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ABSTRACT

This paper advances the intrusion detection of wind turbines by
exploiting the inter-dependent thermal behaviors of individual mod-
ules within the turbines. Specifically, we present a novel thermal-
model-based intrusion detection system, called T-IDS, to detect
intrusions causing abnormal thermal behaviors of the turbines,
such as those causing damaged physical modules (and hence heat-
ing) or manipulating the temperature readings. T-IDS consists of
three key components: a graph model describing the dependencies
among thermal variables of wind turbines, a random forest-based
method to predict thermal variables in the steering of the ther-
mal graph and a method to detect anomalies by cross-validating
the predicted thermal variables with their empirical observations.
The optimal configuration of T-IDS is also examined to ensure its
robustness. We have evaluated T-IDS using a dataset containing
the Supervisory Control And Data Acquisition (SCADA) log of a
wind turbine over six months. The results show that T-IDS detects
anomalies with an average accuracy of 97.6% while incurring no
false detection.
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1 INTRODUCTION

Rising greenhouse emissions have dire consequences, with an esti-
mated 8.3 million deaths per year resulting from exposure to toxic
air pollution [5]. To combat this alarming trend, wind turbines
are proving to be a pivotal player in phasing out traditional en-
ergy sources and ushering in a new era of renewable energy. As
the largest renewable energy source in the United States, wind
power generation has surpassed 650 GW in 2022 and consistently
increased by 60 GW annually. Wind turbines serve as the crucial
infrastructure that effectively converts kinetic wind power into
electrical energy.
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Trends of Thermal Variables
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Figure 1: The temperatures of different modules of a wind
turbine are highly correlated.

However, the increasing popularity of wind energy has also made
it a prime target for attackers because the energy sector has been
one of the most targeted sectors since 2014 [4]. Additionally, the
growing reliance on wind farms to power the nation’s grid is not
aligned with the resilience in protecting wind turbine systems and
their infrastructure against cyber attacks. The remote locations of
wind farms, coupled with the massive size of turbines, make wind
turbine facilities vulnerable to various risks, including unauthorized
access, control manipulation, operational disruptions, and phys-
ical damage to turbines and substations. Furthermore, the broad
deployment of Supervisory Control and Data Acquisition (SCADA)
systems further escalates the risk of intrusive attacks that can com-
promise the integrity of onboard fault detection methods [1, 12].
Addressing these security challenges is critical to ensure a secure
and reliable energy supply.

To mitigate these critical concerns and enhance the safety of
wind turbine systems, this paper presents T-IDS, a thermal-model-
based intrusion detection system. T-IDS is inspired by the reliable
relationships between the thermal variables of wind turbine com-
ponents. For instance, Figure 1compares the real-time temperature
of three turbine modules: the stator, the front bearing, and the rear
bearing, highlighting a clear correlation among the three-time se-
ries. Acquiring knowledge of this correlated behavior allows the
construction of a comprehensive thermal model for wind turbines,
providing a promising opportunity to detect anomalies/intrusions
that lead to abnormal temperature readings at various turbine mod-
ules.

The innovative system T-IDS consists of three key components:
a graph-based thermal model depicting the dependency among the
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temperatures of various turbine modules, a random forest-based al-
gorithm to predict the temperature of a target turbine module based
on the thermal graph and an anomaly detector that cross-validates
the predictions with their empirical observations to detect potential
anomalies. T-IDS was evaluated using a real-life dataset consisting
of the SCADA log from one wind turbine over six months [2]. The
findings reveal that T-IDS detects anomalies in the temperature
readings of different turbine modules with an average accuracy of
97.6% while incurring zero false detection.

In summary, this paper makes the following three noteworthy
contributions.

e Uncovering and constructing a comprehensive thermal model
describing the dependencies among the temperatures of various
turbine modules.

o Designing T-IDS, a thermal-model-based intrusion detection sys-
tem to detect anomalies and intrusions of wind turbines.

e Evaluating T-IDS on a real-world dataset that logs the wind
turbine operation for six months.

