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Abstract
We present results about harmonic maps with possibly infinite energy from punctured
Riemann surfaces to CAT(0) spaces. In particular, we give precise estimates of their
energy growth near the punctures and prove uniqueness.
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1 Introduction

This is the first in a series of papers where we develop the techniques to study non-
abelian Hodge theory on quasi-projective varieties. The sequel is [5], [6], and [2].
More specifically, in this first paper, we study harmonic maps with possibly infinite
energy from punctured Riemann surfaces into complete CAT(0) spaces, and we a give
precise estimate of their energy growth near the punctures.We also prove a uniqueness
result. Both results are crucial for the next papers.

Throughout this paper, we use the following notation unless explicitly stated
otherwise:

• X̃ is a complete CAT(0)-space
• R̄ is a compact Riemann surface
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• R = R̄\{p1, . . . , pn} is a punctured Riemann surface
• � : R̃ → R is the universal covering map
• ρ : π1(R) → Isom(X̃) is a homomorphism.

For each puncture p j , j = 1, . . . , n,

• D
j is a conformal disk inR centered at the puncture p j (D j ∩ D

i = ∅ for i �= j)
• D

j
r = {z ∈ D : |z| < r}

• λ j ∈ π1(R) is the conjugacy class associated to the loop inR around p j ,
• I j := ρ(λ j ) ∈ Isom(X̃), and
• �I j := inf P∈X̃ d(I j (P), P) is the translation length of I j .

Recall that I j is said to be semisimple if there exists P∗ ∈ X̃ such that d(I j (P∗), P∗) =
�I j .

We prove the following two theorems.

Theorem 1.1 (Existence) Assume

(A) The action of ρ(π1(R)) does not fix a point at infinity.
(B) The isometry I j is semisimple, or there exists a geodesic ray c : [0,∞) → X̃ and

constants a, b > 0 such that

d(I j (c(t)), c(t)) ≤ �I j + be−at .

Then, there exists a ρ-equivariant harmonic map u : R̃ → X̃ with logarithmic energy
growth towards the punctures, i.e.,

n∑

j=1

�2
I j

2π
log

1

r
≤ Eu[Rr ] ≤

n∑

j=1

�2
I j

2π
log

1

r
+ C (1.1)

where Rr = R\⋃n
j=1 D

j
r and Eu[Rr ] is the energy of u in Rr . The constant C is

dependent only on ρ if I is semisimple and also on a, b from assumption (B) if I is
not semisimple.

For smooth targets, the existence essentially follows from [13], [17], and [12]. The
new statement in Theorem 1.1 is the precise growth estimate towards the punctures of
the harmonic map.

We also prove the following uniqueness result.

Theorem 1.2 (Uniqueness) Assume (A) and (B) of Theorem 1.1. If the ρ-equivariant
harmonic map ũ : R̃ → X̃ has logarithmic energy growth (cf. (1.1)), then it is the
unique harmonic map with logarithmic energy growth in the following cases:

(i) X̃ is a negatively curved space (i.e., for any P ∈ X̃ , there exists a neighborhood
U of P which is C AT (−κ) for some κ > 0),

(ii) X̃ is an irreducible symmetric space of non-compact type, or
(iii) X̃ is an irreducible locally finite Euclidean building such that the action of

ρ(π1(R)) does not fix an unbounded closed convex strict subset of X̃ .
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In the case when the harmonic map has finite energy, uniqueness follows from pre-
vious works of the authors and Corlette ([3, 4, 14] for cases (i), (ii), (iii), respectively).
In [2], we use the results of this paper to develop non-AbelianHodge theory techniques
extending the work by Gromov-Schoen [7] from the finite to the infinite energy case
and Mochizuki [15] from the Archimedean to the non-Archimedean case.

Remark 1.3 Assumption (B) is a natural condition for many interesting examples.
In particular, it is satisfied for symmetric spaces of non-compact type, Euclidean
buildings, and Teichmüller space endowed with the Weil-Petersson metric.

Summary of the Paper For the purpose of explaining the main ideas, we consider
the simple case when X̃ is a universal cover of a compact manifold X and γ : S

1 → X
is an arc length parameterization of a minimizing closed geodesic in X . Denote the

energy of γ by Eγ . Note that Eγ = L2
γ

2π where Lγ is the length of γ . A prototype map
v corresponding to γ is

v : [0,∞) × S
1 → X

which is equal to γ on slices {t} × S
1 for all sufficiently large t . (We note that the

idea of the prototype map first appears in [13].) The energy of v on the finite cylinder
[0, T ] × S

1 is bounded from above by T · Eγ +C where C is a constant independent
of T . Let

uT : [0, T ] × S
1 → X

be the Dirichlet solution on the finite cylinder [0, T ]× S
1 with boundary values equal

to v. Since uT is an energy minimizing map, the energy of uT is bounded from above
by T ·Eγ +C . Since γ is also an energyminimizingmap, the energy of uT in any finite
cylinder [0, t] × S

1 for 0 < t ≤ T is bounded from below by t · Eγ . From this, we
conclude that the energy of uT on any finite cylinder [t1, t2] × S

1 has an upper bound
independent of T ; namely, (t2 − t1) · Eγ +C . Thus, the regularity theory for harmonic
maps implies that the family of maps {uT }T≥1 has a uniform Lipschitz bound on any
compact subset of [0,∞)×S

1. This implies that there exists a sequence Ti → ∞ such
that uTi converges locally uniformly to a harmonic map u : [0,∞) × S

1 → X . The
conformal equivalence of the punctured disk D

∗ and the infinite cylinder [0,∞)×S
1,

thus, defines a harmonic map on D
∗ with lower and upper energy bound

Eγ log
1

r
≤ Eu[Dr ] ≤ Eγ log

1

r
+ C . (1.2)

We extend this idea to prove the existence of equivariant harmonic maps from any
punctured Riemann surface 	.

For finite energy harmonic maps, the uniqueness can be derived from the fact that
the energy functional is a convex function along a geodesic interpolation. Namely,
if ut is the geodesic interpolation map (i.e., t �→ ut (x) is a geodesic), then Eut ≤
(1 − t)Eu0 + t Eu1 . If u0 and u1 are energy minimizing maps, then the convexity
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implies that t �→ Eut is a constant function. This idea does not directly generalize
to our situation because we deal with infinite energy maps. The main idea to prove
the uniqueness assertion in our setting is to introduce a modified energy functional by
subtracting off the logarithmic energy growth near the punctures. We then prove that
the modified energy is constant along the geodesic interpolation of harmonic maps.
This allows us to apply the argument used by the authors in [4, 14].

