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Abstract

We present results about harmonic maps with possibly infinite energy from punctured
Riemann surfaces to CAT(0) spaces. In particular, we give precise estimates of their
energy growth near the punctures and prove uniqueness.

Keywords Harmonic maps - Uniqueness - CAT(0) - Riemann surface - Infinite energy

Mathematics Subject Classification 53C43

1 Introduction

This is the first in a series of papers where we develop the techniques to study non-
abelian Hodge theory on quasi-projective varieties. The sequel is [5], [6], and [2].
More specifically, in this first paper, we study harmonic maps with possibly infinite
energy from punctured Riemann surfaces into complete CAT(0) spaces, and we a give
precise estimate of their energy growth near the punctures. We also prove a uniqueness
result. Both results are crucial for the next papers.

Throughout this paper, we use the following notation unless explicitly stated
otherwise:

° fg is a complete CAT(0)-space
e R is a compact Riemann surface
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e R =~7é\{ pl, ..., p"}is a punctured Riemann surface
e I1: R — R is the universal covering map
e p:m(R) — Isom(X) is a homomorphism.

For each puncture p/, j =1,...,n,

D/ is a conformal disk in R centered at the puncture p/ (D/ NI’ = @ fori # j)
Dl ={zeD:|z| <r}
A e m(R) is the conjugacy class associated to the loop in R around P,
I/ := p(\J) € Isom(X), and
Ay =inf d(I7(P), P) is the translation length of 1.

PeX

Recall that 77 is said to be semisimple if there exists Py € X such thatd (17 (P, Py) =
AI] .
We prove the following two theorems.

Theorem 1.1 (Existence) Assume

(A) The action of,o(m (R)) does not fix a point at infinity.
(B) The isometry 17 is semisimple, or there exists a geodesic ray ¢ : [0, 00) — X and
constants a, b > 0 such that

d(I(c(t)), c(t)) < Ayj +be™™.

Then, there exists a p-equivariant harmonic map u : R — X with logarithmic energy
growth towards the punctures, i.e.,

n 2_ 1 n 2_ 1
' og - < E"[R,] < Dog = +C 1.1
Z2n r - [ ]_Z2n Ogr+ .1

j=1 j=1

where R, = R\ U?:l ID)Z and E"[R,] is the energy of u in R,. The constant C is
dependent only on p if I is semisimple and also on a, b from assumption (B) if I is
not semisimple.

For smooth targets, the existence essentially follows from [13], [17], and [12]. The
new statement in Theorem 1.1 is the precise growth estimate towards the punctures of
the harmonic map.

We also prove the following uniqueness result.

Theorem 1.2 (Uniqueness) Assume (A) and (B) of Theorem 1.1. If the p-equivariant
harmonic map i : R — X has logarithmic energy growth (cf. (1.1)), then it is the
unique harmonic map with logarithmic energy growth in the following cases:

(i) X is a negatively curved space (i.e., for any P € X, there exists a neighborhood
U of P which is CAT (—«) for some k > 0),
(i) X is an irreducible symmetric space of non-compact type, or
(iii) X is an irreducible locally finite Euclidean building such that the action of
p (1 (R)) does not fix an unbounded closed convex strict subset of X.
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In the case when the harmonic map has finite energy, uniqueness follows from pre-
vious works of the authors and Corlette ([3, 4, 14] for cases (i), (ii), (iii), respectively).
In [2], we use the results of this paper to develop non-Abelian Hodge theory techniques
extending the work by Gromov-Schoen [7] from the finite to the infinite energy case
and Mochizuki [15] from the Archimedean to the non-Archimedean case.

Remark 1.3 Assumption (B) is a natural condition for many interesting examples.
In particular, it is satisfied for symmetric spaces of non-compact type, Euclidean
buildings, and Teichmiiller space endowed with the Weil-Petersson metric.

Summary of the Paper For the purpose of explaining the main ideas, we consider
the simple case when X is a universal cover of a compact manifold X andy : S! — X
is an arc length parameterization of a minimizing closed geodesic in X. Denote the

2
energy of y by EV. Note that EY = 12‘—; where L, is the length of y. A prototype map
v corresponding to y is

v:[O,oo)xSl—>X

which is equal to y on slices {r} x S! for all sufficiently large 7. (We note that the
idea of the prototype map first appears in [13].) The energy of v on the finite cylinder
[0, T] x S! is bounded from above by T - E¥ 4 C where C is a constant independent
of T. Let

uT:[O,T]xSl—>X

be the Dirichlet solution on the finite cylinder [0, '] x S! with boundary values equal
to v. Since ur is an energy minimizing map, the energy of u7 is bounded from above
by T- EY 4 C. Since y is also an energy minimizing map, the energy of ur in any finite
cylinder [0, 1] x S! for 0 < ¢t < T is bounded from below by ¢ - E¥. From this, we
conclude that the energy of u7 on any finite cylinder [11, 2] x S' has an upper bound
independent of T'; namely, (t; —t1) - EY 4+ C. Thus, the regularity theory for harmonic
maps implies that the family of maps {u7}r>1 has a uniform Lipschitz bound on any
compact subset of [0, 00) x S!. This implies that there exists a sequence 7; — oo such
that u7; converges locally uniformly to a harmonic map u : [0, 00) X S! — X. The
conformal equivalence of the punctured disk D* and the infinite cylinder [0, co) x S',
thus, defines a harmonic map on D* with lower and upper energy bound

1 1
EYlog - < E*[D,] < E” log - + C. (1.2)
r r

We extend this idea to prove the existence of equivariant harmonic maps from any
punctured Riemann surface X.

