qs where s is an integer. Let M ′ = minm,am �=0,m11+|m1|=M |m1| and let S ′′ = {m, am �=

0, m11+|m1| = M, |m1| = M ′}. The eigenvector with smallest exponent in the eigenvalue 

is

Y ′′ =
∑

m∈S′′

am(t11t11)m11(t11t21)m12 · · · (t11tn1)mnn x̄m22

22 · · · x̄mnn
nn .

Hence Y = 0 implies that Y ′′ = 0. Given an n-tuple w, write S ′′
w = {m ∈ S ′′|m1 = w}. 

We can express Y ′′ as a sum 
∑

w Y ′′
w where

Y ′′
w =

∑

w

(t11t11)w1(t11t21)w2 · · · (t11tn1)wn

∑

m∈S′′

w

amx̄m22

22 · · · x̄mnn
nn

It follows from the form of the PBW basis for Oq(MatN ) that Y ′′ = 0 implies Y ′′
w = 0

each w. By the inductive assumption, we get am = 0 for all m ∈ S ′′
w, a contradiction. 

This proves the linear independence of the basis elements listed in (i).

For (ii), we assume that Y is defined similarly to (34) where the sum runs over tuples 

m = (m12, m13, . . . , m2n−1,2n) so that each product in the xij appearing in the right-

hand side of (34) is a basis element as described in (ii). As in case (i), S is the subalgebra 

generated by the tij with i ≥ 2 and j ≥ 1. We have Y ∈ Y ′ +
∑

s<M ts
11S where
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Y ′ :=
∑

|m1|=M

am(t11t22)m11(t11t32)m12 · · · (t11t2n,2)m2n,2xm22

22 · · · xm2n,2n
m2n,2n

and M = maxm,am �=0 |m1|. The argument now follows as in case (i) using the decompo-

sition of Y ′ into a sum of eigenvectors with respect to the right action of Kε1
.

Now consider case (iii). Suppose that Y is defined as in (34) where the sum runs over 

tuples m = (m11, m12, . . . , mnn) so that each product in the xij appearing in the right-

hand side of (34) is a basis element as described in (iii). Note that the Y can be expressed 

as a sum of eigenvectors with respect to the right action of Kεn
. The eigenvector with 

eigenvalue qs where s is maximum is

Y ′ =
∑

m

am(t1ntn+1,2n)m11 · · · (tnnt2n,2n)mnn (35)

Hence Y = 0 implies Y ′ = 0. Recall that in this case, we are viewing the tij , 1 ≤ i ≤ n

as generators for the first copy of Oq(MatN ) and ti+n,j+n, 1 ≤ i, j ≤ n for the second 

copy. In particular, each tij commutes with each tk+n,l+n for all 1 ≤ i, j, k, l ≤ n. Thus 

we can rewrite Y ′ as

Y ′ =
∑

m

amtm11

1n · · · tmnn
nn tm11

n+1,2n · · · tmnn

2n,2n

It follows from the description of the PBW basis for Oq(MatN ) that Y = 0 implies that 

each am = 0, which establishes linear independence for case (iii).

The final assertion is proved in the same way by reversing the order of the tij terms 

in each of the above monomials. �

The next lemma provides a nice algebraic description of the algebras Pθ for all three 

cases. It should be noted that this result is implicit in [20] in Types AI and AII. In 

particular, one could prove this result using specialization techniques combined with 

the similarity of the structure of these algebras as Uq(gln)-bimodules and their classical 

counterparts.

Proposition 5.10. The map sending each x̃ij to xij defines an algebra surjection from the 

free algebra C(q)〈x̃ij , 1 ≤ i, j ≤ rank(g)〉 to Pθ with kernel equal to the ideal generated 

by the following elements

(i) x̃ij − qx̃ji all i < j in Type AI

(ii) x̃ij + q−1x̃ji for all i < j and x̃ii for all i in Type AII.

(iii) x̃i,j+n − x̃j+n,i and x̃ij , ̃xn+i,n+j for all i, j = 1, . . . , n in diagonal type.

(iv) the matrix entries of RgX̃1Rt1
g

X̃2 − X̃2Rt1
g

X̃1Rg where X̃ is the rank(g) × rank(g)

matrix with ij entry x̃ij.
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Moreover, in the diagonal case, (iv) is equivalent to the set of matrix entries of R ˆ̃X1
ˆ̃X2 −

ˆ̃X2
ˆ̃X1R where ˆ̃X ′ is the n × n matrix with ij entry xi,j+n for i, j = 1, . . . , n.

Proof. It follows from Lemmas 5.9 and 5.8 that there are no additional relations satis-

fied by the xij beyond those listed in Proposition 5.5. The final assertion follows from 

Lemma 5.12. �

Recall that in defining the xij, we took a particular choice of the n-tuple a, namely 

a = (1, . . . , 1) and set each xij = xij(1, . . . , 1). It should be noted that if we picked 

another choice, the resulting elements would still satisfy the same relations as given in the 

above proposition. This is because different choices correspond to algebra automorphisms 

of P.

Recall also that the antialgebra automorphism ∗ sending each tij to ∂ji has the fol-

lowing impact on the xij: (xij(a))∗ = dji(a) for all n-tuples a. This does not mean that 

x∗
ij = dij since xij and dij are defined using different, though related, n-tuples. However, 

just as in the case of the xij(a), we have that the algebra generated by the dij is isomor-

phic to the algebra generated by dij(a) for all n-tuples a. Thus, the map xij to dji for all 

i, j defines an algebra antiautomorphism from Pθ to Dθ. Using this antiautomorphism, 

it is straightforward to deduce the following result for Dθ directly from Proposition 5.10.

Proposition 5.11. The map sending each d̃ij to dij defines an algebra surjection from 

the free algebra C(q)〈d̃ij , 1 ≤ i, j ≤ n〉 to Dθ with kernel equal to the ideal of relations 

generated by the following elements

(i) d̃ij − q−1d̃ji all i < j in type AI

(ii) d̃ij + qd̃ji for all i < j and d̃ii for all i in type AII.

(iii) d̃i,j+n − d̃j+n,i and d̃ij , d̃i+n,j+n for all i, j = 1, . . . , n in diagonal type.

(iv) the matrix entries of RgD̃2Rt1
g

D̃1 − D̃1Rt1
g

D̃2Rg in types AI and AII where D̃ is 

the rank(g) × rank(g) matrix with ij entry d̃ij.

Moreover, in the diagonal setting, (iv) is equivalent to the set of matrix entries of 

R ˆ̃D2
ˆ̃D1 = ˆ̃D1

ˆ̃D2R where ˆ̃D is the n × n matrix with ij entry d̃i,j+n.

In the diagonal setting, using Proposition 5.10, we have that Pθ is isomorphic as an 

algebra to Oq(Matn) via the map sending xi,j+n to tij . Lemma 5.4 shows that this is 

an isomorphism of left Uq(gln)-modules using the first copy of Uq(gln). The next result 

shows that this map is actually a Uq(gln)-bimodule algebra isomorphism where the right 

action of Uq(gln) on Oq(Matn) corresponds to the left action of the second copy of 

Uq(gln) on Pθ.

Lemma 5.12. For diagonal type, the map ψ defined by ψ(tij) = xi,j+n all i, j with 1 ≤

i, j ≤ n is a Uq(gln)-bimodule algebra isomorphism from Oq(Matn) onto Pθ where
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ψ(a · tij) = a · xi,j+n and ψ(tji · a	) = γ(a) · xi,j+n (36)

for all i, j ∈ {1, . . . , n}, where γ is the map from the first copy of Uq(gln) to the second 

defined by γ(Er) = En+r, γ(Fr) = Fn+r, and γ(Kεs
) = Kεn+s

for all r, s, ∈ {1, . . . , n}.

Proof. By the discussion proceeding the proposition, we only need to show that the right 

action of Uq(gln) on Oq(Matn) corresponds to the left action of γ(Uq(gln)) on Pθ using 

the second equality in (36). This follows from the method for converting the right action 

of Uq(gln) on Oq(Matn) into a left one using Lemmas 4.1. �

Note that the above argument can be easily tweaked to apply to Dθ. More precisely, 

in the diagonal case, Dθ is isomorphic as a bimodule algebra to Oq(Matn)op via the map 

sending ∂ij to di,j+n for all i, j satisfying 1 ≤ i, j ≤ n.

6. Graded Weyl algebras for matrices

6.1. Twisted tensor products

We consider here a particular type of twisted tensor products for bialgebras, though 

the end result does not necessarily have a bialgebra structure. This twisted tensor product 

is similar, but not the same as the construction for Drinfeld doubles as presented in [15], 

Section 8. First, we recall the notions of twisted tensor products and dual pairings.

Let A and B be algebras over a field. The twisted tensor product, as defined in [6], is 

an algebra C with multiplication map mC along with two inclusion maps ιA and ιB such 

that m ◦ (ιA ⊗ ιB) defines an isomorphism as vector spaces from A ⊗B to C. The twisted 

tensor product comes equipped with a twisting map τ which is a linear map from B ⊗ A

to A ⊗ B that satisfies

(i) τ(1 ⊗ a) = a ⊗ 1 and τ(b ⊗ 1) = 1 ⊗ b

(ii) mC = (mA ⊗ mB) ◦ (IdA ⊗ τ ⊗ IdB)

(iii) τ ◦ (mB ⊗ mA) = mC ◦ (τ ⊗ τ) ◦ (IdB ⊗ τ ⊗ IdA)

where mA denotes multiplication for A, mB denotes multiplication for B, IdB is the 

identity map on B and IdA is the identity map on A. Moreover, the existence of a 

twisting map is essential here. In other words, given a twisting map τ (i.e. a linear map 

that satisfies (i) and the map mC defined by (ii) that satisfies the constraints in (iii)) 

one can form a twisted tensor product A ⊗τ B with multiplication mC as defined in (ii).

6.2. Dual pairing construction

In the next lemma, we use dual pairings as in the construction for Drinfeld doubles 

and other forms of twisted tensor products in [15], Section 8. A dual pairing is a bilinear 

map 〈·, ·〉 from A × B to the scalars where A, B are bialgebras such that
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〈a, 1〉 = ε(a) and 〈1, b〉 = ε(b)

along with the following compatibility formulas with respect to comultiplication:

〈ΔA(a), b1 ⊗ b2〉 = 〈a, b1b2〉 and 〈a1 ⊗ a2, ΔB(b)〉 = 〈a1a2, b〉 (37)

Lemma 6.1. Let A and B be two bialgebras with two pairings: u〈·, ·〉 is a dual pairing of 

Aop and B and v〈·, ·〉 is a dual pairing of A and Bop. Then A ⊗ B becomes a twisted 

tensor product with twisting map defined by

τ(b ⊗ a) =
∑

a(2) ⊗ b(2)v〈a(1), b(1)〉u〈a(3), b(3)〉.

Proof. For property (i), note that

τ(b ⊗ 1) =
∑

1 ⊗ b(2)v〈1, b(1)〉u〈1, b(3)〉 =
∑

1 ⊗ b(2)ε(b(1))ε(b(3)) = 1 ⊗ b

for all b ∈ B. A similar argument yields τ(1 ⊗ a) = a ⊗ 1 for all a ∈ A. As explained in 

[6], Section 2.2, we make take (ii) as the definition for the multiplication map mC since 

we have already verified that τ satisfies (i). For property (iii), note that by [6], Proposi-

tion/Definition 2.3, this condition is equivalent to associativity. Moreover, associativity 

follows as in the proof of [15], Section 8.2.1, Proposition 8. Indeed, [15], Section 8.2.1, 

Proposition 8 focuses on a product whose only difference from the one here is the extra 

assumption that u and v are convolution inverses. This additional assumption is not 

needed for the proof of associativity. �

Let ζ be an s-dimensional representation of Uq(glN ) and set Rζ = (ζ ⊗ ζ)(R) as in 

Section 4.1. Let A(Rζ) denote the FRT algebra defined by ζ realized as a quotient of 

tensor algebra T (M) over the r2 dimensional vector space M (as defined in Section 4.1). 

Let ξ be another Uq(glN ) representation of dimension s and write A(Rξ) for the FRT 

bialgebra defined by ξ where Rξ = (ξ ⊗ ξ)(R). For the construction of A(Rξ), we use 

the vector space M ′ spanned by the variables m′
ij , 1 ≤ i, j ≤ s in order to distinguish 

A(Rξ) from A(Rζ). Set Rζ,ξ = (ζ ⊗ ξ)(R).

Note that a bilinear pairing 〈·, ·〉 on M × M ′ extends uniquely to a dual pairing on 

T (M) and T (M ′)op by insisting that

〈mij , 1〉 = δij and 〈1, m′
kl〉 = δkl

for all i, j, k, l and that (37) holds (using induction and properties of the coproduct which 

ensure associativity). The next lemma provides us with dual pairings that can be used 

to form twisted tensor products. Its proof follows closely the proof of [15], 10.1.7.

Lemma 6.2. Assume that (ξ ⊗ ξ)(R) = T ◦ (ζ ⊗ ζ)(R). If (ζ ⊗ ξ)(R) = T ◦ ((ζ ⊗ ξ)(R))

then the bilinear map y〈·, ·〉 defined by
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y〈mij , m′
kl〉 = [(ζ ⊗ ξ)(R)]ikjl

can be uniquely extended to a dual pairing of the bialgebra A(Rζ) and A(Rξ). Moreover, 

the same result holds for R replace by R−1
21 .

