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ABSTRACT  
It is generally assumed that environmental noise arising from 
thermal !uctuations are detrimental to preserving coherence 
and entanglement in a quantum system. In the simplest 
sense, dephasing and decoherence are tied to energy 
!uctuations driven by coupling between the system and 
the normal modes of the bath. Here, we explore the role of 
noise correlation in an open-loop model quantum 
communication system whereby the ‘sender’ and the 
‘receiver’ are subject to local environments with various 
degrees of correlation or anti-correlation. We introduce 
correlation within the spectral density by solving 
multidimensional stochastic di"erential equations and 
introduce these into the Redfield equations of motion for 
the system density matrix. We find that correlation can 
enhance both the fidelity and purity of a maximally 
entangled (Bell) state. Moreover, by comparing the 
evolution of di"erent initial Bell states, we show that one 
can e"ectively probe the correlation between two local 
environments. These observations may be useful in the 
design of high-fidelity quantum gates and communication 
protocols.
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1. Introduction

Noise and environmental !uctuations are detrimental to preserving coher-
ence and entanglement in an open quantum system. Correlations between 
individual quantum systems represent the basic resources in quantum infor-
mation and quantum computing, and one of the major technological tasks is 
to protect and control these correlations and entanglements. Entanglement 
expresses the non-separability of the quantum state of a compound 
system. However, the coupling to the environment leads to dissipation and 
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loss of the quantum correlations, often on time scales much shorter than 
those needed for implementing quantum information tasks. Such !uctu-
ations can arise from nuclear and electronic motions of the surrounding 
environment and induce a noisy driving field that can modulate the 
energy gaps of individual qubit states, as well as the couplings between sep-
arated qubits. This idea is encapsulated in the well-known Anderson-Kubo 
model for the spectral lineshape [1–4].

Actively preventing decoherence from a"ecting quantum entanglement 
holds theoretical and practical significance in quantum information proces-
sing technologies. Several recent studies suggest that decoherence can be sup-
pressed by carefully engineering the system-bath coupling [5–7]. For 
example, Mouloudakis and Lambropoulos, extending previous work by 
Yang et al. [8], studied the steady-state entanglement between two qubits 
that interacted asymmetrically with a common non-Markovian environment. 
The study found that depending on the initial two-qubit state, the asymme-
try in the couplings between each qubit and the non-Markovian environ-
ment could lead to enhanced entanglement in the steady state of the 
system [9,10].

However, it is possible, especially in a condensed phase environment, that 
multiple modes of the environment can contribute to the frequency !uctu-
ations, and it is possible that these contributions can be correlated, anti-corre-
lated, or uncorrelated. To set the stage for our subsequent analysis, let us 
consider a single stochastic process, Et, described by a generalisation of the 
Itô stochastic di"erential equation (SDE) [11],

dE(t) = ˇgE(t) dt + B · dW(t), (1) 

where B is a vector of variances B = {s11, s2}, and dW = {dW1, dW2} are cor-
related Wiener processes with dW1(t) dW2(t0) = d(t ˇ t0)j dt and 
dWi(t) dWi(t0) = d(t ˇ t0) dt, where ˇ1  j  1 is the correlation parameter 
between the two Wiener processes. We can rewrite the SDE in Equation (1) 
in terms of two uncorrelated processes by defining the variances 
B0 = {s11 + s2j, s2(1ˇ j2)1/2} such that Equation (1) becomes

dE(t) = ˇgE(t) dt + (s1 + s2j) dW0
1 + s2(1ˇ j2)1/2 dW0

2 (2) 

and W0
1 and W0

2 are now uncorrelated Wiener processes. If we work out the 
covariance of E(t) one finds that

Cov[Et, Et0] =
eˇg(t0+t)

2g (e2gmin(t0,t) ˇ 1)s2
eff (3) 

where we can define an e"ective covariance parameter

s2
eff = s2

1 + s1s2j+ s2
2. (4) 
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We see from this that anticorrelation (j , 0) leads to a net decrease in the 
covariance function for a given stochastic process. This implies that a 
system coupled to an anticorrelated environment will have a longer 
dephasing time than one coupled to uncorrelated or completely correlated 
baths.