For finite energy harmonic maps, the uniqueness can be derived from the fact that
the energy functional is a convex function along a geodesic interpolation. Namely,
if u; is the geodesic interpolation map (i.e., t — u;(x) is a geodesic), then E* <
(1 —t)E" 4+ tE*'. If up and u; are energy minimizing maps, then the convexity
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implies that t — E™ is a constant function. This idea does not directly generalize
to our situation because we deal with infinite energy maps. The main idea to prove
the uniqueness assertion in our setting is to introduce a modified energy functional by
subtracting off the logarithmic energy growth near the punctures. We then prove that
the modified energy is constant along the geodesic interpolation of harmonic maps.
This allows us to apply the argument used by the authors in [4, 14].

2 Preliminaries
2.1 Maps into CAT(0) Spaces

Definition 2.1 A say that X is a complete CAT(0) space if it is a complete geodesic
space that satisfies the following condition: For any three points P, R, Q € X and an
arclength parameterized geodesic ¢ : [0, /] — X with ¢(0) = Q and c(l) = R,

d*(P, 0)) < (1 —)d*(P, Q) +td*(P, R) — t(1 — )d*(Q, R)

where Q; = c(tl). (We refer to [1] for more details.)

Notation 2.2 It follows immediately from Definition 2.1 that, given P, Q € X and
t € [0, 1], there exists a unigue point with distance from P equal to td (P, Q) and the
distance from Q equal to (1 — ¢)d (P, Q). We denote this point by

(1—1)P +10Q.

Fix a smooth conformal Riemannian metric g on R (i.e., g is given by p(z) dzdz
for some smooth function p in any holomorphic coordinate z of R). We refer to [10]
for the notion of energy E and energy density function |V f|> of amap f : R — X.
The (Korevaar-Schoen) energy of f in a domain 2 C R is

Ef[Q]:/ IV £12dvol,.
Q

It is well known that E/[Q] and |V f |2dvolg are invariant of the choice of the smooth
conformal Riemannian metric g.

We say acontinuousmapu : R — X is harmonic if itis locally energy minimizing;
more precisely, ateach p € R, there exists a neighborhood €2 of p so that all continuous
comparison maps which agree with u outside of this neighborhood have no less energy.

For V e T'Q where I'Q2 is the set of Lipschitz vector fields on €2, | Fo(V)|? is
similarly defined. The real-valued L' function | f,(V)|* generalizes the norm squared
on the directional derivative of f. The generalization of the pullback metric is the
continuous, symmetric, bilinear, non-negative and tensorial operator

7 (V,W)=TQxTQ— L' (Q,R)
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where
1 » 1 2
mWJW=?ﬁW+WN—?ﬂW—WN-

We refer to [10] for more details.

Fix alocal chart (U z). By the conformal invariance of the energy, we can assume
that the metric g the Eucliean metric dzdz in U. We extend 7 ¢ linearly cover C. Then
energy density function of f is given by

1 aof o
$977 =r (5 )

a7’ 97/

Furthermore, set z = re'? to define polar coordinates (r, 6). We define

2 3 0 2 !
=mf|—,— ) and =nrl=. =)
or or 29 90

2.2 Equivariant Maps and Sections of the Flat X-Bundle

ou
ar

ou
a0

Definition 2.3 Let p : (M) — Isom(X). A map f : M — X is said to be p-
equivariant if

fp)=p)f(p), Yy e mi(M), p € M.

It is convenient to replace equivariant maps with sections of an associated fiber
bundle. The quotient under the action of 7r1 (M) on the product M x X is the twisted
product

W x, X.

In other words, M X p X is the set of orbits [(p, x)] of apoint (p, x) € M x X under
the action of y € w1 (M) via the deck transformation on the~ﬁrst component and the
isometry p(y) on the second component. The fiber bundle M x, X is called the flat

X-bundle over M defined by p.
There is a one-to-one correspondence between sections of this fibration and p-
equivariant maps

f:M—)f( <« f:M—>Mxp)?
by

[(p, F(P))] < f(p) where TI(p) = p.

@ Springer



337 Page6of23 G. Daskalopoulos, C. Mese

Since the energy density function |V f|? of f is a p-invariant function, we can define
VAP (p) = IV FI7(B).

We can similarly define the pullback inner product and directional energy density
functions of f by using the corresponding notions for f givenin Sect.2.1.ForU C M,
the energy of a section f is

Ef[U] =/ IV £12dvol,. 2.1
U

Furthermore, for sections f1, f>, we define

d(fi(p), fo(p)) :=d(fi(P), f2(p)) 2.2)

where f] and f> are the corresponding p-equivariant maps.

2.3 Sublogarithmic Growth

We will
fix a conformal disk D/ C Rcentered at each puncture p’ 2.3)

such that D' N D/ = @ fori # j. Furthermore, let D/* = D7\ {0}.

