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ABSTRACT

This paper advances the intrusion detection of wind turbines by

exploiting the inter-dependent thermal behaviors of individual mod-

ules within the turbines. Specifically, we present a novel thermal-

model-based intrusion detection system, called T-IDS, to detect

intrusions causing abnormal thermal behaviors of the turbines,

such as those causing damaged physical modules (and hence heat-

ing) or manipulating the temperature readings. T-IDS consists of

three key components: a graph model describing the dependencies

among thermal variables of wind turbines, a random forest-based

method to predict thermal variables in the steering of the ther-

mal graph and a method to detect anomalies by cross-validating

the predicted thermal variables with their empirical observations.

The optimal configuration of T-IDS is also examined to ensure its

robustness. We have evaluated T-IDS using a dataset containing

the Supervisory Control And Data Acquisition (SCADA) log of a

wind turbine over six months. The results show that T-IDS detects

anomalies with an average accuracy of 97.6% while incurring no

false detection.
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1 INTRODUCTION

Rising greenhouse emissions have dire consequences, with an esti-

mated 8.3 million deaths per year resulting from exposure to toxic

air pollution [5]. To combat this alarming trend, wind turbines

are proving to be a pivotal player in phasing out traditional en-

ergy sources and ushering in a new era of renewable energy. As

the largest renewable energy source in the United States, wind

power generation has surpassed 650 GW in 2022 and consistently

increased by 60 GW annually. Wind turbines serve as the crucial

infrastructure that effectively converts kinetic wind power into

electrical energy.
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Figure 1: The temperatures of different modules of a wind

turbine are highly correlated.

However, the increasing popularity of wind energy has alsomade

it a prime target for attackers because the energy sector has been

one of the most targeted sectors since 2014 [4]. Additionally, the

growing reliance on wind farms to power the nation’s grid is not

aligned with the resilience in protecting wind turbine systems and

their infrastructure against cyber attacks. The remote locations of

wind farms, coupled with the massive size of turbines, make wind

turbine facilities vulnerable to various risks, including unauthorized

access, control manipulation, operational disruptions, and phys-

ical damage to turbines and substations. Furthermore, the broad

deployment of Supervisory Control and Data Acquisition (SCADA)

systems further escalates the risk of intrusive attacks that can com-

promise the integrity of onboard fault detection methods [1, 12].

Addressing these security challenges is critical to ensure a secure

and reliable energy supply.

To mitigate these critical concerns and enhance the safety of

wind turbine systems, this paper presents T-IDS, a thermal-model-

based intrusion detection system. T-IDS is inspired by the reliable

relationships between the thermal variables of wind turbine com-

ponents. For instance, Figure 1compares the real-time temperature

of three turbine modules: the stator, the front bearing, and the rear

bearing, highlighting a clear correlation among the three-time se-

ries. Acquiring knowledge of this correlated behavior allows the

construction of a comprehensive thermal model for wind turbines,

providing a promising opportunity to detect anomalies/intrusions

that lead to abnormal temperature readings at various turbine mod-

ules.

The innovative system T-IDS consists of three key components:

a graph-based thermal model depicting the dependency among the
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temperatures of various turbine modules, a random forest-based al-

gorithm to predict the temperature of a target turbine module based

on the thermal graph and an anomaly detector that cross-validates

the predictions with their empirical observations to detect potential

anomalies. T-IDS was evaluated using a real-life dataset consisting

of the SCADA log from one wind turbine over six months [2]. The

findings reveal that T-IDS detects anomalies in the temperature

readings of different turbine modules with an average accuracy of

97.6% while incurring zero false detection.

In summary, this paper makes the following three noteworthy

contributions.

• Uncovering and constructing a comprehensive thermal model

describing the dependencies among the temperatures of various

turbine modules.

• Designing T-IDS, a thermal-model-based intrusion detection sys-

tem to detect anomalies and intrusions of wind turbines.

• Evaluating T-IDS on a real-world dataset that logs the wind

turbine operation for six months.

