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Abstract

We study zero-sum differential games with state

constraints and one-sided information, where

the informed player (Player 1) has a categorical

payoff type unknown to the uninformed player

(Player 2). The goal of Player 1 is to mini-

mize his payoff without violating the constraints,

while that of Player 2 is to violate the state con-

straints if possible, or to maximize the payoff oth-

erwise. One example of the game is a man-to-man

matchup in football. Without state constraints,

Cardaliaguet (2007) showed that the value of such

a game exists and is convex to the common be-

lief of players. Our theoretical contribution is

an extension of this result to games with state

constraints and the derivation of the primal and

dual subdynamic principles necessary for comput-

ing behavioral strategies. Different from existing

works that are concerned about the scalability of

no-regret learning in games with discrete dynam-

ics, our study reveals the underlying structure of

strategies for belief manipulation resulting from

information asymmetry and state constraints. This

structure will be necessary for scalable learning

on games with continuous actions and long time

windows. We use a simplified football game to

demonstrate the utility of this work, where we

reveal player positions and belief states in which

the attacker should (or should not) play specific

random deceptive moves to take advantage of in-

formation asymmetry, and compute how the de-

fender should respond.

1. Introduction

We study fixed-time zero-sum differential games with state

constraints and one-sided information, where Player 1 holds

a private type (e.g., an intent or preference) that defines the
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payoffs of the game. The goal of Player 1 (resp. Player 2)

is to minimize (resp. maximize) the cost. Since violation

of the state constraint results in +∞ penalty to Player 1,

Player 2 resorts to violating the constraints when possible;

and Player 1 resigns when state violation is inevitable. At

the beginning of the game, Nature draws a type from a dis-

tribution known to both players and assigns the type only to

Player 1. Initialized as Nature’s distribution, the common

belief about Player 1’s type is updated dynamically during

the game based on observations, and shared between the

players. A stochastic state trajectory is produced based on

the initial state and belief, the deterministic system dynam-

ics, and the behavioral strategies of the two players. The

value of the game, when exists, follows a Hamilton-Jacobi

(HJ) equation and is a function of time, state, and belief.

Importantly, Player 1 may control the release of information

at the equilibrium to manipulate the common belief and take

advantage of information asymmetry.

We use Hexner’s game (Hexner, 1979) as a minimal example

to demonstrate information control by Player 1: Consider

two players with linear dynamics

ẋi = Aixi +Biui,

for i = 1, 2, where xi(t) ∈ R
dx are system states, ui(t) ∈

U are control inputs belonging to the admissible set U ,

Ai, Bi ∈ R
dx×dx . Let θ ∈ {−1, 1} be Player 1’s type

unknown to Player 21. Let pθ be Nature’s probability distri-

bution of θ. Consider that the game is to be played infinite

many times, the payoff is an expectation over θ:

J(u1, u2) = Eθ

[

∫ T

0

(

∥u1∥
2
R1

− ∥u2∥
2
R2

)

dt +

∥x1(T )− zθ∥2K1(T ) − ∥x2(T )− zθ∥2K2(T )

]

,

(1)

where z ∈ R
dx , R1 and R2 are positive-definite, continuous

matrix functions, and K1(T ) and K2(T ) are positive semi-

definite matrices. All parameters are common knowledge

except θ. Essentially Player 1’s goal is to get closer to zθ
than Player 2. Since Player 2 can infer the target based

on Player 1’s control, Player 1 may play a non-revealing

strategy for some time, i.e., as if he also only knows pθ
rather than the actual θ, before he eventually reveals.

1Hexner’s analysis is applicable to θ ∈ R
dx , but is not gener-

alizable to games with arbitrary dynamics and payoff functions.
Here we adopt Cardaliaguet’s setting where types are categori-
cal (Cardaliaguet, 2007).
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The equilibrium of this game is as follows: First, it can be

shown that players’ control has a 1D representation, denoted

by θ̃i ∈ R, through:

ui = −R
−1
i BT

i Kixi +R−1
i BT

i KiΦizθ̃i,

for i = 1, 2, where Φ̇i = AiΦi with boundary condition

Φi(T ) = I , and

K̇i = −A
T
i Ki −KiAi +KT

i BiR
−1
i BT

i Ki.

Then by introducing

di = zTΦT
i KiBiR

−1
i BT

i K
T
i Φiz, (2)

and defining the critical time as

tr = argmin
t

∫ t

0

(d1(s)− d2(s))ds,

one can derive Player 1’s strategy as θ̃1(t) = 0 for t ∈ [0, tr]
and θ̃1(t) = θ for t ∈ (tr, T ], i.e., Player 1 reveals its type

at tr. Player 2’s strategy turns out to be to strictly follow

Player 1: θ̃2(t) = θ̃1(t). The original analysis by Hexner

exploits the fact that both players solve linear-quadratic reg-

ulators parameterized by θ. We will revisit this game after

introducing the differential game theory for one-sided in-

formation games (Cardaliaguet, 2007; 2009), which arrives

at Hexner’s solution but can also solve games with arbi-

trary dynamics and payoff functions, subject to continuity

assumptions. This paper extends the unconstrained settings

in Cardaliaguet (2009) and Souquiere (2010): We prove

that value exists for differential games with state constraints

and one-sided information, and derive the primal-dual HJ

equations necessary for computing player strategies.

Different from existing works that focus on scalable no-

regret learning on imperfect-information games with dis-

crete dynamics (Brown et al., 2020; Perolat et al., 2022),

this paper builds on top of repeated games and incomplete-

information differential games (Cardaliaguet, 2007; 2009)

to reveal the underlying mechanism of belief manipulation

resulted from information asymmetry and state constraints.

Specifically, we show that in any subgame, Player 1 plays a

behavioral strategy (i.e., probability distributions over the

action space for all his types) that convexifies his value with

respect to the common belief. As a result, the common

belief ªsplitsº to vertices of the value convex hull with prob-

abilities that are optimal for Player 1. See Fig. 1 for an

illustration using Hexner’s game. Importantly, the number

of splits for Player 1 is no more than the number of possible

player types. On the other hand, Player 2 counters Player

1 by playing a dual game where her behavioral strategy is

determined by the convexification of the conjugate value.

See Sec. 3 and 4 for details.

Within this context, it becomes clear that understanding

whether and how belief should be manipulated relies on
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Figure 1: Value along belief (p) and time (t) in Hexner’s

game. Belief splits to A (p = 0) and B (p = 1) depending

on the true type of Player 1, when the value becomes con-

cave should Player 1 play a non-revealing strategy. In other

words, Player 1 delays the release of his type until a critical

time. In more general cases, belief splitting may not fully

reveal Player 1’s type, leading to belief manipulation.

knowing the value landscape over the belief space at any

time and state. In addition to the curse of dimensional-

ity (CoD) commonly present for games with non-trivial

state/action/belief spaces and time horizons, we also expe-

rience computational challenges due to value discontinuity

and the need for convexification and splitting. We discuss in

Sec. 5 a set of solutions, including using physics-informed

neural network to characterize the backward reachable set

to smooth value approximation, and using an input con-

vex architecture (Amos et al., 2017) for predicting convex

values.

To summarize, we claim the following contributions:

• We extend the theory of zero-sum differential games

with one-sided information to games with state con-

straints by proving value existence of such games and

deriving the primal and dual subdynamic principles;

• We elucidate, with detailed examples, how the subdy-

namic principles lead to the derivation of behavioral

strategies;

• We develop numerical tools to alleviate CoD in value

approximation and to infer behavioral strategies from

values. In Sec. 6, we solve an 8D man-to-man matchup

game and reveal player positions in which the attacker

can take advantage of information asymmetry by play-

ing specific deceptive moves, and to derive the de-

fender’s best response in the lack of information. See

Fig. 2.
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Figure 2: Trajectories of informed Player 1 (red) and unin-

formed Player 2 (blue) in an 8D Hexner’s game w/ and w/o

a state constraint or information asymmetry. Color shades

indicate probabilities. When constrained, Player 1 stays

away from Player 2 while trying to be closer to the target

(the circle) than Player 2. Diamonds indicate initial states

and stars indicate final states. See Sec. 6 for details.

2. Related Work

Incomplete-information repeated and differential games

Harsanyi (1967) first formalized information asymmetry in

a stage game by introducing a private player types. Aumann

et al. (1995) provided a framework to study repeated games

with incomplete information on one side. De Meyer (1996)

introduced dual games from where strategies of the unin-

formed player can be derived from a recursive structure of

the conjugate value. Extending these results to differen-

tial games with Markov rewards, Cardaliaguet (2007) and

Souquiere (2010) confirmed the structures of incomplete-

information games with one sided information on player

type: (1) the game enjoys a primal-dual decomposition so

that the informed player does not need to know the equilib-

rium of the uninformed player to compute his own; and (2)

the value is convexified by belief splitting at the equilibrium.

Recently, Hu et al. (2023) proposed independently a belief-

space HJ formulation for zero-sum differential games with

one-sided information. While their framework can incorpo-

rate state constraints, it does not reveal the above structure

of the equilibrium strategies of such games.

Imperfect-information dynamic games Since player

types can be considered as static private states, our work

belongs to the category of imperfect-information dynamic

games, where more general dynamics and information struc-

tures (e.g., disturbances, partial observability, and delayed

information sharing) are considered. Nayyar et al. (2013)

showed that the game can be reformulated as perfect-

information by introducing a common belief state, pro-

vided that the belief is strategy independent. This strategy-

independence assumption is relaxed in Kartik and Nay-

yar (2021) for zero-sum dynamic games by introducing

past strategies as part of the players’ information state.

The general setting of Kartik and Nayyar (2021), however,

does not facilitate a value existence proof. A significant

amount of recent work build on top of common belief to ap-

proximate values of imperfect-information dynamic games

(e.g., ReBeL (Brown et al., 2020), DeepNash (Perolat et al.,

2022), and SoG (Schmid et al., 2023)). Following Nay-

yar et al. (2013), these algorithms model behavioral strate-

gies as prescriptions, i.e., belief-conditioned action distribu-

tions. In addition, by taking advantage of the equivalence

between local regret matching and Nash equilibrium in two-

player zero-sum games (Zinkevich et al., 2007), no-regret

algorithms (Brown & Sandholm, 2018; 2019; Brown et al.,

2020) have been developed for more scalably solving games

with large action spaces and long time horizons than lin-

ear programming based methods (Koller & Pfeffer, 1995).