Fix Py € X and a fundamental domain F of R. Let fo be the section of the fiber
bundle R Xp X — R such that, for any p € RNII(F), fo(p) = [(p, Py)] where
p =TI"1(p) N F. (Note that [T(F) is of full measure in R.)

For a given section f : R — R x, X , define

8j :D/* - 10,00), 8;(2) =d(f(2), fo(2)). (2.4)

Recall that d(f (z), fo(z)) is defined by (2.2).

Definition 2.4 We say a section f : R — R x 0 X (or its associated equivariant map)

has sub-logarithmic growth if forany j =1,...,n
‘1|im03j(z) + elog|z| = —oo in D/,
Z|l—

By the triangle inequality, this definition is independent of the choice of Py € X. We
say that f has logarithmic energy growth if near the punctures satisfies condition (1.1)
in Theorem 1.1.
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3 Harmonic Maps from a Punctured Disk

Before we consider the domain to be a general punctured Riemann surface, we first
start by studying harmonic maps from a punctured disk D*. Denote

Df={zeD:|z| <r}
]D)r,ro - Dro\Dr-

Identify the boundary of the disk with the circle; i.e., dD = st
This induces a natural identification

277 ~ 1 (SY) ~ 71 (D).

The main result of this section is the following.

Theorem 3.1 (Existence and Uniqueness of the Dirichlet solution on D*) Assume the
following:

o 02l ~m (SY ~ 7 (D*) — Isom(X) is a homomorphism

o k:D* — D* Xp X is a locally Lipschitz section ‘

o I := p([S')) satisfies condition (B) of Theorem 1.1 with 17 replaced by I.

Then there exists a harmonic section
u:D* — D* x, X withu|g1 = klg1.

Furthermore, there exists a constant C > 0 that depends only on Ay, k if I is semisim-
ple and also on a, b from assumption (B) if I is not semisimple such that u satisfies
the following properties:

A? A? 1
(i) =—~log—- < E'[D, 1] < —~log-+C, 0<r<l
2 r ’ 2 r

dul* A C
RL, 472 —logr i

du|? C

—| < 5——— and

ar r2(—logr)

(iii) u has sub-logarithmic growth.

(ii)

Moreover, u is the only harmonic section satisfying u|sp = k|ap and property (iii).
Proof Combine Lemmas 3.5, 3.7, 3.9, and 3.10 below. O

The purpose for the rest of this subsection is to prove the lemmas that comprise
the proof of Theorem 3.1. We start with the following preliminary lemma about
subharmonic functions.

Lemma3.2 Forr > 0, letv : Dy — R be a subharmonic function that extends as a
continuous function to DY = D, \{0}. If we assume that

lim v(z) 4+ €log|z| = —o0, Ve >0, 3.1
z—0
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then

sup v(z) < max v(¢).
zeDs ¢ edDy

In particular, v extends to a subharmonic function on D, (cf. [9]).

Proof Let i : D, — R be the unique Dirichlet solution with /|yp, = v|yp,. By the
maximum principle, 4 is non-negative and bounded on ID,.. The function

fe(@ =v(2) — h(z) + €(log|z| — logr)

is subharmonic on D} with fc|sp, = 0 on 0DD,. Furthermore, since & is a bounded
function and v satisfies (3.1),

lim fe(z) = —o0.
z—0

By the maximum principle, fe < 0. By letting ¢ — 0, we conclude v(z) — h(z) <0
for all z € D¥. Thus,

sup v(z) < sup h(z) < max h(¢) = max v(Z).
zeDx z€Dy ¢ €Dy redD,

O

Lemma3.3 If p and I are as in Theorem 3.1, then for any section f : D, , —
D* Xp )~(,

2 2
D

d
! rdr Adf < Ef[]D)r,ro], O<r<rg<l.

1
r2 |96
r.ro

2 r

Proof By the definition of Aj, any section ¢ : S! — R x 0 X satisfies

AZ 2

A1 /

2w 0
After identifying S' with dID,, we can view the restriction f|yp, as a section S! —
R x, X. Thus,

2

3
°l a0,

30

A g A3 0]

1
—log— = — —rdr Nd6o
w2 T on B P2
2w pro 1 8f 2
< — | = (r,0)| rdr Adb
0 r 7‘2 20
< EZ[Dy ).
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Lemma3.4 Ifp, I, and k : D* — D= Xp X are as in Theorem 3.1, then there exists

a constant C > 0 and a Lipschitz section v : D* — D* X0 X with v|ap = k|yp such
that

(3.2)

N =

I ro A% ro
—log— < E’IDy )] < —Llog—+C, O<r<ry<
27T r ’ 27[ r

Moreover, the Lipschitz constants of v and C are dependent only on Ay, k if I is
semisimple and also on a, b from assumption (B) if I is not semisimple.