2. Theory

Our theory is initialised by assuming that the total system can be separated into 
system and reservoir variables such that

H = Ho +
X

k
ÂkEk(t) = Ho + Hr(t) (5) 

where Ho describes the system independent of reservoir with eigenstates 
Ho|ai = ȟ va|ai, Âk are a set of quantum operators acting on the system sub-
space, and Ek(t) are stochastic variables representing the dynamics of the 
environment. Formally, we write these in terms of an Itô stochastic di"erential 
equation of the form

dE = A(t, E(t)) dt + B(t, E(t)) · dW (6) 

where W is a vector of Wiener processes and A(t, E) and B(t, E) define the the 
drift and the di"usion. This general form allows for both nonlinear and 
geometric processes to be incorporated into our model on an even footing. 
The process E(t) is in general, multidimensional and driven by a multidimen-
sional Wiener process with a correlation matrix Σ. The process itself can be 
written in integral form as

E(t)ˇ E(to) =
Öt

to

dtA(t, E(t))

+
Öt

to

dtB(t, E(t)) · dW(t)
(7) 

with dWi(t) dWj(t0) = d(t ˇ t0)Sij dt as the generalised statement of Itô’s 
lemma. If we take the noise terms to be correlated Ornstein-Uhlenbeck pro-
cesses with

dE = ˇA · E dt + B · dW (8) 

with S dtd(t ˇ t0) = dW⌦ dW as the correlation matrix, the general spectral 
density matrix takes the form

J(v) = 1
2p (A + iv)ˇ1 · B · S · BT · (Aˇ iv)ˇ1, (9) 

as derived in Appendix 2 (c.f. Equation (A27)). These terms enter into the 
quantum dynamics of the reduced density matrix for the system variables 
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via the Bloch Redfield equations

dtraa0 = ˇi(va ˇ v0a)raa0 ˇ
X

bb0
Raa0,bb0(rbb0 ˇ req

bb0) (10) 

where req is the equilibrium reduced density matrix and R is the Bloch- 
Redfield tensor

Raa0,bb0 =
X

nm
da0b0

X

g

Jnm(vb ˇ vg)(An)gb(Am)ag0
(

ˇ(Jnm(v0a ˇ v0b) + Jnm(vb ˇ va))(An)b0a0(Am)ab

+ dab
X

g

Jnm(vg ˇ v0b)(An)b0g(Am)ga0
)

(11) 

where (An)ab = ha|Ân|bi are the matrix elements of the Ân operator in the 
eigenbasis of Ho and Jnm(v) are elements of the generalised spectral matrix 
characterising the coupling between the system and its environment [12–15].

Under the secular approximation in which the time evolution of the system 
is slow compared to the characteristic correlation time of the environment 
|vab ˇ vgd|⌧ 1/tc, the population terms on the diagonal can be decoupled 
from the o"-diagonal coherence terms via

Rsec
ij;kl = dijdkl + dikd jl(1ˇ dijdkl). (12) 

The time evolution of the reduced density matrix is strictly unitary under the 
secular approximation, which guarantees that the tr(r) = 1 and all diagonal 
elements representing the populations are positive.

Table A1 gives a list of Redfield tensor elements for a single SU(2) qubit driven 
by correlated noise in both longitudinal (sz) and spin-lattice (sx) terms. Within 
the secular approximation, the longitudinal terms contribute to the pure dephas-
ing (T2) time, while the spin-lattice term contributes to the relaxation and dephas-
ing. Even when the di"usion matrix B is diagonal, cross-correlation enters the 
Redfield tensor via non-vanishing terms involving the cross-spectral densities; 
however, these terms only contribute to the non-secular terms of the tensor.

2.1. Coherence transfer between two qubits

We can easily generalise this model to accompany any number of states to explore 
how correlated noise a"ects the relaxation dynamics of the system. Here we con-
sider a system of two spatially separated qubits (Figure 1), each driven by locally 
correlated fields, coupled together by a static tunnelling interaction τ,

Ho =
X

i=1,2

ei
2 ŝk

i + t(ŝ+
1 ŝˇ2 + ŝ+

2 ŝˇ1 ) (13) 
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Here, we adopt the notation that the operators sk
i are SU(2) Pauli matrices with k  

= 0, 1, 2, 3 associated with qubit i. Any system operators in the state space 
SU(2)⌦ SU(2) can be constructed by taking the tensor products of SU(2) Pauli 
matrices. If the energy gaps of the uncoupled qubits are identical, e1 = e2, then 
the two tunnelling states are obtained by taking symmetric and antisymmetric 
combinations of singly excited configurations |10i and |01i, that is,

|c+i =
1ÅÅ
2

p (|01i+ |10i) (14) 

and dipole transitions from the ground state |00i are only to the symmetric linear 
combination. If t . 0, the symmetric state lies higher in energy than the antisym-
metric state and vice versa when t , 0. For e1 = e2 both states are optically 
coupled to the ground state, producing a pair of optical transitions, one of 
which is more intense than the other (superradiant vs. subradiant). The coupling 
to the environment is given by