2 RELATED WORK

While the security of wind turbines is becoming increasingly im-
portant, various studies show interest in developing methods to
enhance security resilience from physical and cyber-attacks. Staggs
et al. provided many mitigations to prevent wind turbines from
getting attacked by intruders and increase the physical and cyber
resilience of wind turbines and wind farms [8]. However, Staggs’s
study still has space to develop a comprehensive method to pre-
vent or detect cyber intrusion attacks. Alternatively, Megan Egan
proposed recommendations on policies ensuring sustainable com-
munications of wind farms to improve cyber resilience [9]. Never-
theless, the study must address situations where attacks happen
while maintaining normal system operations or when intruders
manipulate wind turbine sensors to cover their activities.

Many other studies show interest in developing wind turbine
component-based methods. Bin Chen et al. studied an acoustical
damage detection method based on a Bayesian network [3]. Teng
Wei et al. showed interest in fault detection in wind turbines by
analyzing vibrational behaviors [10]. Nevertheless, acoustical, vi-
brational, and oil analysis require additional costs due to the instal-
lation of extra sensors for data collecting and background noise
cancellation, regardless of their limited performance [11]. Alterna-
tively, developing fault detection of wind turbine component-based
methods has recently drawn significant attention from scientists.
Yirong Liu et al. provided an efficient early fault detection method
by training an extreme gradient-boosting prediction model for gear-
box oil temperature [6]. Furthermore, alternative methods using
machine learning algorithms, such as k-nearest neighbors and arti-
ficial neural networks, were also studied. However, the solutions
provided still need to address common limitations. Regardless of
the promising results, they need to improve because they rely on
a single variable and incompletely analyze the interrelationship
among variables of wind turbine components [7].

In response to these limitations, T-IDS lays its foundation on
performing insightful analysis of the underlying dynamics of wind
turbine components. T-IDS uses a novel anomaly detection method
capitalizing on the thermal model graph. By detecting deviations
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Figure 2: Overview of T-IDS.

from reference thermal patterns, T-IDS can identify anomalies
that indicate potential issues with wind turbine components. This
study conducts expansive experiments to evaluate T-IDS’s effec-
tiveness in anomaly detection. The results show a high accuracy
rate in detecting anomalies in wind turbine components. Another
critical contribution of T-IDS is providing comprehensive optimal
configurations for the developed system, ensuring robust anom-
aly detection accuracy across all applications. The development of
T-1DS promises to offer a complete anomaly detection framework
to reduce the impacts of intrusive attacks on SCADA systems and
to increase the general efficiency of the wind turbine system.

3 DESIGN OF T-IDS

Figure 2 shows an overview of T-IDS, which consists of three major
components: the thermal graph describing the interdependencies
among the temperature of different modules of a wind turbine, a
temperature predictor that predicts the temperature of the target
module using machine learning algorithms with high accuracy, and
an anomaly detector that cross-validates the predictions with their
empirical observations to detect anomalies. We will explain each
of these components in the next.

3.1 Graph-based Thermal Model

The thermal graph lays the foundation of T-IDS, where each node
denotes the temperature of a given turbine module, and the weighted
edges quantify the strength of the dependency between the thermal
behaviors of associated nodes/modules. Specifically, T-IDS uses
the Pearson linear correlation coefficient to quantify the strength
of the dependency between two thermal variables. The graph is
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constructed based on a given threshold for the correlation strength
a, ie., an edge exists in the graph if its weight is no smaller than a.
The thermal graph serves two purposes for T-IDS. First, it defines
T-1DS’s capability in anomaly detection, i.e., the thermal variables
that T-IDS can diagnose to detect anomalies. Also, the thermal using a 7:3 ratio between the training and testing datasets. The
graph guides the prediction of the temperature of the target module following data analytical methods have been examined.
by identifying which input variables should be used to complete the
prediction — the nodes that connect with the target module in the
thermal graph. Figure 3 shows the flowchart for constructing the
thermal graph. Figure 4 illustrates an example graph constructed
based on the dataset [2].

Figure 6: The flow chart of T-IDS’s temperature predictor.

o Linear Regression: The linear regression algorithm predicts the
target variable based on a linear equation: y = a - x + b, where a
is the slope of the linear model, and b is the intercept value of a
dependent variable.

Random Forest: The random forest algorithm is built based on
different decision trees; its output is the mean of all the trees. This
algorithm’s strength is that it prevents overfitting by randomly

3.2 Temperature Predictor

The temperature predictor estimates the temperature of a target selecting samples from the data set.

module. The thermal graph steers this prediction to identify the o Gradient Boost: The gradient Boost model produces the target
modules whose temperature strongly depends on the target — they variable by creating multiple weak models and combining pre-
will be the promising input for the prediction. We train the predictor vious models to improve the performance of later models. This
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method’s overall approach is to fit the new learner to the residu-
als of previous models to enhance the prediction. This machine-
learning algorithm avoids overfitting by reducing the learning
rate or tree constraints.