Proof We will first construct an one-parameter family of sections y; : S' > R x 0 X
as follows:

e If ] is semisimple, let P, € Xbea point where the infimum A/ is attained. For any
s € [0, 00), define 75 : R — X to be the p-equivariant geodesic (a constant map if
1 is elliptic) such that 7 (0) = P, and j5(2) = I(P,) and let y; : S' — S! x, X
be the associated section.

e Otherwise, letc : [0, 00) — X bea geodesic ray defined in assumption (B). Define
the p-equivariant curve y; : R — X such that V5110271 1s the geodesic from c(s)
and I(c(s)) and let y; : S! — St Xp X be the associated section.

We note that by the quadrilateral comparison of CAT(0) spaces (cf. [16]), for 8 €
[0, 27],

0 0
d(¥s5,(0), v5,(0)) < (1 - E)CJ(C(SO, c(s2)) + Ed(l oc(s1), I oc(s2))) = Is1 — s2l.

Thus,

<1, Vse(0,00), 6 €S (3.3)

d
‘E(VS(Q))

If 7 is semisimple, then

do = — ) df = —.
sl 0 2 2
Otherwise, by the assumption on c(s), we have (by modifying the constants a, b in
assumption (B)) that
L

Define a p-equivariant map v : D* — X as follows: First, for (r, t) € D*, let

o
00

ays |

a0

AZ
dt < =L 4 pe™9s, (3.4)
2

~ ~ 1 - ~
u(r,t) = y(—logr—logZ)% (t) forr € (0, 5] and v(l,?) :=k(1,1).
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Next, for each t € R, let

1
re— o(r,t)forr e |:§, 1:|

to be the arclength parameterlzatlon of the geodesic between v(z, ) and k(1,1).
Finally, let v : D* — D* x 0 X be the section associated to the p- equivariant map v.
ForO <r <rg < %,Wehave

=[5

rdr Adf  (by Lemma 3.3)

2t pro V_ B 1)
5/ / o (—logr—log2)3 rdr A do
0 r a0
) 2
- 1°g2’3 dtde

/211/ logr
logro

logr A2
/ (=L 4 peaU— 1°g2>3)dt (by (3.4))

<
logrg <7
A% 1o
=—log—+C
2 r
By (3.3)
2 12
0 8((—logr —log2)3)
—| (r,0) = 1 Vs
0 8S s=(—logr—log2)3 or
1
< T
r2(—logr —log?2)3
Thus,
2 rro | gy 2 2T pro 1
/ / — rdr/\d@:/ / +dr ndf < C.
o Jr r 0 Jr r(—logr—1log2)3

m}

Lemma 3.5 (Existence and property (i) of Theorem 3.1) {i)? P, Ap, and k as in
Theorem 3.1, then there exists a harmonic sectionu : D* — D* x , X withu|yp = k|sp
and a constant C > 0 that depends only on Ay, k if I is semisimple and also on a, b
from assumption (B) if I is not semisimple such that

1 A?
—log— < E'[D, 1] < —log—-+C, O<r<1.
2 r
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Proof Let v be as in Lemma 3.4. By [10, Theorem 2.7.2] (or more specifically, by
the proof of this theorem which solves the equivariant problem), there exists a unique
harmonic section

up:Dp 1 = Dy xp X withu,|gp, | = U|3Dr,1'

We have that

A% rO u u u
Z IOg 7 + E r[Dro,l] =< E r[Dr,ro] +E r[DrO,]] (by Lemma 33)
= E"[D, ]
< E'[D, ] (since u,is minimizing)
- EU[Dr,ro] + Ev[Dro,l]
AZ

| /\

2 log 7" +C+ E'[Dyy1]  (by (3.2)).

Therefore,
E'" [Dpy 1] < C + E'[Dyy 1] (3.5)

Note that the right-hand side of the above is independent of r € (0, %] Thus, {u,|p,, ;}
is an equicontinuous family of sections (cf. [10, Theorem 2.4.6]). Consequently, there
exists a sequence r; — 0 and a harmonic section

u D — D* x, X with usp = klap. (3.6)

such that the sequence {u,,} converges uniformly on compact subsets of D* to u.
To prove property (i), we note that for 0 < r <ry < 1,

E"r []D)r,rl] + E" []D)rl,l] = E" [Dr,l]
=< Ev[Dr,l]
= Ev[Dr,rl] + EU[Drl,l]

which, combined with Lemma 3.3 and (3.2), implies that
E" []D)rl,l] < EU[]D)I’[,I] +C.

Letting r — 0 and applying the lower semicontinuity of energy [10, Theorem 1.6.1],
we obtain

Eu[Drl,l] < EU[ID)}’],]] +C.

Applying Lemma 3.3 and (3.2), we obtain

2 2

AI 1 u Ag 1
log— < EY[Dy 1] < E'[Dy 11+ C < —log— + C.
2 2 r
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By (3.2), the constant C is dependent on Ay, k if / is semisimple and also on a, b
from assumption (B) if 7 is not semisimple. O

Lemma3.6 If u : D* — D* Xp X is a harmonic section with logarithmic energy
growth, then

du|? 1 [loul®> A2
/ a rdr/\d@fCandf & — 2L rarnae < C
D+ | OF 2 \ |86 472

where C here depends on C from (1.1).