Proof. Define the bilinear map y from M × M ′ to C(q) via

y〈mij , m′
kl〉 = (Rζ,ξ)ik

jl and y〈1, m′
ij〉 = y〈mij , 1〉 = δij

The bilinear form y〈·, ·〉 extends uniquely to a dual pairing, which we also denote by 

y〈·, ·〉, of T (M) with T (M ′) as explained before the lemma. We now argue as in the proof 

of [15], Theorem 10.1.7, that y〈·, ·〉 induces the appropriate form on the corresponding 

FRT bialgebras. To do this, we need to show that this form vanishes on the relations of 

A(Rξ) and A(Rζ). Note that uniqueness is forced on us since we have specified y〈·, ·〉 on 

scalars and terms in M ′ and M and the remaining values follow from induction using 

(37) just as they do on the tensor algebra level.

The ideal of relations I = Iζ for A(Rζ) realized as a quotient of T (M) is generated 

by the elements Ild
ab, for all l, d, a, b, where

Ild
ab =

∑

j,h

(Rζ)ld
jhmjamhb − mdhmlj(Rζ)jh

ab

For each l, d, a, b, r, s we have

y〈Ild
ab, m′

rs〉 =
∑

j,h

(Rζ)ld
jhy〈mjamhb, m′

rs〉 − y〈mdhmlj , m′
rs〉(Rζ)jh

ab

=
∑

j,h,k

(Rζ)ld
jhy〈mja, m′

rk〉y〈mhb, m′
ks〉 − y〈mdh, m′

rk〉y〈mlj , m′
ks〉(Rζ)jh

ab

=
∑

j,h,k

(Rζ)ld
jh(Rζ,ξ)jr

ak(Rζ,ξ)hk
bs − (Rζ,ξ)dr

hk(Rζ,ξ)lk
js(Rζ)jh

ab

Hence y〈Ild
ab, m′

rs〉 equals the ldr, abs entry of the matrix

(Rζ)12(Rζ,ξ)13(Rζ,ξ)23 − (Rζ,ξ)23(Rζ,ξ)13(Rζ)12.

This matrix equals (ζ ⊗ ζ ⊗ ξ)(R12R13R23 − R23R13R12), which is just the image of the 

Quantum Yang-Baxter Equation under (ζ ⊗ ζ ⊗ ξ). Hence, this matrix must equal the 0

matrix because R is a universal R-matrix. Thus, y〈Ild
ab, m′

rs〉 = 0 for all l, d, a, b, r, s and 

so y〈I, M ′〉 = y〈I, T (M ′)〉 = 0.

The ideal J = Jξ defining the relations for A(Rξ) is generated by the elements

J ld
ab =

∑

j,s

(Rξ)ld
jsm′

jam′
sb − m′

dsm′
lj(Rξ)js

ab
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for all l, d, a, b. Arguing as above, we see that y〈mrt, J
ld
ab 〉 equals

∑

j,s,k

(Rξ)ld
js(Rζ,ξ)rs

kb(Rζ,ξ)kj
ta − (Rζ,ξ)rl

kj(Rζ,ξ)kd
ts (Rξ)js

ab

By assumption, Rξ = T (Rζ) and Rζ,ξ = T (Rζ,ξ). Hence, we can rewrite y〈mrt, J
ld
ab 〉 as

∑

j,s,k

(Rζ)dl
sj(Rζ,ξ)sr

bk(Rζ,ξ)jk
at − (Rζ,ξ)lr

jk(Rζ,ξ)dk
st (Rξ)sj

ba

= ((Rζ)12(Rζ,ξ)13(Rζ,ξ)23 − (Rζ,ξ)23(Rζ,ξ)13(Rζ)12)dlr
bat

Using the Quantum Yang-Baxter Equation again, this reduces to 0 and so y〈M, J 〉 =

y〈T (M), J 〉 = 0. This completes the proof for R. Since R−1
21 is also a universal R-matrix, 

the same analysis holds when R is replaced by R−1
21 . �

6.3. Four twisted tensor products

Recall that when ζ = ρ, the FRT algebra A(Rζ) = Oq(MatN ) (see Section 4.2). 

Similarly, as explained in Section 4.3, for ξ = ρ ◦ 
 ◦ S, we get A(Rξ) = Oq(MatN )op. 

In the next proposition, we construct four twisted tensor products of Oq(MatN ) and 

Oq(MatN )op using these choices of ξ and ζ. Recall the matrix R given in formula (10). 

Set R0 = Rt2 and R1 = ((R21)−1)t2 .

Proposition 6.3. For each choice of υ and σ in {0, 1}, there exist (unique) dual pairings 

vσ〈·, ·〉 on Oq(MatN ) and Oq(MatN )op and uυ〈·, ·〉 on Oq(MatN )op and Oq(MatN ) such 

that

vσ〈tij , ∂kl〉 = [Rσ]ikjl and uυ〈tij , ∂kl〉 = [Rυ]ikjl .

Moreover, the twisting map τυ,σ defined by uυ〈·, ·〉 and vυ〈·, ·〉 as in Lemma 6.1 satisfies

τυ,σ(∂ea ⊗ tfb) =
∑

j,k,d,l

(Rσ)dl
fe(Rυ)jk

batdj ⊗ ∂lk

and restricts to a linear isomorphism of 
∑

i,j,k,l C(q)∂ij ⊗ tkl onto 
∑

i,j,k,l C(q)tkl ⊗ ∂ij.

Proof. By Lemmas 3.2 and 3.3, we have (ρ ⊗ ρ)(R) = R, (ρ ◦ 
 ◦ S) ⊗ (ρ ◦ 
 ◦ S)(R) =

R21 = T (R), ((ρ ◦ 
 ◦ S) ⊗ ρ)(R) = (R−1
21 )t2 and ((ρ ◦ 
 ◦ S) ⊗ ρ)(R−1

21 ) = Rt2 . It is 

straightforward to check from the explicit formula (10) for R that T ((R−1
21 )t2) = (R−1

21 )t2

and T (Rt2) = Rt2 . Thus ζ = ρ ◦ 
 ◦ S and ξ = ρ satisfy the conditions of Lemma 6.2

with respect to the forms uυ〈·, ·〉, υ ∈ {0, 1}. Moreover, by Lemma 3.3, we see that

u0〈tij , ∂kl〉 = [(ξ ⊗ ζ)(R−1
21 )]ikjl = (Rt2)ik

jl = (R0)ik
jl
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and

u1〈tij , ∂kl〉 = [(ξ ⊗ ζ)(R)]ikjl = ((R−1
21 )t2)ik

jl = (R1)ik
jl .

A similar argument yields that ζ = ρ and ξ′ = ρ ◦ 
 ◦ S−1 satisfies the conditions 

of Lemma 6.2 with respect to the forms vυ, υ ∈ {0, 1}. Thus, by Lemma 6.2, the bi-

linear forms vυ〈·, ·〉 can be extended uniquely to the stated dual pairings for υ = 0, 1. 

Furthermore, it follows from Lemma 3.3 that

v0〈tij , ∂kl〉 = [(ζ ⊗ ξ′)(R−1
21 )]ikjl = (Rt1)ik

jl = (R0)jl
ik

and

v1〈tij , ∂kl〉 = [(ζ ⊗ ξ′)(R)]ikjl = ((R−1
21 )t1)ik

jl = (R1)jl
ik.

By the definition of the twisted tensor product Oq(MatN ) ⊗τυ,σ
Oq(MatN )op in 

Lemma 6.1, we have

τυ,σ(∂ea ⊗ tfb) =
∑

d,j,l,k

tdj ⊗ ∂lkvσ〈tfd, ∂el〉uυ〈tjb, ∂ka〉.

The lemma now follows by plugging in the values for uυ〈·, ·〉 and vσ〈·, ·〉 as described 

above and noting that both R0 and R1 are invertible matrices. �

Given υ, σ ∈ {0, 1}, define algebras Aυ,σ as twisted tensor products

Aυ,σ = Oq(MatN ) ⊗τυ,σ
Oq(MatN )op

where τυ,σ are the twisting maps from Proposition 6.3. The twisting map for Aυ,σ gives 

us the following equalities

∂eatfb =
∑

j,k,d,l

(Rt2

σ )dl
fe(Rt2

υ )jk
batdj∂lk (38)

for all e, a, f, b, where R0 = R and R1 = R−1
21 . Note that this equality combined with 

the embeddings of Oq(MatN ) and Oq(MatN )op inside Aυ,σ define multiplication on this 

twisted tensor product. Just as was done for Oq(MatN ) and Oq(MatN )op (see (13) and 

(18)), relations (38) can be put into matrix form as

P2T1 = Rt1

σ T1P2Rt2

υ . (39)

Recall that both Oq(MatN ) and Oq(MatN )op are Uq(gln)-bimodule algebras. The 

next result shows that these bimodule algebra structures extend to the twisted tensor 

products of the above proposition.
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Proposition 6.4. For each υ, σ ∈ {0, 1}, the twisted tensor product Aυ,σ inherits a 

Uq(glN )-bimodule algebra structure from Oq(MatN ) and Oq(MatN )op.

Proof. Recall that as an algebra, Oq(MatN ) is a quotient of the tensor algebra T (V ⊗W )

modulo the relations coming from the FRT construction. Similarly, Oq(MatN )op is a 

quotient of the tensor algebra T (V ∗ ⊗ W ∗) modulo FRT relations. Thus Aυ,σ can be 

viewed as a quotient of T (V ⊗ W ) ⊗ T (V ∗ ⊗ W ∗) modulo three types of relations: the 

relations for Oq(MatN ), the relations for Oq(MatN )op, and the relations that come from 

the twisting map as in (38). We have already shown that the first two types of relations 

are invariant under the left and right action of Uq(glN ). So we only need to check that 

the extension of these actions preserves the relations coming from the twisted tensor 

product.

The relations coming from the twisted tensor product can be lifted to the level of the 

tensor algebra T (V ⊗ W ) ⊗ T (V ∗ ⊗ W ∗) as

(v∗
e ⊗ w∗

a) ⊗ (vf ⊗ wb) −
∑

j,k,d,l

(Rt2

σ )dl
fe(Rt2

υ )jk
ba(vd ⊗ wj) ⊗ (v∗

l ⊗ w∗
k).

These relations correspond to the mappings of vector spaces

(V ∗ ⊗ W ∗) ⊗ (V ⊗ W ) −→ (Rt2

σ )13((V ⊗ W ) ⊗ (V ∗ ⊗ W ∗))(Rt1

υ )24. (40)

By Lemma 3.3 and the facts that T (Rt2) = Rt2 and T ((R−1
21 )t2) = (R−1

21 )t2 , we have

R0 = Rt2 = ((ρ ◦ 
 ◦ S) ⊗ ρ)(R−1
21 ) = (ρ ⊗ (ρ ◦ 
 ◦ S))(R−1

12 )

and

R1 = (R−1
21 )t2 = ((ρ ◦ 
 ◦ S) ⊗ ρ)(R) = (ρ ⊗ (ρ ◦ 
 ◦ S))(R21)

Another application of Lemma 3.3 yields Rt1t2

0 = Rt1 = (ρ ⊗ (ρ ◦ 
 ◦ S−1))(R−1
21 ) and 

Rt1t2

1 = (R−1
21 )t1 = (ρ ⊗ (ρ ◦ 
 ◦ S−1))(R). Hence, we can rewrite (40) as

(V ∗ ⊗ W ∗) ⊗ (V ⊗ W ) −→ T (Rσ)13 · ((V ⊗ W ) ⊗ (V ∗ ⊗ W ∗)) · (Rυ)24 (41)

where R0 = R−1
21 and R1 = R. By (7), the map V ∗⊗V → Rσ(V ⊗V ∗) = T (Rσ) ·(V ⊗V ∗)

is an isomorphism of left Uq(glN )-modules for both σ = 0 and σ = 1. Similarly, by (8), 

the map W ∗ ⊗ W → (W ⊗ W ∗)Rt1t2
υ = (W ⊗ W ∗) · (Rυ) is an isomorphism of right 

Uq(glN )-modules for υ ∈ {0, 1}. Thus (41) is a bimodule map with respect to the left 

and right actions of Uq(glN ) which means that the relations coming from the twisting 

map are preserved by both the left and right action of Uq(glN ) as desired. �

A linear map f : M → M ′ of Uq(glN )-modules is a Uq(glN )-module map provided 

that f(u · m) = u · f(m) for all m ∈ M and u ∈ Uq(glN ). Right module and bi-module 
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maps are defined similarly. The next result shows that the twisting map is a module map 

with respect to both the left and right action of Uq(glN ).

Corollary 6.5. For each υ, σ ∈ {0, 1}, the twisting map τυ,σ is a Uq(glN ) bi-module map 

from 
∑

i,j,k,l C(q)∂ij ⊗ tkl to 
∑

i,j,k,l C(q)tkl ⊗ ∂ij.

Proof. It follows from Proposition 6.4 and its proof that

∑

i,j,k,l

C(q)(∂ij ⊗ tkl − τυ,σ(∂ij ⊗ tkl))

is a Uq(glN ) sub-bimodule of

∑

i,j,k,l

C(q)∂ij ⊗ tkl +
∑

i,j,k,l

C(q)tkl ⊗ ∂ij .

This means that u · (∂ij ⊗ tkl) − u · τυ,σ(∂ij ⊗ tkl) is an element of this sub-bimodule for 

all u ∈ Uq(glN ). Note that u acting on the left defines a linear map on C(q)∂ij ⊗tkl while 

τυ,σ is a linear isomorphism of C(q)∂ij ⊗ tkl onto C(q)tkl ⊗ ∂ij . Hence u · (∂ij ⊗ tkl) −

τυ,σ(u · (∂ij ⊗ tkl)) is the unique element of this sub-bimodule that is also contained in 

u · (∂ij ⊗ tkl) +
∑

i,j,k,l C(q)tkl ⊗ ∂ij . It follows that u · τυ,σ(∂ij ⊗ tkl) = τυ,σ(u · (∂ij ⊗ tkl). 