We have examined the above methods and chose the best one
for T-IDS based on the resulting mean absolute error (MAE) be-
tween observed and predicted data. Figure 5 plots the MAEs when
predicting temperature variables using different methods, showing
that random forest achieves the highest accuracy when compared
to others. As a result, random forest is adopted by T-IDS as the
temperature predictor. Figure 6 shows the flowchart of T-IDS’s
temperature predictor.

3.3 Anomaly Detector

After completing the temperature predictor, T-IDS initiates its
anomaly detection stage, which is the final step of the whole design.
The phrase begins by generating the reference model with 70% of
historical data to train the temperature predictor. T-IDS takes its
corresponding set of predictors for each target variable to produce
the predictions. As this wind turbine component has both observed
and predicted values, T-IDS obtains a set of residuals by subtracting
the predictions from the historical data.

These residuals’ mean and standard deviation set up the upper
and lower boundaries for the anomaly detection model. The pre-
determined safeguard is defined as f times of standard deviations
away from the mean of residuals. T-IDS performs anomaly detec-
tion by comparing the set of real-time residuals with the established
range for residuals. To obtain this real-time residual, T-IDS applies
a similar approach of building a reference model with real-time
data and predicted values instead. Then, the system treats any value
outside this fixed range as an outlier or anomaly and keeps tracking
the number of outliers with a counter. As consecutive anomalies ex-
ist, the counter increments with each anomaly detected. Otherwise,
once a subsequent residual falls within the determined safe bound
while its predecessors are anomaly values, the counter halves and
retains only the integer part.

With a pre-defined threshold for outlier counter €, once the
counter surpasses this threshold, T-IDS triggers an alarm of de-
tected anomaly. The flowchart of T-IDS’s anomaly detector is
shown in Figure 7.

4 EVALUATION

Our evaluation of T-IDS was based on four critical factors: (i) the
accuracy of its anomaly detection capabilities, (ii) the influence of
different system settings on anomaly detector, (iii) its sensitivity
to varying degrees of injected anomalies, and (iv) its performance
across various anomaly-injected models.

4.1 Testing Methodology

We simulate abnormal/manipulated temperature readings by mod-
ifying the original (and normal) dataset based on two anomaly
models.

o Anomaly Model 1 (AM-1). The first anomaly model is constructed
by arbitrarily choosing an anomaly starting point y within the
range of index 0 to the length of the given data set, subtracting
from the threshold value for anomaly counter epsilon and a
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Figure 7: The flow chart of T-IDS’s anomaly detector.

random constant § within the range of minimum and maximum
values of the data set. AM-1 simulates anomalies as follows:
from the chosen index y, every variable is set to . This model
represents the scenario in which the sensors are broken, or when
intruders inject anomaly impacts, the observed values are equal
to a constant value.

Anomaly Model 2 (AM-2). As with the AM-1, The second anomaly
model is initiated by randomly choosing an anomaly starting
point. Then, beginning from this index, a random value o within
the range of [—1, 1] is chosen, and the value of the current index
fluctuates by multiplying a sum of 1, representing its current
value, and o. Many other sub-models can be constructed from
AM-2 based on the range of ¢. This study uses the testing method-
ology by separating the [—1, 1] range into subsets with an interval
of 0.1 for each. For instance, starting with a value of -1.0, the
bound for choosing the value of ¢ is [-1.0,—0.9), excluding the
upper bound. As mentioned, there are many subcases for the
second anomaly model, allowing for the assessment of T-IDS
sensitivity in detecting anomalies with different levels of simu-
lated data. These subcases represent scenarios where intruders
attempt to inject noise into the SCADA system to uncover their
actions.

Besides the two anomaly models introduced above, a positive
false alarm model is applied in this study by setting the value of
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Table 1: The false alarm rate vs. the bounds of residuals. The
false alarm testing model has a correlation threshold value
of 0.8, and the anomaly bound is set 3 standard deviations
away.