Proof Follows immediately from the inequality (1.1) in the Definition 2.4 and
Lemma 3.3. O

Lemma 3.7 (Property (ii) of Theorem 3.1) If u : D* — D Xp X is a harmonic
section with logarithmic energy growth, then

ul> A2 C
wit_AL)\._C (3.7)
a6 472 (—logr) b
tim(—togn (|2 .oy — A1) — o (3.8)
o T\ ag| T T an2 ) T '
ou|? c
e = Dt (3.9)
ar r2(—logr) 3
2
lim (— log )2 | 22| (r,0) = 0. (3.10)
r—0 or

where C here depends on C from (1.1).

Proof Consider the cylinder
C = (0,00) x S!
and let
®:C—>D* @, Yv)=F=e"',0=1). 3.11)

Since @ is a conformal map, u o ® is harmonic. Thus, the directional energy
. 2 . 2
@ and “’(g—f)‘ are subharmonic by [10, Remark 2.4.3].

Auod) |
ot

Lemma 3.6 and the chain rule.
The subharmonicity of the directional energy density functions implies

density functions

2 2
and ’a('g—f) - 4AT’2 are integrable in C = (0, 0o) x S! by

Furthermore, ’

2

a O]
(o ) dtdyr, Yo € C2((t1,1) xS, ¢ > 0.

v agfreon
(11,12) xS! oy
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Letting ¢ approximate the characteristic function of (71, 1) x S!, we obtain
d 2 d 2
0< —‘ / dy | - < / dv | .
dt li=n {t}xS! dt lt=n {t}xS!
In other words,
2 2
F(t) :=/ — —L dy. 1€(0,00)
{r}xS! 4

is a convex function. By Lemma 3.6, fooo F(t)dt < oo. Since F(t) is convex and
integrable, F(¢) is a decreasing. Thus, we obtain

3(u o )
oy

d(u o @)
oYy

d(u o ®)
oy

o0

t
tF(t) < 2/ F(r)dr < 2/ F(t)dr. (3.12)

L
2 2

With Bj (g, ¥) denoting the unit disk centered at (fp, o) € C, the mean value
inequality implies

t (' 3 o @)
0
oY

f0 '3(140(13)
T JBi(to,¥0) oy
f0 (‘a(u o ®)

T J(1p—1,10+1)xS! oy

1 1 / ; ‘8(140@)
wto— 1 Jug—1,60+1)xS! oy

1 fo+1
- - / tF(t)dt
Tio—1 to—1

10 to+1 00
1/ 2/ F(z)dtdi (by (3.12)).
- to—1 %

2 2

_I
472

) (to, Yo)

’ A% dtd
4z v

A

A

’ A‘z’ dtd
472 4

IA

f_ 4 dtdy
472

A

1
)
Since F(t) > 0,

o0 o
/ F(t)drfﬁ lF(t)dr, te(to—1,1+1).
' 0=

¢ ol * S
2 2

Combining the above two inequalities and assuming ¢y > 2 (and thus to’—ﬂl <2),

Yy

I uod 2 AZ 4 o]
0 (‘M (t0. Vo) — ﬁ) < ;ﬁﬂ F(z) dt. (3.13)
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Estimates (3.7) and (3.8) both follow from (3.13) by the chain rule and the fact that
F(7) is integrable on (0, co) with integral bound given by Lemma 3.6.
Similar argument for

G() = /
{t}xS!

proves (3.9) and (3.10). m]

d(u o @) |?

dyr, te€ (0,
o7 Y, t€(0,00)

Lemma3.8 Letu : D* — D* Xp X be a harmonic section with logarithmic energy
growth. For any € > 0, there exists pg > 0 such that

a’z(u(rle"e), u(roeie)) < —elogr;, VO<r; <rg<po, 0 <6 <2m.

Proof Fix ¢ > 0. The convergence of (— log r)r? | g—’; |2 (r,0)to0asr — 0(cf. (3.10))
implies that there exists pg > 0 such that

€
_—f -, r € (0, pol.
2r(—logr)2

ou
ar

Thus, for 0 < r; < ryp < po, and noting the p-equivariance of iz, we have

r . . 2
d*(u(rie'?), u(roe'?)) < ( [ did(u(rele), u(roe’9>)dr)
r r

0

70 ) 2
</ u (re’g)dr)
rno | Or
2
€ /’0 dr
=il ———=
4 \Jr r(—logr)2

e ((—102r)* — (~logrp)?)”

—elogry.

IA

IA

m}

Lemma 3.9 (Property (iii) of Theorem 3.1) Ifu : D* — D Xp X is a harmonic
section with logarithmic energy growth, then u has sub-logarithmic growth.

Proof By Lemma 3.8, for € > 0, there exists ro > 0 sufficiently small such that
P u(re®), u(roe’®)) < —Zlog r, re (0, r).

Set Py = ii(roe'®) € X and define fo(p) = [(p, Po)] as in Definition 2.4. For
z=re?,
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d*(u(z), fo(2)) + elogz| = d*(u(re’), u(roe’™)) + e logr
2d% (u(re?), u(roe’®)) + 2d> (u(roe'®), u(roe’®)) + e logr

% logr + dz(u(roem), u(roeigo)).