2 Preliminaries

2.1 Maps into CAT(0) Spaces

Definition 2.1 A say that X̃ is a complete CAT(0) space if it is a complete geodesic
space that satisfies the following condition: For any three points P, R, Q ∈ X̃ and an
arclength parameterized geodesic c : [0, l] → X̃ with c(0) = Q and c(l) = R,

d2(P, Qt ) ≤ (1 − t)d2(P, Q) + td2(P, R) − t(1 − t)d2(Q, R)

where Qt = c(tl). (We refer to [1] for more details.)

Notation 2.2 It follows immediately from Definition 2.1 that, given P, Q ∈ X̃ and
t ∈ [0, 1], there exists a unique point with distance from P equal to td(P, Q) and the
distance from Q equal to (1 − t)d(P, Q). We denote this point by

(1 − t)P + t Q.

Fix a smooth conformal Riemannian metric g on R (i.e., g is given by ρ(z) dzdz̄
for some smooth function ρ in any holomorphic coordinate z of R). We refer to [10]
for the notion of energy E f and energy density function |∇ f |2 of a map f : R → X̃ .
The (Korevaar-Schoen) energy of f in a domain 
 ⊂ R is

E f [
] =
∫




|∇ f |2dvolg.

It is well known that E f [
] and |∇ f |2dvolg are invariant of the choice of the smooth
conformal Riemannian metric g.

We say a continuousmap u : R → X̃ is harmonic if it is locally energyminimizing;
more precisely, at each p ∈ R, there exists a neighborhood
of p so that all continuous
comparisonmapswhich agreewith u outside of this neighborhood have no less energy.

For V ∈ �
 where �
 is the set of Lipschitz vector fields on 
, | f∗(V )|2 is
similarly defined. The real-valued L1 function | f∗(V )|2 generalizes the norm squared
on the directional derivative of f . The generalization of the pullback metric is the
continuous, symmetric, bilinear, non-negative and tensorial operator

π f (V ,W ) = �
 × �
 → L1(
,R)
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where

π f (V ,W ) = 1

2
| f∗(V + W )|2 − 1

2
| f∗(V − W )|2.

We refer to [10] for more details.
Fix a local chart (U ; z). By the conformal invariance of the energy, we can assume

that the metric g the Eucliean metric dzdz̄ inU . We extend π f linearly cover C. Then
energy density function of f is given by

1

4
|∇ f |2 = π f

(
∂ f

∂zi
,

∂ f

∂ z̄ j

)
.

Furthermore, set z = reiθ to define polar coordinates (r , θ). We define

∣∣∣∣
∂u

∂r

∣∣∣∣
2

:= π f

(
∂

∂r
,

∂

∂r

)
and

∣∣∣∣
∂u

∂θ

∣∣∣∣
2

:= π f

(
∂

∂θ
,

∂

∂θ

)
.

2.2 Equivariant Maps and Sections of the Flat X̃-Bundle

Definition 2.3 Let ρ : π1(M) → Isom(X̃). A map f̃ : M̃ → X̃ is said to be ρ-
equivariant if

f̃ (γ p) = ρ(γ ) f̃ (p), ∀γ ∈ π1(M), p ∈ M̃ .

It is convenient to replace equivariant maps with sections of an associated fiber
bundle. The quotient under the action of π1(M) on the product M̃ × X̃ is the twisted
product

M̃ ×ρ X̃ .

In other words, M̃ ×ρ X̃ is the set of orbits [(p, x)] of a point (p, x) ∈ M̃ × X̃ under
the action of γ ∈ π1(M) via the deck transformation on the first component and the
isometry ρ(γ ) on the second component. The fiber bundle M̃ ×ρ X̃ is called the flat
X̃ -bundle over M defined by ρ.

There is a one-to-one correspondence between sections of this fibration and ρ-
equivariant maps

f̃ : M̃ → X̃ ←→ f : M → M̃ ×ρ X̃

by

[( p̃, f̃ ( p̃))] ↔ f (p) where �( p̃) = p.
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Since the energy density function |∇ f̃ |2 of f̃ is a ρ-invariant function, we can define

|∇ f |2(p) := |∇ f̃ |2( p̃).

We can similarly define the pullback inner product and directional energy density
functions of f by using the corresponding notions for f̃ given in Sect. 2.1. ForU ⊂ M ,
the energy of a section f is

E f [U ] =
∫

U
|∇ f |2dvolg. (2.1)

Furthermore, for sections f1, f2, we define

d( f1(p), f2(p)) := d( f̃1( p̃), f̃2( p̃)) (2.2)

where f̃1 and f̃2 are the corresponding ρ-equivariant maps.

2.3 Sublogarithmic Growth

We will

fix a conformal disk D
j ⊂ R̄centered at each puncture p j (2.3)

such that D
i ∩ D

j = ∅ for i �= j . Furthermore, let D
j∗ = D

j\{0}.
Fix P0 ∈ X̃ and a fundamental domain F of R̃. Let f0 be the section of the fiber

bundle R̃ ×ρ X̃ → R such that, for any p ∈ R ∩ �(F), f0(p) = [( p̃, P0)] where
p̃ = �−1(p) ∩ F . (Note that �(F) is of full measure in R.)

For a given section f : R → R ×ρ X̃ , define

δ j : D
j∗ → [0,∞), δ j (z) = d( f (z), f0(z)). (2.4)

Recall that d( f (z), f0(z)) is defined by (2.2).

Definition 2.4 We say a section f : R → R̃×ρ X̃ (or its associated equivariant map)
has sub-logarithmic growth if for any j = 1, . . . , n

lim|z|→0
δ j (z) + ε log |z| = −∞ in D

j∗.

By the triangle inequality, this definition is independent of the choice of P0 ∈ X̃ . We
say that f has logarithmic energy growth if near the punctures satisfies condition (1.1)
in Theorem 1.1.
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3 Harmonic Maps from a Punctured Disk

Before we consider the domain to be a general punctured Riemann surface, we first
start by studying harmonic maps from a punctured disk D̄

∗. Denote

D
∗
r = {z ∈ D : |z| < r}

Dr ,r0 = Dr0\Dr .

Identify the boundary of the disk with the circle; i.e., ∂D = S
1.

This induces a natural identification

2πZ � π1(S
1) � π1(D̄

∗).

The main result of this section is the following.

