Taylor & Francis
Taylor & Francis Group

- Philosophical Magazine

Structure and
Properties of
Condensed Matter

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/tphm20

Correlated noise enhancement of coherence and
fidelity in coupled qubits

Eric R. Bittner, Hao Li, S. A. Shah, Carlos Silva-Acufia & Andrei Piryatinski

To cite this article: Eric R. Bittner, Hao Li, S. A. Shah, Carlos Silva-Acufia & Andrei Piryatinski
(2024) Correlated noise enhancement of coherence and fidelity in coupled qubits,
Philosophical Magazine, 104:13-14, 630-646, DOI: 10.1080/14786435.2024.2341011

To link to this article: https://doi.org/10.1080/14786435.2024.2341011

ﬁ Published online: 17 Apr 2024.

\]
[:J/ Submit your article to this journal &

||I| Article views: 271

A
h View related articles &'

@ View Crossmark data &'
CrossMark

@ Citing articles: 1 View citing articles &

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journallnformation?journalCode=tphm20


https://www.tandfonline.com/journals/tphm20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/14786435.2024.2341011
https://doi.org/10.1080/14786435.2024.2341011
https://www.tandfonline.com/action/authorSubmission?journalCode=tphm20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=tphm20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/14786435.2024.2341011?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/14786435.2024.2341011?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/14786435.2024.2341011&domain=pdf&date_stamp=17%20Apr%202024
http://crossmark.crossref.org/dialog/?doi=10.1080/14786435.2024.2341011&domain=pdf&date_stamp=17%20Apr%202024
https://www.tandfonline.com/doi/citedby/10.1080/14786435.2024.2341011?src=pdf
https://www.tandfonline.com/doi/citedby/10.1080/14786435.2024.2341011?src=pdf
https://www.tandfonline.com/action/journalInformation?journalCode=tphm20

PHILOSOPHICAL MAGAZINE Tavlor & F .
2024, VOL. 104, NOS. 13-14, 630-646 e aylor & Francis

https://doi.org/10.1080/14786435.2024.2341011 Taylor & Francis Group

'.) Check for updates

Correlated noise enhancement of coherence and fidelity
in coupled qubits

Eric R. Bittner ©®*°, Hao Li®, S. A. ShahP<, Carlos Silva-Acufa® and
Andrei Piryatinski®

Department of Chemistry, University of Houston, Houston, TX, USA; "Center for Nonlinear Studies,
Los Alamos National Laboratory, Los Alamos, NM, USA; “Theoretical Division, Los Alamos National
Laboratory, Los Alamos, NM, USA; dInstitut Courtois & Département de physique, Université de
Montréal, Montréal, Québec, Canada

ABSTRACT ARTICLE HISTORY

It is generally assumed that environmental noise arising from Received 2 August 2023
thermal fluctuations are detrimental to preserving coherence Accepted 22 March 2024
and entanglement in a quantum system. In the simplest

sense, dephasing and decoherence are tied to energy ; .

. . . Quantum information
fluctuations driven by coupling between the system and processing; quantum
the normal modes of the bath. Here, we explore the role of mechanical calculation;
noise correlation in an open-loop model quantum correlated systems
communication system whereby the ‘sender’ and the
‘receiver’ are subject to local environments with various
degrees of correlation or anti-correlation. We introduce
correlation within the spectral density by solving
multidimensional stochastic differential equations and
introduce these into the Redfield equations of motion for
the system density matrix. We find that correlation can
enhance both the fidelity and purity of a maximally
entangled (Bell) state. Moreover, by comparing the
evolution of different initial Bell states, we show that one
can effectively probe the correlation between two local
environments. These observations may be useful in the
design of high-fidelity quantum gates and communication
protocols.

KEYWORDS

1. Introduction

Noise and environmental fluctuations are detrimental to preserving coher-
ence and entanglement in an open quantum system. Correlations between
individual quantum systems represent the basic resources in quantum infor-
mation and quantum computing, and one of the major technological tasks is
to protect and control these correlations and entanglements. Entanglement
expresses the non-separability of the quantum state of a compound
system. However, the coupling to the environment leads to dissipation and
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loss of the quantum correlations, often on time scales much shorter than
those needed for implementing quantum information tasks. Such fluctu-
ations can arise from nuclear and electronic motions of the surrounding
environment and induce a noisy driving field that can modulate the
energy gaps of individual qubit states, as well as the couplings between sep-
arated qubits. This idea is encapsulated in the well-known Anderson-Kubo
model for the spectral lineshape [1-4].