IA

A

r— 0. |

Lemma 3.10 (Uniqueness for sub-logarithmic growth maps) Ifu, v : D* — D* x 0 X
are harmonic sections with sub-logarithmic growth withu = v on 0D, thenu = v on
D*

Proof The functiond?(u, v) (as defined by (2.2))is a continuous subharmonic function
(cf. [10, Remark 2.4.3]). Furthermore, d2(u, v) = 0 on dD. Since u, v both have
sub-logarithmic growth, the triangle inequality implies

lﬁH%dZOMZL1MZD-+610gRI==—00.
Z|—

Thus, we can apply Lemma 3.2 to conclude d*(u(z), v(z)) = 0 on D* which implies
u=nv. m}

Corollary 3.11 Any harmonic section v : D* — D* Xp X with sub-logarithmic growth
satisfies properties (i), (ii) and (iii) of Theorem 3.1.

Proof By the uniqueness assertion of Lemma 3.10, v must be the harmonic section u
constructed in Theorem 3.1. O

Remark 3.12_Together, Lemma 3.9 and Corollary 3.11 say that a harmonic section

u:D* — D* x 0 X has logarithmic energy growth if and only if it has sub-logarithmic
growth.

4 Existence of Infinite Energy Harmonic Maps

In this section, we prove existence of equivariant harmonic maps from the punctured
Riemann surface R. We use the following notation:

. DJ:* = D/\{0}

° ]D){ ={z e‘Dj zl <r}

e D/, = D},\D

R, = R\ U?:l ]D)rj‘

277 ~ (AJ) is the free group generated by a loop around the puncture p/
ol (W) = Isom(X) is the restriction of p : 71 (R) — lsom(X)

k : R > R x 0 Xisa locally Lipschitz section (cf. [10, Proposition 2.6.1])
k' := k|p;«, is the restriction to the conformal disk around the puncture p’

Applying Lemma 3.4 with p = p/, I = I/ and k = k/ yields a prototype section
v/ :D*aﬁ;‘xpjffcﬁxpjf(.
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The composition of v/ and the quotient map R x i X > R x 0 X defines a section
of R x, X — R over D/* which we call again v/. We extend these local sections
v DI 5 R X p X for j = 1,..., n to define a locally Lipschitz section v : R —
R x 0 X. By the construction and Lemma 3.4,

n AZ n AZ

- 1 : 1
}: J VIR § J
j_lglog;SE[ r]f]_lglog;—i_c’ O<r§1 (41)

The constant C is dependent only on Ay, k if I is semisimple and also on a, b from
assumption (B) if 7 is not semisimple.

Definition 4.1 The locally Lipschitz section
ViR = Rx,X (4.2)

constructed above is called the prototype section of the fiber bundle R x 0 X —> R.
The associated p-equivariant map v : R — X is called the prototype map.

Define
uRr, : Ry — R Xp X

to be the unique harmonic section with boundary values equal to that of v|3R, (cf.
[10, Theorem 2.7.2]). Fix rg € (0, %] and let r € (0, rp). By Lemma 3.3,

2 .
rdr Adf < E"Rr[Df 1.

Thus, by (4.1),
n .
EY [U D) < E* [ D)1 + C
which implies

E“Rr[U DL py] + E%r [Ryy] = E"%r [R,]
< E'[R)

—E”[UD rol + E'[Ry, ]
< E“%r [U Df 1]+ C + E°[Ryy].
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In other words,
E"Rr[Ry,] < C+ E"[Ry,], Vr e (0,r0) 4.3)

where C is as in (4.1). The right-hand side of the inequality (4.3) is independent of
the parameter r; i.e., once we fix rp, the quantity E“R[R,,]is uniformly bounded for
all » € (0, rp). This implies a uniform Lipschitz bound, say L, of ur, forr € (0, rp)
in Ry, (cf. [10, Theorem 2.4.6]).

Let {1, ..., un} be a set of generators of 771 (R) and i, , U be the p-equivariant
maps associated to sections up, , v respectively. Thus,

d(ug,(nip), uR,(p)) < Ldp (nip. p), Vp € Rargs i =1,...,N r € (0,r9).
If we let
c:Lsup{dﬁ(,uip,p) i=1,...,N, p €7~22,0},
then by equivariance
d(p(i)iar, (p), iR, (p)) <¢. p € Rap, i =1,...,N, r € (0,r0).

In other words, 8 (iig, (p)) < cforall p € 712,0 and r € (0, ro). By the properness of
p, there exists Py € X and Ro > 0 such that

{iR,(p) : P € Rany, 1 € (0,70)} C Bry(Po).

Thus, by taking a compact exhaustion and applying [11, Theorem 2.1.3], we conclude
that there exists a sequence r; — 0 and a p-equivariant harmonic map i : R — X such
that UR, converges tou inL?(ie.,d 2(uer_ , u) — 0) on every compact subsets of R.