Theorem 3.1 (Existence and Uniqueness of the Dirichlet solution on D
∗) Assume the

following:

• ρ : 2πZ � π1(S
1) � π1(D̄

∗) → Isom(X̃) is a homomorphism

• k : D̄
∗ → ˜̄

D∗ ×ρ X̃ is a locally Lipschitz section
• I := ρ([S1]) satisfies condition (B) of Theorem 1.1 with I j replaced by I .

Then there exists a harmonic section

u : D̄
∗ → ˜̄

D∗ ×ρ X̃ with u|S1 = k|S1 .

Furthermore, there exists a constant C > 0 that depends only on�I , k if I is semisim-
ple and also on a, b from assumption (B) if I is not semisimple such that u satisfies
the following properties:

(i)
�2

I

2π
log

1

r
≤ Eu[Dr ,1] ≤ �2

I

2π
log

1

r
+ C, 0 < r ≤ 1

(ii)

∣∣∣∣
∂u

∂r

∣∣∣∣
2

≤ C

r2(− log r)
and

(∣∣∣∣
∂u

∂θ

∣∣∣∣
2

− �2
I

4π2

)
≤ C

− log r
in D

∗
1
4

(iii) u has sub-logarithmic growth.

Moreover, u is the only harmonic section satisfying u|∂D = k|∂D and property (iii).

Proof Combine Lemmas 3.5, 3.7, 3.9, and 3.10 below. ��
The purpose for the rest of this subsection is to prove the lemmas that comprise
the proof of Theorem 3.1. We start with the following preliminary lemma about
subharmonic functions.

Lemma 3.2 For r > 0, let ν : D
∗
r → R be a subharmonic function that extends as a

continuous function to D̄
∗
r = Dr\{0}. If we assume that

lim
z→0

ν(z) + ε log |z| = −∞, ∀ε > 0, (3.1)
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then

sup
z∈D∗

r

ν(z) ≤ max
ζ∈∂Dr

ν(ζ ).

In particular, ν extends to a subharmonic function on Dr (cf. [9]).

Proof Let h : Dr → R be the unique Dirichlet solution with h|∂Dr = ν|∂Dr . By the
maximum principle, h is non-negative and bounded on Dr . The function

fε(z) = ν(z) − h(z) + ε(log |z| − log r)

is subharmonic on D
∗
r with fε |∂Dr ≡ 0 on ∂Dr . Furthermore, since h is a bounded

function and ν satisfies (3.1),

lim
z→0

fε(z) = −∞.

By the maximum principle, fε ≤ 0. By letting ε → 0, we conclude ν(z) − h(z) ≤ 0
for all z ∈ D

∗
r . Thus,

sup
z∈D∗

r

ν(z) ≤ sup
z∈Dr

h(z) ≤ max
ζ∈∂Dr

h(ζ ) = max
ζ∈∂Dr

ν(ζ ).

��
Lemma 3.3 If ρ and I are as in Theorem 3.1, then for any section f : Dr ,r0 →
˜̄
D∗ ×ρ X̃ ,

�2
I

2π
log

r0
r

≤
∫

Dr ,r0

1

r2

∣∣∣∣
∂ f

∂θ

∣∣∣∣
2

rdr ∧ dθ ≤ E f [Dr ,r0 ], 0 < r < r0 < 1.

Proof By the definition of �I , any section c : S
1 → R ×ρ X̃ satisfies

�2
I

2π
≤

∫ 2π

0

∣∣∣∣
∂c

∂θ

∣∣∣∣
2

dθ.

After identifying S
1 with ∂Dr , we can view the restriction f |∂Dr as a section S

1 →
R ×ρ X̃ . Thus,

�2
I

2π
log

r0
r

= �2
I

2π

∫ r0

r

1

r2
rdr ∧ dθ

≤
∫ 2π

0

∫ r0

r

1

r2

∣∣∣∣
∂ f

∂θ
(r , θ)

∣∣∣∣
2

rdr ∧ dθ

≤ E f [Dr ,r0 ].

��

123



Infinite Energy Harmonic Maps from Riemann Surfaces Page 9 of 23 337

Lemma 3.4 If ρ, I , and k : D̄
∗ → ˜̄

D∗ ×ρ X̃ are as in Theorem 3.1, then there exists

a constant C > 0 and a Lipschitz section v : D̄
∗ → ˜̄

D∗ ×ρ X̃ with v|∂D = k|∂D such
that

�2
I

2π
log

r0
r

≤ Ev[Dr ,r0 ] ≤ �2
I

2π
log

r0
r

+ C, 0 < r < r0 ≤ 1

2
. (3.2)

Moreover, the Lipschitz constants of v and C are dependent only on �I , k if I is
semisimple and also on a, b from assumption (B) if I is not semisimple.

Proof We will first construct an one-parameter family of sections γs : S
1 �→ R ×ρ X̃

as follows:

• If I is semisimple, let P� ∈ X̃ be a point where the infimum�I is attained. For any
s ∈ [0,∞), define γ̃s : R → X̃ to be the ρ-equivariant geodesic (a constant map if
I is elliptic) such that γ̃s(0) = P� and γ̃s(2π) = I (P�) and let γs : S

1 → S̃
1 ×ρ X̃

be the associated section.
• Otherwise, let c : [0,∞) → X̃ be a geodesic ray defined in assumption (B). Define
the ρ-equivariant curve γ̃s : R → X̃ such that γ̃s |[0,2π ] is the geodesic from c(s)
and I (c(s)) and let γs : S

1 → S̃
1 ×ρ X̃ be the associated section.

We note that by the quadrilateral comparison of CAT(0) spaces (cf. [16]), for θ ∈
[0, 2π ],

d(γ̃s1(θ), γ̃s2(θ)) ≤
(
1 − θ

2π

)
d(c(s1), c(s2)) + θ

2π
d(I ◦ c(s1)), I ◦ c(s2))) = |s1 − s2|.

Thus,

∣∣∣∣
d

ds
(γ̃s(θ))

∣∣∣∣ ≤ 1, ∀s ∈ (0,∞), θ ∈ S
1. (3.3)

If I is semisimple, then

∫

S1

∣∣∣∣
∂γs

∂θ

∣∣∣∣
2

dθ =
∫ 2π

0

(
�I

2π

)2

dθ = �2
I

2π
.

Otherwise, by the assumption on c(s), we have (by modifying the constants a, b in
assumption (B)) that

∫

S1

∣∣∣∣
∂γs

∂θ

∣∣∣∣
2

dτ ≤ �2
I

2π
+ be−as . (3.4)

Define a ρ-equivariant map ṽ : ˜̄
D∗ → X̃ as follows: First, for (r , t) ∈ ˜̄

D∗, let

ṽ(r , t) := γ̃
(− log r−log 2)

1
3
(t) for r ∈ (0,

1

2
] and ṽ(1, t) := k̃(1, t).