Hr =
X

j
ÂjEj(t) (15) 

where E j(t) is a stochastic process and Â j are operators in SU(2)⌦ SU(2).
Physically, this model could be achieved in systems in which the energy of 

the local sites are strongly modulated by the local phonon modes, as in the 
case of Jahn-Teller distortions of high-spin octahedral d4 coordination com-
pounds where axial or equatorial distortions split the otherwise degenerate 
dz2 and dx2ˇy2 orbitals. Consequently, for a pair of octahedral sites, one can 
have symmetric and antisymmetric combinations of normal modes that drive 
the Jahn-Teller distortions of each site, giving rise to various degrees of 

Figure 1. Sketch of the 2-site model with correlated noise interactions. Here, each site is taken as a 
2-state qubit and is coupled to its neighbour via J (c.f. Equation (13)) and to its local environment via 
~Ei · ~si as per Equation (15). However, the local environments are correlated via Σ.
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correlation of the thermal noise experienced at each metal site. Furthermore, it 
may be possible through chemical or external stimulation to selectively enhance 
these modes.

We examine the e"ect of cross-correlation by computing the linear absorp-
tion spectrum of the system for a suitable choice of parameters. From time- 
dependent perturbation theory, the linear absorption spectrum is given by

S(v)/ 1
iȟ

Ö1

ˇ1
eivthm(t)[m(0), r(ˇ1)]]i

����

����
2

(16) 

where m̂(t) is the transition dipole operator in the Heisenberg representation at 
time t and r(ˇ1) is the system density matrix at t !ˇ1.

Figure 2(a–d) shows the linear absorption spectra and the corresponding 
relative line widths for a pair of qubits with interaction J/e = ˇ0.2 and with 
correlation between either the two transverse (szsz) or the two longitudinal 
(sxsx) noise terms. Since only two noise terms are correlated, the spectral 
density matrix is given by

J(z) = 1
2p

2js12s11+s2
11+s2

12
g2

1+z2
js11s22+js12s21+s12s22+s11s21

zˇig1( ) z+ig2( )
js11s22+js12s21+s12s22+s11s21

z+ig1( ) zˇig2( )
2js21s22+s2

22+s2
21

g2
2+z2

0

@

1

A (17) 

to denote whether the term is local to site 1 or 2 or involves explicit correlation 
between the two. Again, ξ denotes whether or not the terms are correlated or 
anticorrelated. In the transverse-transverse case, the spectral density J(z) is eval-
uated at the transition frequency since this coupling involves the inelastic coup-
ling to the environment; whereas in the longitudinal-longitudinal case, J(z) is 
evaluated at z = 0 since this corresponds to a purely elastic coupling between 
the system and the environment.

Here, we see that correlations between transverse components have little 
e"ect on the spectral line shape. We can understand this since the spectral 
density terms are all evaluated at the transition frequency and are always 
smaller than their longitudinal counterparts.

On the other hand, the correlations between longitudinal components have a 
much more dramatic e"ect on both the transition intensity and line width, with 
anti-correlated noise giving much sharper and more intense transitions. We 
can understand this in the following way. According to the Kubo-Anderson 
model, the spectral lineshape is determined by !uctuations in the transition fre-
quency. In the anticorrelated case, the local !uctuations are perfectly synchro-
nised but in opposite ways. That is, as the local site energy of one increases, the 
other site energy always decreases. Therefore, the two local !uctuations cancel 
each other out. In the fully correlated case, the !uctuations are also perfectly 
synchronised, but both site energies increase or decrease, which results in a 
broader spectral transition.
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We next consider the e"ect of initial-state preparation on the quantum dynamics 
of the entangled qubits. For this, we introduce the following four Bell-states

|F+i = 1
2 (|00i+ |11i) (18) 

|C+i = 1
2 (|01i+ |10i) (19) 

which correspond to the four maximally entangled quantum states of two qubits. 
From the previous discussion, longitudinal correlations appear to have the most 
profound e"ect on the dynamics, so we shall consider only that sort of coupling 
in this example.