This shows that τυ,σ is a left module map. The proof for left replaced by right is the 

same using right actions instead of left ones. �

The four twisted tensor products Aυ,σ, υ, σ ∈ {0, 1} can be viewed as graded quantum 

analogs of the Weyl algebra. Indeed, these algebras have an obvious grading using the 

fact that all the relations are homogeneous with respect to the degree function defined 

by deg(tij) = deg(∂ij) = 1 for all i, j. Moreover, it is straightforward to see that their 

relations specialize to those of the graded Weyl algebra at q = 1 (i.e. the constant terms 

are dropped). In Section 8.2, we show how to transform two of these graded algebras 

into non-graded ones which, in turn, can be viewed as quantum analogs of the Weyl 

algebra. For now, we note that these four algebras fall into two classes via C-algebra 

isomorphisms.

Write ā for the image of a ∈ C(q) under the C-automorphism of C(q) sending q to 

q−1.

Proposition 6.6. The map sending each scalar a to ā, each tij to tN−i,N−j and each ∂kl

to ∂N−k,N−l defines a C-algebra isomorphism from A00 to A11 and defines a C-algebra 

isomorphism from A01 to A10.

Proof. Note that the map sending i to N − i has the effect of switching order: i < j

becomes N −j < N −i. Note further that the set of relations in Section 4.2 for Oq(MatN )

is equivalent to the same relations in (i), the same first relation of (ii) and the final relation 

of (ii) replaced by
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tijtkl − tkltij = (q − q−1)tiltkj for i < k; j < l

since by the first relation of (ii), tiltkj = tkjtil for i < k; j < l. Hence, applying the map 

sending a to ā and each tij to tN−i,N−j to the relations for Oq(MatN ) as written out in 

(i) and (ii) in Section 4.2, yields an equivalent set of relations. Thus, this map extends 

to a C-algebra isomorphism on Oq(MatN ). A similar argument shows that the map 

sending each scalar a to ā and each ∂ij to ∂N−i,N−j extends to a C-algebra isomorphism 

on Oq(MatN )op.

It remains to show that the combination of these two maps, which is just the map 

described in the proposition, sends the relations defined by the twisting map of τ00 to 

that of τ11 and the relations defined by the twisting map of τ01 to that of τ10. This can 

be seen easily from the relations (38) derived from these twisting maps and the fact that 

applying the map r → r̄ to the entries of the matrix Rt2 yields ((R−1
21 )t2)t1t2 . �

For A00, the relations coming from the twisting map can be expanded out as follows. 

For all a, b, c, d, we have

(i) ∂cbtda = tda∂cb if b �= a and c �= d.

(ii) ∂cbtca = qtca∂cb +
∑

c′>c(q − q−1)tc′a∂c′b if b �= a and c = d.

(iii) ∂catda = qtda∂ca +
∑

a′>a(q − q−1)tda′∂ca′ if b = a and c �= d.

(iv) ∂catca = q2tca∂ca + q
∑

c′>c(q − q−1)tc′a∂c′a + q
∑

a′>a(q − q−1)tca′∂ca′

+ 
∑

a′>a

∑

c′>c(q − q−1)2tc′a′∂c′a′ if b = a and c = d.

Using Proposition 6.6, it is easy to translate these relations into ones for A11. For the 

other two cases, only one of the two inequalities a′ > a and c′ > c is changed and the 

powers of q showing up before the various summands are modified appropriately.

6.4. Comparison with other constructions

It is natural to ask whether the twisted tensor products of this section correspond 

to a standard construction such as a quantum double or, more generally, a double cross 

product (see for example [15], Chapters 8 and 10). For starters, as pointed out in its 

proof, Lemma 6.1 is very similar to Proposition 8 in Section 8.2.1 of [15] used to define 

quantum doubles. Moreover, the twisted tensor product of Lemma 6.1 resembles the one 

for double cross product bialgebras (see Proposition 26 of Section 10.2.5 in [15]).

Despite these similarities, the algebras Aυ,σ are not double cross product bialgebras. 

This can be verified in a straightforward manner using the fact that the double crossed 

product admits a tensor product coalgebra structure (see [15] Proposition 26). In con-

trast, the map sending Δ′ : yx →
∑

y(1)x(1) ⊗ y(2)x(2) is not an algebra isomorphism of 

Aυ,σ to Aυ,σ ⊗ Aυ,σ where y ∈ Oq(MatN )op and x ∈ Oq(MatN ) for any choice of υ, σ

in {0, 1}. For instance, consider the case where σ = υ = 0, y = ∂cb, x = tca, and a �= b. 

Assume that Δ′ is an algebra homomorphism. We have
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Δ′(∂cbtca) =
∑

j,k

∂cjtck ⊗ ∂jbtka

∈
∑

j,k

q1+2δjk tck∂cj ⊗ tka∂jb +
∑

(c′,k′,j′,k′′,j′′)∈C

C(q)tc′k′∂c′j′ ⊗ tk′a∂j′b

where C is the set of 5-tuples (c′, k′, j′, k′′, j′′) satisfying c′ ≥ c, k′ ≥ k, j′ ≥ j, k′′ ≥

k, j′′ ≥ j with at least one of these inequalities strict (plus other conditions such as 

k′ = k and j′ = j unless k = j, etc.). On the other hand,

Δ′(qtca)Δ′(∂cb) +
∑

c′>c

(q − q−1)Δ′(tc′a)Δ′(∂c′b)

∈
∑

j,k

qtck∂cj ⊗ tka∂jb +
∑

c′>c

C(q)tc′k∂c′j ⊗ tka∂jb

By relation (ii) of Section 6.3 and the assumption that Δ′ is an algebra homomorphism, 

these two values should be equal. But, since

∑

j,k

q1+2δjk tck∂cj ⊗ tka∂jb �=
∑

j,k

qtck∂cj ⊗ tka∂jb

these two values are not equal. Hence Δ′ is not an algebra homomorphism and does not 

define a comultipication for A00. A similar argument yields the same negative result for 

A11; a somewhat more complicated argument establishes this result for the other two 

possibilities A10 and A01.

7. Graded Weyl algebras for homogeneous spaces

7.1. Inverting a matrix related to R

The next two computational lemmas show how to invert Rt2 and related matrices. 

These results will allow us to use the reflection equations in the construction of certain 

twisting maps.

Lemma 7.1. Suppose that α, υ ∈ {0, 1} and α + υ = 1. For all g, u ∈ {1, . . . , n} with 

g �= u, we have

n
∑

k=1

q−2k(St2

υ )gg
kk(St1

α )kk
uu = 0 (42)

where Sγ = Rg if γ = 0 and Sγ = (Rg)−1
21 if γ = 1.

Proof. We prove the lemma for α = 1 and υ = 0; the argument is easily modified for the 

case α = 0 and υ = 1. Since Rg is block diagonal with diagonal entries (R, In2 , In2 , R), 

it is straightforward to reduce to the case where Rg = R.
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Note that (Rt2)gg
kk = rgk

kg . Using the formulas for rij
kl given in Section 3.4, we have 

(Rt2)gg
kk = q for k = g, (Rt2)gg

kk = (q − q−1) for k < g, and (Rt2)gg
kk = 0 for k > g. One 

checks from these explicit formulas for the entries of R, that R−1
21 = R̄t1t2 where a → ā

is the C-algebra isomorphism of C(q) sending q to q−1. Hence ((R−1
21 )t1)kk

uu = r̄ku
uk = q−1

for k = u, ((R−1
21 )t1)kk

uu = −(q − q−1) for k > u, and ((R−1
21 )t1)kk

uu = 0 for k < u. It follows 

that (42) holds for u > g. For u < g, we have

n
∑

k=1

q−2k(Rt2)gg
kk((R−1

21 )t1)kk
uu

= −q−2u(q−2 − 1) − q−2g(q2 − 1) +
∑

u<k<g

q−2k(q2 − 1)(q−2 − 1)

= −q−2u(q−2 − 1) + q−2g+2(q−2 − 1) −

g−1
∑

k=u+1

q−2k(q−2 − 1) +

g−1
∑

k=u+1

q−2k+2(q−2 − 1)

which simplifies to

−

g−1
∑

k=u

q−2k(q−2 − 1) +

g
∑

k=u+1

q−2k+2(q−2 − 1) = 0. �

Let G be the (rank g) × (rank g) diagonal matrix with kth entry Gkk = q−2k for all 

1 ≤ k ≤ rank g. Set G1 = G × I and G2 = I ⊗ G where here I is the (rank g) × (rank g)

identity matrix.

Lemma 7.2. We have (Rt2
g

)−1 = G1((Rg)−1
21 )t1)G−1

1 = G2((Rg)−1
21 )t1)G−1

2 . A similar 

assertion holds for Rg replaced by (Rg)−1
21 .

Proof. Using the formulas for the entries of R (Section 3.4), we see that (Rt2
g

)ab
ce �= 0

provided one of the following two conditions hold

• c = e and a = b

• c �= e and (a, b) = (c, e).

Moreover, in the latter case, (Rt2
g

)ab
ce = 1. Hence, using Lemma 7.1, we have

[Rt2

g
G1((Rg)−1

21 )t1 ]ab
rs =

∑

ce

[Rt2

g
]ab
ce [G1]ce

ce[((Rg)−1
21 )t1 ]ce

rs

= δarδbsq−2a[Rt2

g
]ab
ab[((Rg)−1

21 )t1 ]ab
ab + δabδrsδa�=r

∑

c

[Rt2

g
]aa
cc [((Rg)−1

21 )t1 ]cc
rr

=

{

q−2a if a = r, b = s
0 otherwise
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It follows that Rt2
g

G1((Rg)−1
21 )t1 = G1 which proves the first equality. The other equality 

as well as the versions with Rg replaced by (Rg)−1
21 follow using a similar argument. �

7.2. Extended graded Weyl algebras

We construct here graded quantum Weyl Algebras for each of the three families of 

symmetric pairs where the polynomial part is Pθ. The starting point is the formation 

of algebras which can be viewed as extended versions of the graded Weyl algebras of 

Section 6.3. In particular, they are closely related to the algebras Aυ,σ.

Let O be the algebra generated by two copies of P, the first generated by tij and 

the second by t′
ij , with no relations between the tij and the t′

ij . In other words, O is a 

quotient of the tensor algebra T (M) ⊗ T (M ′) = T (M ⊕ M ′) by the ideal generated by 

the ideals corresponding to the relations of the first and second copy of P. Similarly, let 

Oop be the algebra generated by two copies of D = Pop, the first generated by ∂ij , and 

the second generated by ∂′
ij with no relations between the ∂ij and the ∂′

ij .

Given α, β, υ, σ ∈ {0, 1}, define the map τα,β,υ,σ from Oop ⊗ P to P ⊗ Oop by

τα,β,υ,σ(∂ea ⊗ tfb) = τα,β(∂ea ⊗ tfb) and τα,β,υ,σ(∂′
ea ⊗ tfb) = τυ,σ(∂′

ea ⊗ tfb)

for all e, a, f, b in {1, . . . , n}. By Section 6.3, the maps τα,β and τυ,σ define twisting maps 

on Oop ⊗ P. Hence, τα,β,υ,σ is a twisting map on Oop ⊗ P. Therefore, we can form the 

twisted tensor product Aα,β,υ,σ = P ⊗τα,β,υ,σ
Oop. The twisting relations can be put 

into matrix format in analogy to the definitions of Aυ,σ in Section 7.3. In particular, we 

have

P2T1 = St1

α T1P2St2

β and P ′
2T1 = St1

υ T1P ′
2St2

σ (43)

where T is the matrix with entries tij , P is the matrix with entries ∂ij , P ′ is the matrix 

with entries ∂′
ij , Sγ = Rg if γ = 0 and Sγ = (Rg)−1

21 if γ = 1.

Similarly, the map τ ′
α,β,υ,σ is a twisting map where

τ ′
α,β,υ,σ(∂ea ⊗ tfb) = τα,β(∂ea ⊗ tfb) and τ ′

α,β,υ,σ(∂ea ⊗ t′
fb) = τυ,σ(∂ea ⊗ t′

fb).

Hence we can form the twisted tensor product A′
α,β,υ,σ := O ⊗τ ′

α,β,υ,σ
D . These relations 

can also be put into matrix format as

P2T1 = St1

α T1P2St2

β and P2T ′
1 = St1

υ T ′
1P2St2

σ (44)

using the same notation as above where P ′ is the matrix with entries ∂′
ij .

We are going to use the algebras to Aα,β,υ,σ and A′
α,β,υ,σ in order to identify a twisting 

map on Dθ ⊗ Pθ. To do this, we take a step back and consider the rank(g) × rank(g)

matrices D̃ and X̃ with ij entries d̃ij and x̃ij respectively where the d̃ij and x̃ij can be 

viewed as independent non-commuting variables. Alternatively, in the discussion below, 
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we will be taking d̃ij to be either d′
ij or dij and a similar statement holds for x̃ij. The 

following lemma allows us to express what will be come the desired twisting map both 

on the element level and in matrix form.

Lemma 7.3. The set of equalities

d̃abx̃ef =
∑

r,w,p,q,x,y,m,l

(St2

α )wr
xq (St2

α )pq
ma(St2

υ )xy
fl (St2

υ )ml
eb x̃pwd̃ry (45)

for all a, b, e, f in {1, . . . , n} is equivalent to the matrix equality

D̃2((St1

υ )−1)t2X̃1 = St1

α X̃1SαD̃2St2

υ , (46)

where Sγ = Rg if γ = 0 and Sγ = (Rg)−1
21 if γ = 1.