Actively preventing decoherence from affecting quantum entanglement
holds theoretical and practical significance in quantum information proces-
sing technologies. Several recent studies suggest that decoherence can be sup-
pressed by carefully engineering the system-bath coupling [5-7]. For
example, Mouloudakis and Lambropoulos, extending previous work by
Yang et al. [8], studied the steady-state entanglement between two qubits
that interacted asymmetrically with a common non-Markovian environment.
The study found that depending on the initial two-qubit state, the asymme-
try in the couplings between each qubit and the non-Markovian environ-
ment could lead to enhanced entanglement in the steady state of the
system [9,10].

However, it is possible, especially in a condensed phase environment, that
multiple modes of the environment can contribute to the frequency fluctu-
ations, and it is possible that these contributions can be correlated, anti-corre-
lated, or uncorrelated. To set the stage for our subsequent analysis, let us
consider a single stochastic process, E;, described by a generalisation of the
Ito stochastic differential equation (SDE) [11],

dE(t) = —yE(t)dt + B - dW(t), (1)

where B is a vector of variances B = {s;;, $;}, and dW = {dW;, dW,} are cor-
related Wiener processes with dW;(t)dW, () = 8(t — t')édt  and
dW;(t) dWy(t') = 8(t — t') dt, where —1 < £ <1 is the correlation parameter
between the two Wiener processes. We can rewrite the SDE in Equation (1)
in terms of two uncorrelated processes by defining the variances
B = {s11 + 26 5:(1 — €)%} such that Equation (1) becomes

dE(t) = —yE(t) dt + (51 + 28) AW} + 5,(1 — &)"/2 W, (2)

and W] and W) are now uncorrelated Wiener processes. If we work out the
covariance of E(t) one finds that

)

Cov[E, E/] = (7D — 1)y (3)

where we can define an effective covariance parameter

sgff = sf + 5156+ s%. (4)
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We see from this that anticorrelation (£ < 0) leads to a net decrease in the
covariance function for a given stochastic process. This implies that a
system coupled to an anticorrelated environment will have a longer
dephasing time than one coupled to uncorrelated or completely correlated
baths.

2. Theory

Our theory is initialised by assuming that the total system can be separated into
system and reservoir variables such that

H=H,+ ) A&E(t) = Ho + H, (1) (5)
k

where H, describes the system independent of reservoir with eigenstates
H,|a) = h wg|a), Ay are a set of quantum operators acting on the system sub-
space, and Ei(t) are stochastic variables representing the dynamics of the
environment. Formally, we write these in terms of an It6 stochastic differential
equation of the form

dE = A(¢, E(t)) dt + B(t, E(¢)) - AW (6)

where W is a vector of Wiener processes and A(¢, E) and B(t, E) define the the
drift and the diffusion. This general form allows for both nonlinear and
geometric processes to be incorporated into our model on an even footing.
The process E(t) is in general, multidimensional and driven by a multidimen-
sional Wiener process with a correlation matrix X. The process itself can be
written in integral form as

t

E(t) — E(t,) = J d7A(T, E(7))
v (7)
+ j d7B(7, E(7)) - dW(¢)

to

with dW;(t) dW;(t') = 8(t — ')2;;dt as the generalised statement of Itd’s
lemma. If we take the noise terms to be correlated Ornstein-Uhlenbeck pro-
cesses with

dE=—-A-Edt+B-dW (8)

with % dt6(t — t') = dW ® dW as the correlation matrix, the general spectral
density matrix takes the form

J(w) :%T(A—i—iw)_l ‘B-Y-BT-(A—iw)™, 9)

as derived in Appendix 2 (c.f. Equation (A27)). These terms enter into the
quantum dynamics of the reduced density matrix for the system variables
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via the Bloch Redfield equations