The purity, g = tr(r2), provides a useful measure of the degree to which a 
quantum state is mixed. Mathematically, g = 1 for a pure state since r = r2 

Figure 2. Linear response absorption spectra and associated line-width for a pair of qubits 
subject to transverse (a,b) and longitudinal (c,d) noise terms with various degrees of correlation.
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and takes a lower bound of g = 1/4 corresponding to the case where all 4 states of 
the system are equally probable. Initially, the system is in a pure state with g = 1 
and evolves toward a mixed state as it evolves. At long time and low temperature, 
the system will relax completely to the ground state |00i with g = 1.

Figure 3(a,b) shows the purity of a composite SU(2)⌦ SU(2) qubit pair vs time 
for systems prepared in a maximally entangled (Bell) state and subject to longitudi-
nal (sz) noise with various degrees of correlation or anti-correlation. In Figure 3(a), 
we take the initial state as a coherence between the doubly excited state |11i and the 
ground state |00i, corresponding to the F+ Bell state. Here, anticorrelation leads to 
a profound increase in the system’s ability to retain its purity for nearly two orders 
of magnitude in time longer than the fully correlated case. In contrast, if the initial 
state is prepared in one of the C+ Bell states, corresponding to a linear combination 
within the singly excited manifold of states, correlation enhances the system’s ability 
to retain purity. The only di"erence between the two results are in the preparation 
of the initial state. This provides a potentially useful experimental means for deter-
mining the correlation or anti-correlation between local environments.

However, the fidelity

F(r, r0) = tr
ÅÅÅÅÅÅÅÅÅÅÅÅ
r

p
r0

ÅÅ
r

pq✓ ◆✓ ◆2
(20) 

is also an important consideration for whether or not a given Bell state is suitable 
for an shared key. Fidelity provides a measure of the ‘closeness’ of two quantum 
states. It expresses the probability that one state will pass a test to identify itself as 
the other. By symmetry, F(r, s) = F(s, r). In Figure 3(c,d), we compute the 
time-evolved fidelity F(r0, rt) starting from the F+(c) or C+(d) Bell states, 
versus various degrees of correlation between the baths. For F+, the system 
loses fidelity rapidly and undergoes Rabi oscillation within the double excitation 
manifold spanned by F+ and Fˇ. The fidelity eventually relaxes to F = 1/2 for a 
long time, corresponding to complete relaxation into the ground state |00i. As 
with purity, the envelope of fidelity is enhanced by anti-correlated noise.

In contrast, the correlated noise helps to maintain both the purity and fidelity 
of the C+ Bell state. This state is an eigenstate of the bare system Hamiltonian 
can be prepared by direct photoexcitation from the ground state. Curiously, the 
above results suggest that correlated noise suppresses the optical response. 
However, the optical response is a measure of the coherence between the 
ground state and C+ and not a measure of the purity or fidelity of a given 
state. While we focus on purity and fidelity, one can easily extend the results 
and approach for computing the coherence between the two spins, entangle-
ment entropy, and similar measures of quantum entanglement.

We can straightforwardly understand these results by considering that in the 
correlated case, the local energy gaps are being modulated in the same way. In 
essence, if energy gap 1 increases then energy gap 2 is also likely to increase and 
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vice verse if the two are correlated (j . 0). This means that any entanglement that 
is sensitive to the sum of the two energies will experience a greater degree of 
environmental noise. Consequently, since the F+ state corresponds to a superpo-
sition of the |00i ground state and |11i doubly excited state is expected to be more 
sensitive to correlated noise than anti-correlated noise. On the other hand, it 
should be insensitive to anti-correlated noise since the two gaps are increasing 
and decreasing in opposite ways on average. Similarly, the other two Bell states rep-
resent the tunnelling exchange between |01i and |10i and will be more sensitive to 
anti-correlated noise (j , 0) since it leads to a greater average energetic mismatch 
between the two spins. On the other hand, it is less sensitive to correlated noise 
since both energy gaps are increasing and decreasing the same way on average.