Proof. Reordering the right hand side of (45) yields

d̃abx̃ef =
∑

r,w,p,q,x,y,m,l

(St1

υ )eb
ml(S

t1

α )ma
pq (X̃1)pq

wq(Sα)wq
xr (D̃2)xr

xy(St2

υ )xy
fl

=
∑

m,l

(St1

υ )eb
ml[S

t1

α X̃1SαD̃2St2

υ )]ma
fl

Applying (St1
υ )−1 to both sides gives us

∑

e,b

((St1

υ )−1)ml
eb d̃abx̃ef = [St1

α X1SαD′
2St2

υ )]ma
fl (47)

We can rewrite the left hand side as

∑

eb

((St1

υ )−1)ml
eb d̃abx̃ef =

∑

eb

(D̃2)ma
mb ((St1

υ )−1)ml
eb (X̃1)el

fl = [D̃2((St1

υ )−1)t2X̃1]ma
fl

Plugging the last term on the right of the above equality into the left hand side of (47)

yields the desired matrix form (46). �

Both O and Oop inherit the structure of a Uq(g)-bimodule algebra from P and D . 

Here, we assume the action of Uq(g) on P ′ and D ′ is exactly the same as for the 

first copies with tij replaced by t′
ij everywhere and similarly, each ∂ij replaced by ∂′

ij . 

Since the twisting maps τα,β, α, β ∈ {0, 1} induce relations that are bi-invariant with 

respect to these actions, the same is true for the twisting maps τα,β,υ,σ and τ ′
α,β,υ,σ, 

α, β, υ, σ ∈ {0, 1}. Hence, the algebras Aα,β,υ,σ and A′
α,β,υ,σ inherit a Uq(g)-bimodule 

structure from the subalgebras used to construct them.

Note that the algebra Pθ embeds inside Aα,β,υ,σ via the inclusion of Pθ inside P

and Dθ embeds inside of A′
α,β,υ,σ via the inclusion of Dθ inside D for each choice of 
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α, β, υ, and σ. We also consider subalgebras of invariants inside O and Oop with respect 

to the action of Bθ that are closely related to Pθ and Dθ. In particular, define x′
ij ∈ O

and d′
ij ∈ Oop by

x′
ij =

∑

r,s

t′
irJr,stjs and d′

ij =
∑

r,s

q−2ŝ∂irJr,s∂′
js (48)

where ŝ = s in Types AI and AII; for diagonal type ŝ = s for s ≤ n, and ŝ = s − n

when s ≥ n + 1. Let P ′
θ be the subalgebra of O generated by the x′

ij and let D ′
θ be the 

subalgebra of Oop generated by the d′
ij .

Let X ′ be the rank(g) × rank(g) matrix with ij entry equal to x′
ij and let D′ be the 

rank(g) × rank(g) matrix with ij entry equal to d′
ij . It is straightforward to check that 

X ′ = T ′JT t while D′ = PGJ(P ′)t for all three families where J = J(1) is defined as in 

Section 5.2 and G is the diagonal matrix defined in Section 7.2.

It follows from the arguments in Section 5.2 that each x′
ij and each d′

ij is right invariant 

with respect to the action of Bθ. However, since there are no relations satisfied between 

the tij and the t′
ij , we see that the algebra P ′

θ generated by the t′
ij, 1 ≤ i, j ≤ n, is a 

free algebra with these generators. The same assertion holds for D ′
θ with the t′

ij replaced 

by the d′
ij .

Recall the reflection equations (19). It is straightforward to check that J is a nonzero 

scalar multiple of J−1 for all three families. Hence, we also have

J2RgJ1Rt1

g
= Rt1

g
J1RgJ2 (49)

Given a matrix M with entries in C(q), write M̄ for the image of M under the C-

algebra map sending q to q−1. It is also straightforward to check that J̄ t is a nonzero 

scalar multiple of J and R̄t1t2
g

= (Rg)−1
21 . Hence, applying the transpose and bar map 

to both sides of (19) and (49) yields the same equations with Rg replaced by (Rg)−1
21

everywhere.

Proposition 7.4. Set Sγ = Rg if γ = 0 and Sγ = (Rg)−1
21 if γ = 1. If β + σ = 1, then the 

subalgebra of Aα,β,υ,σ generated by Pθ and D ′
θ satisfies the relations

d′
abxef =

∑

r,w,p,q,x,y,m,l

(St2

α )wr
xq (St2

α )pq
ma(St2

υ )xy
fl (St2

υ )ml
eb xpwd′

ry

for all a, b, e, f . Similarly, if β + σ = 1, then the subalgebra of A′
α,β,υ,σ generated by Dθ

and P ′
θ satisfies the relations

dabx′
ef =

∑

r,w,p,q,x,y,m,l

(St2

α )wr
xq (St2

α )pq
ma(St2

υ )xy
fl (St2

υ )ml
eb x′

pwdry

for all a, b, e, f .
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Proof. Applying (St1
υ )−1 to both sides of the second equation of (43) yields

(St1

υ )−1P ′
2T1 = T1P ′

2St2

σ

which is equivalent to

(P ′)t
2((St1

υ )−1)t2T ′
1 = T1Sσ(P ′)t

2 (50)

where (P ′)t
2 = Id ⊗ (P ′)t. Note that applying the map t = t1t2 to both sides of the 

second equality of (43) becomes

(P ′)t
2T t

1 = St1

σ T t
1(P ′)t

2St2

ε (51)

where here we are using the fact that T t
1 and (P ′)t

2 commute with each other.

We prove the proposition by using the matrix form of the equations given by 

Lemma 7.3. In particular, expanding out the left hand side of (46) yields

D′
2((St1

υ )−1)t2X1 =
(

P2G2J2(P ′)t
2

)

((St1

υ )−1)t2
(

T1J1T t
1

)

= P2G2J2

(

(P ′)t
2((St1

υ )−1)t2T1

)

J1T t
1

Replacing the middle term by the right hand side of (50) and using the fact that T ′
1

commutes with G2J2 gives us

D′
2((St1

υ )−1)t2X1 = P2T1G2J2SσJ1(P ′)t
2T t

1

Using (43) and (51) to rewrite the first two and last two matrices yields

D′
2((St1

υ )−1)t2X1 =
(

St1

α T1P2St2

β

)

G2J2SσJ1

(

St1

σ T1
t(P ′)t

2St2

υ

)

= St1

α T1P2St2

β G2

(

J2SσJ1St1

σ

)

T1
t(P ′)t

2St2

υ

Using the reflection equation as presented before the proposition, we can replace 

J2SσJ1St1
σ with St1

σ J1SσJ2 which yields

D′
2((St1

υ )−1)t2X1 = St1

α T1P2St2

β G2

(

St1

σ J1SσJ2

)

T t
1(P ′)t

2St2

υ .

Since β + σ = 1, Lemma 7.2 ensures that St2

β G2St1
σ = G2 and so the above becomes

D′
2((St1

υ )−1)t2X1 = St1

α T1P2G2J1SσJ2T1
t(P ′)t

2St2

υ = St1

α T1J1P2G2SσT1
tJ2(P ′)t

2St2

υ

where the last equality follows from the fact that J1 commutes with P2G2.

The key to finishing the proof is showing that

G2Sσ = ((St2

β )−1)t1G2 (52)
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when β + σ = 1. By Lemma 7.2, we have (R−1
21 )t2G2Rt1 = G2. Multiplying both sides 

by ((R−1
21 )t2)−1 produces G2Rt1 = ((R−1

21 )t2)−1G2. Applying t1 to both sides yields the 

equality G2R = ((((R−1
21 )t2)−1)t1G2. This establishes (52) when Sσ = R and Sβ = R−1

21 . 

This immediately extends to the diagonal type using the fact that R(g) = (R, In2 , In2 , R)

in that setting. The other case (σ = 1 and β = 0) is similar with the roles of R and R−1
21

interchanged.

Now using (52) we see that

St1

α T1J1P2((St2

β )−1)t1G2T1
tJ2P ′

2
t
St2

υ = St1

α T1J1T t
1SαP2G2J2P ′

2
t
St2

υ = St1

α X1SαD′
2St2

υ

as desired. This proves the first set of equalities. The argument for the second set is very 

similar using two copies of the polynomial part and only one copy of the partial part. �

7.3. Four twisted tensor products for homogeneous spaces

We introduce a family of twisting maps, and refer to each of them by τθ
α,υ for α, υ ∈

{0, 1}, as follows. Let τθ
α,υ be the map from 

∑

i,j,k,l C(q)d̃ij ⊗ x̃kl to 
∑

i,j,k,l C(q)x̃kl ⊗ d̃ij

defined by

τθ
α,υ(d̃ab ⊗ x̃ef ) =

∑

r,w,p,q,x,y,m,l

(St2

α )wr
xq (St2

α )pq
ma(St2

υ )xy
fl (St2

υ )ml
eb x̃pw ⊗ d̃ry (53)

for all a, b, e, f . Here, we let d̃ij be either d′
ij or dij and similarly, x̃ij is either xij or 

x′
ij . Since both D ′

θ and P ′
θ are free algebras, the map τθ

α,υ extends to a twisting map 

from D ′
θ ⊗ P ′

θ to P ′
θ ⊗ D ′

θ. Using this twisting map, we obtain a twisted tensor product 

P ′
θ ⊗τθ

α,υ
D ′

θ.

Assume that β + σ = 1. Recall that by construction, Aα,β,υ,σ is a twisted tensor 

product. Since Pθ embeds in the first component and D ′
θ in the second, we have that 

multiplication induces an injection

Pθ ⊗ D
′
θ ↪→ Aα,β,υ,σ.

By Proposition 7.4, the subalgebra of Aα,β,υ,σ generated by Pθ and D ′
θ is isomorphic to 

the twisted tensor product Pθ ⊗τθ
α,υ

D ′
θ. Similarly, the subalgebra of A′

α,β,υ,σ generated 

by Dθ and P ′
θ is isomorphic to the twisted tensor product P ′

θ ⊗τθ
α,υ

Dθ.

Since P ′
θ is a free algebra generated by the x′

ij , we can realize Pθ as a quotient of P ′
θ. 

The defining ideal Iθ is generated by the elements described in Proposition 5.10 where 

each x̃ij is replaced by x′
ij . Similarly, Dθ can be realized as a quotient D ′

θ/Jθ where Jθ

is the ideal of relations generated by elements read off of Proposition 5.11.

Proposition 7.5. Let τ be one of the twisting maps τθ
α,υ for some choice of α, υ ∈ {0, 1}. 

Define two algebra maps by
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• ϕ1 : P ′
θ ⊗τ D ′

θ → Pθ ⊗τ D ′
θ is the identity on D ′

θ and sends each x′
ij to xij

• ϕ2 : P ′
θ ⊗τ D ′

θ → P ′
θ ⊗τ Dθ sends d′

ij to dij and is the identity on P ′
θ.

The kernel of ϕ1 is generated by Iθ and the kernel of ϕ2 is generated by Jθ. More-

over, both maps are left Uq(g)-module and right Bθ-module maps and all elements under 

consideration are invariant with respect to the right action of Bθ.

Proof. The fact that these two maps are algebra homomorphisms with the desired kernels 

follows immediately from the discussion preceding the lemma on various twisted tensor 

products. The last assertion follows from the fact that Aα,β,υ,σ and A′
α,β,υ,σ are both 

two-sided Uq(g)-modules and Pθ, P ′
θ, Dθ, and D ′

θ are all left Uq(g)-submodules and right 

Bθ-submodules with the latter action trivial. Moreover, by construction, these module 

structures for each of the algebras under consideration are defined in the same way and 

so compatible with these algebra maps. �

A consequence of the above proposition is that the ideal Iθ “commutes” with elements 

in D ′
θ. More precisely, we have d′Iθ ⊂ IθD

′
θ for all d′ ∈ D ′

θ and, moreover, D ′
θIθ = IθD

′
θ. 

This is because the twisting map τθ
α,υ defines an isomorphism of D′

θ ⊗P ′
θ onto P ′

θ ⊗D ′
θ

which induces an isomorphism by the twisting map of D′
θ ⊗ Pθ onto Pθ ⊗ D ′

θ. Hence 

τ(D ′
θ ⊗ Iθ) = Iθ ⊗ D ′

θ. Analogous results hold for Jθ. In particular, we have JθP
′
θ =

P ′
θJθ. It follows that the ideal in P ′

θ ⊗τθ
α,υ

D ′
θ generated by Iθ and Jθ takes the form 

IθD′
θ +P ′

θJθ and is isomorphic via multiplication as vector spaces to Iθ ⊗D ′
θ +P ′

θ ⊗Jθ. 

This ensures that the quotient P ′
θ ⊗τθ

α,υ
D ′

θ by the ideal IθD′
θ +P ′

θJθ is itself a twisted 

tensor product of Pθ and Dθ. Thus we have the following result on twisted tensor 

products of Dθ and Pθ.

Theorem 7.6. For each α, υ ∈ {0, 1}, the map τθ
α,υ defined by

τθ
α,υ(dab ⊗ xef ) =

∑

r,w,p,q,x,y,m,l

(St2

α )wr
xq (St2

α )pq
ma(St2

υ )xy
fl (St2

υ )ml
eb xpw ⊗ dry

is a twisting map from Dθ ⊗Pθ to Pθ ⊗Dθ where S0 = Rg and S1 = (Rg)−1
21 . Moreover, 

Pθ ⊗τθ
α,υ

Dθ inherits the structure of a left Uq(g)-module algebra and trivial right Bθ-

module algebra from the subalgebras Pθ and Dθ.