2 RELATED WORK

While the security of wind turbines is becoming increasingly im-

portant, various studies show interest in developing methods to

enhance security resilience from physical and cyber-attacks. Staggs

et al. provided many mitigations to prevent wind turbines from

getting attacked by intruders and increase the physical and cyber

resilience of wind turbines and wind farms [8]. However, Staggs’s

study still has space to develop a comprehensive method to pre-

vent or detect cyber intrusion attacks. Alternatively, Megan Egan

proposed recommendations on policies ensuring sustainable com-

munications of wind farms to improve cyber resilience [9]. Never-

theless, the study must address situations where attacks happen

while maintaining normal system operations or when intruders

manipulate wind turbine sensors to cover their activities.

Many other studies show interest in developing wind turbine

component-based methods. Bin Chen et al. studied an acoustical

damage detection method based on a Bayesian network [3]. Teng

Wei et al. showed interest in fault detection in wind turbines by

analyzing vibrational behaviors [10]. Nevertheless, acoustical, vi-

brational, and oil analysis require additional costs due to the instal-

lation of extra sensors for data collecting and background noise

cancellation, regardless of their limited performance [11]. Alterna-

tively, developing fault detection of wind turbine component-based

methods has recently drawn significant attention from scientists.

Yirong Liu et al. provided an efficient early fault detection method

by training an extreme gradient-boosting prediction model for gear-

box oil temperature [6]. Furthermore, alternative methods using

machine learning algorithms, such as k-nearest neighbors and arti-

ficial neural networks, were also studied. However, the solutions

provided still need to address common limitations. Regardless of

the promising results, they need to improve because they rely on

a single variable and incompletely analyze the interrelationship

among variables of wind turbine components [7].

In response to these limitations, T-IDS lays its foundation on

performing insightful analysis of the underlying dynamics of wind

turbine components. T-IDS uses a novel anomaly detection method

capitalizing on the thermal model graph. By detecting deviations

Figure 2: Overview of T-IDS.

from reference thermal patterns, T-IDS can identify anomalies

that indicate potential issues with wind turbine components. This

study conducts expansive experiments to evaluate T-IDS’s effec-

tiveness in anomaly detection. The results show a high accuracy

rate in detecting anomalies in wind turbine components. Another

critical contribution of T-IDS is providing comprehensive optimal

configurations for the developed system, ensuring robust anom-

aly detection accuracy across all applications. The development of

T-IDS promises to offer a complete anomaly detection framework

to reduce the impacts of intrusive attacks on SCADA systems and

to increase the general efficiency of the wind turbine system.

3 DESIGN OF T-IDS

Figure 2 shows an overview of T-IDS, which consists of three major

components: the thermal graph describing the interdependencies

among the temperature of different modules of a wind turbine, a

temperature predictor that predicts the temperature of the target

module using machine learning algorithms with high accuracy, and

an anomaly detector that cross-validates the predictions with their

empirical observations to detect anomalies. We will explain each

of these components in the next.

3.1 Graph-based Thermal Model

The thermal graph lays the foundation of T-IDS, where each node

denotes the temperature of a given turbinemodule, and theweighted

edges quantify the strength of the dependency between the thermal

behaviors of associated nodes/modules. Specifically, T-IDS uses

the Pearson linear correlation coefficient to quantify the strength

of the dependency between two thermal variables. The graph is
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Figure 3: The process to generate the thermal graph.

Figure 4: A thermal graph example generated based on the

dataset in [2].

constructed based on a given threshold for the correlation strength

𝛼 , i.e., an edge exists in the graph if its weight is no smaller than 𝛼 .

The thermal graph serves two purposes for T-IDS. First, it defines

T-IDS’s capability in anomaly detection, i.e., the thermal variables

that T-IDS can diagnose to detect anomalies. Also, the thermal

graph guides the prediction of the temperature of the target module

by identifying which input variables should be used to complete the

prediction Ð the nodes that connect with the target module in the

thermal graph. Figure 3 shows the flowchart for constructing the

thermal graph. Figure 4 illustrates an example graph constructed

based on the dataset [2].

3.2 Temperature Predictor

The temperature predictor estimates the temperature of a target

module. The thermal graph steers this prediction to identify the

modules whose temperature strongly depends on the target Ð they

will be the promising input for the prediction.We train the predictor

Figure 5: The average MAE when predicting temperature

using different methods.

Figure 6: The flow chart of T-IDS’s temperature predictor.

using a 7:3 ratio between the training and testing datasets. The

following data analytical methods have been examined.

• Linear Regression: The linear regression algorithm predicts the

target variable based on a linear equation: 𝑦 = 𝑎 · 𝑥 + 𝑏, where 𝑎

is the slope of the linear model, and 𝑏 is the intercept value of a

dependent variable.