3. Discussion

In this paper, we explored the role of noise correlation on a model open quantum 
system consisting of one and two coupled SU(2) qubits and showed how the 
dynamics and spectroscopy of the system can be profoundly a"ected by environ-
mental correlations. This has deep implications for searching materials suitable for 
quantum communications and computation applications in which long coherence 
times and retention of are required. In the case of super-dense coding, a sender (A) 

Figure 3. Purity(a,b) and fidelity (c,d) of composite SU(2) ⌦ SU(2) qubit pair vs time for systems 
prepared in a maximally entangled (Bell) state corresponding to (a,c)|F+i or (b,d) C+.
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and a receiver (B) can communicate several classical bits of information by only 
transmitting a smaller number of qubits, provided that A and B share an entangled 
resource [16]. Since this resource is subject to environmental noise, the ability of A 
and B to perform super-dense coding hinges on their ability to maintain the fidelity 
of the state of the shared resource. Similarly, quantum teleportation requires the 
sender and receiver to share a maximally entangled state [17]. Our results 
suggest that by knowing whether the state is subject to correlated or anticorrelated 
noise, A and B can be ensured that their shared resource state can maintain its 
purity long enough for the information to be communicated. We also suggest 
that the local noise correlation can be tuned by manipulating the local environment 
around the two qubits and that the approach can be extended for multiple spin- 
qubit systems. Indeed, it has been suggested that physical processes such as photo-
synthetic light-harvesting [18] and charge-separation in organic photovoltaics [19] 
may take advantage of environmental noise correlation in which the system acts 
much like a quantum heat engine [20,21].
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Appendix 1. A brief review of the Anderson-Kubo model for spectral 
lineshapes

A simple theory for spectral line-shapes was developed independently by Anderson and Kubo 
(AK) in the 1950s as a way to understand spectral line-broadening in magnetic resonance 
experiments [1–4]. We brie!y recap the model as it pertains to the discussion in our paper.

Within the model, the transition frequency v(t) of a two-state system is modulated about 
its average by (unspecified) !uctuations in the environment with

H/ȟ = v(t)ŝ(3) (A1) 

where ŝ(i) is a Pauli matrix and v(t) = vo + dv(t) with

ddv(t) = ˇgdv(t) dt + s dW(t) (A2) 

with hdv(t)i = 0 where W(t) is a Wiener process with

hdv(t)dv(0)i = s2

2g eˇg|t|. (A3) 

We also define D2 = s2

2g as the !uctuation amplitude (which is proportional to the tempera-
ture of the environment, and 1/g = tc as the correlation time for the environment.

It is straightforward, then, to show using time-dependent perturbation theory that the 
optical response of the system can be given as

S(t) = 1
iȟ hm01(t)m10(0)r(ˇ1)i (A4) 

were m01(t) is the matrix element coupling state 0 to 1 written in the Heisenberg represen-
tation with

m01(t) = eˇi
Ñt

0
v(t) dt

m01(0). (A5) 

Thus,

S(t) = |m01|2

iȟ eivtheˇi
Ñt

0
dv(t) dti, (A6) 

where the angle brackets denote the ensemble average. The bracketed expression can be 
evaluated using the cumulant expansion technique

heˇi
Ñt

0
dv(t) dti = eˇg(t) (A7) 

= 1ˇ g(t) + 1
2 g2(t) + · · · (A8) 
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and we expand g(t) in terms of powers of dv(t)

g(t) = g1(t) + g2(t) + · · · (A9) 

where each gn is on the order of On(dv). Since g1(t) = hdv(t)i = 0 and all terms with n > 2 
vanish under the Ito identity, only the g2 term contributes to the cumulant summation. 
Thus, we obtain

g(t) = g2(t) = 1
2

Öt

0

Öt

0
dtdt0hdv(t0)dv(t)i. (A10) 

Finally, since we assume the !uctuations are about a stationary value, the correlation 
function can only depend on the time interval tˇ t0 so that

hdv(t0)dv(t)i = hdv(t0 ˇ t)dv(0) = D2eˇ|t0ˇt|/tc (A11) 

where D2 = s2

2g and tc = 1/g is the correlation time as given above. Performing the 
double-time integration,

g(t) = D2t2
c eˇt/tc + t

tc
ˇ 1

 �
(A12) 

which is the Kubo-lineshape function.
There are two important limits to this model. First, in which Dtc ⌧ 1 corresponds to the 

case of fast modulation. This results in a purely Lorentzian spectral line shape and a pure 
dephasing time of T2 = (D2tc)ˇ1. Similarly, Dtc � 1 represents a slow modulation regime. 
Here, the spectral lineshape takes a purely Gaussian form, re!ecting the inhomogeneities of 
the environment. Note that we recently extended this approach to account for non-station-
ary/non-equilibrium environments encountered in semiconducting systems [22,23].

Appendix 2. Correlations amongst random variables

The Ornstein-Uhlenbeck process is a very useful method to account for many Markovian sto-
chastic processes. Its multivariate representation is even more practical for physical processes. 
Here we discuss the multivariate Ornstein-Uhlenbeck process, including correlated Wiener 
processes, for the purpose of tackling realistic physical problems such as chromorphores 
coupled to their respective phonon environments but interacting with a common bath.