Aoy = —i(®a = O )Pow = Y Raw s (Ppp — Paiy) (10)
Be

where p°? is the equilibrium reduced density matrix and R is the Bloch-
Redfield tensor

Reaapp = Y 1 8ap D Jam(wp — ©,)(An)y5(Am)ay0
Y

nm

_(]nm(w;[ - w;g) + ]nm(wB - wa))(An)B/a’(Am)aﬁ (11)

+ Saﬁ Z]nm(wy - w/[;)(An)ﬁ’y(Am)ya’
Y

where (A,).p = (alA, B) are the matrix elements of the A, operator in the
eigenbasis of H, and J,,(w) are elements of the generalised spectral matrix
characterising the coupling between the system and its environment [12-15].

Under the secular approximation in which the time evolution of the system
is slow compared to the characteristic correlation time of the environment
|wag — wy5| K 1/7,, the population terms on the diagonal can be decoupled
from the oft-diagonal coherence terms via

Rfﬁfd = 8ij8kl + 8,-k8j1(1 - 81j8kl)' (12)

The time evolution of the reduced density matrix is strictly unitary under the
secular approximation, which guarantees that the tr(p) = 1 and all diagonal
elements representing the populations are positive.

Table A1 gives a list of Redfield tensor elements for a single SU(2) qubit driven
by correlated noise in both longitudinal (0*) and spin-lattice (¢*) terms. Within
the secular approximation, the longitudinal terms contribute to the pure dephas-
ing (T>) time, while the spin-lattice term contributes to the relaxation and dephas-
ing. Even when the diffusion matrix B is diagonal, cross-correlation enters the
Redfield tensor via non-vanishing terms involving the cross-spectral densities;
however, these terms only contribute to the non-secular terms of the tensor.

2.1. Coherence transfer between two qubits

We can easily generalise this model to accompany any number of states to explore
how correlated noise affects the relaxation dynamics of the system. Here we con-
sider a system of two spatially separated qubits (Figure 1), each driven by locally
correlated fields, coupled together by a static tunnelling interaction 7,
e.
Hy =Y 26f+ 16765 + 65 67) (13)

i=1,2 2
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awo ¥ .

Figure 1. Sketch of the 2-site model with correlated noise interactions. Here, each site is taken as a
2-state qubit and is coupled to its neighbour via J (cf. Equation (13)) and to its local environment via
E; - &% as per Equation (15). However, the local environments are correlated via X.

Here, we adopt the notation that the operators ajl‘ are SU(2) Pauli matrices with k
=0, 1, 2, 3 associated with qubit i. Any system operators in the state space
SU(2) ® SU(2) can be constructed by taking the tensor products of SU(2) Pauli
matrices. If the energy gaps of the uncoupled qubits are identical, €; = €, then
the two tunnelling states are obtained by taking symmetric and antisymmetric
combinations of singly excited configurations [10) and |01), that is,

1
75

and dipole transitions from the ground state |00) are only to the symmetric linear
combination. If 7 > 0, the symmetric state lies higher in energy than the antisym-
metric state and vice versa when 7 << 0. For €; # €, both states are optically
coupled to the ground state, producing a pair of optical transitions, one of
which is more intense than the other (superradiant vs. subradiant). The coupling
to the environment is given by

I, ) =—=(l01) £ [10)) (14)

H, = ZAjEj(t) (15)
J

where E;(t) is a stochastic process and A j are operators in SU(2) ® SU(2).
Physically, this model could be achieved in systems in which the energy of
the local sites are strongly modulated by the local phonon modes, as in the
case of Jahn-Teller distortions of high-spin octahedral d* coordination com-
pounds where axial or equatorial distortions split the otherwise degenerate
d> and d,._,» orbitals. Consequently, for a pair of octahedral sites, one can
have symmetric and antisymmetric combinations of normal modes that drive
the Jahn-Teller distortions of each site, giving rise to various degrees of
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correlation of the thermal noise experienced at each metal site. Furthermore, it
may be possible through chemical or external stimulation to selectively enhance
these modes.