Letu:R — R x 0 X be the associated harmonic section. The lower semicontinuity
of energy (cf. [10, Theorem 1.6.1]), (4.1) and (4.3) imply

E"[Ryy] < 215 og +C, Vro €0, 71
]:

By the use of (4.1) in the above argument, the constant C is dependent only on Aj, k
if 1 is semisimple and also on a, b from assumption (B) if 7 is not semisimple. Note
that & is dependent only on p (cf. [10, Proposition 2.6.1]). The above inequality and
Lemma 3.3 imply that « has logarithmic energy growth (cf. Definition 2.4). The fact
that u has sub-logarithmic growth follows from Lemma 3.9. This completes the proof
of Theorem 1.1.
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5 Uniqueness of Infinite Energy Harmonic Maps

In this section, we prove uniqueness of harmonic maps from punctured Riemann
surfaces R (cf. Theorem 1.2). First, let

f f Xn: Al ]
E'(r)y=E'[R,]— — log —.
e 2 r

By Lemma 3.3, for 0 < » < r9 < 1 and any section f : R — R Xp }N(,

n 2

A2 noo
j o 7 j
,2 :271 log 22 C<E |_11D>,,,O]. 5.1)

Thus, r — E7(r) is an increasing function.

Definition 5.1 The modified energy of f is

Ef0) = lim EX(r).

Let £, be the set of all sections R — R Xp X such that E/(0) < oco. Let H, C L,

denote the set of all harmonic sections u R - R x 0 X such that the associated
p-equivariant map u is not identically constant or does not map into a geodesic.

Remark 5.2 By Lemma 3.9, u € H,, has sub-logarithmic growth.

The goal is to prove that {,, contains only one element. We first prove the following
series of preliminary lemmas.

Lemma5.3 Ifu € H, and D/ C R is the fixed conformal disk at the puncture p’
(cf. (2.3)), then the restriction map u|p; satisfies the properties (i), (ii) and (iii) of
Theorem 3.1.

Proof This follows immediately from Remark 5.2 and Corollary 3.11. O
Lemma 5.4 Ifug, u1 € Hy, then dz(uo, u1) = c for some constant c.

Proof We prove Lemma 5.4 by showing that d*(ug, uy) extends as a subharmonic
function to R. Since R is compact, this implies dz(uo, u1) is constant. Indeed, let
D C R be a holomorphic disk. By [10, Lemma 2.4.2 and Remark 2.4.3], the function
d*(ug, uy) is subharmonic in . Since this statement is true for any holomorphic disk
D c R, we conclude that d%(ug, u;) is subharmonic in R.

Next, consider the fixed conformal disk D/ C R centered at pl e P (cf. (2.3)).
Since both up and u; have sub-logarithmic growth, d(uo(z), u1(z)) + €log|z|] —
—o0 as z — 0 in D/ by the triangle inequality. Thus, by Lemma 3.2, d?(uq, u1) is
bounded in D’/* and extends as a subharmonic function on /. Hence, we conclude
that d(u, u1) extends as a subharmonic function on R, thereby proving Lemma 5.4.

O
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For ug, u; € Hp, let i1, ] be the associated p-equivariant maps. For s € [0, 1],
define us : R — R X, X to be the associated section of the p-equivariant map

iy R— X, iis(z) = (1 — 8)itg(z) + sty (2) (5.2)

where the sum on the right-hand side above denotes geodesic interpolation (cf. Nota-
tion 2.2). Since i and 1| are p-equivariant, i is also p-equivariant.

From Lemmas 5.3 and 5.4, the convexity of the distance function and the convexity
of energy (cf. [10, (2.2vi)]), it follows that u,|p;« also satisfies the properties (i), (ii)
and (iii) of Theorem 3.1 for all s € [0, 1]; i.e.,

, AT g

o E[D],1<C+ —Llog—
2 r

G A2
o lim E"0l sl = 4
r—0 2

e u; has sub-logarithmic growth.

Lemma5.5 Letug,u; € Hy, and e > 0. For any po € (0, 1), there exists ro € (0, po)
such that

1 n 21 )
P Zfo A (ol uslaD_r,'z)dO <€, Vselo1].
Jj=1 0

Proof 1t suffices to prove Lemma 5.5 fors = 1. Let pg > 0 be given. First, Lemma 3.8
asserts that there exists p; € (0, pg) such that

n 21
2 . , €
> Pl 5140 < 30 ¥ € O.p0),

—logrg =

For ¢ > 0 as in Lemma 5.4, choose ry € (0, p1) such that _zl’f)g‘;o < §. Then

1 Xn:/h d*(uo| lypi )40 2rne <
u U ; = < —.
—logro = Jo Oy, > 1 anj, —logrg 4

The inequality of Lemma 5.5 for s = 1 follows from the above two inequalities and
the triangle inequality. O

Lemma5.6 Letug,u; € H,ands € [0, 1]. For € > 0, there exists pg > O sufficiently
small such that

“sl‘ J n A2

oD .
—logrg E ( aD’O [S'] 5 [Sl]) < —2logrg E 2—] +¢€, 0<ry<po.
b4

j=1

Proof For s = 1, Lemma 5.6 follows from Lemma 3.7. The general case of s € [0, 1]
follows immediately by convexity of energy (cf. [10, (2.2vi)]). O
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Lemma 5.7 Forug,u; € Hy and s € [0, 1], we have E*0(0) = E¥s(0).