Proof. This follows from the discussion above combined with the fact that the twisting 

map τθ
α,υ preserves the left Uq(g)-module and right Bθ-module structures of Iθ and 

Jθ. �

Note that Theorem 7.6 gives us four graded Weyl algebras for each of the three types 

of homogeneous spaces Pθ. This is similar to the situation for the original quantum 

graded Weyl algebras Aα,υ associated to P. In analogy to the original case, we set 

Aθ
α,υ = Pθ ⊗τθ

α,υ
Dθ for each α, υ ∈ {0, 1}. The relations relating the xij and the dij can 
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easily be read off of the definition of the twisting map τθ
α,υ in Theorem 7.6. Namely, we 

have

dabxef =
∑

r,w,p,q,x,y,m,l

(St2

α )wr
xq (St2

α )pq
ma(St2

υ )xy
fl (St2

υ )ml
eb xpwdry (54)

for all a, b, e, f ∈ {1, . . . , rank(g)} and where S0 = Rg and S1 = (Rg)−1
21 . Using 

Lemma 7.3, these relations can be put in matrix form in a way that resembles the reflec-

tion equations, or, more precisely, the relations for Pθ. For example, when α = υ = 0, 

we have

D2((Rt1

g
)−1)t2X1Rt2

g
= Rt1

g
X1RgD2

In the next result, we show that for the diagonal type, we recover the graded Weyl 

algebras Aα,υ, α, υ ∈ {0, 1}.

Corollary 7.7. In the diagonal type, the subalgebra generated by Pθ and Dθ inside of 

Aα,β,υ,σ, for β + σ = 1, is isomorphic to the graded quantum Weyl algebra Aα,υ via 

the map ψ sending each xi,j+n to tij and each di,j+n to ∂ij. Moreover this map is a 

Uq(g)-bimodule algebra isomorphism where

ψ(a · u) = a · ψ(u) and ψ(u · a	) = γ(a) · ψ(u)

for all a ∈ Uq(gln) and u in the subalgebra generated by Pθ and Dθ where γ is the map 

from the first copy of Uq(gln) to the second defined by γ(Er) = En+r, γ(Fr) = Fn+r, and 

γ(Kεs
) = Kεn+s

for all r, s ∈ {1, . . . , n}.

Proof. By Proposition 5.10, the map sending xi,n+j to tij is an isomorphism of Pθ

onto Oq(Matn). Similarly, by Proposition 5.11, the map sending di,n+j to ∂ij is an 

isomorphism of Dθ onto Oq(Matn)op.

We show below that

da,b+nxe,f+n =
∑

r,m,j,l

(Rt2

α )rj
ea(Rt2

υ )ml
fb xr,m+ndj,l+n (55)

for all a, b, e, f in {1, . . . , n}. In other words, the elements de,a+n, xf,b+n satisfy the 

same twisted tensor product rules as ∂ea and tfb. Thus, the map defined by sending 

∂ij to di,j+n and each tij to xi,j+n is an algebra homomorphism. To see that this is an 

isomorphism, we note that by Theorem 7.6, the map from Pθ ⊗ Dθ to Aθ
α,υ induced by 

multiplication is a vector space isomorphism. Therefore, multiplication induces a vector 

space isomorphism from Pθ ⊗ Dθ into Aα,β,υ,τ . Since (55) corresponds to the defining 

twisting map for the twisted tensor product Aα,υ, there are no additional relations then 

those generated by the ideal including the relations satisfied by Pθ, those satisfied by 
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Dθ and the above relation relating dea and xfb. Thus the proposition follows once we 

establish (55).

By Theorem 7.6, we have

da,b+nxe,f+n =
∑

r,w,p,q,x,y,m,l

(St2

α )wr
xq (St2

α )pq
ma(St2

υ )xy
f+n,l(S

t2

υ )ml
e,b+nxpwdry (56)

for all a, b, e, f in {1, . . . , n} where the sum is over elements r, w, p, q, x, y, m, l in 

{1, . . . , 2n}. Since e, b are both in {1, . . . , n}, we must have m = e and l = b + n in 

order for (St2
υ )m,l

e,b+n to be nonzero. Moreover, it follows from the definition of Rg in the 

diagonal type that (St2
υ )e,b+n

e,b+n = Ie,b+n
e,b+n = 1. Hence (56) becomes

da,b+nxe,f+n =
∑

r,w,x,p,q,y

(St2

α )wr
xq (St2

α )pq
ea(St2

υ )xy
f+n,b+nxpwdry (57)

Since e ∈ {1, . . . , n}, xe,w is nonzero if and only if w ∈ {n + 1, . . . , 2n}. On the other 

hand, (St2
υ )x,y

f+n,b+nxe,w �= 0 implies that both x and y are also in {n + 1, . . . , 2n}. Hence 

dry �= 0 implies that r ∈ {1, . . . , n}. With w ∈ {n + 1, . . . , 2n} and r ∈ {1, . . . , n}, we get 

(St2
α )w,r

x,q �= 0 if and only if w = x, r = q, and (St2
α )w,r

w,r �= 1. Finally, since both e and a

are in {1, . . . , n}, the same must be true for p and q in order for (St2
α )p,q

e,a to be nonzero. 

Hence (57) becomes

da,b+nxe,f+n =
∑

w′,p,r,y′

(St2

α )pr
ea(St2

υ )w′+n,y′+n
f+n,b+n xp,w′+ndr,y′+n (58)

Now (St2
υ )w′+n,y′+n

f+n,b+n = (Rt2
υ )w′,y′

f,b and (St2
α )pq

ea = (Rt2
α )pq

ea for all values of a, e, p, q, w′, y′, f, b

in {1, . . . , n}. Thus (58) is the same as (55) up to a change of variables.

The bimodule isomorphism follows from Lemma 5.12 and its analog for Dθ. �

The next result shows that the C-algebra isomorphisms among the Aυ,σ of Proposi-

tion 6.6 extend to this setting for all three families. Recall that ā denotes the image of 

a ∈ C(q) under the C-automorphism of C(q) sending q to q−1.

Proposition 7.8. Set N = rank(g). The map sending each scalar a to ā, xij to xN−i,N−j

(resp. xi,j+n to xn−i,2n−j) and dij to dN−i,N−j (resp. dij to dn−i,2n−j) defines a C-

algebra isomorphism from Aθ
00 to Aθ

11 and from Aθ
10 to Aθ

01 in Types AI and AII (resp. 

diagonal type).

Proof. The diagonal case follows immediately from Corollary 7.7 and Proposition 6.6. 

For Types AI and AII, it is straightforward to check directly from the relations that 

this map defines an isomorphism of Pθ onto itself. Using the C(q) antiautomorphism 

defined by xij �→ dij (see the discussion preceding Proposition 5.11) we see that the same 

result holds for Dθ. It remains to show that the relations defined by the twisting map 
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τθ
00 becomes that of τθ

11 and the ones defined by the twisting map τθ
10 becomes those of 

τθ
01 under this mapping. The argument follows as in the proof of Proposition 6.6 using 

the explicit form of these twisting maps given above. �

Using the formulas for the entries of R and R−1
21 , one can expand out the relations 

defined by the twisting map in Theorem 7.6 in Types AI and AII. We won’t do a complete 

expansion here, but instead, note important properties.

Corollary 7.9. The following inclusions hold for the quantum graded Weyl algebra Aθ
00:

dabxef − qδaf +δae+δbf +δbexef dab ∈
∑

(e′,f ′,a′,b′)>(e,f,a,b)

C(q)xe′f ′da′b′

for all a, b, e, f ∈ {1, . . . , rank(g)} where

• a ≤ b and e ≤ f in Type AI

• a < b and e < f in Type AII

• a ≤ n < b and e ≤ n < f in diagonal type

and (e′, f ′, a′, b′) > (e, f, a, b) if and only if e′ ≥ e, f ′ ≥ f, a′ ≥ a, b′ ≥ b and at least one 

of these inequalities is strict.

Proof. The corollary follows in the diagonal case using the explicit relations given at 

the end of Section 6.3. Hence, we just consider Types AI and AII and so Rg = R where 

N = n in Type AI and N = 2n in Type AII. An examination of the formulas from 

Section 4.2 yields (Rt2)lk
ji �= 0 implies that k ≥ i and l ≥ j. It follows that

(Rt2)wr
xq (Rt2)pq

ma(Rt2)xy
fl (Rt2)ml

eb �= 0

implies that y ≥ l ≥ b, p ≥ m ≥ e, w ≥ x ≥ f , and r ≥ q ≥ a. Hence

dabxef = (Rt2)fa
fa(Rt2)ea

ea(Rt2)fb
fb(Rt2)eb

ebxef dab + X

where

X ∈
∑

(e′,f ′,a′,b′)>(e,f,a,b)

C(q)xe′f ′da′b′ .

The corollary now follows from the fact that (Rt2)ji
ji = qδij . �

Note that a version of Corollary 7.9 holds for Aθ
11 with the coefficient qδaf +δae+δbf +δbe

replaced by q−(δaf +δae+δbf +δbe) and the sum runs over tuples (e′, f ′, a′, b′) satisfying the 

opposite inequality (e, f, a, b) > (e′, f ′, a′, b′).
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Remark 7.10. As explained in [8], Oq(MatN ) is a CGL extension and hence a quantum 

nilpotent algebra. One checks using Lemma 5.7 that the same holds for Pθ for all three 

families. It turns out that Aθ
00 is an example of a symmetric CGL extension (see [8], 

Section 3.3) for each family. Certainly the previous result suggests that this is true. This 

property can be verified via a complete expansion of the relations for Aθ
00 arising from 

the twisting map that defines these algebras. Note that it is further shown in [8] that 

Oq(MatN ) is an example of a quantum cluster algebra. We suspect the same is true for 

Pθ as well as Aθ
00 for all three symmetric pair families.

8. Quantum Weyl algebras

8.1. An invariant bilinear form

The starting point for lifting the graded quantum Weyl algebras is to determine how 

to introduce constant terms in the relations coming from the twisting map. This will be 

accomplished using a Uq(glN ) bi-invariant bilinear form.

Lemma 8.1. The bilinear form 〈·, ·〉 on 
(

∑

i,j C(q)∂ij

)

×
(

∑

i,j C(q)tij

)

defined by

〈∂ij , tsk〉 = δisδjk for all i, j, s, k

is Uq(glN ) bi-invariant with respect to the Uq(glN )-module structures on 
∑

i,j C(q)∂ij

and 
∑

i,j C(q)tij.

Proof. It is sufficient to check the properties of left and right invariance with respect to 

the generators of Uq(glN ). For the left action, we have

〈Kεr
· ∂ij , Kεr

· tsk〉 = q−δir qδsr 〈∂ij , tsk〉 = δisδjk = ε(Kεr
)〈∂ij , tsk〉.

for all r, i, j, s, k. Also, for all r, i, j, s, k we have

〈Er · ∂ij , tsk〉 + 〈Kr · ∂ij , Er · tsk〉 = −q−1δir〈∂i+1,j , tsk〉 + q−δir+δi,r+1δr,s−1〈∂ij , ts−1,k〉

= −q−1δirδi+1,sδjk + q−δir δr,s−1δi,s−1δjk

= δirδi+1,sδj,k(−q−1 + q−1) = 0 = ε(Er)〈∂ij , tsk〉.

Similarly, for all r, i, j, s, k we have

〈Fr · ∂ij , K−1
r · tsk〉 + 〈∂ij , Fr · tsk〉 = −qq−δsr+δs,r+1δi−1,r〈∂i−1,j , tsk〉 + δsr〈∂ij , ts+1,k〉

= δi−1,sδjk(−qq−δsr δi−1,r + δsr)

= δi−1,sδjkδsr(−qq−1 + 1) = 0 = ε(Fr)〈∂ij , tsk〉.

This establishes left invariance. A similar computation yields right invariance. �
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The bilinear form 〈·, ·〉 can be translated into a linear map μ :
∑

i,j,k,l C(q)∂ij ⊗ tkl →

C(q) defined by μ(∂ij ⊗ tkl) = 〈∂ij , tkl〉 for all i, j, k, l. An immediate consequence of the 

above lemma is that

μ(u · (∂ij ⊗ tsk)) = u · μ(∂ij ⊗ tsk) = ε(u)μ(∂ij ⊗ tsk), (59)

for all u ∈ Uq(gln) and all i, j, s, k. The analogous equality holds for the right action. 

Note that (59) and its right hand version ensure that μ is a Uq(gln) bi-invariant map 

from 
∑

i,j,s,k C∂ij ⊗ tsk to 
∑

i,j,s,k Ctsk ⊗ ∂ij ⊕ C(q).

For each choice of υ, σ ∈ {0, 1} and each a, b, e, f , we write W υ,σ
a,b,e,f for the relation 

associated to a, b, e, f so that

W υ,σ
a,b,e,f = ∂ea ⊗ tfb − τυ,σ(∂ea ⊗ tfb) = ∂ea ⊗ tfb −

∑

j,k,d,l

(Rσ)dl
fe(Rυ)jk

batdj ⊗ ∂lk

for all a, b, e, f . By Proposition 6.3, the vector space spanned by the W υ,σ
a,b,e,f for a, b, e, f ∈

{1, . . . , n} is a Uq(gln) sub-bimodule of 
∑

i,j,k,l C(q)∂ij ⊗ tkl +
∑

i,j,k,l C(q)tkl ⊗ ∂ij with 

respect to the bimodule structure defined by Lemmas 4.1 and 4.2. We see that the same 

holds when we add a scalar to each relation coming from the bilinear form.

Proposition 8.2. For each υ, σ, the vector space spanned by

{W υ,σ
e,a,f,b − μ(∂ea ⊗ tfb)| a, b, e, f ∈ {1, . . . , n}} (60)

is a Uq(glN )-sub-bimodule of 
∑

i,j,k,l C(q)∂ij ⊗ tkl +
∑

i,j,k,l C(q)tkl ⊗ ∂ij + C(q).

Proof. Since the choice of υ, σ does not impact the proof, we drop the superscript from 

W in the argument below. Note that for each e, a, f, b we have

We,a,f,b ∈ ∂ea ⊗ tfb +
∑

i,j,k,l

C(q)∂ij ⊗ tkl.