123
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Next, for each t ∈ R, let

r �→ ṽ(r , t) for r ∈
[
1

2
, 1

]

to be the arclength parameterization of the geodesic between ṽ
( 1
2 , t

)
and k̃(1, t).

Finally, let v : D̄
∗ → ˜̄

D∗ ×ρ X̃ be the section associated to the ρ-equivariant map ṽ.
For 0 < r < r0 < 1

2 , we have

�2
I

2π
log

r0
r

≤
∫ 2π

0

∫ r0

r

1

r2

∣∣∣∣
∂v

∂θ

∣∣∣∣
2

rdr ∧ dθ (by Lemma 3.3)

≤
∫ 2π

0

∫ r0

r

1

r2

∣∣∣∣∣

∂(γ
(− log r−log 2)

1
3
)

∂θ

∣∣∣∣∣

2

rdr ∧ dθ

=
∫ 2π

0

∫ − log r

− log r0

∣∣∣∣∣

∂(γ
(t−log 2)

1
3
)

∂θ

∣∣∣∣∣

2

dtdθ

≤
∫ − log r

− log r0
(
�2

I

2π
+ be−a(t−log 2)

1
3
)dt (by (3.4))

= �2
I

2π
log

r0
r

+ C .

By (3.3),

∣∣∣∣
∂v

∂r

∣∣∣∣
2

(r , θ) =
∣∣∣∣

∂

∂s

∣∣∣
s=(− log r−log 2)

1
3
γs(θ)

∣∣∣∣
2
∣∣∣∣∣
∂((− log r − log 2)

1
3 )

∂r

∣∣∣∣∣

2

≤ 1

r2(− log r − log 2)
4
3

.

Thus,

∫ 2π

0

∫ r0

r

∣∣∣∣
∂v

∂r

∣∣∣∣
2

rdr ∧ dθ =
∫ 2π

0

∫ r0

r

1

r(− log r − log 2)
4
3

dr ∧ dθ ≤ C .

��
Lemma 3.5 (Existence and property (i) of Theorem 3.1) If X̃ , ρ, �I , and k as in
Theorem 3.1, then there exists a harmonic section u : D

∗ → D̃∗×ρ X̃ with u|∂D = k|∂D
and a constant C > 0 that depends only on �I , k if I is semisimple and also on a, b
from assumption (B) if I is not semisimple such that

�2
I

2π
log

1

r
≤ Eu[Dr ,1] ≤ �2

I

2π
log

1

r
+ C, 0 < r ≤ 1.
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Proof Let v be as in Lemma 3.4. By [10, Theorem 2.7.2] (or more specifically, by
the proof of this theorem which solves the equivariant problem), there exists a unique
harmonic section

ur : Dr ,1 → D̃r ,1 ×ρ X̃ with ur |∂Dr ,1 = v|∂Dr ,1 .

We have that

�2
I

2π
log

r0
r

+ Eur [Dr0,1] ≤ Eur [Dr ,r0 ] + Eur [Dr0,1] (by Lemma 3.3)

= Eur [Dr ,1]
≤ Ev[Dr ,1] (since ur is minimizing)

= Ev[Dr ,r0 ] + Ev[Dr0,1]
≤ �2

I

2π
log

r0
r

+ C + Ev[Dr0,1] (by (3.2)).

Therefore,

Eur [Dr0,1] ≤ C + Ev[Dr0,1]. (3.5)

Note that the right-hand side of the above is independent of r ∈ (
0, 1

2

]
. Thus, {ur |D2r0,1}

is an equicontinuous family of sections (cf. [10, Theorem 2.4.6]). Consequently, there
exists a sequence ri → 0 and a harmonic section

u : D̄
∗ → ˜̄

D∗ ×ρ X̃ with u|∂D = k|∂D. (3.6)

such that the sequence {uri } converges uniformly on compact subsets of D
∗ to u.

To prove property (i), we note that for 0 < r < r1 < 1,

Eur [Dr ,r1 ] + Eur [Dr1,1] = Eur [Dr ,1]
≤ Ev[Dr ,1]
= Ev[Dr ,r1 ] + Ev[Dr1,1]

which, combined with Lemma 3.3 and (3.2), implies that

Eur [Dr1,1] ≤ Ev[Dr1,1] + C .

Letting r → 0 and applying the lower semicontinuity of energy [10, Theorem 1.6.1],
we obtain

Eu[Dr1,1] ≤ Ev[Dr1,1] + C .

Applying Lemma 3.3 and (3.2), we obtain

�2
I

2π
log

1

r1
≤ Eu[Dr1,1] ≤ Ev[Dr1,1] + C ≤ �2

I

2π
log

1

r1
+ C .
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By (3.2), the constant C is dependent on �I , k if I is semisimple and also on a, b
from assumption (B) if I is not semisimple. ��
Lemma 3.6 If u : D̄

∗ → ˜̄
D∗ ×ρ X̃ is a harmonic section with logarithmic energy

growth, then

∫

D∗

∣∣∣∣
∂u

∂r

∣∣∣∣
2

rdr ∧ dθ ≤ C and
∫

D∗
1

r2

(∣∣∣∣
∂u

∂θ

∣∣∣∣
2

− �2
I

4π2

)
rdr ∧ dθ ≤ C

where C here depends on C from (1.1).

Proof Follows immediately from the inequality (1.1) in the Definition 2.4 and
Lemma 3.3. ��
Lemma 3.7 (Property (ii) of Theorem 3.1) If u : D̄

∗ → ˜̄
D∗ ×ρ X̃ is a harmonic

section with logarithmic energy growth, then

(∣∣∣∣
∂u

∂θ

∣∣∣∣
2

− �2
I

4π2

)
≤ C

(− log r)
in D

∗
1
4

(3.7)

lim
r→0

(− log r)

(∣∣∣∣
∂u

∂θ

∣∣∣∣
2

(r , θ) − �2
I

4π2

)
= 0 (3.8)

∣∣∣∣
∂u

∂r

∣∣∣∣
2

≤ C

r2(− log r)
in D

∗
1
4

(3.9)

lim
r→0

(− log r)r2
∣∣∣∣
∂u

∂r

∣∣∣∣
2

(r , θ) = 0. (3.10)

where C here depends on C from (1.1).