We examine the effect of cross-correlation by computing the linear absorp-
tion spectrum of the system for a suitable choice of parameters. From time-
dependent perturbation theory, the linear absorption spectrum is given by

0 2
S(w) o< ‘%j (1) [1(0), p( — o0)]]) (16)

where [i() is the transition dipole operator in the Heisenberg representation at
time t and p( — o0) is the system density matrix at t — —oo.

Figure 2(a-d) shows the linear absorption spectra and the corresponding
relative line widths for a pair of qubits with interaction J/e = —0.2 and with
correlation between either the two transverse (0,0,) or the two longitudinal
(0.0x) noise terms. Since only two noise terms are correlated, the spectral
density matrix is given by

2&susuts) +si, Esusn+Ei281+s1282 4511521
@) = - e (e m)etin) (17)
27 | &usnt+&nsn+snsntsusn 282150+5, 15,
(z+iv)(z—iv,) Yotz

to denote whether the term is local to site 1 or 2 or involves explicit correlation
between the two. Again, £ denotes whether or not the terms are correlated or
anticorrelated. In the transverse-transverse case, the spectral density J(z) is eval-
uated at the transition frequency since this coupling involves the inelastic coup-
ling to the environment; whereas in the longitudinal-longitudinal case, J(z) is
evaluated at z=0 since this corresponds to a purely elastic coupling between
the system and the environment.

Here, we see that correlations between transverse components have little
effect on the spectral line shape. We can understand this since the spectral
density terms are all evaluated at the transition frequency and are always
smaller than their longitudinal counterparts.

On the other hand, the correlations between longitudinal components have a
much more dramatic effect on both the transition intensity and line width, with
anti-correlated noise giving much sharper and more intense transitions. We
can understand this in the following way. According to the Kubo-Anderson
model, the spectral lineshape is determined by fluctuations in the transition fre-
quency. In the anticorrelated case, the local fluctuations are perfectly synchro-
nised but in opposite ways. That is, as the local site energy of one increases, the
other site energy always decreases. Therefore, the two local fluctuations cancel
each other out. In the fully correlated case, the fluctuations are also perfectly
synchronised, but both site energies increase or decrease, which results in a
broader spectral transition.
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Figure 2. Linear response absorption spectra and associated line-width for a pair of qubits
subject to transverse (a,b) and longitudinal (c,d) noise terms with various degrees of correlation.

We next consider the effect of initial-state preparation on the quantum dynamics
of the entangled qubits. For this, we introduce the following four Bell-states

|D*) = %(|00> + [11)) (18)
¥+ = §(|01> + [10)) (19)

which correspond to the four maximally entangled quantum states of two qubits.
From the previous discussion, longitudinal correlations appear to have the most
profound effect on the dynamics, so we shall consider only that sort of coupling
in this example.

The purity, y = tr(p?), provides a useful measure of the degree to which a
quantum state is mixed. Mathematically, y = 1 for a pure state since p = p*
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and takes a lower bound of y = 1/4 corresponding to the case where all 4 states of
the system are equally probable. Initially, the system is in a pure state with y =1
and evolves toward a mixed state as it evolves. At long time and low temperature,
the system will relax completely to the ground state |00) with y = 1.

Figure 3(a,b) shows the purity of a composite SU(2) ® SU(2) qubit pair vs time
for systems prepared in a maximally entangled (Bell) state and subject to longitudi-
nal (o) noise with various degrees of correlation or anti-correlation. In Figure 3(a),
we take the initial state as a coherence between the doubly excited state |11) and the
ground state |00), corresponding to the @ Bell state. Here, anticorrelation leads to
a profound increase in the system’s ability to retain its purity for nearly two orders
of magnitude in time longer than the fully correlated case. In contrast, if the initial
state is prepared in one of the W, Bell states, corresponding to a linear combination
within the singly excited manifold of states, correlation enhances the system’s ability
to retain purity. The only difference between the two results are in the preparation
of the initial state. This provides a potentially useful experimental means for deter-
mining the correlation or anti-correlation between local environments.