It should be noted that these algorithms scale linearly to

the square-root of the action space, and thus induce high

costs as the action space grows. While often disconnected,

the studies on imperfect-information dynamic (or extensive-

form) games and those on incomplete-information differ-

ential games are consistent in theory. Specifically, regret

matching, i.e., solving subgame minimax problems with

respect to behavioral strategies in the former, leads to strate-

gies that satisfy the subdynamic programming principles

stated in Cardaliaguet (2007), due to the fact that the be-

havioral strategies intrinsically convexify values. The key

difference, however, is that regret matching algorithms do

not enforce belief splitting. In practice, this means that

the resultant strategy, often as a result of manually chosen

action discretization, does not explicitly explain whether a

certain random action is to be taken in a given belief state

in order to delay information release or to manipulate the

belief in a specific way.

3. State Constrained Zero-Sum Differential

Games with One-Sided Information

Preliminaries We consider a time-invariant deterministic

dynamical system that defines the dynamics of the combined

state x of Players 1 and 2, whose control inputs are u and v,

respectively:
{

ẋ(t) = f(x(t), u(t), v(t)), u(t) ∈ U , v(t) ∈ V
x(t0) = x0

(3)
The game starts at t0 ∈ [0, T ] with an initial state x0 ∈ R

dx .

Denote gi : Rdx → R the terminal payoff functions for

i ∈ [I], each corresponding to a Player 1 type drawn from

3
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Nature’s distribution p = {p1, ..., pI} ∈ ∆(I), where ∆(I)
is an I-dimensional simplex; denote C = {x ∈ R

dx |c(x) ≤
0} the set of feasible states. The goal of Player 1 is to mini-

mize the expected payoff while keeping the state in C. Player

1 receives +∞ if state violation occurs; the goal of Player

2 is to maximize the expected payoff and hence may resort

to violating the state constraint. We omit instantaneous pay-

offs (e.g., effort losses due to control) for conciseness, and

discuss in Sec. 4 modifications to the Bellman backup when

common-knowledge instantaneous payoffs exist.

The following assumptions will be used:

1. U and V are compact and finite-dimensional sets;

2. f : Rdx × U × V → R
dx is bounded, continuous, and

uniformly Lipschitz continuous with respect to x;

3. gi : R
dx → R for i = 1, ..., I and c : Rdx → R are

Lipschitz continuous and bounded.

4. Isaacs’ condition holds for the Hamiltonian H : Rdx ×
R

dx → R :

H(x, ξ) := min
u∈U

max
v∈V

f(x, u, v)T ξ

= max
v∈V

min
u∈U

f(x, u, v)T ξ.
(4)

5. Control inputs and states of both players are fully ob-

servable by all. The dynamics, the payoff set, and the

equilibrium strategies are common knowledge to all.

Behavioral strategy Let A(t) (resp. D(t)) be the set of

open-loop controls for Player 1 (resp. Player 2):

A(t) := {α : [t, T ]→ U | Lebesgue measurable},

D(t) := {δ : [t, T ]→ V | Lebesgue measurable}.

Following (Cardaliaguet, 2007), we introduce H(t) (resp.

Z(t)) as the set of non-anticipative pure strategies with

delay for Player 1 (resp. Player 2) (Elliott & Kalton, 1972):

H(t) := {η : D(t)→ A(t) | ∃τ > 0 such that

∀s ∈ (t, T − τ) and δ, δ̄ ∈ D(t), if δ = δ̄ a.e.

in [t, s], then η(δ) = η(δ̄) a.e. in [t, s+ τ ]}.

Z(t) := {ζ : A(t)→ D(t) | ∃τ > 0 such that

∀s ∈ (t, T − τ) and α, ᾱ ∈ A(t), if α = ᾱ a.e.

in [t, s], then ζ(α) = ζ(ᾱ) a.e. in [t, s+ τ ]}

A behavioral (mixed) strategy for Player 1 is defined by a

pair ((Ωη,Fη,Pη), η), where (Ωη,Fη,Pη) is a probability

space and the strategy η : Ωη ×D(t)→ A(t) is measurable

and non-anticipative with delay, i.e., there is some τ > 0
such that, for any s ∈ (t, T − τ) and δ, δ̄ ∈ D(t), if δ = δ̄
a.e. in [t, s] then η(ω, δ) = η(ω, δ̄) a.e. in [t, s + τ ] for

any ω ∈ Ωη . We denote the sets of behavioral strategies of

Player 1 by (Hr(t))
I and the behavioral strategy of Player

2 by Zr(t). With mild notational abuse, we will denote by

(ηi) ∈ (Hr(t))
I a particular set of behavioral strategies of

Player 1, and by ζ ∈ Zr(t) a particular behavioral strategy

of Player 2. Lastly, we assume that ηi for i = 1, ..., I are

defined on the same probability space.

Remarks. Nonanticipative strategies with delay are used,

as opposed to ones without delay that are often used in

complete-information games (Elliott & Kalton, 1972), in

order to enable Lemma 1 that associates random strate-

gies with open-loop controls. This association will become

useful in proving the existence of value of incomplete-

information differential games and in value characterization

(see discussions in (Cardaliaguet, 2007)):

Lemma 1. (Lemma 2.2 of (Cardaliaguet, 2007)) For any

pair (η, ζ) ∈ Hr(t) × Zr(t) and any ω := (ω1, ω2) ∈
Ωη × Ωζ , there is a unique pair (αω, δω) ∈ A(t) × D(t)
such that

η(ω1, δω) = αω and ζ(ω2, αω) = δω. (5)

Furthermore the map ω → (αω, δω) is measurable from

Ωη×Ωζ endowed with Fη⊗Fζ intoA(t)×D(t) endowed

with the Borel σ-field associated with the L1 distance.

Backward reachable set Let Xt0,x0,α,δ
τ be the solution

of Eq. (3) at t = τ when starting at (t0, x0) and following

(α, δ). With behavioral strategies (η, ζ) and initials (t0, x0),
we denote by X t0,x0,α,δ

τ the trajectory of states reachable

by (α, δ) within [t0, τ ], and X t0,x0,η,ζ
τ as states reachable

by (η, ζ) within [t0, τ ]:

X t0,x0,η,ζ
τ :=

⋃

ω∈Ωη×Ωζ

X t0,x0,αω,δω
τ

where (αω, δω) is defined by Eq. (5). Introduce ρ(S) = 1
if S ⊆ C, and otherwise ρ(S) = +∞; and the backward

reachable (infeasible) set as

Q̄(t) := {x ∈ R
dx | ∀η ∈ Hr(t), ∃ζ ∈ Zr(t), τ ∈ (t, T ],

s.t., ρ
(

X t,x,η,ζ
τ

)

= +∞}.

Q(t) := R
dx \ Q̄(t) is the set of feasible states. Q(T ) = C.

Lastly, we use ρ̄(t, x) = 1 if x ∈ Q(t) and otherwise

ρ̄(t, x) = +∞.

Payoff and value We define the expected payoff of player

type i for taking behavioral strategies (η, ζ) as

Gi(t0, x0, η, ζ) := Eη,ζ

[

gi(X
t0,x0,η,ζ
T )ρ(X t0,x0,η,ζ

τ )
]

=

∫

Ωη×Ωζ

gi

(

X
t0,x0,αω,δω
T

)

ρ(X t0,x0,αω,δω
τ )dPη ⊗ Pζ(ω).

The payoff of Player 1 is
∑I

i=1 piGi(t0, x0, ηi, ζ). With

strategys (ηi) ∈ (Hr(t0))
I and ζ ∈ Zr(t0), the upper value

function is defined by

V +(t0, x0, p) := inf
(ηi)

sup
ζ

I
∑

i=1

piGi(t0, x0, ηi, ζ),

4
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and the lower value function is given by

V −(t0, x0, p) := sup
ζ

inf
(ηi)

I
∑

i=1

piGi(t0, x0, ηi, ζ).

The existence of the value While the existence of value

is proven for both zero-sum complete-information state-

constrained differential games (Lee, 2022) and zero-sum

differential games with one-sided information (Cardaliaguet,

2009), the proof for games with both one-sided information

and state constraints is missing. Our main theoretical result

fills in this gap (see Appendix A for the proof):

Theorem 1. If assumptions 1-5 hold, we have

V +(t, x, p) = V −(t, x, p) for all (t, x, p) ∈
[0, T ]× R

dx ×∆(I).

Characterization of the value We need to first character-

ize the value of the unconstrained game since this value will

later appear in that of the state-constrained game.

Let U : [0, T ] × R
dx × ∆(I) → R be the value of the

unconstrained version of the game, and U∗ : [0, T ]×R
dx ×

R
I → R its convex conjugate:

U∗(t, x, p̂) := sup
p∈∆(I)

p̂T p− U(t, x, p)

∀(t, x, p̂) ∈ [0, T ]× R
dx × R

I .

We have the following properties for U and U∗:

1. U is Lipschitz continuous in (t, x, p) and convex to p.

U(T, x, p) =
∑I

i=1 pigi(x), ∀(x, p) ∈ R
dx × ∆(I).

U∗ is Lipschitz continuous in (t, x, p̂) and convex to p̂.

U∗(T, x, p̂) = maxi∈[I] p̂i − gi(x), ∀(x, p̂) ∈ R
dx ×

R
I .

2. For any p ∈ ∆(I), (t, x) → U(t, x, p) is a viscosity

subsolution to the primal HJ equation

wt +H(x,Dw) = 0,

where H is defined by Eq. (4).

3. For any p̂ ∈ R
I , (t, x) → U∗(t, x, p) is a viscosity

subsolution to the dual HJ equation

wt +H∗(x,Dw) = 0,

where H∗(x, ξ) = −H(x,−ξ) ∀ (x, ξ) ∈ R
dx × R

dx .