Outliers Threshold
Gear oil temperature (°C) 92871 0 0O O O
Rear bearing temperature (°C) 950 0 0 0 0 0
Stator temperature 1 (°C) 835 0 0 0 0 0
Generator bearing rear temperature (°C) {336 0 0 0 0 0
Rotor bearing temp (°C) 999 999 0 0 0 0
Front bearing temperature (°C) 425 0 0 0 0 0
Generator bearing front temperature (°C) {957 0 0 0 0 0
Nacelle temperature (°C) 0 0 0 0 0 0
Gear oil inlet temperature (°C) 7200 0 0 O O 0
Temp. top box (°C) 958 884 846 0 260 0
CPU temperature (°C) 915 17 0 0 0 0
Nacelle ambient temperature (°C) 958 898 898 682 664 0
Transformer cell temperature (°C) 993 437 0 0 0 O
Hub temperature (°C) 997 954 951 711 0 O

o to 0, illustrating that no anomaly is injected into the observed
values.

T-IDS is evaluated against the 2021 Wind Turbine SCADA data
set [2]. The set contains fifteen different thermal variables of the
wind turbine, which are CPU temperature, Front bearing temper-
ature, Gear oil inlet temperature, Gear oil temperature, Generator
bearing front temperature, Generator bearing rear temperature, Hub
temperature, Nacelle ambient temperature, Nacelle temperature, Rear
bearing temperature, Rotor bearing Temp, Stator temperature 1, Temp.
Top box, Transformer cell temperature, and Transformer temperature,
with a total of 26,064 records.

To achieve the best observation, T-IDS is evaluated with 1,000
unique cases for each temperature variable.

4.2 Optimal Configuration

As the first step of the evaluation, significant attention is devoted
to identifying T-IDS’s optimal configuration. This comprises fine-
tuning the system’s settings to maximize its anomaly detection
accuracy. Through evaluations and analysis, T-IDS employs its
most effective configuration when the anomaly detection model has
its safe range as three standard deviations away from the residuals
mean. The anomaly alarm goes off when ten consecutive anomalies
are detected, i.e., the setting of § and € is 3 and 10, respectively.
These configurations minimize the false detection.

T-IDS performs evaluations with correlation threshold values
within the [0.7,0.9] range in the false alarm testing model. Each
correlation value test against distinct test cases with the threshold
for anomaly counter between 5 and 10. This testing model expects
to produce the minimum number of detected anomaly cases as no
anomaly is injected into the observed values. This study observes
that T-IDS reduces the positive false detection rate as the value of
the anomaly counter increases. Similar trends occur throughout
various testing cases with a predetermined range of correlation
thresholds. One of the evaluation cases displayed in Table 1 shows
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Table 2: The false alarm rate vs. the bounds of residuals. The
false alarm testing model has a correlation threshold value
of 0.8, and the consecutive outliers threshold is set at 10.

Variable Name

Gear oil temperature (°C) 193 0 0
Rear bearing temperature (°C) 0 0 0
Stator temperature 1 (°C) 0o 0 0
Generator bearing rear temperature (°C) | 0 0 0
Rotor bearing temp (°C) 0o 0 0
Front bearing temperature (°C) 0 0 0
Generator bearing front temperature "'C) | 0 0 0
Nacelle temperature (°C) 9%3 0 0
Gear oil inlet temperature (°C) 0o 0 0
Temp. top box (°C) 882 0 0
CPU temperature (°C) 770 0 0
Nacelle ambient temperature (°C) 893 0 0
Transformer cell temperature (°C) 0o 0 0
Hub temperature (°C) 963 664 0

T-1DS reducing the false detection rate to 0% when anomaly counter
values reach 9 or above.

T-IDS achieves accurate anomaly detection by establishing a
range for outlier residual values. This range is defined by upper and
lower bounds, which are set based on the standard deviation of the
residuals set. As the standard deviation values increase, T-IDS can
minimize the number of false positive detections. This approach
improves anomaly detection accuracy and reduces the likelihood
of false alarms. Table 2 shows the false detection rates of T-IDS,
with upper and lower bounds for residuals set as 1,2 and 3 stan-
dard deviations away. Compared to the other two settings, once
T-1IDS’s safe bound for residual values is within the range of 3
standard deviations, the false detection rate is reduced to 0. This
conclusion is based on the evaluations of false alarm testing models
with correlation threshold values in the range of [0.7,0.9] with 0.1
intervals.