• Random Forest: The random forest algorithm is built based on

different decision trees; its output is the mean of all the trees. This

algorithm’s strength is that it prevents overfitting by randomly

selecting samples from the data set.

• Gradient Boost: The gradient Boost model produces the target

variable by creating multiple weak models and combining pre-

vious models to improve the performance of later models. This
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method’s overall approach is to fit the new learner to the residu-

als of previous models to enhance the prediction. This machine-

learning algorithm avoids overfitting by reducing the learning

rate or tree constraints.

We have examined the above methods and chose the best one

for T-IDS based on the resulting mean absolute error (MAE) be-

tween observed and predicted data. Figure 5 plots the MAEs when

predicting temperature variables using different methods, showing

that random forest achieves the highest accuracy when compared

to others. As a result, random forest is adopted by T-IDS as the

temperature predictor. Figure 6 shows the flowchart of T-IDS’s

temperature predictor.

3.3 Anomaly Detector

After completing the temperature predictor, T-IDS initiates its

anomaly detection stage, which is the final step of the whole design.

The phrase begins by generating the reference model with 70% of

historical data to train the temperature predictor. T-IDS takes its

corresponding set of predictors for each target variable to produce

the predictions. As this wind turbine component has both observed

and predicted values, T-IDS obtains a set of residuals by subtracting

the predictions from the historical data.

These residuals’ mean and standard deviation set up the upper

and lower boundaries for the anomaly detection model. The pre-

determined safeguard is defined as 𝛽 times of standard deviations

away from the mean of residuals. T-IDS performs anomaly detec-

tion by comparing the set of real-time residuals with the established

range for residuals. To obtain this real-time residual, T-IDS applies

a similar approach of building a reference model with real-time

data and predicted values instead. Then, the system treats any value

outside this fixed range as an outlier or anomaly and keeps tracking

the number of outliers with a counter. As consecutive anomalies ex-

ist, the counter increments with each anomaly detected. Otherwise,

once a subsequent residual falls within the determined safe bound

while its predecessors are anomaly values, the counter halves and

retains only the integer part.

With a pre-defined threshold for outlier counter 𝜖 , once the

counter surpasses this threshold, T-IDS triggers an alarm of de-

tected anomaly. The flowchart of T-IDS’s anomaly detector is

shown in Figure 7.

4 EVALUATION

Our evaluation of T-IDS was based on four critical factors: (i) the

accuracy of its anomaly detection capabilities, (ii) the influence of

different system settings on anomaly detector, (iii) its sensitivity

to varying degrees of injected anomalies, and (iv) its performance

across various anomaly-injected models.

4.1 Testing Methodology

We simulate abnormal/manipulated temperature readings by mod-

ifying the original (and normal) dataset based on two anomaly

models.

• Anomaly Model 1 (AM-1). The first anomaly model is constructed

by arbitrarily choosing an anomaly starting point 𝜒 within the

range of index 0 to the length of the given data set, subtracting

from the threshold value for anomaly counter 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 and a

Figure 7: The flow chart of T-IDS’s anomaly detector.

random constant 𝛿 within the range of minimum and maximum

values of the data set. AM-1 simulates anomalies as follows:

from the chosen index 𝜒 , every variable is set to 𝛿 . This model

represents the scenario in which the sensors are broken, or when

intruders inject anomaly impacts, the observed values are equal

to a constant value.

• Anomaly Model 2 (AM-2). As with the AM-1, The second anomaly

model is initiated by randomly choosing an anomaly starting

point. Then, beginning from this index, a random value 𝜎 within

the range of [−1, 1] is chosen, and the value of the current index

fluctuates by multiplying a sum of 1, representing its current

value, and 𝜎 . Many other sub-models can be constructed from

AM-2 based on the range of 𝜎 . This study uses the testing method-

ology by separating the [−1, 1] range into subsets with an interval

of 0.1 for each. For instance, starting with a value of -1.0, the

bound for choosing the value of 𝜎 is [−1.0,−0.9), excluding the

upper bound. As mentioned, there are many subcases for the

second anomaly model, allowing for the assessment of T-IDS

sensitivity in detecting anomalies with different levels of simu-

lated data. These subcases represent scenarios where intruders

attempt to inject noise into the SCADA system to uncover their

actions.