The conjugate U∗ defines the value of a dual game where

Player 2 minimizes her payment, U∗(T, x, p̂), to Player 1

where p̂ is common knowledge. We note that by defini-

tion (see (De Meyer, 1996)), the dual variables p̂ are the

info-state values defined in Brown et al. (2020), i.e., p̂[i]
captures the value of Player 1 if he is of type i and plays

the best response to Player 2’s equilibrium strategy. De

Meyer (1996) showed that when p̂ ∈ ∂pU(0, x, p), Player

2’s strategy in the dual game is her equilibrium in the primal

game. We note that Player 2’s strategy cannot be derived

from the primal subdynamic principle because her best re-

sponse is dependent on Player 1’s type which is unknown to

her. The introduction of the dual game allows us to derive

a subdynamic principle of the conjugate value from where

her equilibrium strategy can be computed.

For the state-constrained game, the following corollary is a

result of the subdynamic principles derived from Theorem 1,

and will guide the numerical approximation of values for

the state-constrained game (Sec. 4):

Corollary 1.1. Under assumptions 1-5, the value function

V := V + = V − (resp. V ∗) is a unique function defined on

[0, T ]× R
dx ×∆(I) (resp. [0, T ]× R

dx × R
I ) such that:

1. V is convex respect to p and

V (T, x, p) = ρ(x)U(T, x, p) ∀(x, p) ∈ R
dx ×∆(I);

(6)

V ∗ is convex respect to p̂ and

V ∗(T, x, p̂) = max
i∈[I]

p̂i−ρ(x)gi(x) ∀(x, p̂) ∈ R
dx×RI

(7)

2. For all p ∈ ∆(I), (t, x) → V (t, x, p) is a viscosity

subsolution to the primal HJ equation

min{ρ(x)U(t, x, p)−w,wt +H(x,Dw)} = 0. (8)

3. For all p̂ ∈ R
I , (t, x, z)→ V ∗(t, x, z, p) is a viscosity

subsolution to the dual HJ equation

min{ρ(x)U∗(t, x, p̂/ρ(x)), wt +H∗(x,Dw)} = 0.
(9)

4. Bellman Backup and Behavioral Strategies

Discrete-time Bellman backup computes an approximated

value Vτ (tk, ·, ·) : R
dx × ∆(I) → R, with time step τ =

T/L for some large L and tk = kτ for k = 0, ..., L:

(i) At the terminal time, set Vτ (T, x, p) =
ρ(x)

∑

i pigi(x).

(ii) At k ∈ {0, ..., L− 1}

Vτ (tk, x, p) = ρ(x)Vexp

(

min
u

max
v

Vτ (tk+1, x
′, p)

)

,

(10)

where x′ = x+ τf(x, u, v) and Vexp(·) is the convex

hull with respect to p.

Let l : U × V → R be a Lipschitz continuous and bounded

function that represents the instantaneous payoff of the

game. To incorporate l, Eq. (10) becomes

Vτ (tk, x, p) = ρ(x)Vexp

(

min
u

max
v

Vτ (tk+1, x
′
, p) + τ l(u, v)

)

(11)

Theorem 2 states that Vτ uniformly converges to V as τ →
0+ (see proof in Appendix B):

5
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Theorem 2. If assumptions 1-5 hold, Vτ converges uni-

formly to V on compact subsets of [0, T ]× R
dx ×∆(I):

lim
τ → 0+, tk → t,
x′ → x, p′ → p

Vτ (tk, x
′, p′) = V (t, x, p)

∀(t, x, p) ∈ [0, T ]× R
dx ×∆(I).

Behavioral strategy for Player 1 and the belief dynamics

Player 1’s behavioral strategy is a probability distribution

over U conditioned on (t, x, p). At time tk, Player 1 resigns

if xk ∈ Q̄(tk); otherwise, he determines his strategy using

the following steps: First he finds λ = {λ1, ..., λI} ∈ ∆(I)
and pj ∈ ∆(I) for j = 1, ..., I , such that

Vτ (tk, xk, pk) =

I
∑

j=1

λj

(

min
u∈U

max
v∈V

Vτ (tk+1, x
′
k, p

j)
)

,

I
∑

j=1

λjp
j = pk.

(12)
Then he computes uj as the minimax solution corresponding

to pj , and chooses uk = uj with probability λjp
j [i]/pk[i],

where i is its true type. It is proved that this behav-

ioral strategy of Player 1 is ϵ-optimal for small enough

τ (Cardaliaguet, 2009). Importantly, {pj}Ij=1 are vertices of

the value convex hull. Thus by announcing his strategy, and

by assuming that players use the same Bayes belief update,

Player 1 controls the belief dynamics to follow a martin-

gale that optimizes his gain, i.e., pk+1 = pj if uj is chosen.

Note that the introduction of state constraints changes the

minimax solutions, the value convex hulls, and thus the

behavioral strategies. Lastly, Eq. (12) will be modified ac-

cording to Eq. (11) when instantaneous loss is present.

The dual game and behavioral strategy for Player 2

Player 2’s strategy is determined by a dual game for which

the conjugate value is approximated by V ∗
τ (tk, ·, ·) : R

dx ×
R

I → R. Specifically,

(i) At the terminal time, set V ∗
τ (T, x, p̂) = maxi{p̂i −

ρ(x)gi(x)}.
(ii) At k ∈ {0, ..., L− 1}

V ∗
τ (tk, x, p̂) = Vexp̂

(

min
v

max
u

V ∗
τ (tk+1, x

′, p̂)
)

,

(13)
if ρ̄(tk, x) = 1; otherwise V ∗

τ (tk, x, p̂) = −∞.

Similar to Theorem 2, Theorem 3 proves that V ∗
τ uniformly

converges to V ∗ as τ → 0+ (proof omitted).

Theorem 3. If assumptions 1-5 holds, V ∗
τ converges uni-

formly to V ∗ on compact subsets of [0, T ]× R
dx × R

I :

lim
τ → 0+, tk → t,
x′ → x, p̂′ → p̂

V ∗
τ (tk, x

′, p̂′) = V ∗(t, x, p̂)

∀(t, x, p̂) ∈ [0, T ]× R
dx × R

I .

With instantaneous loss l, the Bellman backup in Eq. (13)

becomes

V
∗

τ (tk, x, p̂) = Vexp̂

(

min
v

max
u

V
∗

τ (tk+1, x
′
, p̂− τ l(u, v))

)

(14)

We explain this modification in detail in Appendix C. An

intuitive explanation is as follows: Recall that each element

of p̂ represents Player 1’s value for the corresponding type

in the primal game. Hence p̂ at the next time step should

discount the common instantaneous loss incurred at the

current time step.

The behavioral strategy of Player 2 defines a probabil-

ity distribution over V conditioned on (t, x(t), p̂(t)), with

the dual variable p̂(t0) ∈ ∂pV (t0, x0, p(t0)). At time tk,

if xk ∈ Q̄(tk), Player 2 plays according to a pursuit-

evasion game since she can always catch Player 1 accord-

ing to the definition of Q̄(tk); otherwise, Player 2 deter-

mines her strategy using the following steps: First she

finds λ = {λ1, ..., λI+1} ∈ ∆(I + 1) and p̂j ∈ R
I for

j = 1, ..., I + 1, such that

V ∗
τ (tk, xk, p̂) =

I+1
∑

j=1

λj

(

min
v∈V

max
u∈U

V ∗
τ (tk+1, x

′
k, p̂

j)

)

,

I+1
∑

j=1

λj p̂
j = p̂k.

(15)
Then she computes the minimax solution vj , and chooses

vk = vj with probability λj . It is proved that this behav-

ioral strategy of Player 2 is ϵ-optimal for small enough

τ (Cardaliaguet, 2009). p̂ follows a martingale p̂k+1 = p̂j

if vj is chosen by Player 2, or p̂k+1 = p̂j − τ l(uj , vj) if l
is present, where uj is the best response to vj in the dual

game. Notice that due to her lack of information, Player

2 solves harder value approximation and control synthesis

problems of belief dimension I + 1 rather than I .

To help readers better understand the mechanisms described

in this section, we provide detailed derivation of behavioral

strategies for two sample problems in Appendix D (D.1 for

a zero-sum version of the beer-quiche game and D.2 for

Hexner’s game).

5. Numerical Methods

5.1. Primal and dual value approximation

We use backward induction to solve Eq. (10) and (15), and

discuss treatments that alleviate error propagation. We focus

the discussion on the primal problem for brevity.

Value discontinuity At each time step t, Vτ (t, ·, ·) (resp.

V ∗
τ (t, ·, ·)) can be approximated separately in Q̄(t) and

Q(t): the primal (resp. dual) value in the former is set

to +∞ (resp. −∞) and value in the latter will be approx-

imated using a neural network V̂τ (t, ·, ·) (resp. V̂ ∗
τ (t, ·, ·)).

This avoids fitting the value networks to functions with
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large Lipschitz constants during numerical implementation.

Q̄(t) for t ∈ [0, T ] can be approximated by a physics-

informed neural network (PINN) solver (Bansal & Tom-

lin, 2021) (see details in Appendix E), by recognizing that

Q̄(t) can be defined by pure strategies instead of behav-

ioral ones using Lemma 1. PINN alleviates CoD in solv-

ing HJ equations with Lipschitz continuous solutions (Shin

et al., 2020), and here it results in a separate value net-

work Ṽ (·, ·) : [0, T ] × R
dx that approximates Q̄(t) as

{x ∈ R
dx |Ṽ (t, x) ≤ 0}.

Partially convex values At each tk and for uniformly

sampled S(t) ⊂ Q(t), we scan a lattice P ⊂ ∆(I) to

obtain the minimax solution of the RHS of Eq. (10) (de-

noted by ϑ0(t, x, p) for (x, p) ∈ S(t) × P), resulting

in a dataset {(p, ϑ0(t, x, p))}p∈P . Value convexification

is then obtained by applying the Monotone Chain Con-

vex Hull algorithm to this dataset for each x ∈ S(t)
and taking the lower hull of the resulting convex hull.