However, the fidelity

2
Fp,p) = <tr( ﬁﬂﬁ)) (20)

is also an important consideration for whether or not a given Bell state is suitable
for an shared key. Fidelity provides a measure of the ‘closeness’ of two quantum
states. It expresses the probability that one state will pass a test to identify itself as
the other. By symmetry, F(p, o) = F(o, p). In Figure 3(c,d), we compute the
time-evolved fidelity F(p,, p,) starting from the ®t(c) or ¥(d) Bell states,
versus various degrees of correlation between the baths. For ®*, the system
loses fidelity rapidly and undergoes Rabi oscillation within the double excitation
manifold spanned by ®* and ® . The fidelity eventually relaxes to F = 1/2 fora
long time, corresponding to complete relaxation into the ground state |00). As
with purity, the envelope of fidelity is enhanced by anti-correlated noise.

In contrast, the correlated noise helps to maintain both the purity and fidelity
of the U™ Bell state. This state is an eigenstate of the bare system Hamiltonian
can be prepared by direct photoexcitation from the ground state. Curiously, the
above results suggest that correlated noise suppresses the optical response.
However, the optical response is a measure of the coherence between the
ground state and W and not a measure of the purity or fidelity of a given
state. While we focus on purity and fidelity, one can easily extend the results
and approach for computing the coherence between the two spins, entangle-
ment entropy, and similar measures of quantum entanglement.

We can straightforwardly understand these results by considering that in the
correlated case, the local energy gaps are being modulated in the same way. In
essence, if energy gap 1 increases then energy gap 2 is also likely to increase and
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Figure 3. Purity(a,b) and fidelity (c,d) of composite SU(2) ® SU(2) qubit pair vs time for systems
prepared in a maximally entangled (Bell) state corresponding to (a,0)|®*) or (b,d) ¥T.

vice verse if the two are correlated (¢ > 0). This means that any entanglement that
is sensitive to the sum of the two energies will experience a greater degree of
environmental noise. Consequently, since the ®* state corresponds to a superpo-
sition of the |00) ground state and |11) doubly excited state is expected to be more
sensitive to correlated noise than anti-correlated noise. On the other hand, it
should be insensitive to anti-correlated noise since the two gaps are increasing
and decreasing in opposite ways on average. Similarly, the other two Bell states rep-
resent the tunnelling exchange between |01) and |10) and will be more sensitive to
anti-correlated noise (¢ < 0) since it leads to a greater average energetic mismatch
between the two spins. On the other hand, it is less sensitive to correlated noise
since both energy gaps are increasing and decreasing the same way on average.

3. Discussion

In this paper, we explored the role of noise correlation on a model open quantum
system consisting of one and two coupled SU(2) qubits and showed how the
dynamics and spectroscopy of the system can be profoundly affected by environ-
mental correlations. This has deep implications for searching materials suitable for
quantum communications and computation applications in which long coherence
times and retention of are required. In the case of super-dense coding, a sender (A)
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and a receiver (B) can communicate several classical bits of information by only
transmitting a smaller number of qubits, provided that A and B share an entangled
resource [16]. Since this resource is subject to environmental noise, the ability of A
and B to perform super-dense coding hinges on their ability to maintain the fidelity
of the state of the shared resource. Similarly, quantum teleportation requires the
sender and receiver to share a maximally entangled state [17]. Our results
suggest that by knowing whether the state is subject to correlated or anticorrelated
noise, A and B can be ensured that their shared resource state can maintain its
purity long enough for the information to be communicated. We also suggest
that the local noise correlation can be tuned by manipulating the local environment
around the two qubits and that the approach can be extended for multiple spin-
qubit systems. Indeed, it has been suggested that physical processes such as photo-
synthetic light-harvesting [18] and charge-separation in organic photovoltaics [19]
may take advantage of environmental noise correlation in which the system acts
much like a quantum heat engine [20,21].
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Appendix 1. A brief review of the Anderson-Kubo model for spectral
lineshapes

A simple theory for spectral line-shapes was developed independently by Anderson and Kubo
(AK) in the 1950s as a way to understand spectral line-broadening in magnetic resonance
experiments [1-4]. We briefly recap the model as it pertains to the discussion in our paper.