Besides the two anomaly models introduced above, a positive

false alarm model is applied in this study by setting the value of
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Table 1: The false alarm rate vs. the bounds of residuals. The

false alarm testing model has a correlation threshold value

of 0.8, and the anomaly bound is set 3 standard deviations

away.

Variable Name

Outliers Threshold
5 6 7 8 9 10

Gear oil temperature (°C) 928 71 0 0 0 0

Rear bearing temperature (°C) 950 0 0 0 0 0

Stator temperature 1 (°C) 835 0 0 0 0 0

Generator bearing rear temperature (°C) 336 0 0 0 0 0

Rotor bearing temp (°C) 999 999 0 0 0 0

Front bearing temperature (°C) 425 0 0 0 0 0

Generator bearing front temperature (°C) 957 0 0 0 0 0

Nacelle temperature (°C) 0 0 0 0 0 0

Gear oil inlet temperature (°C) 720 0 0 0 0 0

Temp. top box (°C) 958 884 846 0 260 0

CPU temperature (°C) 915 17 0 0 0 0

Nacelle ambient temperature (°C) 958 898 898 682 664 0

Transformer cell temperature (°C) 993 437 0 0 0 0

Hub temperature (°C) 997 954 951 711 0 0

𝜎 to 0, illustrating that no anomaly is injected into the observed

values.

T-IDS is evaluated against the 2021 Wind Turbine SCADA data

set [2]. The set contains fifteen different thermal variables of the

wind turbine, which are CPU temperature, Front bearing temper-

ature, Gear oil inlet temperature, Gear oil temperature, Generator

bearing front temperature, Generator bearing rear temperature, Hub

temperature, Nacelle ambient temperature, Nacelle temperature, Rear

bearing temperature, Rotor bearing Temp, Stator temperature 1, Temp.

Top box, Transformer cell temperature, and Transformer temperature,

with a total of 26,064 records.

To achieve the best observation, T-IDS is evaluated with 1,000

unique cases for each temperature variable.

4.2 Optimal Configuration

As the first step of the evaluation, significant attention is devoted

to identifying T-IDS’s optimal configuration. This comprises fine-

tuning the system’s settings to maximize its anomaly detection

accuracy. Through evaluations and analysis, T-IDS employs its

most effective configuration when the anomaly detection model has

its safe range as three standard deviations away from the residuals

mean. The anomaly alarm goes off when ten consecutive anomalies

are detected, i.e., the setting of 𝛽 and 𝜖 is 3 and 10, respectively.

These configurations minimize the false detection.

T-IDS performs evaluations with correlation threshold values

within the [0.7, 0.9] range in the false alarm testing model. Each

correlation value test against distinct test cases with the threshold

for anomaly counter between 5 and 10. This testing model expects

to produce the minimum number of detected anomaly cases as no

anomaly is injected into the observed values. This study observes

that T-IDS reduces the positive false detection rate as the value of

the anomaly counter increases. Similar trends occur throughout

various testing cases with a predetermined range of correlation

thresholds. One of the evaluation cases displayed in Table 1 shows

Table 2: The false alarm rate vs. the bounds of residuals. The

false alarm testing model has a correlation threshold value

of 0.8, and the consecutive outliers threshold is set at 10.

Variable Name

STD Away
1 2 3

Gear oil temperature (°C) 193 0 0

Rear bearing temperature (°C) 0 0 0

Stator temperature 1 (°C) 0 0 0

Generator bearing rear temperature (°C) 0 0 0

Rotor bearing temp (°C) 0 0 0

Front bearing temperature (°C) 0 0 0

Generator bearing front temperature (°C) 0 0 0

Nacelle temperature (°C) 963 0 0

Gear oil inlet temperature (°C) 0 0 0

Temp. top box (°C) 882 0 0

CPU temperature (°C) 770 0 0

Nacelle ambient temperature (°C) 893 0 0

Transformer cell temperature (°C) 0 0 0

Hub temperature (°C) 963 664 0

T-IDS reducing the false detection rate to 0%when anomaly counter

values reach 9 or above.