4.3 Performance in Anomaly Detection

Next, we evaluate T-IDS’s capability to detect anomalies in wind
turbines. T-IDS achieves an almost 100% detection rate for anom-
alies injected according to the first anomaly model, as shown in
Table 3.

T-IDS has demonstrated a remarkable ability to detect signifi-
cant changes in observed values, as evidenced by its high anomaly
detection rate with the first anomaly model. This highlights its ro-
bustness and effectiveness in detecting significant deviations from
normal operating conditions. Furthermore, T-IDS has performed
exceptionally well against the second anomaly model, particularly
under conditions where a range of o represents relatively small
simulations, proving its ability to detect subtle anomalies precisely.
Despite the challenges in defining minor deviations, T-IDS per-
forms remarkably in recognizing anomalies even though the values
of ¢ are within the range of [0.01.0.1) or [-0.1,—0.01). Table 4 and 5
shows the performance of T-IDS’s anomaly detection.
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Table 3: Results when evaluating T-IDS against the first anomaly model.

Tran and He

W 0.05 0.1 0.15 0.2 025 03 035 04 045 05 055 06 0.65 0.7 075 0.8 085 0.9 0.95
Variable Name

Gear oil temperature (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 999
Rear bearing temperature (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
Stator temperature 1 (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 988
Generator bearing rear temperature (°C) | 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 914
Rotor bearing temp (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 999 999 999 1000 1000 1000 1000 1000 N/A
Front bearing temperature (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 991
Generator bearing front temperature (°C) | 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 998 N/A
Nacelle temperature (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 999 999
Gear oil inlet temperature (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 925
Temp. top box (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
CPU temperature (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
Nacelle ambient temperature (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 999 999
Transformer cell temperature (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 998 998
Hub temperature (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 999 999 N/A N/A
Transformer temperature (°C) 1000 1000 1000 1000 1000 1000 1000 999 999 997 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Table 4: Performance of T-IDS in anomaly detection through evaluations with the second anomaly model and range of o is

within [0.01,0.1).

W 0.05 0.1 0.15 0.2 025 03 035 04 045 0.5 055 06 0.65 0.7 0.75 08 085 09 0.95
Variable Name

Gear oil temperature (°C) 979 979 979 979 979 978 989 989 989 989 988 988 988 988 988 980 981 981 742
Rear bearing temperature (°C) 995 995 995 995 986 983 983 983 973 979 979 979 979 982 975 975 975 934 942
Stator temperature 1 (°C) 917 917 917 917 910 910 906 906 906 902 892 892 892 915 875 875 847 816 358
Generator bearing rear temperature ("°C) | 789 789 789 789 789 789 789 785 774 774 774 697 697 697 697 630 550 551 0
Rotor bearing temp (°C) 940 940 940 940 940 940 940 940 940 935 861 861 861 727 727 658 524 496 N/A
Front bearing temperature (°C) 946 946 946 943 944 944 944 944 945 942 942 942 927 928 928 928 923 925 143
Generator bearing front temperature ("°C) | 801 801 810 810 810 810 749 749 749 749 731 731 731 731 731 731 748 219 N/A
Nacelle temperature (°C) 693 668 668 668 668 668 668 668 668 668 668 717 608 608 623 620 386 386 N/A
Gear oil inlet temperature (°C) 607 607 627 627 607 607 607 607 607 607 623 623 623 623 623 623 462 332 0
Temp. top box (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 998 998 997 997 993 966 966 N/A
CPU temperature (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
Nacelle ambient temperature (°C) 412 412 412 374 431 452 457 418 418 317 317 317 317 77 77 77 77 0 0
Transformer cell temperature (°C) 862 862 862 862 862 831 802 802 813 622 445 547 0 0 0 0 0 0 0
Hub temperature (°C) 794 794 794 794 794 794 762 762 737 694 659 641 641 406 406 576 0 N/A N/A
Transformer temperature (°C) 633 328 241 241 241 206 O 0 0 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Moreover, as the range of o becomes more significant, T-IDS
exhibits enhanced anomaly detection capabilities. The system cap-
tures anomalies vividly because of the significant deviations from
the predetermined normal range of residuals. For instance, as the
range of o shifts to [0.1 and 0.2), the average anomaly detection rate
for all thermal variables in the wind turbine system is increased
to 96.8%. T-IDS’s overall anomaly detection rate with the second
anomaly model is 97.6%. This observation underscores T-IDS’s
ability to adapt to varying magnitudes of anomalies and improve
performance as anomaly detection rates become more pronounced.
In addition to its outstanding performance, T-IDS also reveals a
commendable ability to maintain a low rate of false alarms during
the evaluations with the second anomaly model, as the value of
o is fixed to 0. Table 6 shows T-IDS’s ability to minimize its false
detection rate during evaluations. These observations show that
T-1IDS can exhibit a 0% false alarm rate with optimal settings. This
aspect of T-IDS is crucial in ensuring the reliability and practicality
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of its anomaly detection framework by reducing the likelihood of
unnecessary alerts to maintain a stable workflow.