Since

⎛

⎝

∑

i,j,k,l

C(q)∂ij ⊗ tkl

⎞

⎠ ∩

⎛

⎝

∑

i,j,k,l

C(q)tij ⊗ ∂kl

⎞

⎠ = 0,

it suffices to show that the vector space spanned by {∂ea ⊗ tfb − μ(∂ea ⊗ tfb)| a, b, e, f ∈

{1, . . . , n}} is a Uq(gln)-bimodule. By (59),

u · (∂ea ⊗ tfb − μ(∂ea ⊗ tfb)) = u · (∂ea ⊗ tfb) − μ(u · (∂ea ⊗ tfb))

for all u ∈ Uq(gln) and all e, a, f, b. This proves invariance with respect to the left action 

of Uq(gln). The same argument works for the right action. �
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8.2. A criteria for PBW deformations

Recall the notion of PBW deformations introduced in [5] for quadratic algebras and 

generalized to other algebras in [31], and defined as follows.

Definition 8.3. Let D = ∪i∈NFi(D) be an filtered algebra and let E be a N-graded 

algebra. The algebra D is called a PBW deformation of E if there is a filtered map 

from E to D that defines an isomorphism of E onto grF D =
⊕

i≥0 Fi(D)/Fi−1(D) as 

N-graded algebras.

We are interested in the following scenario. Assume that A = T (Y )/〈I〉 and B =

T (Z)/〈J〉 where I is a subspace of Y ⊗Y and J is a subspace of Z ⊗Z. Note that both A

and B are graded quadratic algebras. We further assume that both A and B are Koszul 

algebras (see [5], Section 3, for a precise definition of Koszul).

Let τ(1,1) be a linear map that sends Z ⊗ Y to Y ⊗ Z. Note that we can use τ(1,1) to 

inductively define maps τ(m,s) from Z⊗m ⊗ Y ⊗s by

τ(m,s) = (Id ⊗ τm−1,s−1 ⊗ Id)(τm−1,1 ⊗ τ1,s−1)(Id⊗m−1) ⊗ τ1,1 ⊗ (Id⊗s−1).

Now define a linear map τ from T (Z) ⊗T (Y ) to T (Y ) ⊗T (Z) by insisting that τ(1 ⊗a) =

a ⊗ 1, τ(b ⊗ 1) = 1 ⊗ b and τ(c ⊗ d) = τ(m,s)(c ⊗ d) for all c ∈ Z⊗m and d ∈ Y ⊗s. We 

can define multiplication on T (Z) ⊗ T (Y ) using the second property of twisting maps 

(see Section 6.1). It is straightforward to check that τ defines a twisting map from 

T (Z) ⊗ T (Y ) to T (Y ) ⊗ T (Z).

Assume further that τ becomes a twisting map from B ⊗ A to A ⊗ B when passing 

from T (Z) ⊗ T (Y ) to B ⊗ A and denote this induced twisting map by τ as well. Set 

E = A ⊗τ B and note that E is also a Koszul algebra ([30], Proposition 1.8). Furthermore, 

we may identify E with T (Z ⊕Y )/〈I +J +K〉 where K is the subspace of Z ⊗Y +Y ⊗Z

consisting of the elements w − τ(w) for w ∈ Z ⊗ Y .

Let μ be a linear map from I + J + K to C(q) and define the algebra Eμ by

Eμ = T (Z ⊕ Y )/〈r − μ(r), r ∈ I + J + K〉. (61)

By [30] Theorem 2.4 (c’), Eμ is a PBW deformation of E if and only if μ ⊗ Id = Id ⊗ μ

on

((I + J + K) ⊗ (Z + Y )) ∩ ((Z + Y ) ⊗ (I + J + K)).

(In the notation of [30] Theorem 2.4, μ plays the role of κC while κL = 0).

Now assume that μ is defined as follows. Start with a linear map μ from Z ⊗ Y to 

C(q). Extend μ to a linear map from (Z + Y ) ⊗ (Z + Y ) to C(q) by insisting that μ is 

identically 0 on both Z ⊗ Z and Y ⊗ (Z + Y ). Note that μ restricts to a linear map on 
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I +J +K, since the latter is a subset of (Z +Y ) ⊗(Z +Y ). Thus, we may take advantage 

of the above criteria for PBW deformations based on the construction of Eμ above.

Since both μ ⊗ Id and Id ⊗ μ vanish on Z ⊗ Z ⊗ Z + Y ⊗ Y ⊗ Y , the above PBW 

deformation conditions become Eμ is a PBW deformation of E if and only if μ ⊗ Id =

Id ⊗ μ on

((J ⊗ Y + K ⊗ Z) ∩ (Z ⊗ K + Y ⊗ J))

and

((I ⊗ Z + K ⊗ Y ) ∩ (Z ⊗ I + Y ⊗ K))

The next result adapts [30], Theorem 2.4 (c’), providing a particularly useful criteria for 

when Eμ is a PBW deformation of E in various settings of this paper.

Lemma 8.4. Let μ be a linear map from (Y + Z) ⊗ (Y + Z) to C(q) that is zero on 

Y ⊗ Y + Y ⊗ Z + Z ⊗ Z. The algebra Eμ is a PBW deformation of A ⊗τ B if

(μ ⊗ Id + (Id ⊗ μ)(τ ⊗ Id)) (Z ⊗ I) = 0 (62)

and

(Id ⊗ μ + (μ ⊗ Id)(Id ⊗ τ)) (J ⊗ Y ) = 0. (63)

Proof. By definition, μ ⊗ Id vanishes on τ(Z ⊗ I) since this space is a subspace of 

Y ⊗ Y ⊗ Z. Similarly, μ ⊗ Id vanishes on (τ ⊗ Id)(Z ⊗ I) because it is a subspace of 

Y ⊗ Z ⊗ Y . Hence

(μ ⊗ Id)(Z ⊗ I) = (μ ⊗ Id) ◦ (Id + τ − τ ⊗ Id)(Z ⊗ I).

Similarly,

(Id ⊗ μ)((τ ⊗ Id)(Z ⊗ I)) = (Id ⊗ μ) ◦ (−Id − τ + τ ⊗ Id)(Z ⊗ I).

Hence (62) is equivalent to μ ⊗Id −Id ⊗μ vanishes on (Id +τ −τ ⊗Id)(Z ⊗I). A similar 

analysis shows that (63) is equivalent to μ ⊗Id −Id ⊗μ vanishes on (Id +τ −Id ⊗τ)(J⊗Y ).

Let a ∈ (K ⊗ Y + I ⊗ Z) ∩ (Z ⊗ I + Y ⊗ K). and write a = a1 + a2 + a3 where 

a1 ∈ Y ⊗ Y ⊗ Z, a2 ∈ Y ⊗ Z ⊗ Y , and a3 ∈ Z ⊗ Y ⊗ Y . Since a ∈ (K ⊗ Y + I ⊗ Z), we 

must have a3 + a2 ∈ K ⊗ Y with a2 = −(τ ⊗ Id)(a3). Similarly, a ∈ (Z ⊗ I + Y ⊗ K)

ensures that a2 + a1 ∈ Y ⊗ K with a1 = −(Id ⊗ τ)(a2). These two conditions together 

yield a1 = (Id ⊗ τ)(τ ⊗ Id)(a3) = τ(a3). Hence a = (τ − (τ ⊗ Id) + Id)a3. In other words,

(K ⊗ Y + I ⊗ Z) ∩ (Z ⊗ I + Y ⊗ K) ⊆ (Id + τ − τ ⊗ Id)(Z ⊗ I).



G. Letzter et al. / Journal of Algebra 655 (2024) 651–721 709

A similar argument shows that

(J ⊗ Y + K ⊗ Z) ∩ (Z ⊗ K + Y ⊗ J) ⊆ (Id + τ − Id ⊗ τ)(I ⊗ Z).

The proof now follows by the discussion preceding the lemma. �

8.3. PBW deformations for matrices

We now turn our attention to specific twisted tensor product algebras introduced 

earlier. In particular, we consider A = Oq(MatN ), B = Oq(MatN )op, E = Aυυ = A ⊗τ B

where τ = τυ,υ for υ ∈ {0, 1} and μ is defined by the bilinear form of Lemma 8.1. As in 

Section 4, we have that A is a quotient of the tensor algebra T (Y ) where Y = V ⊗ W

and B is a quotient of the tensor algebra T (Z) where Z = V ∗ ⊗ W ∗.

Abusing notation somewhat, we will take tij as a basis for Y where we identify tij

with vi ⊗ wj for all i, j and ∂ij for a basis of Z where ∂ij is identified with v∗
i ⊗ w∗

j for 

all i, j. Note that the set of defining relations I in Y ⊗ Y can be read off of (i) and (ii) of 

Section 4.2. Recall the bilinear map μ defined by the bilinear form 〈·, ·〉 of Section 8.1. 

The algebra T (Y ) is a Uq(gln)-bimodule via the action of Lemma 4.1 and T (Z) is a 

Uq(gln)-bimodule via the action of Lemma 4.2.

Theorem 8.5. For both υ = 0 and υ = 1, the algebra Eμ is a PBW deformation of 

E = Aυ,υ = A ⊗τ B where τ = τυ,υ, A = Oq(MatN ) and B = Oq(MatN )op. Moreover, 

Eμ inherits a Uq(glN )-bimodule structure from A and B.

Proof. By Lemmas 4.1 and 4.2, both I and J are Uq(glN )-sub-bimodules of T (Y ) ⊗

T (Z). By Proposition 8.2, the space K defined by τ and μ is a Uq(glN ) sub-bimodule of 

T (Y ) ⊗ T (Z). This proves the last assertion of the theorem. For the first assertion, we 

show that Eμ satisfies the criteria of Lemma 8.4.

By Corollary 6.5 and (59), both τ and μ are Uq(glN ) bi-invariant. Hence so is the map 

μ ⊗ Id + (Id ⊗ μ)(τ ⊗ Id). Hence (μ ⊗ Id + (Id ⊗ μ)(τ ⊗ Id))(z ⊗ y) = 0 implies the same 

is true for z ⊗ y replaced by u · (z ⊗ y) and by (z ⊗ y) · u for all u ∈ Uq(glN ).

For the remainder of the proof, we assume that υ = 0. The proof for υ = 1 is the 

same up to easy modifications such as swapping ∂NN with ∂11. Now suppose that

(μ ⊗ Id + (Id ⊗ μ)(τ ⊗ Id)) (∂NN ⊗ y) = 0 (64)

for all y ∈ I. Hence (μ ⊗ Id + (Id ⊗ μ)(τ ⊗ Id)) (FN−1 · (∂NN ⊗ y)) = 0 for all y ∈ I. 

Note that

Fn−1 · (∂NN ⊗ y) = (FN−1 · ∂NN ) ⊗ K−1
i · y + ∂NN ⊗ FN−1 · y

= −q∂N−1,N ⊗ K−1
i · y + ∂NN ⊗ FN−1 · y.
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Since Ki acts semisimply on Y ⊗ Y and I is an Uq(glN ) invariant subspace, we have I =

K−1
i ·I. Hence, it follows that (μ ⊗ Id + (Id ⊗ μ)(τ ⊗ Id)) (∂N−1,N ⊗y) = 0 for all y ∈ I. 

By induction, (μ ⊗ Id + (Id ⊗ μ)(τ ⊗ Id)) (∂jN ⊗ y) = 0 for all 1 ≤ j ≤ N and all y ∈ I. 

Using the right action with Fj replaced by Ej yields (μ ⊗ Id + (Id ⊗ μ)(τ ⊗ Id)) (∂jk ⊗

y) = 0 for all j, k and all y ∈ I. Thus it is sufficient to establish (64) in order to prove 

(62) with μ = μ and τ = τ00.

Note that the space I is spanned by the elements of 
∑

i,j,k,l C(q)tij ⊗tkl corresponding 

to the relations (i) and (ii) of Oq(MatN ) presented in Section 4.2. It follows from the 

formulas for the entries of R in Section 3.4 that (Rt2)jk
bN = rjN

bk = qδbN δjbδNk and 

(Rt2)dl
fN = rdN

fl = qδfN δNlδdf . Hence, since υ = 0, (38) becomes

τ00(∂NN ⊗ tfb) = qδfN +δbN tfb ⊗ ∂NN

at (e, a) = (N, N) for all f and b in the set {1, . . . , N}. It follows that the only term of 

the form ∂ij that shows up in the expression for (τ ⊗ Id)(∂NN ⊗ y) is ∂NN for all y ∈ I. 

Hence we need only show that μ ⊗ Id − (Id ⊗ μ)(τ ⊗ Id) vanishes on the subset of Z ⊗ I

consisting of elements ∂NN ⊗ y where y is any element in the set

{tNi ⊗ tNN − qtNN ⊗ tNi, tiN ⊗ tNN − qtNN ⊗ tiN | i = 1, . . . , N − 1}.

We have

(μ ⊗ Id)(∂NN ⊗ tN,i ⊗ tNN − q∂NN ⊗ tNN ⊗ tNi) = −q(1 ⊗ tNi)

This final term is simply −qtN,i viewed as an element in T (Z). Also

(Id ⊗ μ)(τ00 ⊗ Id)(∂NN ⊗ tNi ⊗ tNN − q∂NN ⊗ tNN ⊗ tNi)

= (Id ⊗ μ)(qtN,i ⊗ ∂NN ⊗ tNN − q3tNN ⊗ ∂NN ⊗ tNi) = q(tNi ⊗ 1) = qtNi

Thus (μ ⊗ Id) + (Id ⊗ μ)(τ00 ⊗ Id) vanishes on all elements of the form ∂NN ⊗ tN,i ⊗

tNN −q∂NN ⊗tNN ⊗tN,i. The same argument with tN,i replaced by ti,N terms shows the 

analogous result is true for all elements of the form ∂NN ⊗ti,N ⊗tNN −q∂NN ⊗tNN ⊗ti,N . 