Proof Consider the cylinder

C = (0,∞) × S
1

and let

� : C → D
∗, (t, ψ) = (r = e−t , θ = ψ). (3.11)

Since � is a conformal map, u ◦ � is harmonic. Thus, the directional energy

density functions
∣∣∣ ∂(u◦�)

∂t

∣∣∣
2
and

∣∣∣ ∂(u◦�)
∂ψ

∣∣∣
2
are subharmonic by [10, Remark 2.4.3].

Furthermore,
∣∣∣ ∂(u◦�)

∂t

∣∣∣
2
and

∣∣∣ ∂(u◦�)
∂ψ

∣∣∣
2 − �2

I
4π2 are integrable in C = (0,∞) × S

1 by

Lemma 3.6 and the chain rule.
The subharmonicity of the directional energy density functions implies

0 ≤
∫

(t1,t2)×S1
�ϕ

∣∣∣∣
∂(u ◦ �)

∂ψ

∣∣∣∣
2

dtdψ, ∀ϕ ∈ C∞
c ((t1, t2) × S

1), ϕ ≥ 0.
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Letting ϕ approximate the characteristic function of (t1, t2) × S
1, we obtain

0 ≤ d

dt

∣∣∣
t=t2

(∫

{t}×S1

∣∣∣∣
∂(u ◦ �)

∂ψ

∣∣∣∣
2

dψ

)
− d

dt

∣∣∣
t=t1

(∫

{t}×S1

∣∣∣∣
∂(u ◦ �)

∂ψ

∣∣∣∣
2

dψ

)
.

In other words,

F(t) :=
∫

{t}×S1

∣∣∣∣
∂(u ◦ �)

∂ψ

∣∣∣∣
2

− �2
I

4π2 dψ, t ∈ (0,∞)

is a convex function. By Lemma 3.6,
∫ ∞
0 F(t)dt < ∞. Since F(t) is convex and

integrable, F(t) is a decreasing. Thus, we obtain

t F(t) ≤ 2
∫ t

t
2

F(τ ) dτ ≤ 2
∫ ∞

t
2

F(τ ) dτ. (3.12)

With B1(t0, ψ0) denoting the unit disk centered at (t0, ψ0) ∈ C, the mean value
inequality implies

t0

(∣∣∣∣
∂(u ◦ �)

∂ψ

∣∣∣∣
2

− �2
I

4π2

)
(t0, ψ0)

≤ t0
π

∫

B1(t0,ψ0)

(∣∣∣∣
∂(u ◦ �)

∂ψ

∣∣∣∣
2

− �2
I

4π2

)
dtdψ

≤ t0
π

∫

(t0−1,t0+1)×S1

(∣∣∣∣
∂(u ◦ �)

∂ψ

∣∣∣∣
2

− �2
I

4π2

)
dtdψ

≤ 1

π

t0
t0 − 1

∫

(t0−1,t0+1)×S1
t

(∣∣∣∣
∂(u ◦ �)

∂ψ

∣∣∣∣
2

− �2
I

4π2

)
dtdψ

= 1

π

t0
t0 − 1

∫ t0+1

t0−1
t F(t)dt

≤ 1

π

t0
t0 − 1

∫ t0+1

t0−1
2

∫ ∞
t
2

F(τ ) dτdt (by (3.12)).

Since F(τ ) ≥ 0,

∫ ∞
t
2

F(τ ) dτ ≤
∫ ∞

t0−1
2

F(τ ) dτ, t ∈ (t0 − 1, t0 + 1).

Combining the above two inequalities and assuming t0 ≥ 2 (and thus t0
t0−1 ≤ 2),

t0

(∣∣∣∣
∂(u ◦ �)

∂ψ

∣∣∣∣
2

(t0, ψ0) − �2
I

4π2

)
≤ 4

π

∫ ∞
t0−1
2

F(τ ) dτ. (3.13)
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Estimates (3.7) and (3.8) both follow from (3.13) by the chain rule and the fact that
F(τ ) is integrable on (0,∞) with integral bound given by Lemma 3.6.

Similar argument for

G(t) :=
∫

{t}×S1

∣∣∣∣
∂(u ◦ �)

∂t

∣∣∣∣
2

dψ, t ∈ (0,∞)

proves (3.9) and (3.10). ��
Lemma 3.8 Let u : D̄

∗ → ˜̄
D∗ ×ρ X̃ be a harmonic section with logarithmic energy

growth. For any ε > 0, there exists ρ0 > 0 such that

d2(u(r1e
iθ ), u(r0e

iθ )) ≤ −ε log r1, ∀0 < r1 < r0 ≤ ρ0, 0 < θ < 2π.

Proof Fix ε > 0. The convergence of (− log r)r2
∣∣ ∂u
∂r

∣∣2 (r , θ) to 0 as r → 0 (cf. (3.10))
implies that there exists ρ0 > 0 such that

∣∣∣∣
∂u

∂r

∣∣∣∣ ≤
√

ε

2r(− log r)
1
2

, r ∈ (0, ρ0].

Thus, for 0 < r1 < r0 ≤ ρ0, and noting the ρ-equivariance of ũ, we have

d2(u(r1e
iθ ), u(r0e

iθ )) ≤
(∫ r1

r0

d

dr
d(u(reiθ ), u(r0e

iθ ))dr

)2

≤
(∫ r0

r1

∣∣∣∣
∂u

∂r

∣∣∣∣ (re
iθ )dr

)2

≤ ε

4

(∫ r0

r1

dr

r(− log r)
1
2

)2

≤ ε
(
(− log r1)

1
2 − (− log r0)

1
2

)2

≤ −ε log r1.

��
Lemma 3.9 (Property (iii) of Theorem 3.1) If u : D̄

∗ → ˜̄
D∗ ×ρ X̃ is a harmonic

section with logarithmic energy growth, then u has sub-logarithmic growth.

Proof By Lemma 3.8, for ε > 0, there exists r0 > 0 sufficiently small such that

d2(u(reiθ ), u(r0e
iθ )) ≤ −ε

4
log r , r ∈ (0, r0).

Set P0 = ũ(r0eiθ0) ∈ X̃ and define f0(p) = [( p̃, P0)] as in Definition 2.4. For
z = reiθ ,
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d2(u(z), f0(z)) + ε log |z| = d2(u(reiθ ), u(r0e
iθ0 )) + ε log r

≤ 2d2(u(reıθ ), u(r0e
iθ )) + 2d2(u(r0e

iθ ), u(r0e
iθ0 )) + ε log r

≤ ε

2
log r + d2(u(r0e

iθ ), u(r0e
iθ0 )).

r → 0. ��
Lemma 3.10 (Uniqueness for sub-logarithmic growth maps) If u, v : D̄

∗ → ˜̄
D∗ ×ρ X̃

are harmonic sections with sub-logarithmic growth with u = v on ∂D, then u = v on
D

∗.