Let ϑ(t, x, p)S(t) be the resultant value on the convex

hull. A value network V̂τ (t, ·, ·) is then trained using data

{(x, ϑS(t)(t, x, p)|(x, p) ∈ S(t) × P} so that during the

Bellman backup at t− 1, we can predict convexified values

at previously unvisited states at t. We use a Partially Input

Convex Neural Network (PICNN) (Amos et al., 2017) to

ensure that V̂τ (t, ·, ·) is convex in p. Alg. 1 summarizes the

value approximation algorithm. Optionally, we also train

a separate value network to predict the minimax values us-

ing {(p, ϑ0(t, x, p))}p∈P . This network helps remove the

nested minimax problem during control synthesis.

Convexification error. Backward induction suffers from

error propagation, where errors at each time step are origi-

nated from (i) value approximation through neural networks,

(ii) backward reachable set approximation, (iii) convex hull

approximation, and (iv) finite time discretization (and Eu-

ler method for ODE). Here we discuss control of the error

resulted from convex hull approximation, which is unique

to incomplete-information games. We leave a full analysis

of data complexity for error control to future studies. At

each t ∈ [0, T ] and x ∈ Q(t), let ϑ(t, x, ·) be the RHS of

Eq. (10) after convexification, and the convexification error

be εvex(t, x) := maxp∈∆(I) ∥ϑ(t, x, p)− ϑS(t)(t, x, p)∥∞.

Proposition 1 shows that εvex(t, x) can be controlled by

refining P (see proof in Appendix F):

Proposition 1. For given (t, x), let the Lipschitz constant

of ϑ(t, x, ·) be L, and dP be the minimum distance between

two neighboring nodes of the lattice P . εvex(t, x) ≤ 2dPL.

Approximation of the conjugate value. Recall that

the dual game is initialized by the dual variables p̂ ∈
∂pV (0, x, p) when the primal game starts at (x, p). Since

V̂ (0, x, ·) is a differentiable neural network defined on a

simplex, subgradients can be found using p̂T p = V (0, x, p)
and p̂T q ≤ V (0, x, q) for all q ∈ ∆(I) and q ̸= p. Specific

to the case study where I = 2 and V̂ := V̂τ (0, x, p[1]) is

modeled to be a function of the first element of p to reduce

dimensionality, we have p̂ = (V̂ +∇p[1]V̂ (1− p[1]), V̂ −

∇p[1]V̂ p[1])T .

5.2. Synthesis of strategies

Given (t, x, p) ∈ [0, T ]×Rdx×∆(I), Player 1 computes his

behavioral strategy by finding λ ∈ ∆(I) and splitting beliefs

{pj ∈ ∆(I)}Ij=1 that best satisfy Eq. (12) in L2, if x ∈ Q(t)

(otherwise he surrenders). Given (t, x, p̂) ∈ [0, T ]× R
dx ×

R
I , Player 2 finds λ ∈ ∆(I + 1) and {p̂j ∈ R

I}I+1
j=1 that

best satisfy Eq. (15) in L2. When I = 2 as in the case

study, the splitting beliefs and resultant strategies for Player

1 can be approximated through sweeping p[1] ∈ [0, 1]. For

Player 2, we use gradient descent to solve a 6D optimization

problem with the initial guess λ = [1/3, 1/3, 1/3]T and

p̂j = p̂ for j = [3].

Algorithm 1 Value Approximation

Inputs: current time step t, time discretization τ , sample

size N , admissible action spaces (U(t),V(t)), value approx-

imation at t+ τ : V̂next(·, ·) := V̂τ (t+ τ, ·, ·), feasible state

set Q(t), instantaneous loss l(·, ·), terminal loss in Eq. (6)

Initialize: V̂τ (t, ·, ·), ϑ
0 = ∅

1: S(t)← sample N states from Q(t)
2: for x in S do

3: for p in P do

4: v(x, p) ← minu∈U(t) maxv∈V V̂next(x
′, p) +

τ l(U ,V) {if t+ τ = T , V̂next is given by Eq. (6)}
5: append v(x, p) to ϑ0

6: end for

7: ϑS(t)(t, x, ·)← compute Vexp(ϑ
0(x, ·)) via Eq. (10)

8: end for

9: Update V̂τ to match ϑS(t)

6. Case Study

Setup We study a state-constrained version of Hexner’s

game that represents a simplified football game: Player 1

(P1)’s goal is to move closer to one of the two targets than

P2 without being caught during the interaction (see Fig. 3);

P2’s goal is to catch P1 if possible, or otherwise move close

to P1’s target. Each player has 4 state variables: x- and

y- position and velocity; and their actions encode x- and

y-acceleration. The parameters RA = diag([0.05, 0.025])
and RD = diag([0.05, 0.1]) are chosen so that P1 can af-

ford to accelerate faster in the y-direction than P2. The state

constraint is c(x1, x2) = r − ∥(dx1
, dy1

) − (dx2
, dy2

)∥2,

where r = 0.05. We note that due to the introduction of

an (instantaneous) effort loss, the backward induction is

modified as: Vτ (tk, x, p) = Vexp(minu maxv Vτ (tk+1, x+
τ(f, x, u, v), p) + τ l(u, v)), where l(u, v) is the integral

term in [tk, tk+1] in Eq. (1).
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DA DA

Figure 3: Schematics of a simplified football game with

Player 1 (red) and Player 2 (blue). Left: the initial con-

figuration. Right: equilibrium trajectory. Magenta circles:

two goals. The filled is the current type private to Player 1.

Players move in a 2D space bounded by [−1, 1]× [−1, 1].
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dx
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y
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1
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Figure 4: Top: Average delay (T ) in information reveal

(left) and average maximum advantage of playing the re-

vealing strategy (right), keeping P2’s location fixed at (-0.5,

0) and changing P1’s location. Bottom: Trajectory with

high delay and advantage (left) and with low delay and

advantage (right). Color shades indicate current belief.

Value network architecture and training The value net-

work uses PICNN with 5 hidden layers and 256 neurons

each and has 9-dimensional inputs (state and belief). We

train 10 separate networks for each time step starting from

t = 0.9 with τ = 0.1, each being trained for 10 epochs. For

each epoch, S(t) includes 5000 states sampled from Q(t).
Since I = 2, value networks can be considered as functions

of p[1] and thus we set P = {p[1] = 0, 0.01, . . . , 0.99, 1}.
V̂τ (t, ·, ·) is trained on data collected from S(t)×P . For the

conjugate V̂ ∗
τ , we set P̂ = {p̂[1] = {−14, . . . , 14}, p̂[2] =

{−14, . . . , 14]}. More details can be found in Appendix G.

Constrained vs. unconstrained strategies Fig. 2 compares

strategies with and without the state constraint, visualizing

the equilibrium strategies of P1 and the best responses of P2

given P1’s strategies. Note that the best responses of P2 give

P2 an advantage since she does not know actions to be taken

by P1 in reality. The analytical solution to the unconstrained

game is given by Hexner’s analysis, where P1’s strategy is

to start moving to the goal after the critical time tr = 0.4.

This strategy no longer holds in the constrained case as it

violates the state constraint. Instead, P1 actively tries to stay

clear of P2 while pursuing the goal (see 2nd col. of Fig. 2).

Note that in this case, P1 resorts to a random strategy with

the presence of incomplete information and state constraints,

as the two contribute to value nonconvexity with respect to

the belief.

Information delay and advantage of random strategies

To understand how P1 uses information asymmetry, we

examine the delay in information reveal, measured by the

time at which the belief converges to the true type, i.e. T =
inf{k ∈ [L] : pk = {0, 1}}. We then take average of T
for each initial state over 10 simulations. In Fig. 4, we

visualize T over the space of P1’s starting positions, while

fixing P2’s starting position and setting both players’ initial

speed to 0. The trajectories represent cases where P1 delays

(bottom left) and does not delay (bottom right) the release of

information. We also compute the advantage of following

a belief manipulating strategy (that convexifies the value)

as opposed to taking the non-revealing strategy (i.e. never

split), expressed as [minu maxv V (t+τ, x′, p)−V (t, x, p)].
Overall, P1 tends to conceal and deceive when it has equal

distances to the possible targets.

Equilibrium strategy of Player 2 Fig. 5 shows sample

trajectories when both players play their equilibrium strate-

gies. Note that compared with P2’s best responses to P1 in

previous examples, P2’s equilibrium strategy is more con-

servative, due to her lack of knowledge about P1’s type. We

also note that P2’s dual game is one dimension higher than

P1’s primal game, and thus encounters higher numerical er-

rors in value and strategy approximation (see Appendix G).
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0.5
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dx

d
y

−0.5 0 0.5

−0.5

0

0.5

1
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d
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Figure 5: Trajectories where both players use their respec-

tive behavioral strategies. P1 keeps track of p, whereas P2

keeps track of p̂.

7. Conclusion and Future Work

We proved the existence of value for zero-sum differential

games with state constraints and one-sided information and

developed a backward induction scheme to approximate the

value. Our method enables mechanistic synthesis of behav-

ioral strategies and allows explanation of the resultant split-

ting of strategies and beliefs. Future work will investigate

more efficient learning+search methods that take advantage

of value convexity and alleviate error propagation.
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A. Proof of Theorem 1

The following proofs extend results and techniques from Cardaliaguet (2007) to zero-sum differential games with one-sided

information and state constraints. To overview, we start by showing that the upper and lower values V ± are Lipschitz

continuous within the safe and unsafe state sets (Lemma 2) and convex with respect to p (Lemma 3). We then show that:

(1) V −∗ satisfies a subdynamic principle and is therefore a subsolution of a dual HJ equation and hence V − is a dual

supersolution of the corresponding primal HJ (Lemma 4, Lemma 4, Lemma 5); and (2) V + also satisfies a subdynamic

principle (Lemma 6) and is therefore a dual subsolution of the primal HJ (Lemma 7). We can then use a comparison principle

(see (Cardaliaguet, 2007)) to show that since V − is a dual supersolution and V + is a dual subsolution of the primal HJ while

both share the same terminal value, V − ≥ V +. On the other hand, V − ≤ V + by definition and hence V − = V +.

We start with the following regularity result (see proof of Lemma 3.1 in (Cardaliaguet, 2007)):

Lemma 2. (regularity of V ±). V ±(t0, x0, p) are Lipschitz continuous for all x0 ∈ Q(t0). V
±(t0, x0, p) = +∞ for all

x0 ∈ Q̄(t0).