This proves (64) and hence (62) for τ = τ00. Criteria (63) for τ = τ11 is established using 

a similar argument with ∂NN replaced by tNN . �

A natural question is whether a version of Theorem 8.5 holds for the other two alge-

bras A01 and A10. Unfortunately, such a deformation does not work using the invariant 

bilinear form μ. To get an idea of why this construction fails, consider (υ, σ) = (0, 1). 

Formula (38) becomes

τ01(∂1,N ⊗ tfb) = q−δf1+δbN tfb ⊗ ∂1N

for (e, f) = (1, N) and any choice of f, b. We have
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(μ ⊗ Id)(∂1N ⊗ t1i ⊗ t1N − q∂1N ⊗ t1N ⊗ t1i) = −qt1i

but

(Id ⊗ μ)(τ01 ⊗ Id)(∂1N ⊗ t1i ⊗ t1N − q∂1N ⊗ t1N ⊗ t1i)

= (Id ⊗ μ)(q−1t1,i ⊗ ∂1N ⊗ t1N − qt1N ⊗ ∂1N ⊗ t1i) = q−1t1i

and clearly −qt1i �= q−1t1i. This means that when we replace (38) with the deformed 

version using μ, the element t1i ends up in the image of the ideal generated by the 

relations for the tkl. In other words, t1i must be 0 in this deformation of the twisted 

tensor product A01. Clearly, the end result is not a PBW deformation. Despite this 

failure, we will find the twisted tensor products A01 and A10 to be essential in the 

construction of quantum Weyl algebras for homogeneous spaces.

Write W00 for the deformation of A00 and W11 for the deformation of A11 as described 

by Theorem 8.5. Note that Proposition can be easily extended to show that W00 and 

W11 are isomorphic as algebras. It turns out that W00 is isomorphic to the quantum 

Weyl algebra PDq(MatN ) studied in [3] that is a normalized version of the algebra 

Pol(MatN )q introduced in [28] in the context of quantum bounded symmetric domains. 

The algebra PDq(MatN ) is generated by zij , z∗
ij , 1 ≤ i, j ≤ N such that the zij gener-

ate a subalgebra isomorphic to Oq(MatN ), the z∗
ij generate a subalgebra isomorphic to 

Oq(MatN )op, and

z∗
eazfb =

∑

j,n,d,l

q2R(e, f, l, d)R(a, b, k, j)zdjz∗
lk + δef δab (65)

for all e, a, f, b where

• R(i, i, i, i) = 1, R(i, j, i, j) = q−1 for all i, j with i �= j.

• R(i, i, j, j) = −(q−2 − 1) for all i < j.

• R(i, j, k, l) = 0 for all other choices of j, i, j′, i′.

Note that (65) is just equality (6) of [3] (up to a change in variable name) but with the 

scalar term missing a coefficient of (1 −q2). As explained in [3], one can rescale the terms 

∂ea and tdj so as to remove this coefficient. We have performed this rescaling in (65).

Proposition 8.6. The algebra W00 is isomorphic to the algebra PDq(MatN ).

Proof. A comparison of the entries of the matrix R as stated in Section 3.4 and the 

elements R(a, b, c, d) defined above yields q−1(Rt2)dl
fe = R(e, f, l, d) for all e, f, l, d. Hence 

(65) agrees with the relations for W00 obtained from (38) with the deformation using μ. It 

follows that the map W00 → W sending tij , ∂ij to zij , z∗
ij is an algebra isomorphism. �
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It should be noted that the Uq(glN ) left module structure studied in this paper differs 

from that of [28] and [3] and, moreover, these references do not include a right mod-

ule structure. Now by [28] (see Proposition 2.1), the map Oq(MatN ) ⊗ Oq(MatN )op →

PDq(MatN ) defined by multiplication is an isomorphism of vector spaces. This fact 

directly implies that PDq(MatN ) = W00 is a PBW deformation of A00. So Theorem 8.5

is really a new proof for a result in [28]. However, the proof here has a number of ad-

vantages. It is less computational, it can be used to easily show that the other algebras 

Aυ,σ, υ �= σ do not admit such a PBW deformation (as explained above), and, perhaps 

most importantly, it extends in a straightforward manner to the setting of quantum 

homogeneous spaces.

8.4. Invariant bilinear forms for homogeneous spaces

Here we introduce invariant bilinear forms so as to deform the algebras Aθ
α,υ to the 

noncommutative setting (when α = υ) in analogy to how we handled the algebras Aα,υ. 

For the regular quantum Weyl algebra, invariant meant with respect to the bimodule 

action of Uq(glN ). For the three families of homogeneous spaces, by invariant, we mean 

with respect to the left action of Uq(g). In the diagonal setting, we can use Corollary 7.9

and the discussion following its proof to convert Aθ
α,υ into Aα,υ as Uq(gln)-bimodules by 

moving the action of one of the copies of Uq(gln) from the left to the right. Hence, for 

most of the proofs below, the diagonal type follows immediately from the regular one.

Recall the quantum Weyl algebra W00, which is a deformation of the graded quantum 

Weyl algebra A00, as introduced in Section 8.3. By construction, both P and D are 

Uq(g)-sub-bimodule algebras of W00. Hence, both Pθ and Dθ are left Uq(g) submodule 

algebras of W00.

Let L denote the left ideal of W00 generated by the ∂ij . Since 
∑

i,j C(q)∂ij is a 

Uq(g)-bimodule, so is L. Note that W00 = L ⊕ P. Moreover, if y ∈ D and w ∈ P

are homogeneous terms in the ∂ij and tij respectively and of the same degree, then 

yw ∈ L + C(q). Thus, we can define a bilinear form

⎛

⎝

∑

i,j

C(q)dij

⎞

⎠ ×

⎛

⎝

∑

i,j

C(q)xij

⎞

⎠ → C(q) (66)

by the formula

dijxuv − 〈dij , xuv〉 ∈ L (67)

where 〈dij , xuv〉 ∈ C(q) for each i, j, u, v.

Lemma 8.7. The bilinear form defined by (67) is left Uq(g) and right Bθ invariant.



G. Letzter et al. / Journal of Algebra 655 (2024) 651–721 713

Proof. Note that L, the scalars C(q), and 
∑

i,j,u,v C(q)dijxuv are left Uq(g)-modules. 

Hence, the above map is a map of left Uq(g)-modules. Since elements of Uq(g) act trivially 

(i.e. by the augmentation map) on C(q), we have

a · dijxuv − ε(a) · 〈dij , xuv〉 ∈ a · L ⊆ L

for all a ∈ Uq(g). Now a · dijxuv = (
∑

a(1) · dij)(a(2) · xuv) Hence, by definition, we have 

〈
∑

a(1) · dij , a(2) · xuv〉 = ε(a) · 〈dij , xuv〉 as desired.

Note that both 
∑

i,j C(q)dij and 
∑

i,j C(q)xij are trivial right Bθ-modules. Arguing 

as in the proof of Lemma 5.3 and using the definition of invariant bilinear form, yields 

that this bilinear form is right Bθ invariant. �

Recall that a basis for 
∑

i,j C(q)xij (resp. 
∑

i,j C(q)dij) consists of those xij (resp. 

dij) with i ∈ {1, . . . , n} and j ≥ i in Type AI, j > i in Type AII, and j ≥ n + 1 in 

diagonal type.

Proposition 8.8. There exists a unique left Uq(g) and right Bθ invariant form (up to a 

nonzero scalar multiple) such that

〈dij , xvu〉 = q−δuv δivδju

for all i ≤ j, v ≤ u in Type AI, for all i < j, v < u in Type AII, and for all i < n and 

j ≥ n + 1 in diagonal type.

Proof. By the discussion following Lemma 5.4, 
∑

i,j C(q)xij is isomorphic to a simple 

Uq(g)-module, which we refer to as L and 
∑

i,j C(q)dij is isomorphic to its dual L∗. 

Hence 
∑

ij C(q)dij ⊗
∑

ij C(q)xij
∼= L∗⊗L ∼= End L as left Uq(g)-modules. It follows that 

there is a unique left one-dimensional Uq(g)-submodule of 
∑

i,j,k,l C(q)dij ⊗ xkl. Since 

both 
∑

ij C(q)xij and 
∑

ij C(q)dij are trivial right Bθ-modules, this one-dimensional 

submodule must also be a trivial right Bθ-module.

The map defined by (66) can be rewritten as a projection from 
∑

i,j,u,v C(q)dij ⊗ xuv

onto the scalars defined by dij ⊗ xuv �→ 〈dij , xuv〉. This map can further be viewed as a 

composition of the projection of the left hand side onto its one-dimensional submodule 

followed by an isomorphism from this one-dimensional submodule to the one defined by 

the bilinear form. This guarantees that the bilinear form is unique up to nonzero scalar.

We now turn to establishing the explicit formula for the bilinear form. In the diagonal 

setting, this follows from Corollary 7.9 and Lemma 8.1 and the fact that δuv = 0 since 

u ≤ n < v. For Types AI and AII, we do this by viewing Dθ and Pθ as subalgebras 

of W00 and compute the value of dijxvu module L for each i, j, v, u using the relations 

presented at the end of Section 6.3.

First consider Type AI. Assume that i ≤ j and v ≤ u. Recall that xvu = q1−δvuxuv. 

It follows from the relations in W00 that ∂i,k∂jktustvs ∈ L for k �= s. Moreover
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∂ustus = 1 +
∑

u′≥u,s′≥s

C(q)tu′s′∂u′s′

Hence, for i < u′ we have ∂i,stu′s′ ∈ L and for v < u′ we have ∂u′s′tvs ∈ L. Hence, if 

i ≤ j and v ≤ u then ∂i,s∂jstustvs ∈ δjuδiv + L. Thus for i ≤ j and v ≤ u we have

dijxvu = q1−δvudijxuv = (
n

∑

k=1

q−2k∂ik∂jk)(
n

∑

s=1

tustvs)

= q1−δvu

n
∑

k=1

q−2k∂ik∂jktuktvk + L = (
n

∑

k=1

q−2k+1)q−δvuδivδju. + L

which proves the lemma in Type AI.

For Type AII, we have −qxvu = xuv for u < v. Also, since xuv = 0 whenever u = v, 

we may assume that δuv = 0 and so q−δuv = 1 in the formula for the bilinear form. Note 

that for i < j and v < u, we have ∂i,2k−1∂j,2ktustvr = δjuδivδ2k,sδ2k−1,r + L. For i < j

and v < u, we have dijxvu equals

−q−1dijxuv = −

(

n
∑

k=1

q−4k+1(∂i,2k−1∂j,2k − q−1∂i,2k∂j,2k−1)

)

×

(

n
∑

s=1

(tu,2s−1tv,2s − qtu,2stv,2s−1)

)

= −
n

∑

k=1

(q−4k+1(∂i,2k−1∂j,2k − q−1∂i,2k∂j,2k−1)(tu,2k−1tv,2k − qtu,2ktv,2k−1)

+ L

=

n
∑

k=1

(−q − q−1)q−4k+1δjuδiv + L

This proves the lemma in Type AII. �

For each a, b, e, f , write W θ,υ,σ
a,b,e,f for the relation associated to a, b, e, f so that

W θ,υ,σ
a,b,e,f = dea ⊗ xfb − τθ

υ,σ(dea ⊗ xfb)

for all a, b, e, f . By Proposition 7.5, the vector space spanned by the W θ,υ,σ
a,b,e,f for a, b, e, f ∈

{1, . . . , rank(g)} is a left Uq(g)-submodule of 
∑

i,j,k,l C(q)dij ⊗xkl +
∑

i,j,k,l C(q)xkl ⊗dij

with a trivial Bθ-module structure. Write μ for the bilinear map from 
∑

i,j,k,l C(q)dij⊗xkl

to C(q) defined by the bilinear form of Proposition 8.8.
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Proposition 8.9. For each υ, σ, the vector space spanned by

{W θ,υ,σ
e,a,f,b − μ(dea ⊗ xfb)| a, b, e, f ∈ {1, . . . , rank(g)}} (68)

is a left Uq(g) and trivial right Bθ-submodule of 
∑

i,j,k,l C(q)dij ⊗xkl +
∑

i,j,k,l C(q)xkl ⊗

dij + C(q).

Proof. For the left Uq(g) action, the proof is the same as the proof for Proposition 8.2

using xij instead of tij and dij instead of ∂ij . The assertion about the right action follows 

the discussion preceding the proposition. The trivial right action of Bθ also follows using 

elements b ∈ Bθ instead of elements u ∈ Uq(g) and the arguments in Proposition 8.2. �

8.5. PBW deformations for homogeneous spaces

In this section, we lift the graded algebras Aθ
υ,υ to the non-graded setting using the 

methods of Section 8.2. It should be noted that for diagonal type, this follows directly 

from the isomorphism of Corollary 7.9 and the results in Section 8.2 up to consideration 

of the right Bθ action. Nevertheless, we include this case in the results below.

Write Pθ as a quotient T (Y )/〈I〉 and Dθ as a quotient T (Z)/〈J〉 where Y and J are 

vector spaces and I and J are subvector spaces of T (Y ) and T (Z) respectively spanned by 

the defining relations for these algebras. Moreover, we only need to consider the quadratic 

defining relations for Pθ and Dθ, and so I ⊂ Y ⊗ Y, J ⊂ Z ⊗ Z. This is because we 

can take the vector spaces Y and Z to be isomorphic (via the natural quotient map) to 
∑

i∈{1,...,n},j∈Si
C(q)xij and 

∑

i∈{1,...,n},j∈Si
C(q)dij respectively where Si = {i, . . . , n}

in Type AI, Si = {i + 1, . . . , n} in Type AII, and Si = {n + 1, . . . , 2n} in the diagonal 

case. Hence both Pθ and Dθ are homogeneous quadratic algebras since Y and Z are 

homogeneous quadratic ideals. Moreover, by Lemma 5.9, Pθ admits a PBW basis and 

the same holds for Dθ via the anti-isomorphism relating the two algebras. Thus, by [32]

Theorem 3.1, both Pθ and Dθ are Koszul algebras.