5 CONCLUSIONS

The wind power industry is grappling with mounting security
challenges, as wind turbine and SCADA systems are vulnerable to
compromise and manipulation. To enhance intrusion detection in
wind turbines, this paper presents T-IDS, a Thermal-Model-based
Intrusion Detection System. T-IDS’s system comprises three key
components: a graph-based thermal model, a temperature predictor,
and an anomaly detector. Extensive testing demonstrates T-IDS’s
remarkable capability of identifying anomalies in the thermal vari-
ables of wind turbines while maintaining a low false alarm.
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Table 5: Performance of T-IDS in anomaly detection through evaluations with the second anomaly model and range of o is

within [-0.1,-0.01).

W 005 0.1 0.15 02 025 03 035 04 045 05 055 06 065 0.7 075 0.8 085 09 095
Variable Name

Gear oil temperature (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 980 1000 1000 893
Rear bearing temperature (°C) 999 999 999 999 998 997 997 997 997 997 1000 1000 997 1000 997 975 997 984 988
Stator temperature 1 (°C) 968 968 968 968 968 968 972 972 972 972 947 947 951 947 951 875 939 953 741
Generator bearing rear temperature (°C) | 936 936 936 936 936 936 936 903 930 930 930 930 933 933 896 630 861 862 272
Rotor bearing temp (°C) 993 993 993 993 993 993 993 993 993 949 949 869 949 872 658 745 711 N/A N/A
Front bearing temperature (°C) 991 991 991 991 991 991 991 991 991 990 990 990 987 990 987 928 974 976 582
Generator bearing front temperature (°C) | 968 968 952 952 952 952 947 947 947 947 889 889 889 889 889 731 883 693 N/A
Nacelle temperature (°C) 762 784 784 784 784 784 784 784 784 784 784 612 753 670 626 624 531 531 N/A
Gear oil inlet temperature (°C) 712 712 709 709 709 715 715 715 715 715 697 697 697 697 697 623 610 363 0

Temp. top box (°C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 287
CPU temperature (°C) 1000 748 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
Nacelle ambient temperature (°C) 748 748 748 776 689 681 681 681 667 618 618 618 550 796 796 671 550 0 0

Transformer cell temperature (°C) 936 936 936 936 936 932 915 915 909 721 677 705 233 233 233 233 233 8 85

Hub temperature (°C) 960 960 960 960 960 960 906 906 896 892 889 887 891 887 853 576 891 N/A N/A
Transformer temperature (°C) 809 599 490 490 490 380 317 243 51 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Table 6: The false alarm rate vs. the corresponding value of the outlier counter. False alarm testing model with a correlation
threshold value of 0.8 and anomaly bound is set 3 standard deviations away.

Variable Namec"rrelatmn Threshold | 05 0.1 015 0.2 025 0.3 035 0.4 045 05 055 06 065 07 075 08 0.85 09 0.95
Gear oil temperature (°C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Rear bearing temperature (°C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Stator temperature 1 (°C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Generator bearing rear temperature (°C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Rotor bearing temp (°C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N/A
Front bearing temperature (°C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Generator bearing front temperature (°C) | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N/A
Nacelle temperature (°C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Gear oil inlet temperature (°C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Temp. top box (°C) 388 388 388 3883 388 388 383 388 388 388 388 0 0 0 0 0 0 0 0
CPU temperature (°C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Nacelle ambient temperature (°C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Transformer cell temperature (°C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Hub temperature (°C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 652 652 N/A N/A
Transformer temperature (°C) 0 0 0 0 0 0 0 0 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
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