T-IDS achieves accurate anomaly detection by establishing a

range for outlier residual values. This range is defined by upper and

lower bounds, which are set based on the standard deviation of the

residuals set. As the standard deviation values increase, T-IDS can

minimize the number of false positive detections. This approach

improves anomaly detection accuracy and reduces the likelihood

of false alarms. Table 2 shows the false detection rates of T-IDS,

with upper and lower bounds for residuals set as 1,2 and 3 stan-

dard deviations away. Compared to the other two settings, once

T-IDS’s safe bound for residual values is within the range of 3

standard deviations, the false detection rate is reduced to 0. This

conclusion is based on the evaluations of false alarm testing models

with correlation threshold values in the range of [0.7, 0.9] with 0.1

intervals.

4.3 Performance in Anomaly Detection

Next, we evaluate T-IDS’s capability to detect anomalies in wind

turbines. T-IDS achieves an almost 100% detection rate for anom-

alies injected according to the first anomaly model, as shown in

Table 3.

T-IDS has demonstrated a remarkable ability to detect signifi-

cant changes in observed values, as evidenced by its high anomaly

detection rate with the first anomaly model. This highlights its ro-

bustness and effectiveness in detecting significant deviations from

normal operating conditions. Furthermore, T-IDS has performed

exceptionally well against the second anomaly model, particularly

under conditions where a range of 𝜎 represents relatively small

simulations, proving its ability to detect subtle anomalies precisely.

Despite the challenges in defining minor deviations, T-IDS per-

forms remarkably in recognizing anomalies even though the values

of 𝜎 are within the range of [0.01.0.1) or [−0.1,−0.01). Table 4 and 5

shows the performance of T-IDS’s anomaly detection.
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Table 3: Results when evaluating T-IDS against the first anomaly model.

Variable Name

Correlation Threshold
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Gear oil temperature (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 999

Rear bearing temperature (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Stator temperature 1 (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 988

Generator bearing rear temperature (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 914

Rotor bearing temp (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 999 999 999 1000 1000 1000 1000 1000 N/A

Front bearing temperature (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 991

Generator bearing front temperature (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 998 N/A

Nacelle temperature (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 999 999

Gear oil inlet temperature (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 925

Temp. top box (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

CPU temperature (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Nacelle ambient temperature (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 999 999

Transformer cell temperature (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 998 998

Hub temperature (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 999 999 N/A N/A

Transformer temperature (°C) 1000 1000 1000 1000 1000 1000 1000 999 999 997 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Table 4: Performance of T-IDS in anomaly detection through evaluations with the second anomaly model and range of 𝜎 is

within [0.01, 0.1).

Variable Name

Correlation Threshold
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Gear oil temperature (°C) 979 979 979 979 979 978 989 989 989 989 988 988 988 988 988 980 981 981 742

Rear bearing temperature (°C) 995 995 995 995 986 983 983 983 973 979 979 979 979 982 975 975 975 934 942

Stator temperature 1 (°C) 917 917 917 917 910 910 906 906 906 902 892 892 892 915 875 875 847 816 358

Generator bearing rear temperature (°C) 789 789 789 789 789 789 789 785 774 774 774 697 697 697 697 630 550 551 0

Rotor bearing temp (°C) 940 940 940 940 940 940 940 940 940 935 861 861 861 727 727 658 524 496 N/A

Front bearing temperature (°C) 946 946 946 943 944 944 944 944 945 942 942 942 927 928 928 928 923 925 143

Generator bearing front temperature (°C) 801 801 810 810 810 810 749 749 749 749 731 731 731 731 731 731 748 219 N/A

Nacelle temperature (°C) 693 668 668 668 668 668 668 668 668 668 668 717 608 608 623 620 386 386 N/A

Gear oil inlet temperature (°C) 607 607 627 627 607 607 607 607 607 607 623 623 623 623 623 623 462 332 0

Temp. top box (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 998 998 997 997 993 966 966 N/A

CPU temperature (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Nacelle ambient temperature (°C) 412 412 412 374 431 452 457 418 418 317 317 317 317 77 77 77 77 0 0

Transformer cell temperature (°C) 862 862 862 862 862 831 802 802 813 622 445 547 0 0 0 0 0 0 0

Hub temperature (°C) 794 794 794 794 794 794 762 762 737 694 659 641 641 406 406 576 0 N/A N/A

Transformer temperature (°C) 633 328 241 241 241 206 0 0 0 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Moreover, as the range of 𝜎 becomes more significant, T-IDS

exhibits enhanced anomaly detection capabilities. The system cap-

tures anomalies vividly because of the significant deviations from

the predetermined normal range of residuals. For instance, as the

range of 𝜎 shifts to [0.1 and 0.2), the average anomaly detection rate

for all thermal variables in the wind turbine system is increased

to 96.8%. T-IDS’s overall anomaly detection rate with the second

anomaly model is 97.6%. This observation underscores T-IDS’s

ability to adapt to varying magnitudes of anomalies and improve

performance as anomaly detection rates become more pronounced.