The following convexity result was originally developed for repeated games with incomplete information (De Meyer, 1996)

and was later extended to differential games (Cardaliaguet, 2007). The same convexity result holds for imperfect-information

dynamic games (Brown et al., 2020).

Lemma 3. (convexity property of V ±). For any (t, x) ∈ [0, T ]× R
dx , V ± are convex in p on ∆(I).

Proof. Let pλ = (1 − λ)p0 + λp1 for some p0, p1 ∈ ∆(I). Let ((η0i ), ζ
0) and ((η1i ), ζ

1) be the equilibrial strategies for

V (t, x, p0) and V (t, x, p1), respectively. Introduce a set of ªsplittingº behavioral strategies (ηλi ) for (t, x, pλ) such that for

any type i, ηλi = η0i with probability (1− λ)p0i /p
λ
i and ηλi = η1i with probability λp1i /p

λ
i . Then we have

sup
ζ

∑

i

pλi Gi(t, x, η
λ
i , ζ)

= sup
ζ

∑

i

(

pλi
(1− λ)p0i

pλi
Gi(t, x, η

0
i , ζ) + pλi

λp1i
pλi

Gi(t, x, η
1
i , ζ)

)

≤(1− λ) sup
ζ

∑

i

p0iGi(t, x, η
0
i , ζ) + λ sup

ζ

∑

i

p1iGi(t, x, η
1
i , ζ).

(16)

Since the inequality in Eq. (16) holds for any ªsplittingº (ηλi ), we have

V ±(t, x, pλ) ≤ (1− λ)V ±(t, x, p0) + λV ±(t, x, p1) (17)

for any t ∈ [0, T ] and x ∈ Q(t). For x ∈ Q̄(t), the equality holds since V ±(t, x, ·) = +∞.

Remarks. (1) The proof says that by playing a ªsplittingº strategy, the value at (t, x, pλ) should at least be as good

as a linear interpolation between those at (t, x, p0) and at (t, x, p1). Hence the value is a convex hull in ∆(I) at any

(t, x) ∈ [0, T ]×R
dx . (2) Assuming that the ªsplittingº strategy of Player 1 is known by Player 2, then the latter can perform

Bayesian inference on Player 1’s type based on his actions. For any type i, let u0
i and u1

i be two distinct actions to be taken

at (t, x) following η0i and η1i , respectively, and let pλ be the current common belief. Then under observation of u0
i (resp.

u1
i ), the common belief becomes p0 (resp. p1) with probability (1− λ) (resp. λ). Since pλ = (1− λ)p0 + λp1, common

belief is a martingale.

Next, we introduce a reformulation of V −∗ to facilitate the derivation of its subdynamic principle. The proof of this

reformulation is extended from Lemma 4.1 of Cardaliaguet (2007) to incorporate the state constraints.

Lemma 4. (reformulation of V −∗). We have

V −∗(t0, x0, p̂) = inf
ζ∈Zr(t0)

sup
η∈Hr(t0)

max
i
{p̂i −Gi(t0, x0, η, ζ)} (18)

Proof. For later use, we first note that

V −(t0, x0, p) = sup
ζ

inf
(ηi)

∑

i

piGi(t0, x0, η, ζ)

= sup
ζ

∑

i

pi inf
η
Gi(t0, x0, η, ζ).

(19)
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Let the right-hand side of Eq. (18) be z = z(t0, x0, p̂). We can show that z is convex with respect to p̂ using a technique

similar to that of Lemma 3.

Then by the definition of z:

z∗(t0, x0, p) = sup
p̂

pT p̂− inf
ζ
sup
η

max
i
{p̂i −Gi(t0, x0, η, ζ)}

= sup
p̂

pT p̂− inf
ζ
max

i

{

p̂i − inf
η
Gi(t0, x0, η, ζ)

}

= sup
ζ

sup
p̂

min
i

{

pT p̂− p̂i + inf
η
Gi(t0, x0, η, ζ)

}

.

(20)

In this last expression, supp̂ is attained by setting p̂i = infη Gi(t0, x0, η, ζ), in which case we have

z∗(t0, x0, p) = sup
ζ

∑

i

pi inf
η
Gi(t0, x0, η, ζ) = V −(t0, x0, p, z). (21)

Since z is convex with respect to p̂, we have V −∗ = z∗∗ = z.

Next, to introduce the subdynamic principle of V −∗, we first introduce

U−∗(t0, x0, p̂) := inf
ζ∈Zr(t0)

sup
η∈Hr(t0)

max
i

{

p̂i − Eη,ζ

[

gi(X
t0,x0,η,ζ
T )

]}

(22)

as the conjugate lower value of the unconstrained version of the game, and U± as the corresponding upper and lower values.

From Lemma 2 and Lemma 4, U−∗ is Lipschitz continuous and convex in p̂.

Lemma 5. (subdynamic principle for V −∗). For any (t0, x0, p̂) ∈ [0, T ) × R
dx × R

I and any t1 ∈ (t0, T ], denote

x1 = Xt0,x0,η,ζ
t1 and X1 = X t0,x0,η,ζ

t1 . We have

V −∗(t0, x0, p̂) ≤ inf
ζ∈Z(t0)

sup
η∈H(t0)

min

{

ρ(X1)U
−∗

(

t1, x1,
p̂

ρ(X1)

)

, V −∗ (t1, x1, p̂)

}

(23)

Proof. Denote V −∗
1 (t0, t1, x0, p̂) := infζ∈Z(t0) supη∈H(t0) V

−∗
(

t1, X
t0,x0,η,ζ
t1 , p̂

)

. U−∗
1 is similarly defined. We need

the following preparations for the proof.

Player 1 plays a pure strategy in V −∗. We show below that best responses are always pure. In particular, Player 1 can play

in pure strategies in V −∗, namely,

V −∗(t0, x0, p̂) = inf
ζ∈Zr(t0)

sup
η∈H(t0)

max
i
{p̂i −Gi(t0, x0, η, ζ)} (24)

for any (t0, x0, p̂). First from Theorem 4 and usingH(t) ⊂ Hr(t), we have

V −∗(t0, x0, p̂) = inf
ζ∈Zr(t0)

sup
η∈Hr(t0)

max
i
{p̂i −Gi(t0, x0, η, ζ)}

≥ inf
ζ∈Zr(t0)

sup
η∈H(t0)

max
i

{

p̂i − Eζ

[

gi(X
t0,x0,η,ζ
T )ρ(X t0,x0,η,ζ

T )
]}

.
(25)

For the reverse inequality, we first note that for any η ∈ Hr(t0) and ω1 ∈ Ωη, η(ω1, ·) ∈ H(t0). With a fixed ζ ∈ Zr(t0),
and by using the convexity of maxi (i.e., maxi Eω[fi(ω)] ≤ Eω[maxi fi(ω)]), we have

sup
η∈Hr(t0)

max
i
{p̂i −Gi(t0, x0, η, ζ)}

≤ sup
η∈Hr(t0)

∫

Ωη

max
i

{

p̂i − Eζ

[

gi(X
t0,x0,η(ω1,·),ζ
T )ρ(X

t0,x0,η(ω1,·),ζ
T )

]}

dPη(ω1)

≤ sup
η∈Hr(t0)

sup
ω1∈Ωη

max
i

{

p̂i − Eζ

[

gi(X
t0,x0,η(ω1,·),ζ
T )ρ(X

t0,x0,η(ω1,·),ζ
T )

]}

≤ sup
η∈H(t0)

max
i

{

p̂i − Eζ

[

gi(X
t0,x0,η(ω1,·),ζ
T )ρ(X

t0,x0,η(ω1,·),ζ
T )

]}

.

(26)

12
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Since Eq. (26) holds for any ζ, together with Eq. (25), we have

V −∗(t, x, p̂) = inf
ζ∈Zr(t0)

sup
η∈H(t0)

max
i

{

p̂i − Eζ

[

gi(X
t0,x0,η,ζ
T )ρ(X t0,x0,η,ζ

T )
]}

. (27)

Note that one can reach the same conclusion for U−∗.

ϵ-optimal strategy of Player 2. Let ϵ > 0 and ζ0 ∈ Z(t0) be some pure ϵ-optimal strategy for V −∗
1 (t0, t1, x, p̂). For

any x1 ∈ R
dx , we can find some ϵ-optimal strategy ζx1 ∈ Zr(t1) for Player 2 in the game V −∗(t1, x1, p̂). Let Bρ(x)

be a ball around x with radius ρ, and let ∂Q(t) be the boundary of Q(t), i.e., for any x ∈ ∂Q(t) and ρ > 0, there exist

y ∈ Bρ(x)
⋂

Q(t) and y′ ∈ Bρ(x)
⋂

Q̄(t).

For x1, y ∈ Q(t1) \ ∂Q(t1), from Lipschitz continuity of the map y → V −∗(t1, y, p̂), ζ
x1 is also (2ϵ)-optimal for

V −∗(t1, y, p̂) if y ∈ Bρ(x1) for some radius ρ > 0. The same applies to x1, y ∈ Q̄(t1) and y ∈ Bρ(x1) since

V −∗(t1, x, p̂) = +∞ is constant for x ∈ Q̄(t1).

Since the dynamics f is bounded, we also know that the reachable states from (t0, x0) is bounded in some ball BR(0). Let

us set M = ∥f∥∞ and some small σ > 0 such that Mσ ≤ ρ/2. Then we choose (xl)l=1,...,l0 such that
⋃l0

l=1 Bρ/2(xl)
contains BR(0). Let (El)l=1,...,l0 be a Borel partition of BR(0) such that, for any l, El ⊂ Bρ/2(xl). We also require (xl) to

be chosen properly so that El ⊂ Q(t1) or El ⊂ Q̄(t1).