We write the multivariate Ornstein-Uhlenbeck process as a vector E(t) composed of indi-
vidual processes Xi(t). The stochastic di"erential equation reads

dE(t) = A mˇ E(t)
⇥ ⇤

dt + B dW(t), (A13) 

in which A and B are coe%cient matrices, m is the vector of the Wiener process drift mi cor-
responding to Wi. W(t) is the vector of Wiener processes Wi(t) which are correlated 
through the correlation matrix

j(t, t0) ; dtt0dW(t)dW(t0)T/dt, (A14) 

where the angular brackets represent the ensemble average. The matrix elements 
jij = dWi(t)dWj(t)/dt are defined through the Itô isometry in higher dimensions. 
Obviously jii = 1 according to the quadratic variation (dWt)2 = dt. jij varies from -1 to 
1, respectively, corresponding to the fully anticorrelated and fully correlated cases. jij = 0 
means that the two Wiener processes are completely uncorrelated.
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According to the Itô’s lemma, one finds the solution

E(t) = eˇAtE(0) + (1ˇ eˇAt)m+
Öt

0
eˇA(tˇt0)B dW(t0), (A15) 

where E(0) is the initial condition of the process E(t), the mean value

hE(t)i = eˇAthE(0)i+ (1ˇ eˇAt)m, (A16) 

and the correlation function

E(t), ET(s)
⌦ ↵

; E(t)ˇ hE(t)i[ ] E(s)ˇ hE(s)i[ ]T⌦ ↵

= eˇAt E(0), ET(0)
⌦ ↵

eˇATs +
Ömin (s,t)

0
eˇA(tˇt0)BjBTeˇAT(sˇt0)dt0

(A17) 

following the Itô isometry in higher dimensions.
If AAT = ATA, one can find a unitary matrix S to diagonalise the coe%cient matrix 

SAS† = SATS† = diag(g1, g2, . . ., gn). For deterministic initial condition 
E(0), ET(0)
⌦ ↵

= 0, so does the correlation function E(t), ET(s)
⌦ ↵

= S†G(t, s)S, in which

G(t, s)[ ]ij =
BjBTˇ �

ij

gi + gj
eˇgi|tˇs| ˇ eˇgi tˇgjs
⇥ ⇤

(t � s),

G(t, s)[ ]ij =
BjBTˇ �

ij

gi + gj
eˇgj|tˇs| ˇ eˇgitˇgjs
⇥ ⇤

(t  s).
(A18) 

If the real parts of all A’s eigenvalues are positive, one finds the stationary solution

Es(t) = m+
Öt

ˇ1
eˇA(tˇt0)BdW(t0), (A19) 

with the stationary correlation matrix

Es(t), ET
s (t0)

⌦ ↵
=
Ömin (t0 ,t)

ˇ1
eˇA(tˇt)BjBTeˇAT(t0ˇt)dt (A20) 

We define the stationary covariance matrix

S = Es(t), ET
s (t)

⌦ ↵
, (A21) 

then find a useful algebraic equation for stationary covariance matrix

As+ sAT = BjBT. (A22) 

For s < t the stationary correlation function Equation (A20) can be written as

Es(t), ET
s (s)

⌦ ↵
= eˇA(tˇs)

Ös

ˇ1
eˇA(sˇt0)BjBTeˇAT(sˇt0)dt0

= eˇA(tˇs)s s , t,
(A23) 

and

= seˇAT(sˇt) s . t. (A24) 

The correlation function only depends on the time di"erence |t ˇ s| as expected for the 
stationary solution. We define the stationary correlation matrix Gs(t) = Es(t), ET

s (t ˇ t)
⌦ ↵

, 
obviously Gs(0) = s. Then the above relation can be written in the form of the regression 
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theorem

d
dt Gs(t)[ ] = d

dt Es(t), ET
s (0)

⌦ ↵
= ˇAGs(t). (A25) 

Noting that Gs(0) = s, one can compute the stationary correlation matrix.
Since sT = s, we have

Gs(t) = Gs(ˇ t)[ ]T. (A26) 

Therefore, one can find the spectrum matrix as the Fourier transform of the autocorrelation 
matrix Gs(t)

J(v) = 1
2p

Ö1

ˇ1
eˇivtGs(t)dt

= 1
2p A + iv( )ˇ1BjBT Aˇ iv( )ˇ1.