Proof The function d2(u, v) (as defined by (2.2)) is a continuous subharmonic function
(cf. [10, Remark 2.4.3]). Furthermore, d2(u, v) ≡ 0 on ∂D. Since u, v both have
sub-logarithmic growth, the triangle inequality implies

lim|z|→0
d2(u(z), v(z)) + ε log |z| = −∞.

Thus, we can apply Lemma 3.2 to conclude d2(u(z), v(z)) ≡ 0 on D
∗ which implies

u ≡ v. ��
Corollary 3.11 Any harmonic section v : D̄

∗ → ˜̄
D∗×ρ X̃ with sub-logarithmic growth

satisfies properties (i), (ii) and (iii) of Theorem 3.1.

Proof By the uniqueness assertion of Lemma 3.10, v must be the harmonic section u
constructed in Theorem 3.1. ��
Remark 3.12 Together, Lemma 3.9 and Corollary 3.11 say that a harmonic section

u : D̄
∗ → ˜̄

D∗ ×ρ X̃ has logarithmic energy growth if and only if it has sub-logarithmic
growth.

4 Existence of Infinite Energy Harmonic Maps

In this section, we prove existence of equivariant harmonic maps from the punctured
Riemann surfaceR. We use the following notation:

• D
j∗ = D

j\{0}
• D

j
r = {z ∈ D

j : |z| < r}
• D

j
r ,r0 = D

j
r0\D

j
r

• Rr = R\⋃n
j=1 D

j
r

• 2πZ � 〈λ j 〉 is the free group generated by a loop around the puncture p j

• ρ j : 〈λ j 〉 → Isom(X̃) is the restriction of ρ : π1(R) → Isom(X̃)

• k : R → R̃ ×ρ X̃ is a locally Lipschitz section (cf. [10, Proposition 2.6.1])
• k j := k|

D̄ j∗ , is the restriction to the conformal disk around the puncture p j

Applying Lemma 3.4 with ρ = ρ j , I = I j and k = k j yields a prototype section

v j : D
∗ → D̃∗ ×ρ j X̃ ⊂ R̃ ×ρ j X̃ .
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The composition of v j and the quotient map R̃ ×ρ j X̃ → R̃ ×ρ X̃ defines a section

of R̃ ×ρ X̃ → R over D
j∗ which we call again v j . We extend these local sections

v j : D
j∗ → R̃ ×ρ X̃ for j = 1, . . . , n to define a locally Lipschitz section v : R →

R̃ ×ρ X̃ . By the construction and Lemma 3.4,

n∑

j=1

�2
j

2π
log

1

r
≤ Ev[Rr ] ≤

n∑

j=1

�2
j

2π
log

1

r
+ C, 0 < r ≤ 1. (4.1)

The constant C is dependent only on �I , k if I is semisimple and also on a, b from
assumption (B) if I is not semisimple.

Definition 4.1 The locally Lipschitz section

v : R → R̃ ×ρ X̃ (4.2)

constructed above is called the prototype section of the fiber bundle R̃ ×ρ X̃ → R.
The associated ρ-equivariant map ṽ : R̃ → X̃ is called the prototype map.

Define

uRr : Rr → R̃ ×ρ X̃

to be the unique harmonic section with boundary values equal to that of v|∂Rr (cf.
[10, Theorem 2.7.2]). Fix r0 ∈ (

0, 1
2

]
and let r ∈ (0, r0). By Lemma 3.3,

�2
j

2π
log

r0
r

≤
∫

Dr ,r0

1

r2

∣∣∣∣
∂uRr

∂θ

∣∣∣∣
2

rdr ∧ dθ ≤ EuRr [D j
r ,r0 ].

Thus, by (4.1),

Ev[
n⋃

j=1

D
j
r ,r0 ] ≤ EuRr [

n⋃

j=1

D
j
r ,r0 ] + C

which implies

EuRr [
n⋃

j=1

D
j
r ,r0 ] + EuRr [Rr0 ] = EuRr [Rr ]

≤ Ev[Rr ]
= Ev[

n⋃

j=1

D
j
r ,r0 ] + Ev[Rr0 ]

≤ EuRr [
n⋃

j=1

D
j
r ,r0 ] + C + Ev[Rr0 ].
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In other words,

EuRr [Rr0 ] ≤ C + Ev[Rr0 ], ∀r ∈ (0, r0) (4.3)

where C is as in (4.1). The right-hand side of the inequality (4.3) is independent of
the parameter r ; i.e., once we fix r0, the quantity EuRr [Rr0 ] is uniformly bounded for
all r ∈ (0, r0). This implies a uniform Lipschitz bound, say L , of uRr for r ∈ (0, r0)
inR2r0 (cf. [10, Theorem 2.4.6]).

Let {μ1, . . . , μN } be a set of generators of π1(R) and ũRr , ṽ be the ρ-equivariant
maps associated to sections uRr , v respectively. Thus,

d(ũRr (μi p), ũRr (p)) ≤ LdR̃(μi p, p), ∀p ∈ R̃2r0 , i = 1, . . . , N r ∈ (0, r0).

If we let

c = L sup{dR̃(μi p, p) : i = 1, . . . , N , p ∈ R̃2r0},

then by equivariance

d(ρ(μi )ũRr (p), ũRr (p)) ≤ c, p ∈ R̃2r0 , i = 1, . . . , N , r ∈ (0, r0).

In other words, δ(ũRr (p)) ≤ c for all p ∈ R̃2r0 and r ∈ (0, r0). By the properness of
ρ, there exists P0 ∈ X̃ and R0 > 0 such that

{ũRr (p) : p ∈ R̃2r0 , r ∈ (0, r0)} ⊂ BR0(P0).

Thus, by taking a compact exhaustion and applying [11, Theorem 2.1.3], we conclude
that there exists a sequence ri → 0 and aρ-equivariant harmonicmap ũ : R̃ → X̃ such
that uRri

converges to u in L2 (i.e., d2(uRri
, u) → 0) on every compact subsets ofR.

Let u : R → R̃ ×ρ X̃ be the associated harmonic section. The lower semicontinuity
of energy (cf. [10, Theorem 1.6.1]), (4.1) and (4.3) imply

Eu[Rr0 ] ≤
n∑

j=1

�2
j

2π
log

1

r0
+ C, ∀r0 ∈ (0,

1

2
].