Within the model, the transition frequency w(t) of a two-state system is modulated about
its average by (unspecified) fluctuations in the environment with

H/h = o(t)6(3) (A1)
where (i) is a Pauli matrix and w(t) = w, + dw(t) with
déw(t) = —ydw(t) dt + sdW(t) (A2)

with (6w(t)) = 0 where W(¢) is a Wiener process with
§2
(8w(t)dw(0)) = 2 e M, (A3)

We also define A? = 25—27 as the fluctuation amplitude (which is proportional to the tempera-
ture of the environment, and 1/y = 7, as the correlation time for the environment.

It is straightforward, then, to show using time-dependent perturbation theory that the
optical response of the system can be given as

S(0) = - (o Dpng O)pf — ) (a0)

were w, (t) is the matrix element coupling state 0 to 1 written in the Heisenberg represen-
tation with

' w(7)dr

oy () = ¢S4 (0). (A5)
Thus,
2 ot
S(t) _ |lu;(;ll| eimt<e—lf0 Sw(T) d7>’ (A6)

where the angle brackets denote the ensemble average. The bracketed expression can be
evaluated using the cumulant expansion technique

(efijo dw(7) d7> _ ot (A7)


https://www.pnas.org/doi/pdf/10.1073/pnas.1110234108
https://www.pnas.org/doi/pdf/10.1073/pnas.1110234108
https://doi.org/10.1063/5.0026467
https://doi.org/10.1063/5.0026351

642 (&) E.RBITTNERETAL.

and we expand g(t) in terms of powers of dw(t)
g =g +o®)+- - (A9)

where each g, is on the order of O"(dw). Since g;(t) = (dw(t)) = 0 and all terms with n > 2
vanish under the Ito identity, only the g term contributes to the cumulant summation.
Thus, we obtain

1 t pt
gt = @) = EJ j d7d7 (8w(7)dw(7)). (A10)
0Jo
Finally, since we assume the fluctuations are about a stationary value, the correlation
function can only depend on the time interval 7 — 7 so that

(8w(7)dw(T)) = (do(7 — T)Sw(0) = A2e™17 =TI/ (A11)

where A’ :% and 7. =1/vy is the correlation time as given above. Performing the

double-time integration,
t
g(t) = Azrf[e*‘/’f +—— 1} (A12)
Tc

which is the Kubo-lineshape function.

There are two important limits to this model. First, in which A7, <« 1 corresponds to the
case of fast modulation. This results in a purely Lorentzian spectral line shape and a pure
dephasing time of T, = (A%r)7L, Similarly, A7, > 1 represents a slow modulation regime.
Here, the spectral lineshape takes a purely Gaussian form, reflecting the inhomogeneities of
the environment. Note that we recently extended this approach to account for non-station-
ary/non-equilibrium environments encountered in semiconducting systems [22,23].

Appendix 2. Correlations amongst random variables

The Ornstein-Uhlenbeck process is a very useful method to account for many Markovian sto-
chastic processes. Its multivariate representation is even more practical for physical processes.
Here we discuss the multivariate Ornstein-Uhlenbeck process, including correlated Wiener
processes, for the purpose of tackling realistic physical problems such as chromorphores
coupled to their respective phonon environments but interacting with a common bath.

We write the multivariate Ornstein-Uhlenbeck process as a vector E(t) composed of indi-
vidual processes X;(t). The stochastic differential equation reads

dE(t) = A[p — E(t)]dt + BAW(2), (A13)

in which A and B are coefficient matrices, u is the vector of the Wiener process drift w,; cor-
responding to W;. W(t) is the vector of Wiener processes W;(t) which are correlated
through the correlation matrix

&t 1) = 8 dW(H)dW()" /dt, (A14)

where the angular brackets represent the ensemble average. The matrix elements
fij = dW;(t)dW;(t)/dt are defined through the It6 isometry in higher dimensions.
Obviously &; = 1 according to the quadratic variation (dW;)* = dt. &;j varies from -1 to
1, respectively, corresponding to the fully anticorrelated and fully correlated cases. &; = 0
means that the two Wiener processes are completely uncorrelated.
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According to the Itd’s lemma, one finds the solution

E(t) = e ME(0) + (1 — e *)p + j e A BAW(Y), (A15)
0

where E(0) is the initial condition of the process E(t), the mean value
(E(1) = e (E(0)) + (1 — e, (A16)
and the correlation function