We set

ζl = ζxl , Ωl = Ωζxl , F l = Fζxl , and Pl = Pζxl (28)

for l = 1, ..., l0. We choose some delay τ ∈ (0, σ] for all the strategies ζl. Note that if for some open-loop control

(α, δ) ∈ A(t0)×D(t0) and for some l, we have Xt0,x0,α,δ
t1−τ ∈ El, then

|Xt0,x0,α,δ
t1−τ −Xt0,x0,α,δ

t1 | ≤ ∥f∥∞τ ≤Mσ ≤ ρ/2, (29)

so that Xt0,x0,α,δ
t1 belongs to Bρ(xl). Hence ζl is (2ϵ)-optimal for V −∗ at (t1, X

t0,x0,α,δ
t1 , p̂).

Let us now define a new strategy ζ ∈ Zr(t0) by setting

Ωζ =

l0
∏

l=1

Ωl, Fζ = F1 ⊗ ...⊗F l0 , and Pζ = P1 ⊗ ...⊗ Pl0 . (30)

For any ω = (ω1, ..., ωl0) ∈ Ωζ and α ∈ A(t0), set

ζ(ω, α) =

{

ζ0(α)(τ) if τ ∈ [t0, t1)

ζl(ωl, α)(τ) if τ ∈ [t1, T ] and Xt0,x0,α,ζ
0

t1−τ ∈ El.
(31)

For any pure strategy η ∈ H(t0), we have

gi(X
t0,x0,η,ζ
T ) =

l0
∑

l=1

gi

(

X
t1,X

t0,x0,η,ζ0

t1
,η,ζl

T

)

1Ol , (32)

where Ol :=
{

Xt0,x0,η,ζ
0

t1−τ ∈ El

}

.

Property of ρ(·). Let ρ0 := ρ
(

X t0,x0,η,ζ
0

t1

)

and ρl1 := ρ
(

X
t1,x

l
1,η,ζ

l

T

)

, where xl
1 := Xt0,x0,η,ζ

0

t1 if the state falls in El

following pure strategies (η, ζ0). Then we have

gi

(

Xt0,x0,η,ζ
T

)

ρ
(

X t0,x0,η,ζ
T

)

= gi(X
t0,x0,η,ζ
T )

∑

l

max{ρ0, ρ
l
1}1Ol

=
∑

l

gi(X
t1,x

l
1,η,ζ

T )1Ol

∑

l

max{ρ0, ρ
l
1}1Ol

=
∑

l

gi(X
t1,x

l
1,η,ζ

T )max{ρ0, ρ
l
1}1Ol .

(33)
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For any set (ωl) ∈ (Ωl), let al := gi(X
t1,x

l
1,η,ζ(ω

l,·)
T ) ≥ 0. Also note that ρ0 and ρl1 only take values from {1,+∞}. One

can show that the following always holds:

∑

l

al max{ρ0, ρ
l
1}1Ol = max

{

∑

l

alρ01Ol ,
∑

l

alρl11Ol

}

. (34)

Similarly we have

∫

Ωl

∑

l

[

gi

(

X
t1,X

t0,x0,η,ζ0

t1
,η,ζl(ωl,·)

T

)

max{ρ0, ρ
l
1}1Ol

]

dPl(ωl)

=max































∫

Ωl

∑

l

[

gi

(

X
t1,X

t0,x0,η,ζ0

t1
,η,ζl(ωl,·)

T

)

ρ01Ol

]

dPl(ωl),

∫

Ωl

∑

l

[

gi

(

X
t1,X

t0,x0,η,ζ0

t1
,η,ζl(ωl,·)

T

)

ρl11Ol

]

dPl(ωl)































(35)

Now we derive an upper bound of maxi

{

p̂i − Eζ

[

gi(X
t0,x0,η,ζ
T )ρ(X t0,x0,η,ζ

T )
]}

:

max
i

{

p̂i − Eζ

[

gi(X
t0,x0,η,ζ
T )ρ(X t0,x0,η,ζ

T )
]}

,

=max
i

{

p̂i −

∫

Ωl

∑

l

[

gi

(

X
t1,X

t0,x0,η,ζ0

t1
,η,ζl(ωl,·)

T

)

max{ρ0, ρ
l
1}1Ol

]

dPl(ωl)

}

,

≤ sup
η′∈H(t1)

max
i

{

p̂i −
∑

l

[

∫

Ωl

gi

(

X
t1,X

t0,x0,η,ζ0

t1
,η′,ζl(ωl,·)

T

)

max{ρ0, ρ
l
1}dPl(ωl)1Ol

]}

,

= sup
η′∈H(t1)

max
i































min































p̂i −
∑

l

[

∫

Ωl gi

(

X
t1,X

t0,x0,η,ζ0

t1
,η′,ζl(ωl,·)

T

)

ρ0dPl(ωl)1Ol

]

,

p̂i −
∑

l

[

∫

Ωl gi

(

X
t1,X

t0,x0,η,ζ0

t1
,η′,ζl(ωl,·)

T

)

ρl1dPl(ωl)1Ol

]





























































,

≤min































supη′∈H(t1) maxi

{

p̂i −
∑

l

[

∫

Ωl gi

(

X
t1,X

t0,x0,η,ζ0

t1
,η′,ζl(ωl,·)

T

)

ρ0dPl(ωl)1Ol

]}

,

supη′∈H(t1) maxi

{

p̂i −
∑

l

[

∫

Ωl gi

(

X
t1,X

t0,x0,η,ζ0

t1
,η′,ζl(ωl,·)

T

)

ρl1dPl(ωl)1Ol

]}































,

≤min































∑

l

[

ρ0 supη′∈H(t1) maxi

{

p̂i/ρ0 −
∫

Ωl gi

(

X
t1,X

t0,x0,η,ζ0

t1
,η′,ζl(ωl,·)

T

)

dPl(ωl)

}

1Ol

]

,

∑

l

[

supη′∈H(t1) maxi

{

p̂i −
∫

Ωl gi

(

X
t1,X

t0,x0,η,ζ0

t1
,η′,ζl(ωl,·)

T

)

ρl1dPl(ωl)

}

1Ol

]































.

(36)
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Shorten the first and second terms in the above upper bound min{·, ·} as A and B, respectively. For B:

∑

l

[

sup
η′∈H(t1)

max
i

{

p̂i −

∫

Ωl

gi

(

X
t1,X

t0,x0,η,ζ0

t1
,η′,ζl(ωl,·)

T

)

ρl1dPl(ωl)

}

1Ol

]

≤
∑

l

(

V −∗(t1, X
t0,x0,η,ζ

0

t1 , p̂) + 2ϵ
)

1Ol

(because ζl is (2ϵ)-optimal for V −∗ at (t1, x1, p̂) for any x1 ∈ El.)

=V −∗(t1, X
t0,x0,η,ζ

0

t1 , p̂) + 2ϵ

≤V −∗
1 (t0, t1, x0, p̂) + 3ϵ

(because ζ0 is ϵ-optimal for V −∗
1 (t0, t1, x0, p̂).)

(37)

For A, we consider the following scenarios: (1) If infη′∈H(t1)

∑

l ρ
l
11Ol = +∞, i.e., there is always a chance for Player 2

to achieve constraint violation when the game starts at (t1, X
t0,x0,η,ζ

0

t1 ), and ρ0 = 1, i.e., (η, ζ0) does not induce constraint

violation, then

A =
∑

l

[

sup
η′∈H(t1)

max
i

{

p̂i − inf
η′∈H(t1)

∫

Ωl

gi

(

X
t1,X

t0,x0,η,ζ0

t1
,η′,ζl(ωl,·)

T

)

dPl(ωl)

}

1Ol

]

>
∑

l

[

sup
η′∈H(t1)

max
i

{

p̂i − inf
η′∈H(t1)

∫

Ωl

gi

(

X
t1,X

t0,x0,η,ζ0

t1
,η′,ζl(ωl,·)

T

)

ρl1dPl(ωl)

}

1Ol

]

=B = −∞.

(38)

If infη′∈H(t1)

∑

l ρ
l
11Ol = ρ0 = 1, then A = B. This is the scenario where the game reduces to its unconstrained version.

Applying the same analysis from B to have A ≤ ρ0(U
−∗
1 (t0, t1, x0, p̂/ρ0) + 3ϵ). If infη′∈H(t1)

∑

l ρ
l
11Ol = ρ0 = +∞,

then A = B = −∞.

If infη′∈H(t1)

∑

l ρ
l
11Ol = 1 and ρ0 = +∞, the game starting from (t1, X

t0,x0,η,ζ
0

t1 ) will be played as an unconstrained

one. A < B. Hence A ≤ ρ0(U
−∗
1 (t0, t1, x0, p̂/ρ0) + 3ϵ) = −∞.

Combining these scenarios we have

min{A,B} ≤ min{ρ0(U
−∗
1 (t0, t1, x0, p̂/ρ0) + 3ϵ), V −∗

1 (t0, t1, x0, p̂) + 3ϵ}. (39)

Since ϵ can be arbitrarily small, we have

V −∗ (t0, x0, p̂) ≤ min
{

ρ0U
−∗
1 (t0, t1, x0, p̂/ρ0), V

−∗
1 (t0, t1, x0, p̂)

}

= inf
ζ∈Z(t0)

min

{

sup
η∈H(t0)

ρ0U
−∗(t1, X

t0,x0,η,ζ
t1 , p̂/ρ0), sup

η∈H(t0)

V −∗(t1, X
t0,x0,η,ζ
t1 , p̂)

}

(40)

Lastly, if x0 ∈ Q̄(t0), infζ supη ρ0 = −∞ by definition; otherwise, ρ0 = 1 and U−∗ = V −∗ at t1. In both cases, the RHS

of Eq. (40) becomes

inf
ζ∈Z(t0)

sup
η∈H(t0)

min
{

ρ0U
−∗(t0, X

t0,x0,η,ζ
t1 , p̂/ρ0), V

−∗(t0, X
t0,x0,η,ζ
t1 , p̂)

}

. (41)

Theorem 4. (V −∗ is a subsolution of HJ). For any p̂ ∈ R
I , the map (t, x)→ V −∗(t, x, p̂) is a viscosity subsolution of the

dual Hamilton-Jacobi equation:

min
{

ρ(x)U−∗(t, x, p̂/ρ(x))− w, wt +H∗(x,Dw)
}

= 0 in [0, T ]× R
dx , (42)

where H is defined by Eq. (4) and H∗(x, ξ) = −H(x,−ξ). ρ̄(t0, x0) = 1 if x0 ∈ Q(t0).
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Proof. Let p̂ ∈ R
I be fixed, and let ϕ be a smooth test function such that