By the use of (4.1) in the above argument, the constant C is dependent only on �I , k
if I is semisimple and also on a, b from assumption (B) if I is not semisimple. Note
that k is dependent only on ρ (cf. [10, Proposition 2.6.1]). The above inequality and
Lemma 3.3 imply that u has logarithmic energy growth (cf. Definition 2.4). The fact
that u has sub-logarithmic growth follows from Lemma 3.9. This completes the proof
of Theorem 1.1.
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5 Uniqueness of Infinite Energy Harmonic Maps

In this section, we prove uniqueness of harmonic maps from punctured Riemann
surfaces R (cf. Theorem 1.2). First, let

E f (r) = E f [Rr ] −
n∑

j=1

�2
j

2π
log

1

r
.

By Lemma 3.3, for 0 < r < r0 < 1 and any section f : R → R̃ ×ρ X̃ ,

n∑

j=1

�2
j

2π
log

r0
r

≤ E f [
n⋃

j=1

D
j
r ,r0 ]. (5.1)

Thus, r �→ E f (r) is an increasing function.

Definition 5.1 The modified energy of f is

E f (0) = lim
r→0

E f (r).

Let Lρ be the set of all sections R → R̃ ×ρ X̃ such that E f (0) < ∞. Let Hρ ⊂ Lρ

denote the set of all harmonic sections u : R → R̃ ×ρ X̃ such that the associated
ρ-equivariant map u is not identically constant or does not map into a geodesic.

Remark 5.2 By Lemma 3.9, u ∈ Hρ has sub-logarithmic growth.

The goal is to prove thatHρ contains only one element.We first prove the following
series of preliminary lemmas.

Lemma 5.3 If u ∈ Hρ and D
j ⊂ R̄ is the fixed conformal disk at the puncture p j

(cf. (2.3)), then the restriction map u|D j∗ satisfies the properties (i), (ii) and (iii) of
Theorem 3.1.

Proof This follows immediately from Remark 5.2 and Corollary 3.11. ��
Lemma 5.4 If u0, u1 ∈ Hρ , then d2(u0, u1) = c for some constant c.

Proof We prove Lemma 5.4 by showing that d2(u0, u1) extends as a subharmonic
function to R̄. Since R̄ is compact, this implies d2(u0, u1) is constant. Indeed, let
D ⊂ R be a holomorphic disk. By [10, Lemma 2.4.2 and Remark 2.4.3], the function
d2(u0, u1) is subharmonic in D. Since this statement is true for any holomorphic disk
D ⊂ R, we conclude that d2(u0, u1) is subharmonic inR.

Next, consider the fixed conformal disk D
j ⊂ R̄ centered at p j ∈ P (cf. (2.3)).

Since both u0 and u1 have sub-logarithmic growth, d(u0(z), u1(z)) + ε log |z| →
−∞ as z → 0 in D

j by the triangle inequality. Thus, by Lemma 3.2, d2(u0, u1) is
bounded in D

j∗ and extends as a subharmonic function on D
j . Hence, we conclude

that d2(u0, u1) extends as a subharmonic function on R̄, thereby proving Lemma 5.4.
��
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For u0, u1 ∈ Hρ , let ũ0, ũ1 be the associated ρ-equivariant maps. For s ∈ [0, 1],
define us : R → R̃ ×ρ X̃ to be the associated section of the ρ-equivariant map

ũs : R̃ → X̃ , ũs(z) = (1 − s)ũ0(z) + sũ1(z) (5.2)

where the sum on the right-hand side above denotes geodesic interpolation (cf. Nota-
tion 2.2). Since ũ0 and ũ1 are ρ-equivariant, ũs is also ρ-equivariant.

From Lemmas 5.3 and 5.4, the convexity of the distance function and the convexity
of energy (cf. [10, (2.2vi)]), it follows that us |D j∗ also satisfies the properties (i), (i i)
and (i i i) of Theorem 3.1 for all s ∈ [0, 1]; i.e.,

• Eus [D j
r ,r0 ] ≤ C + �2

j

2π
log

r0
r

• lim
r→0

E
us |

∂D
j
r [S1] = �2

j

2π• us has sub-logarithmic growth.

Lemma 5.5 Let u0, u1 ∈ Hρ and ε > 0. For any ρ0 ∈ (0, 1), there exists r0 ∈ (0, ρ0)
such that

1

− log r0

n∑

j=1

∫ 2π

0
d2(u0|∂D j

r0
, us |∂D j

r20

)dθ < ε, ∀s ∈ [0, 1].

Proof It suffices to prove Lemma 5.5 for s = 1. Let ρ0 > 0 be given. First, Lemma 3.8
asserts that there exists ρ1 ∈ (0, ρ0) such that

1

− log r0

n∑

j=1

∫ 2π

0
d2(u1|∂D j

r0
, u1|∂D j

r20

)dθ <
ε

4
, ∀r0 ∈ (0, ρ1).

For c > 0 as in Lemma 5.4, choose r0 ∈ (0, ρ1) such that 2πnc
− log r0

< ε
4 . Then

1

− log r0

n∑

j=1

∫ 2π

0
d2(u0|∂D j

r0
, u1|∂D j

r0
)dθ = 2πnc

− log r0
<

ε

4
.

The inequality of Lemma 5.5 for s = 1 follows from the above two inequalities and
the triangle inequality. ��
Lemma 5.6 Let u0, u1 ∈ Hρ and s ∈ [0, 1]. For ε > 0, there exists ρ0 > 0 sufficiently
small such that

− log r0

n∑

j=1

(
E
u0|

∂D
j
r0 [S1] + E

us |
∂D

j

r20 [S1]
)

< −2 log r0

n∑

j=1

�2
j

2π
+ ε, 0 < r0 < ρ0.

Proof For s = 1, Lemma 5.6 follows from Lemma 3.7. The general case of s ∈ [0, 1]
follows immediately by convexity of energy (cf. [10, (2.2vi)]). ��
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Lemma 5.7 For u0, u1 ∈ Hρ and s ∈ [0, 1], we have Eu0(0) = Eus (0).