Proof 1t suffices to prove Lemma 5.7 for s = 1. Assume on the contrary that E*°(0) #
E"1(0). By changing the role of ug and u; if necessary, we can assume E*°(0) <
E"1(0). Let pgp > 0 smaller of the pg in Lemmas 5.5 and 5.6. Choose ¢ > 0 and
ro € (0, po] such that

E"(rg) < E"'(ro) —
which implies (cf. Definition 5.1)
E"[R,,] < E"'[Ry,] — 2e. 5.3)

Next fix 71 € (0, o). Let iig, i1 : R — X be the p-equivariant maps associated to
sections ug, u1. For the fixed conformal disk D/ C R centered at the puncture p/
(cf. (2.3)), let ID) 1,0 C R the lift of ID),l ro C R. We define a “bridge" between map
ug and i by setting

S
S
~ .

to be the geodesic interpolation (1 — #)Uy(0) + tU;(6) where

_ loglz| —logro

= , Uo(0) =11g(ro,0) and U(0) = u1(r1,0).
logry —logry

In other words,

logry —logr logr —logrg

uo(ro, 0) + ———————u1(r1, 6)

b(r,0) = —————
logry —logry logry —logry

for (r,0) € ]ﬁ){,,ro,jz 1,...,n. Let

b: UD,1,0—>7éxp5(

be the local section associated with b.
The CAT(0) condition implies (by an argument analogous to the proof of the bridge
lemma [11, Lemma 3.12])

n

ugl i ul, i
E”[UD I 1< log—z <E Y sl 4 E [Sl]>
j:l

2
e Z/ & Wl 1] 6.

rl/l

@ Springer



Infinite Energy Harmonic Maps from Riemann Surfaces Page210f23 337

Choose r| = rg (cf. Lemmas 5.5 and 5.6) to obtain

Since the section

defined by setting

2

n n
. A2
Eb[U Dig,ro] < —logro Z j + 2e. (5.4)
j=1 j=1

h:Rr5—>7~2xp)~(

uop in Rro
n

b in U ]D)r&r0
j=1

is a competitor for u |, we have

E"[R;] < E"[R,]

= E"[R,,] + E’[ UD’
j=1

< E"[R,,] — 2¢ + Eb[U DJ (by (5.3))
j=1
< E"1[R,,] — logro Z (by (5.4)).
Thus,
n A2
E" Df -1 .
[U ] < —logry Z o
j=l1 j=1
This contradicts (5.1) and proves Lemma 5.7. O

Lemma 5.8 For ug, u; € H,, there exists a constant ¢ such that

d(ug(p),ui(p)) =cs,Vp e R (5.5

)« (V)2(p) = o)« (V)I*(p), forae se[0,11, pe R,V e T,R.(5.6)

Proof By the convexity of energy (cf. [10, (2.2vi)]),

EY[R, ] < (1 —)E™[R,]+sE"[R,] —s(1 — S)/ |V (ug, ur)[*dvol
Rr
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for any r > 0. Letting » — 0 and applying Lemma 5.7, we conclude

o:f [Vd (ug, u)|*dvoly (5.7)
R
E% = E™, Vs € [0, 1]. (5.8)

First, (5.7) implies that Vd (uq, #1) = O a.e.in M which in turn implies d (ug, u1) =
¢ for some c. By the definition of the map uy, (5.5) follows immediately.

Next, for {P, O, R, S} C X, the quadrilateral comparison for CAT(0) spaces (cf.
[16]) implies

d*(P;, Q1) < (1 —1)d*(P, Q) +td*(R, S)

where P, = (1 —¢)P +tSand Q; = (1 — 1) O + tR. Applying the above inequality
with P = ug(p), Q = ui1(p), S = ul(expp(tV)) and Q = up(exp,(tV)) wheret > 0
and V € T,,M, dividing by y and letting t — 0, we obtain (cf. [10, Theorem 1.9.6])

@) (V) < (1= )|wo) (VP () + sl (V) (p), ae.pe M,V € T, M.
Integrating the above over all unit vectors V € T,,M and then over p € F, we obtain
E" < (1 —s)E" +sE".

Combining this with (5.8) implies (5.6). O

Proof of Theorem 1.2 We assume there exist ug, 1 € H, such that ug # u; and treat
the different cases of Theorem 1.2 separately.

e X is a negatively curved space: For p € R, choose k > 0 and R > 0 such that
Br(uop(p)) is a CAT(-«) space. Let U be a sufficiently small neighborhood of p
and so € [0, 1] sufficiently small such that us(U4) C Br(u(p)) for s € [0, so].
Thus, if it5,(p) # uop(p), then applying [14, Sect. 5] implies that the image under
ug of a sufficiently small neighborhood of p is contained in an image o (R) of a
geodesic line. (If X is a smooth manifold, this follows by Hartman [8]). If iig # i1,
then u;(p) # up(p) forall p € Rands € (0, so] by (5.5). Thus, we conclude that
120(7%) is contained in o (R). Consequently, p (7 (7%)) fixes o (R) which contradicts
the fact that p (771 (R)) is satisfies assumption (B).

e X is an irreducible symmetric space of non-compact type or a locally finite
Euclidean building: For these two target spaces, the conclusion of Lemma 5.8
is the same as that of [4, Lemma 3.1]. Thus, we can apply the arguments of [4,
Sects. 3.2 and 3.3].

]
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