ϕ(t, x) ≥ V −∗(t, x, p̂) ∀(t, x) ∈ [0, T ]× R
dx , (43)

with an equality at (t0, x0), where t0 ∈ [0, T ). For any v ∈ V , define a pure strategy ζ ∈ Z(t0) by setting

ζ(α)(t) = v ∀α ∈ A(t0), t ∈ [t0, T ]. (44)

Since V −∗ satisfies the subdynamic programming principle of Lemma 5, these exist ϵ > 0, h > 0, and a pure strategy

ηh ∈ H(t0) such that

V −∗(t0, x0, p̂) ≤ min
{

ρ
(

X t0,x0,ηh,ζ
t0+h

)

U−∗
(

t0 + h,Xt0,x0,ηh,ζ
t0+h , p̂/ρ

(

X t0,x0,ηh,ζ
t0+h

))

,

V −∗
(

t0 + h,Xt0,x0,ηh,ζ
t0+h , p̂

)}

+ ϵh,
(45)

or equivalently

ρ
(

X t0,x0,ηh,ζ
t0+h

)

U−∗
(

t0 + h,Xt0,x0,ηh,ζ
t0+h , p̂/ρ

(

X t0,x0,ηh,ζ
t0+h

))

− V −∗ (t0, x0, p̂) + ϵh ≥ 0, (46)

and

V −∗
(

t0 + h,Xt0,x0,ηh,ζ
t0+h , p̂

)

− V −∗(t0, x0, p̂) + ϵh ≥ 0. (47)

Set the open-loop control αh(s) := ηh(v)(s) and the trajectory xh(s) = Xt0,x0,ηh,β
s = Xt0,x0,αh,v

s . Then

xh(t0 + h) = x0 +

∫ t0+h

t0

f(xh(s), αh(s), v)ds = x0 +

∫ t0+h

t0

f(x0, αh(s), v)ds+ hϵ(h), (48)

where ϵ(h)→ 0 as h→ 0+. For Eq. (46), let ϵ→ 0+ and h→ 0+, we have

ρ(x0)U
−∗(t0, x0, p̂/ρ(x0))− ϕ(t0, x0) ≥ 0. (49)

For Eq. (47), we have

0 ≤ V −∗
(

t0 + h,Xt0,x0,ηh,ζ
t0+h , p̂

)

− V −∗(t0, x0, p̂) + ϵh

≤ ϕ

(

t0 + h, x0 +

∫ t0+h

t0

f(x0, αh(s), v)ds+ hϵ(h), z

)

− ϕ(t0, x0) + ϵh

≤ hϕt(t0, x0) +

∫ t0+h

t0

Dϕ(t0, x0)
T f(x0, αh(s), v)ds+ hϵ1(h) + ϵh

≤ hϕt(t0, x0) + h sup
u∈U

Dϕ(t0, x0)
T f(x0, u, v) + hϵ1(h) + ϵh,

(50)

where ϵ1(h) → 0 as h → 0+. Dividing the last inequality by h, letting h → 0+, ϵ → 0+, and taking the infimum over

v ∈ V to have

ϕt(t0, x0) + inf
v∈V

sup
u∈U

Dϕ(t0, x0)
T f(x0, u, v) ≥ 0. (51)

Now notice that by definition

H∗(x,Dϕ) = −H(x,−Dϕ) = inf
v∈V

sup
u∈U

f(x, u, v)TDϕ. (52)

Hence

ϕt(t0, x0) +H∗(x0, Dϕ(t0, x0)) ≥ 0. (53)

Hence

min
{

ρ(x)U−∗(t, x, p̂/ρ(x))− ϕ, ϕt +H∗(x,Dϕ)
}

≥ 0 in [0, T ]× R
dx . (54)
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Using the same proof techniques we can derive the subdynamic principle for V + (Lemma 6) and prove that V + is a viscosity

subsolution to the primal HJ (Lemma 7):

Lemma 6. (subdynamic principle for V +). We have for any (t0, x0, p) ∈ [0, T )× R
dx ×∆(I) and any t1 ∈ (t0, T ]

V +(t0, x0, p) ≤ inf
η∈H(t0)

sup
ζ∈Z(t0)

max
{

ρ(X t0,x0,η,ζ
t1 )U+

(

t1, X
t0,x0,η,ζ
t1 , p

)

,

V +
(

t1, X
t0,x0,η,ζ
t1 , p

)}

(55)

Lemma 7. (V + is a subsolution of HJ). For any p ∈ ∆(I), the map (t, x)→ V +(t, x, p) is a viscosity subsolution of the

primal Hamilton-Jacobi equation:

min
{

ρ(x)U+(t, x, p)− w, wt +H(x,Dw)
}

= 0 in [0, T ]× R
dx , (56)

where H is defined by Eq. (4).

B. Proof of Theorem 2

Proof. The following proof follows that of (Cardaliaguet, 2009), with the additional treatment of the state constraint. Note

that in numerical approximation, we use K > 0 to replace infinite values so that we can introduce bounded test functions.

The HJ equations thus become

{

wt +H(x,Dw) = 0 (t, x) ∈ Ω
min{K − w,wt +H(x,Dw)} = 0 (t, x) ∈ Ω̄,

where Ω (resp. Ω̄) contains all (t, x) such that V (t, x) < K (resp. V (t, x) = K).

Consider w be any cluster point in the topology of uniform convergence on compact subsets of [0, T ]× R
dx ×∆(I) of Vτ

as τ → 0+. w is convex with respect to p and satisfies:

w(T, x, p) =

I
∑

i=1

pigi(x), (57)

for any (T, x, p) ∈ Ω × ∆(I) and w(T, x, p) = K for any (T, x, p) ∈ Ω̄ × ∆(I). Let ϕ be a test function such that

w(·, ·, p) − ϕ has a strict local maximum at (t0, x0), and w(t0, x0, p) = ϕ(t0, x0). Then there are (tk, xk) converging to

(t0, x0) such that Vτ (·, ·, p)− ϕ has a local maximum at (tk, xk).

First consider (tk, xk) ∈ Ω. For any x ∈ R
dx ,

Vτ (tk+1, x, p)− ϕ(tk+1, x) ≤ Vτ (tk, xk, p)− ϕ(tk, xk)

Then, rearranging (10) to have

0 = Vexp

(

min
u

max
v

Vτ (tk+1, xk + τf(xk, u, v), p)
)

− Vτ (tk, xk, p)

≤ min
u

max
v

Vτ (tk+1, xk + τf(xk, u, v), p)− Vτ (tk, xk, p)

≤ min
u

max
v

ϕ(tk+1, xk + τf(xk, u, v))− ϕ(tk, xk)

Then, from standard arguments (see (Cardaliaguet, 2009) and references therein)

∂ϕ

∂t
(t0, x0) + min

u∈U
max
v∈V

f(x0, u, v)
∂ϕ

∂x
(t0, x0) ≥ 0. (58)

Now consider (tk, xk) ∈ Ω̄, in which case ϕ(tk, xk) = Vτ (tk, xk, p) = K. When τ → 0+,

min
u

max
v

ϕ(tk+1, xk + τf(xk, u, v)) = K,
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hence
∂ϕ

∂t
(t0, x0) + min

u∈U
max
v∈V

f(x0, u, v)
∂ϕ

∂x
(t0, x0) = 0.

Then we have

min {K − ϕ, ϕt +H(x,Dϕ)} = 0 in Ω̄.

Hence, w is a dual subsolution of the HJI. We can follow the same technique to show that w is a supersolution in the dual

sense, and therefore w = V .

C. Bellman Backup of the Conjugate Value with the Presence of Instantaneous Loss

Here we extend the subdynamic principle for V −∗ (Lemma 5) when instantaneous loss is present. Since we will use letter l
to index possible states reached at t1 from t0, we denote the instantaneous loss for pure strategies (η, ζ) at time s as L(η, ζ, s)
instead. For conciseness, let us consider t0 ∈ [0, T ] and (x0, p̂) ∈ Q(t0)× R

I , i.e., states for which Player 1 can play to

avoid state constraint violation. To recap, let η be a pure strategy of Player 1; let ζ be such that ζ = ζ0 in [t0, t1] where ζ0

is pure and ϵ-optimal for V −∗
1 (t0, t1, x0, p̂) :=:= infζ∈Z(t0) supη∈H(t0) V

−∗
(

t1, X
t0,x0,η,ζ
t1 , p̂−

∫ t1
t0

L(η, ζ, s)ds
)

, and

ζ = ζl in [t1, T ] where ζl is mixed and (2ϵ)-optimal for V −∗ at (t1, x1, p̂) for any x1 ∈ El.

By definition and using the fact that Player 1 plays a pure strategy in the dual game, we have

V −∗(t0, x0, p̂) = inf
ζ
sup
η

max
i

{

p̂i −

∫

ω

(

gi(X
t0,x0,η,ζ(ω,·)
T ) +

∫ T

t0

L(η, ζ(ω, ·), s)ds

)

dP(ω)

}

. (59)

Here

max
i

{

p̂i −

∫

ω

(

gi(X
t0,x0,η,ζ(ω,·)
T ) +

∫ T

t0

L(η, ζ(ω, ·), s)ds

)

dP(ω)

}

=max
i

{

p̂i −
∑

l

(

∫

ωl

(

gi(X
t1,X

t0,x0,η,ζ0

t1
,η,ζl(ω,·)

T ) +

∫ t1

t0

l(η(s), ζ0(ω, ·)(s))ds+

∫ T

t1

L(η, ζl(ω, ·), s)ds

)

dP
l(ωl)

)

1Ol

}

≤
∑

l

sup
η′

max
i

{

p̂i −

(

∫

ωl

gi(X
t1,X

t0,x0,η,ζ0

t1
,η′,ζl(ωl,·)

T ) +

∫ t1

t0

L(η, ζ0, s)ds+

∫ T

t1

L(η′
, ζ

l(ωl
, ·), s)dsdP

l(ωl)

)}

1Ol

≤
∑

l

(

V
−∗

(

t1, X
t0,x0,η,ζ

0

t1
, p̂−

∫ t1

t0

L(η, ζ0, s)ds

)

+ 2ϵ

)

1Ol

(because ζ
l

is (2ϵ)-optimal for V
−∗

at (t1, x1, p̂) for any x1 ∈ El.)