Proof It suffices to prove Lemma 5.7 for s = 1. Assume on the contrary that Eu0(0) �=
Eu1(0). By changing the role of u0 and u1 if necessary, we can assume Eu0(0) <

Eu1(0). Let ρ0 > 0 smaller of the ρ0 in Lemmas 5.5 and 5.6. Choose ε > 0 and
r0 ∈ (0, ρ0] such that

Eu0(r0) < Eu1(r0) − 2ε

which implies (cf. Definition 5.1)

Eu0 [Rr0 ] < Eu1 [Rr0 ] − 2ε. (5.3)

Next fix r1 ∈ (0, r0). Let ũ0, ũ1 : R̃ → X̃ be the ρ-equivariant maps associated to
sections u0, u1. For the fixed conformal disk D

j ⊂ R̄ centered at the puncture p j

(cf. (2.3)), let D̃
j
r1,r0 ⊂ R̃ the lift of D

j
r1,r0 ⊂ R. We define a “bridge" between map

ũ0 and ũ1 by setting

b̃ :
n⋃

j=1

D̃
j
r1,r0 → X̃

to be the geodesic interpolation (1 − t)U0(θ) + tU1(θ) where

t = log |z| − log r0
log r1 − log r0

, U0(θ) = ũ0(r0, θ) and U1(θ) = ũ1(r1, θ).

In other words,

b̃(r , θ) = log r1 − log r

log r1 − log r0
ũ0(r0, θ) + log r − log r0

log r1 − log r0
ũ1(r1, θ)

for (r , θ) ∈ D̃
j
r1,r0 , j = 1, . . . , n. Let

b :
n⋃

j=1

D
j
r1,r0 → R̃ ×ρ X̃

be the local section associated with b̃.
The CAT(0) condition implies (by an argument analogous to the proof of the bridge

lemma [11, Lemma 3.12])

Eb[
n⋃

j=1

D
j
r1,r0 ] ≤ 1

2
log

r0
r1

n∑

j=1

(
E
u0|

∂D
j
r0 [S1] + E

u1|
∂D

j
r1 [S1]

)

+ 1

log r0
r1

n∑

j=1

∫ 2π

0
d2(u0|∂D j

r0
, u1|∂D j

r1
)dθ.
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Choose r1 = r20 (cf. Lemmas 5.5 and 5.6) to obtain

Eb[
n⋃

j=1

D
j
r20 ,r0

] < − log r0

n∑

j=1

�2
j

2π
+ 2ε. (5.4)

Since the section

h : Rr20
→ R̃ ×ρ X̃

defined by setting

h =

⎧
⎪⎨

⎪⎩

u0 inRr0

b in
n⋃

j=1

D
j
r20 ,r0

is a competitor for u1, we have

Eu1 [Rr20
] ≤ Eh[Rr20

]

= Eu0 [Rr0 ] + Eb[
n⋃

j=1

D
j
r20 ,r0

]

< Eu1 [Rr0 ] − 2ε + Eb[
n⋃

j=1

D
j
r20 ,r0

] (by (5.3))

< Eu1 [Rr0 ] − log r0

n∑

j=1

�2
I j

2π
(by (5.4)).

Thus,

Eu1 [
n⋃

j=1

D
j
r20 ,r0

] < − log r0

n∑

j=1

�2
j

2π
.

This contradicts (5.1) and proves Lemma 5.7. ��
Lemma 5.8 For u0, u1 ∈ Hρ , there exists a constant c such that

d(us(p), u1(p)) ≡ cs,∀p ∈ R (5.5)

|(us)∗(V )|2(p) = |(u0)∗(V )|2(p), for a.e. s ∈ [0, 1], p ∈ R, V ∈ TpR̃.(5.6)

Proof By the convexity of energy (cf. [10, (2.2vi)]),

Eus [Rr ] ≤ (1 − s)Eu0 [Rr ] + sEu1 [Rr ] − s(1 − s)
∫

Rr

|∇d(u0, u1)|2dvolM
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for any r > 0. Letting r → 0 and applying Lemma 5.7, we conclude

0 =
∫

R
|∇d(u0, u1)|2dvolM (5.7)

Eus = Eu0 , ∀s ∈ [0, 1]. (5.8)

First, (5.7) implies that∇d(u0, u1) = 0 a.e. inM which in turn implies d(u0, u1) ≡
c for some c. By the definition of the map us , (5.5) follows immediately.

Next, for {P, Q, R, S} ⊂ X̃ , the quadrilateral comparison for CAT(0) spaces (cf.
[16]) implies

d2(Pt , Qt ) ≤ (1 − t)d2(P, Q) + td2(R, S)

where Pt = (1 − t)P + t S and Qt = (1 − t)Q + t R. Applying the above inequality
with P = u0(p), Q = u1(p), S = u1(expp(tV )) and Q = u0(expt (tV ))where t > 0

and V ∈ Tp M̃ , dividing by y and letting t → 0, we obtain (cf. [10, Theorem 1.9.6])

|(us)∗(V )|2(p) ≤ (1 − s)|(u0)∗(V )|2(p) + s|(u1)∗(V )|2(p), a.e. p ∈ M̃, V ∈ Tp M̃ .

Integrating the above over all unit vectors V ∈ Tp M̃ and then over p ∈ F , we obtain

Eus ≤ (1 − s)Eu0 + sEu1 .

Combining this with (5.8) implies (5.6). ��
Proof of Theorem 1.2 We assume there exist u0, u1 ∈ Hρ such that u0 �≡ u1 and treat
the different cases of Theorem 1.2 separately.

• X̃ is a negatively curved space: For p ∈ R̃, choose κ > 0 and R > 0 such that
BR(u0(p)) is a CAT(-κ) space. Let U be a sufficiently small neighborhood of p
and s0 ∈ [0, 1] sufficiently small such that ũs(U) ⊂ BR(u(p)) for s ∈ [0, s0].
Thus, if ũs0(p) �= ũ0(p), then applying [14, Sect. 5] implies that the image under
u0 of a sufficiently small neighborhood of p is contained in an image σ(R) of a
geodesic line. (If X̃ is a smoothmanifold, this follows byHartman [8]). If ũ0 �≡ ũ1,
then ũs(p) �= ũ0(p) for all p ∈ R̃ and s ∈ (0, s0] by (5.5). Thus, we conclude that
ũ0(R̃) is contained inσ(R). Consequently,ρ(π1(R̃))fixesσ(R)which contradicts
the fact that ρ(π1(R)) is satisfies assumption (B).

• X̃ is an irreducible symmetric space of non-compact type or a locally finite
Euclidean building: For these two target spaces, the conclusion of Lemma 5.8
is the same as that of [4, Lemma 3.1]. Thus, we can apply the arguments of [4,
Sects. 3.2 and 3.3].

��
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