(A27) 

As an example, we consider the case of the case of two correlated modes, in which we define 
the 2D Ornstein-Uhlenbeck process sby the SDEs

dE1(t) = ˇg1E1(t)dt + s11dB1(t) + s12dB2(t),
dE2(t) = ˇg2E2(t)dt + s21dB1(t) + s22dB2(t).

The two Wiener processes B1(t) and B2(t) are coupled through the correlation parameter 
j = dB1(t)dB2(t)/dt. The range of ξ is between ˇ1 to 1 corresponding to the cases of com-
plete anti-correlation and correlation, respectively. j = 0 means that the two Wiener pro-
cesses are completely decoupled. The solutions of the OU processes are

E1(t) = eˇg1tE1(0) + s11

Öt

0
eˇg1(tˇs)dB1(s) + s12

Öt

0
eˇg1(tˇs)dB2(s),

E2(t) = eˇg2tE2(0) + s21

Öt

0
eˇg2(tˇs)dB1(s) + s22

Öt

0
eˇg2(tˇs)dB2(s).

From this we compute the mean values

E1(t)h i = E1(0)h ieˇg1t ,
E2(t)h i = E2(0)h ieˇg2t , 

as well as the correlation functions

Cov E1(t), E1(s)[ ] = E1(0)2⌦ ↵
eˇg1(t+s) + s2

11 + s2
12 + 2js11s12

2g1
eˇg1|tˇs| ˇ eˇg1(t+s)⇥ ⇤

,

Cov E2(t), E2(s)[ ] = E2(0)2⌦ ↵
eˇg2(t+s) + s2

21 + s2
22 + 2js21s22

2g2
eˇg2|tˇs| ˇ eˇg2(t+s)⇥ ⇤

,

Cov E1(t), E2(s)[ ] = E1(0), E2(0)h ieˇg1tˇg2s + s11s21 + s12s22 + js11s22 + js12s21
g1 + g2

eˇg1tˇg2s

e(g1+g2) min (s,t) ˇ 1
⇥ ⇤

,

Cov E2(t), E1(s)[ ] = E1(0), E2(0)h ieˇg2tˇg1s + s11s21 + s12s22 + js11s22 + js12s21
g1 + g2

eˇg2tˇg1s

e(g1+g2) min (s,t) ˇ 1
⇥ ⇤

.
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Using these we find the spectral density matrix for the correlated processes as

J(v) = 1
2p

s2
11+2js11s22+s2

12
g2

1+v2
s12s22+s11s21+j(s12s21+s11s22)

(g1+iv)(g2ˇiv)
s12s22+s11s21+j(s12s21+s11s22)

(g1ˇiv)(g2+iv)
s2

11+2js21s22+s2
22

g2
2+v2

2

4

3

5. (A28) 

Appendix 3. Redfield tensor elements for cross correlation between x 
and z for a single SU(2) qubit

The Bloch-Redfield equations give the quantum dynamics of the reduced density matrix 
according to

dtraa0 = ˇi(va ˇ v0a)raa0 ˇ
X

bb0
Raa0 ;bb0(rbb0 ˇ req

bb0 ) (A29) 

where req is the equilibrium reduced density matrix and R is the Bloch-Redfield tensor with 
elements [12–15]

Raa0 ;bb0 =
X

nm
da0b0

X

g

Jnm(vb ˇ vg)(An)gb(Am)ag

(

ˇ (Jnm(v0a ˇ v0b) + Jnm(vb ˇ va))(An)b0a0(Am)ab

+ dab
X

g

Jnm(vg ˇ v0b)(An)b0g(Am)ga0
)

(A30) 

where (An)ab = ha|Ân|bi are the matrix elements of the Ân operator in the eigenbasis of Ho 
and Jnm(v) are elements of the generalised spectral matrix characterising the coupling 
between the system and its environment. Table A1 gives the tensor elements for the case 
of a single qubit with transition frequency ε coupled to a noisy environment through 
both longitudinal (through ŝz) and transverse (through ŝx or ŝy). Jij(v) to denote the spec-
tral density associated with the correlation function hEi(t)Ej(t0)i.

The second column indicates whether or not Rijkl is non-vanishing within the secular 
approximation.