In addition to its outstanding performance, T-IDS also reveals a

commendable ability to maintain a low rate of false alarms during

the evaluations with the second anomaly model, as the value of

𝜎 is fixed to 0. Table 6 shows T-IDS’s ability to minimize its false

detection rate during evaluations. These observations show that

T-IDS can exhibit a 0% false alarm rate with optimal settings. This

aspect of T-IDS is crucial in ensuring the reliability and practicality

of its anomaly detection framework by reducing the likelihood of

unnecessary alerts to maintain a stable workflow.

5 CONCLUSIONS

The wind power industry is grappling with mounting security

challenges, as wind turbine and SCADA systems are vulnerable to

compromise and manipulation. To enhance intrusion detection in

wind turbines, this paper presents T-IDS, a Thermal-Model-based

Intrusion Detection System. T-IDS’s system comprises three key

components: a graph-based thermal model, a temperature predictor,

and an anomaly detector. Extensive testing demonstrates T-IDS’s

remarkable capability of identifying anomalies in the thermal vari-

ables of wind turbines while maintaining a low false alarm.
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Table 5: Performance of T-IDS in anomaly detection through evaluations with the second anomaly model and range of 𝜎 is

within [−0.1,−0.01).

Variable Name

Correlation Threshold
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Gear oil temperature (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 980 1000 1000 893

Rear bearing temperature (°C) 999 999 999 999 998 997 997 997 997 997 1000 1000 997 1000 997 975 997 984 988

Stator temperature 1 (°C) 968 968 968 968 968 968 972 972 972 972 947 947 951 947 951 875 939 953 741

Generator bearing rear temperature (°C) 936 936 936 936 936 936 936 903 930 930 930 930 933 933 896 630 861 862 272

Rotor bearing temp (°C) 993 993 993 993 993 993 993 993 993 949 949 869 949 872 658 745 711 N/A N/A

Front bearing temperature (°C) 991 991 991 991 991 991 991 991 991 990 990 990 987 990 987 928 974 976 582

Generator bearing front temperature (°C) 968 968 952 952 952 952 947 947 947 947 889 889 889 889 889 731 883 693 N/A

Nacelle temperature (°C) 762 784 784 784 784 784 784 784 784 784 784 612 753 670 626 624 531 531 N/A

Gear oil inlet temperature (°C) 712 712 709 709 709 715 715 715 715 715 697 697 697 697 697 623 610 363 0

Temp. top box (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 287

CPU temperature (°C) 1000 748 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Nacelle ambient temperature (°C) 748 748 748 776 689 681 681 681 667 618 618 618 550 796 796 671 550 0 0

Transformer cell temperature (°C) 936 936 936 936 936 932 915 915 909 721 677 705 233 233 233 233 233 85 85

Hub temperature (°C) 960 960 960 960 960 960 906 906 896 892 889 887 891 887 853 576 891 N/A N/A

Transformer temperature (°C) 809 599 490 490 490 380 317 243 51 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Table 6: The false alarm rate vs. the corresponding value of the outlier counter. False alarm testing model with a correlation

threshold value of 0.8 and anomaly bound is set 3 standard deviations away.

Variable Name

Correlation Threshold
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Gear oil temperature (°C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Rear bearing temperature (°C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Stator temperature 1 (°C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Generator bearing rear temperature (°C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Rotor bearing temp (°C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N/A

Front bearing temperature (°C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Generator bearing front temperature (°C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N/A

Nacelle temperature (°C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Gear oil inlet temperature (°C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Temp. top box (°C) 388 388 388 388 388 388 388 388 388 388 388 0 0 0 0 0 0 0 0

CPU temperature (°C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Nacelle ambient temperature (°C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transformer cell temperature (°C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hub temperature (°C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 652 652 N/A N/A

Transformer temperature (°C) 0 0 0 0 0 0 0 0 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
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