(E(), E"(s)) = ([E(t) — (E())][E(s) — (E(s))]")
min (s,t) , , (A17)
= ¢ M(E(0), E"(0))e " + j R o R T
0
following the It6 isometry in higher dimensions.
If AAT = ATA, one can find a unitary matrix S to diagonalise the coefficient matrix
SAST = SATST = diag(y, Y35 -+ V- For deterministic initial condition
(E(O), ET(O)) = 0, so does the correlation function (E(t), ET(5)> = STG(t, 5)S, in which

(ses"),
[Glt, 9]y = ——2 [ — e 0] (¢ = ),
Vit
. (A18)
[G(t, )] (55, [e — e %] (¢ < )
> S) i = e —e Y <s).
7 Yi
If the real parts of all A’s eigenvalues are positive, one finds the stationary solution
t
E(t)=p+ j e AOBAW(Y), (A19)
with the stationary correlation matrix
min (' ,f) .
(E\(1), EL () = J e AIBEBTe A (I dr (A20)
We define the stationary covariance matrix
3 = (Ey(1), E{ (1)), (A21)
then find a useful algebraic equation for stationary covariance matrix
Ao+ oA" = B&BT. (A22)
For s < t the stationary correlation function Equation (A20) can be written as
S
E.(t), EX(s)) = e ™A j e A= BgRTe A =gy
(B0, E,9) o (A23)
=g s<t,
and
=g s> (A24)

The correlation function only depends on the time difference |t — s| as expected for the
stationary solution. We define the stationary correlation matrix Gy(7) = (Es(t), EST(t — 7)),
obviously G4(0) = o. Then the above relation can be written in the form of the regression
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theorem

d d T

a_[Gs(T)] = a_<Es(T)> Es (0)> = —AG(7). (A25)
Noting that G4(0) = o, one can compute the stationary correlation matrix.

Since o = o, we have

Gy(1) = [Gy(— D" (A26)

Therefore, one can find the spectrum matrix as the Fourier transform of the autocorrelation
matrix Gy(7)
1(°
J(w) = 2—] e TGy(T)dT
177 — (A27)
=—(A+iw) 'BéBYA — iw) L.
2
As an example, we consider the case of the case of two correlated modes, in which we define

the 2D Ornstein-Uhlenbeck process sby the SDEs

dE;(t) = —y, E (t)dt + s1:dBy(t) + s12dBs(1),
dE,(t) = —y,Ex(t)dt + s51dB;(t) + s22dB,(1).

The two Wiener processes B (f) and B,(t) are coupled through the correlation parameter
& = dB,(t)dB,(t)/dt. The range of & is between —1 to 1 corresponding to the cases of com-
plete anti-correlation and correlation, respectively. £ = 0 means that the two Wiener pro-
cesses are completely decoupled. The solutions of the OU processes are

t t

Ei(t) = e "'E1(0) + s1 j e 7B, (s) + Slzj e n7IdB,(s),
0 0

t

t
e 2(79dB, (5) + 512 J e (79dB, (s).

Ex(t) = e ™'E5(0) + Sle
0

0

From this we compute the mean values

(E (1)) = (E1(0))e™ ™,
(E2(1)) = (E2(0))e™ ",

as well as the correlation functions

2 2
COVIE (1), Ey($)] = (Ey(0)2)e 9 4 510 28050 ooy _ oo,

2y
2 2
Cov[E,(t), E2(s)] = <E2(0)2>€772(t+s) + il 5222+ 2652 [fyzlt*sl — efyz(t“)],
Y2
COV[El(t), Ez(S)] — (El(O), EZ(O))e—ylt—yzs + S11821 + S12822 + §511522 + §512521 e_'Ylt_st

Nt
[e('Yl+7’2)min(S,t) _ 1]’

S1Sa1 + S12822 + &S + Esasu et s

Cov[E; (1), E(s)] = (E1(0), E(0))e """ +
N+

[e(Vl+72) min (s,t) _ 1] .