As explained in the previous paragraph, the map from T (Y ) to Pθ is a vector space 

isomorphism when restricted to the vector subspace Y of T (Y ). Similarly, the map from 

T (Z) to Dθ restricts to an isomorphism of Z to its image inside of Dθ. It follows that 

the bilinear form of Proposition 8.8 can be lifted to bilinear forms on Y × Z. Write μ for 

the corresponding linear map from Y ⊗ Z to C(q). Let Eμ be the algebra defined as in 

(61).

Theorem 8.10. For both υ = 0 and υ = 1, the algebra Eμ is a PBW deformation of 

E = Aθ
υ,υ = A ⊗τ B where τ = τθ

υ,υ, A = Pθ and B = Dθ. Moreover, Eμ inherits a 

(left) Uq(g)-module structure and a (right) trivial Bθ-module structure from A and B.

Proof. The diagonal type follows from Corollary 7.7, Theorem 8.10 and Proposition 8.9. 

So the focus here are on Types AI and AII. We prove the theorem for υ = 0. The υ = 1

case is similar.
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By Lemma 5.4 and the discussion following its proof, 
∑

i,j Cxij is a simple left Uq(g)-

module generated by the lowest weight vector xnn in type AI and x2n−1,2n in Type AII. 

Furthermore, 
∑

i,j Cdij is a simple left Uq(g)-module with highest weight generating 

vector dnn in Type AI and d2n−1,2n in Type AII.

Arguing as in the proof of Theorem 8.10, it is sufficient to show that (μ ⊗ Id + (Id ⊗

μ)(τ ⊗ Id)) vanishes on z ⊗ v for all v ∈ I and (μ ⊗ Id + (Id ⊗ μ)(Id ⊗ τ)) on w ⊗ y for all 

w ∈ J where z = dnn and y = xnn in Type AI and z = d2n−1,2n, y = x2n−1,2n in Type 

AII. We prove the first set of conditions using the assumptions on z and v. The proofs 

for elements y and w are analogous.

By Theorem 7.6, we have

τ(dnn ⊗ xef ) =
∑

r,w,p,q,x,y,m,l

(Rt2)wr
xq (Rt2)pq

mn(Rt2)xy
fl (Rt2)ml

en xpw ⊗ dry (69)

Using the explicit formulas for the entries of R (see Section 4.2), we see that (Rt2)cb
an =

rcn
ab �= 0 if and only if b = n and a = c. Moreover (Rt2)an

an = 1 if n �= a and (Rt2)an
an = q

for n = a. If follows that in (69), l = n, e = m, y = n, f = x, q = n, p = e, r = n, w = f

and so

τ(dnn ⊗ xef ) = (Rt2)fn
fn(Rt2)en

en(Rt2)fn
fn(Rt2)en

enxef ⊗ dnn = q2δnf +2δnexef ⊗ dnn

Similarly in Type AII, we have

τ(d2n−1,2n ⊗ xef ) = q4−δe,2n−1−δf,2n−δf,2n−1xef ⊗ d2n−1,2n, (70)

for all e, f satisfying e < f .

The space I is spanned by families of relations which can be deduced from Lemma 5.7. 

For Type AI, using the fact that μ(dnn ⊗ xij) = 0 unless i = n = j, we only need to 

show that (μ ⊗ Id + (Id ⊗ μ)(τ ⊗ Id)) vanishes on dnn ⊗ v where v is one of the following 

relations in I:

• xnn ⊗ xdn − q−2xdn ⊗ xnn for d < n.

• xnn ⊗ xdk − xdk ⊗ xnn − q−1(q2 − q−2)xdn ⊗ xkn for d ≤ k < n.

Note that both μ ⊗ Id and (Id ⊗ μ)(τ ⊗ Id) vanish on dnn ⊗ xd,n ⊗ xk,n for d ≤ k < n

and hence we can ignore this term. By Proposition 8.8 and (69), we have

(μ ⊗ Id)(dnn ⊗ (xnn ⊗ xdk − q−2δknxdk ⊗ xnn)) = (μ ⊗ Id)(dnn ⊗ xnn ⊗ xdk) = q−1xdk

and

(Id ⊗ μ)(τ ⊗ Id))(dnn ⊗
(

xnn ⊗ xdk − q−2δknxdk ⊗ xnn

)

)

= (Id ⊗ μ)(q4xnn ⊗ dnn ⊗ xdk − xdk ⊗ dnn ⊗ xnn)
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= −(Id ⊗ μ)(xdk ⊗ dnn ⊗ xnn) = −q−1xdk

for all d and k satisfying d ≤ k ≤ n and d < n. Thus (μ ⊗ Id + (Id ⊗ μ)(τ ⊗ Id)) vanishes 

on the desired elements in dnn ⊗ I and thus on the entire set Z ⊗ I in Type AI.

Now consider Type AII. We need to show that (μ ⊗ Id + (Id ⊗ μ)(τ ⊗ Id) vanishes on 

d2n−1,2n ⊗ v where v is one of the following relations in I:

• x2n−1,2n ⊗ xd,2n − q−1xd,2n ⊗ x2n−1,2n for d < 2n − 1.

• x2n−1,2n ⊗ xd,2n−1 − q−1xd,2n−1 ⊗ x2n−1,2n for d < 2n − 1.

• x2n−1,2n ⊗ xdk − xdk ⊗ x2n−1,2n − (q − q−1)(qxd,2n ⊗ xk,2n−1 − xd,2n−1 ⊗ xk,2n) for 

d < k < 2n − 1.

Note that both (μ ⊗ Id) and (Id ⊗ μ)(τ ⊗ Id)) vanish on d2n−1,2n ⊗ (qxd,2n ⊗ xk,2n−1 −

xd,2n−1 ⊗ xk,2n) for d < k < 2n − 1. Hence it is sufficient to show that (μ ⊗ Id + (Id ⊗

μ)(τ ⊗ Id)) vanishes on d2n−1,2n ⊗ (x2n−1,2n ⊗ xdk − q−δk,2n−1−δk,2nxdk ⊗ x2n−1,2n). We 

have

(μ ⊗ Id)(d2n−1,2n ⊗ (x2n−1,2n ⊗ xdk − q−δk,2n−1−δk,2nxdk ⊗ x2n−1,2n))

= (μ ⊗ Id)(d2n−1,2n ⊗ x2n−1,2n ⊗ xdk) = xdk

For the other term, using (70) we see that

(Id ⊗ μ)(τ ⊗ Id)(d2n−1,2n ⊗ (x2n−1,2n ⊗ xdk − q−δk,2n−1−δk,2nxdk ⊗ x2n−1,2n))

= −(Id ⊗ μ)(τ ⊗ Id)(q−δk,2n−1−δk,2nxdk ⊗ x2n−1,2n)) = −xdk

for d < k and d < 2n − 1 as desired.

The arguments with the roles of x and d switched are similar as well as those for υ = 1

instead of υ = 0. The final assertion follows from writing the twisted tensor product as 

a quotient and applying Proposition 8.9. �

Note that Theorem 8.10 gives us two quantum Weyl algebras in the nongraded case 

for Types AI and AII. The same holds for the diagonal family. Moreover, one checks as in 

the discussion following Theorem 8.5 that the same construction does not extend to the 

other two cases. We write Wθ
00 for the deformation of Aθ

00 and Wθ
11 for the deformation of 

Aθ
11. The graded equality relating the dab and xef as given in (54) becomes the following 

in the nongraded case:

dabxef =
∑

r,w,p,q,x,y,m,l

(St2

α )wr
xq (St2

α )pq
ma(St2

υ )xy
fl (St2

υ )ml
eb xpwdry + q−δef δaeδbf

for all a, b, e, f ∈ {1, . . . , rank(g)} where S0 = Rg and S1 = (Rg)−1
21 . The next result, 

which is a nongraded version of Corollary 7.9 for Wθ
00, gives the general shape of what 
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these expanded relations look like. A similar result holds for Wθ
11 with the opposite 

inequalities.

Corollary 8.11. The following inclusions hold for the quantum Weyl algebra Wθ
00

dabxef − qδaf +δae+δbf +δbexef dab − qδef δaeδbf ∈
∑

(e′,f ′,a′,b′)>(e,f,a,b)

C(q)xe′f ′da′b′

for all a, b, e, f ∈ {1, . . . , rank(g)} where

• a ≤ b and e ≤ f in Type AI

• a < b and e < f in Type AII

• a ≤ n < b and e ≤ n < f in diagonal type

and (e′, f ′, a′, b′) > (e, f, a, b) if and only if e′ ≥ e, f ′ ≥ f, a′ ≥ a, b′ ≥ b and at least one 

of these inequalities is strict.

Remark 8.12. Recall that in the diagonal case, the quantum Weyl algebra Wθ
00 is iso-

morphic as an algebra to W00 which in turn is the same as the quantum Weyl algebra 

PDq(MatN ) arising in the theory of quantum bounded symmetric domains ([3], [27], 

[28]). It is natural to ask whether a similar isomorphism holds between the quantum 

Weyl algebras of this paper for Types AI and AII and the corresponding ones arising 

from the quantum bounded symmetric domain theory. For example, in Section 2 of [4], 

generators and relations are given for Pol(Matsym
2 )q. One of the first issues that arises 

in viewing this algebra as a quantum analog of the Weyl algebra on symmetric 2 × 2

matrices, is that the scalars that show up in the relations are different, and this difference 

is not just by a power of q. Hence it is not clear how to normalize the generators of this 

algebra as was done in [3] for Pol(MatN )q in order to view Pol(Matsym
2 )q as a quantum 

analog of the Weyl algebra.

There are also problems on the graded level. Some of the relations match those of 

Wθ
00 for n = 2 while others do not. In particular, it is straightforward to check that 

the map xij to zij for i ≥ j defines an algebra isomorphism of Pθ onto the subalgebra 

of Pol(Matsym
2 )q generated by the zij . Since zij �→ z∗

ij is an antiautomorphism, the 

analogous assertion holds for Dθ. However, these isomorphisms extend to only some of 

the relations involving the zij and z∗
ij . For instance, a direct computation yields

d21x21 = q2x21d21 + q2(q − q−1)x22d22 + 1.

However, from [4], we see that

z∗
21z21 = q2z21z∗

21 + q(q − q−1)z22z∗
22 + (1 − q2).
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Note that the coefficient of x22d22 does not match z22z∗
22. It is possible that being more 

clever about the maps from Pθ and Dθ into Pol(Matsym
2 )q might yield an isomorphism 

with Wθ
00 on the graded level, but this is certainly not obvious.

Remark 8.13. Note that the defining relations for both Pθ and Dθ as given in Propo-

sitions 5.10 and 5.11 are closely related to the reflection equations. This makes these 

two algebras into quotients of what are called reflection equation algebras. The relations 

coming from the twisting map also resemble reflection equations (see Lemma 7.3 and 

the discussion afterwards.)

There are other quantum Weyl algebras constructed using reflection equation type 

relations in the literature and it is natural to ask whether there are any connections. For 

instance, in [7] (see Definition 3.5) a quantum Weyl algebra for GL2 is presented that 

is built using two reflection equation algebras. However, the differential and polynomial 

subalgebras in [7] are isomorphic and hence, the Weyl algebras in [7] differ from the ones 

presented here. There are also interesting Weyl-like algebras studied in [9] also made up 

of two reflection equation algebras. Once again, a comparison of the matrix relations of 

[9] to the ones here reveal significant differences, so it seems unlikely that the algebras 

in [7] and [9] are closely related to the Weyl algebras of this paper.
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Appendix A. Commonly used notation

We list here commonly used symbols and notation along with the first section (post 

the introduction) in which each item appears.

Section 2.1: Δ, ε, S

Section 2.2: T , MatN , t1, t2

Section 2.4: εi, (·, ·), ΛN

Section 3.1: Uq(glN ), K±1
εj

, Ej , Fj , Kj , Kβ , (ad Ei), (ad Fi), (ad Kεj
), 
, Uh(glN ), 

Hεi
, L(λ)

Section 3.2: ρ, ρ(a)t, V, W, V ∗, W ∗, vi, wi, v
∗
i , w∗

i , a∗
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Section 3.3: R, R−1
21 , exp Eβj

, Fβj
, [a, b]q, [a, b]q−1 , Ei,i+1, Fi+1,i, [r]q!

Section 3.4: R, rij
kl

Section 4.1: Rζ , A(Rζ), M , T (M), mij

Section 4.2: Rρ, Oq(MatN ), tij , T1, T2, ι

Section 4.3: Oq(MatN )op, ∂ij , P , P1, P2

Section 5.1: θ, Bi, Bθ(b), bi, rank(g)

Section 5.2: P, Rg, J(n)(a), J1, J2, J(a), Jk, Jk
r,s, xij(a), D , dij(c), Jr,s, xij , dij , ŝ

Section 5.3: Pθ, Dθ, X, X1, X2, X̂,

Section 6.1: mC , mA, mB , τ

Section 6.2: u〈·, ·〉, v〈·, ·〉, Rζ,ξ, y〈·, ·〉

Section 6.3: R0, R1, uυ〈·, ·〉, vσ〈·, ·〉, τυ,υ, Aυ,σ, ā

Section 7.1: S0, S1, G, G1, G2

Section 7.2: O, Oop, t′
ij , ∂′

ij , τα,β,υ,σ, Aα,β,υ,σ, τ ′
α,β,υ,σ, A′

α,β,υ,σ, x′
ij , d′

ij , P ′
θ, D ′

θ

Section 7.3: τθ
α,υ, Aθ

α,υ

Section 8.1: W υ,σ
a,b,e,f

Section 8.2: Eμ

Section 8.3: W00, W11

Section 8.4: L, W θ,υ,σ
e,a,f,b

Section 8.5: Wθ
00, Wθ

11
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