Rsec
ij;kl = dijdkl + dikd jl(1ˇ dijdkl)

ˇ �
Rij;kl (A31) 

When operating under this limit, the system populations are decoupled from the coher-
ences, following a regular Pauli Master equation with the population rate matrix Riikk. 
This ensures population conservation and achieves the correct thermal equilibrium over 
extended periods. Under this approximation, the density matrix exhibits the appropriate 
physical behaviour with Tr[r] = 1. The population rate matrix, being real, facilitates expo-
nential relaxation of the populations. Coherences are also fully separated from the popu-
lation and experience attenuation by the dephasing rates Rij;ij. Generally, Rij;ij is complex, 
with its imaginary component representing bath-induced energy shifts. For example, 
under the secular approximation, we expect that R11;11 + R22;11 = R22;22 + R11;22 = 0 and 
R12;12 = R⇤21;21 for the coherence terms. The presence of the cross-correlation terms does 
not lead to a violation of these conditions. 
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Table A1. Redfield tensor elements for SU(2) qubit with cross-correlation between ŝ x and ŝ z 

noise terms.
i j k l Secular Rij;kl Ornstein-Uhlenbeck

1 1 1 1 Secular Jxx (ˇ e) + Jxx (e) 2sx sx+2jsxz( )
g2

x+e2

1 1 1 2 Non-Secular ˇJxz(0)ˇ Jzx (0) ˇ 2 sx sxz+jsz( )+js2
xz( )

gxgz

1 1 2 1 Non-Secular Jxz(ˇ e) ˇ Jzx (ˇ e) ˇ 2Jzx (0) ˇ 2 g2
x iegz+g2

z+e2( )ˇiegxg
2
z +e2 g2

z +e2( )( ) sx sxz+jsz( )+js2
xz( )

gxgz g2
x+e2( ) g2

z+e2( )
1 1 2 2 Secular ˇJxx (ˇ e)ˇ Jxx (e) ˇ 2sx sx+2jsxz( )

g2
x+e2

1 2 1 1 Non-Secular ˇ2Jxz(ˇ e)ˇ Jxz(0) + Jzx (0) ˇ 2 sx sxz+jsz( )+js2
xz( )

e+igx( ) eˇigz( )
1 2 1 2 Secular 2 Jxx (e) + 2Jzz(0)( ) 4s2

xz g2
x+e2( )+4jsxz 2sz g2

x+e2( )+sxg2
z( )+2s2

xg
2
z

g2
z g2

x+e2( )
1 2 2 1 Non-Secular ˇ2Jxx (ˇ e) ˇ 2sx sx+2jsxz( )

g2
x+e2

1 2 2 2 Non-Secular Jxz(ˇ e) + Jzx (ˇ e) 2 gxgz+e2( ) sx sxz+jsz( )+js2
xz( )

g2
x+e2( ) g2

z+e2( )
2 1 1 1 Non-Secular ˇJxz(e)ˇ Jzx (e) ˇ 2 gxgz+e2( ) sx sxz+jsz( )+js2

xz( )
g2

x+e2( ) g2
z+e2( )

2 1 1 2 Non-Secular ˇ2Jxx (e) ˇ 2sx sx+2jsxz( )
g2

x+e2

2 1 2 1 Secular 2 Jxx (ˇ e) + 2Jzz(0)( ) 4s2
xz g2

x+e2( )+4jsxz 2sz g2
x+e2( )+sxg2

z( )+2s2
xg

2
z

g2
z g2

x+e2( )
2 1 2 2 Non-Secular 2Jxz(e) + Jxz(0)ˇ Jzx (0) 2 sx sxz+jsz( )+js2

xz( )
eˇigx( ) e+igz( )

2 2 1 1 Secular ˇJxx (ˇ e)ˇ Jxx (e) ˇ 2sx sx+2jsxz( )
g2

x+e2

2 2 1 2 Non-Secular ˇJxz(e) + Jzx (e) + 2Jzx (0) 2 g2
x ˇiegz+g2

z+e2( )+iegxg
2
z+e2 g2

z+e2( )( ) sx sxz+jsz( )+js2
xz( )

gxgz g2
x+e2( ) g2

z+e2( )
2 2 2 1 Non-Secular Jxz(0) + Jzx (0) 2 sx sxz+jsz( )+js2

xz( )
gxgz

2 2 2 2 Secular Jxx (ˇ e) + Jxx (e) 2sx sx+2jsxz( )
g2

x+e2

Notes: The second column indicates whether the term survives under the secular approximation, which separates 
the evolution of the population and the coherence terms. The last column gives the tensor element within the 
correlated Ornstein-Uhlenbeck model.
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