PHILOSOPHICAL MAGAZINE (&) 645

Using these we find the spectral density matrix for the correlated processes as

1 5%1+2‘y§511522+5f2 s12822+511521 +&(s12521+511522)
To? (n+iw)(y,—iw)
w) = — 1 . A28
]( ) 2 512522+S|152|+)§(512521-;—S|1522) 5%1+2y§252‘z)222+552 ( )
(n—iw)(y,tiw Tt

Appendix 3. Redfield tensor elements for cross correlation between x
and z for a single SU(2) qubit

The Bloch-Redfield equations give the quantum dynamics of the reduced density matrix
according to

dtpaa’ = _i(wa - wix)paa’ - ZRaa’;BB’(pBB’ - p[egq[g’) (A29)
BB

where p® is the equilibrium reduced density matrix and R is the Bloch-Redfield tensor with
elements [12-15]

Raa’;ﬁﬁ/ = Z{aoﬂﬁ/ Z]nm(wﬁ’ - w’y)(An)yﬁ(Am)ay
Y

nm

- Unm(w; - w}g) + ]nm(wﬁ - wa))(An)B’a’(Am)a,B (A30)

+ 6043 Z]nm(wy - w/B)(An)B"y(Am)'ya’ }
Y

where (A,)op = (a|An |B) are the matrix elements of the A, operator in the eigenbasis of H,
and J,,(w) are elements of the generalised spectral matrix characterising the coupling
between the system and its environment. Table Al gives the tensor elements for the case
of a single qubit with transition frequency & coupled to a noisy environment through
both longitudinal (through &) and transverse (through &, or 6;). J;(w) to denote the spec-
tral density associated with the correlation function (E;(t)E;(t')).

The second column indicates whether or not Rjj; is non-vanishing within the secular
approximation.

i = (850 + 8ud(1 — 861)) Rijwa (A31)

When operating under this limit, the system populations are decoupled from the coher-
ences, following a regular Pauli Master equation with the population rate matrix Rjj.
This ensures population conservation and achieves the correct thermal equilibrium over
extended periods. Under this approximation, the density matrix exhibits the appropriate
physical behaviour with Tr[p] = 1. The population rate matrix, being real, facilitates expo-
nential relaxation of the populations. Coherences are also fully separated from the popu-
lation and experience attenuation by the dephasing rates Ry;;;. Generally, R;;; is complex,
with its imaginary component representing bath-induced energy shifts. For example,
under the secular approximation, we expect that Ryy,1; + Rp;11 = Rz + Ry = 0 and
Rizia = Ry, for the coherence terms. The presence of the cross-correlation terms does
not lead to a violation of these conditions.
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Table A1. Redfield tensor elements for SU(2) qubit with cross-correlation between 6* and 67
noise terms.

k 1 Secular Rkl Ornstein-Uhlenbeck

-

T 1 1 2 NonSeaular —Jg(0) — Jy(0) st TEL)
Yz
T 1 2 1 NonSecular Jg(— € — Jp(— € — 2p(0) _ 2(R(iey 4% +&)—iey R +E(R+E))(s:(sut &) +£53,)
nr.(B+e)(vi+e)

l

T2 1 1 NonSecular —2g(— € —Jg0) +Jp(0)  _ 2AsGutés)+ed)
e+iv)(e=iv,)

|

1
2 2 1 Non-Secular —2Jy(—¢€) _ 2&(;:?:")
T2 2 2 NonSecular Jy(— € +Jul—é 257, +€) (sx(Sut+E5)+8%)
%+e)(y2+e
2 1 1 1 NonSecular —Jio(€) — Jp(€) At ) (5t E)+EL)
%+e)(vi+e
2 1 1 2 Non-Secular —2Jx(€) _ 25(s5x2850)

At

=
L8

2 1 2 2 Non-Secular 2J,z(€) + Ji2(0) — J(0) 2(s(SetEs2)+E53,)

2 2 1 2 Non-Secular —Jyz(€) + Jpi(€) + 2J,(0) 2R (—iey, 4V +E)Hey i +€ (2 +€)) (5 (Saté5)+é5% )
¥ (B+E) (% +e)

2 2 2 1 NonSecular Jy(0) -+ Jyl0) A5, at )82,
Yx Yz

|

Notes: The second column indicates whether the term survives under the secular approximation, which separates
the evolution of the population and the coherence terms. The last column gives the tensor element within the
correlated Ornstein-Uhlenbeck model.
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