=V
−∗

(

t1, X
t0,x0,η,ζ

0

t1
, p̂−

∫ t1

t0

L(η, ζ0, s)ds

)

+ 2ϵ

≤V
−∗

1 (t0, t1, x0, p̂) + 3ϵ

(because ζ
0

is ϵ-optimal for V
−∗

1 (t0, t1, x0, p̂).)
(60)

Since ϵ can be arbitrarily small, we have

V −∗(t0, x0, p̂) ≤ inf
ζ∈Z(t0)

sup
η∈H(t0)

V −∗(t1, X
t0,x0,η,ζ
T , p̂−

∫ t1

t0

L(η, ζ, s)ds) (61)

D. Examples of Zero-Sum Games with One-Sided Information

Here we discuss two games in detail, namely, the zero-sum beer-quiche game which is extensive-form with sequential

actions, and Hexner’s game (Hexner, 1979) which is differential and with simultaneous actions. Both games have one-sided

information and all analytically solved. We show that the characterization of value proposed by Cardaliaguet (Cardaliaguet,

2007) leads to the true equilibrium behavioral strategies for both games.
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Q q

B b

1
3

2
3

IQ

IB

Tough Weak

(1, -1) (0, 0)

x 1− x

(-1, 1) (2, -2)

x 1− x

(2, -2) (1, -1)

y 1− y

(-2, 2) (0, 0)

y 1− y

Figure 6: Zero-Sum Variant of the Beer-Quiche Game

D.1. Zero-sum beer-quiche game

We present a zero-sum variant of the classic beer-quiche game 2, which is an incomplete-information game with a perfect

Bayesian equilibrium.

Game settings. In this sequential game, Player 1 first chooses to take either quiche (Q) or beer (B), and based on his

choice, Player 2 chooses to either defer (d) or bully (b). Player 1 has a probability of pT to be tough (T) and pW = 1− pT
to be weak (W). The exact type is unknown to Player 2 but p = [pT , pW ]T is common knowledge. The payoffs to be

maximized by Player 1 follow Table 1. For example, if Player 1 is tough and chooses to eat quiche (Q) while Player 2

chooses to bully (b), then Player 1 receives a payoff of 1.

Table 1: Payoff table for a zero-sum beer-quiche game

Tough

b d

B 2 1

Q 1 0

Weak

b d

B -2 0

Q -1 2

Perfect Bayesian equilibrium. The standard approach finds the behavioral strategies of both players for a particular p.

Consider the extensive form of the game as shown in Fig. 6. Dotted lines represent info sets that Player 2 cannot distinguish.

Here, Player 1 has pT = 1
3 to be Tough. The behavioral strategies for each player are derived as follows:

Let Q,B, q, b represent probabilities of Player 1 choosing quiche given he is tough, beer given he is tough, quiche given

he is weak, and beer given he is weak, respectively. Assume x and y be the probability of Player 2 bullying Player 1 who

chooses quiche and beer, respectively. First, we find the beliefs of Player 2 when Player 1 chooses quiche or beer (info-set

IQ and IB, respectively):

if (Q, q) ̸= (0, 0), µ2(T |IQ) =
1
3Q

1
3 (Q) + 2

3 (q)
=

Q

Q+ 2q
and

µ2(W |IQ) =
2
3q

1
3Q+ 2

3q
=

2q

Q+ 2q

if (B, b) ̸= (0, 0), µ2(T |IB) =
B

B + 2b
, and µ2(W |IB) =

2b

B + 2b

2For more information about the original beer-quiche game, please see https://gametheory101.com/courses/game-theory-101/the-beer-
quiche-game/
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Then, the expected payoffs for bully and defer at IQ are:

E2(bully|IQ) =
Q

Q+ 2q
(−1) +

2q

Q+ 2q
(1) = −

Q− 2q

Q+ 2q

E2(defer|IQ) =
Q

Q+ 2q
(0) +

2q

Q+ 2q
(−2) = −

4q

Q+ 2q

Given Player 2’s strategy at IQ, his expected payoff can be expressed as:

E2(IQ) = −
Q− 2q

Q+ 2q
x− (1− x)

4q

Q+ 2q

=
−(Q− 6q)x− 4q

Q+ 2q

The value of x that maximizes E2(IQ) is:

x =



















any if (Q, q) = (0, 0)

1 if Q < 6q

any if Q = 6q

0 if Q > 6q

Applying the same reasoning to info-set IB, we find the value of y that maximizes E2(IB) as:

y =



















any if (B, b) = (0, 0)

0 if 4b < B

any if 4b = B

1 if 4b > B

Given Player 2’s strategy, the expected payoffs to Player 1 for his strategies are:

E1(Q) = x, E1(B) = y + 1, E1(q) = 2− 3x, E1(b) = −2y

As a result the expected value for each of P1’s type are:

E1(T ) = B(1 + y) + (1−B)x

E1(W ) = b(−2y) + (1− b)(2− 3x)

Assume B ≥ 4b. Then,

1−Q = B ≥ 4b = 4(1− q)

=⇒ 1−Q ≥ 4− 4q

=⇒ 4q ≥ Q+ 3

=⇒ 6q > Q

Hence, x = 1. Thus, E1(Q) = 1 < E1(B) = y + 1. As a result, B = 1, and Q = 0.

Assuming B > 4b, following the process as above, we reach to a contradiction. Therefore,

B = 4b =⇒ b =
B

4
=

1

4
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Then,
∂E1(W )

∂b
= 1− 2y

Hence, for b = 1/4 to be feasible, we need:

y =
1

2

Therefore, we find an equilibrium with

x = 1, y =
1

2
, q =

3

4
, b =

1

4
, and B = 1, Q = 0

To summarize, Player 2 always bullies the person who eats quiche and bullies the person drinking beer half the time. The

tough guy always drinks beer while the weak guy drinks beer a quarter of the time and eats quiche three-quarters of the time.

One can easily check that the B < 4b case also leads to a contradiction, resulting in a unique equilibrium for the game.

Solution using primal and dual backward induction. Now we solve the game through backward induction of its primal

and dual values (denoted by V and C respectively). Here we introduce discrete-time t = 0, 1, 2: Players 1 and 2 make their

respective decisions at t = 0 and t = 1, and the game ends at t = 2. We describe the states of the game as the decisions

being made up to the corresponding time, e.g., x = (B, b) at t = 2 means that Player 1 has chosen beer and Player 2 to

defer. Primal game: At the terminal time step (t = 2), based on the payoff table, we have

V (2, x, p) =















4pT − 2 if x = (B, b)
pT if x = (B, d)
2pT − 1 if x = (Q, b)
2− 2pT if x = (Q, d)

. (62)

At the intermediate time step (t = 1), we have

V (1, x, p) = min
v∈{b,d}

V (2, (x, v), p). (63)

We can find the best responses of Player 2 for both actions of Player 1. This leads to

V (1, x, p) =















pT if x = B, 3pT − 2 ≥ 0 (v∗ = d)
4pT − 2 if x = B, 3pT − 2 < 0 (v∗ = b)
2− 2pT if x = Q, 4pT − 3 ≥ 0 (v∗ = d)
2pT − 1 if x = Q, 4pT − 3 < 0 (v∗ = b)

. (64)

Note that since Player 1 does not take an action in this time step, we do not need to take a concave hull of V (1, x, ·). At the

beginning of the game (t = 0), we have

V (0, ∅, p) = Cav

(

max
u∈{B,Q}

V (1, u, p)

)

. (65)

By taking the concave hull with respect to pT (see Fig. 7), we get

V (0, ∅, p) =

{

5pT /2− 1 if pT < 2/3
pT if pT ≥ 2/3

. (66)

Note that from Fig. 7, when pT ∈ [0, 2/3), V (0, ∅, p) = λmaxu V (1, u, p1)+(1−λ)maxu V (1, u, p2), where p1 = [0, 1]T ,

p2 = [2/3, 1/3]T , and λp1 + (1− λ)p2 = p. When pT = 1/3, λ = 1/2, Player 1’s strategy is thus

Pr(u = Q|T ) =
λp1[1]

p[1]
= 0, Pr(u = Q|W ) =

λp1[2]

p[2]
= 3/4,

Pr(u = B|T ) =
(1− λ)p2[1]

p[1]
= 1, Pr(u = B|W ) =

(1− λ)p2[2]

p[2]
= 1/4.

(67)
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Figure 7: Primal value V (0, ∅, pT ) at t = 0.

This result is consistent with the true perfect Bayesian equilibrium we previously derived.

Dual game: To solve for Player 2’s equilibrium, we first derive the dual variable p̂ ∈ ∂pV (0, ∅, p) for p = [1/3, 2/3]T . By

definition, p̂T p defines the concave hull of V (0, ∅, p), and therefore we have

[1/3, 2/3]p̂ = V (0, ∅, p) = −1/6

[0, 1]p̂ = V (0, ∅, [0, 1]) = −1.
(68)

This leads to p̂ = [3/2,−1]T .

At the terminal time, we have

C(2, x, p̂) = min{p̂[1]− gT (x), p̂[2]− gW (x)}

=















min{p̂[1]− 2, p̂[2] + 2} if x = (B, b)
min{p̂[1]− 1, p̂[2]} if x = (B, d)
min{p̂[1]− 1, p̂[2] + 1} if x = (Q, b)
min{p̂[1], p̂[2]− 2} if x = (Q, d)

(69)

At t = 1, we have

C(1, u, p̂) = Cavp̂

(

max
v

C(2, (u, v), p̂)
)

. (70)

When u = B, the conjugate value is a concave hull of a piece-wise linear function:

C(1, B, p̂) = Cavp̂























p̂[1]− 1 if p̂[2] ≥ p̂[1]− 1 (v∗ = d)
p̂[2] if p̂[2] ∈ [p̂[1]− 2, p̂[1]− 1) (v∗ = b)
p̂[1]− 2 if p̂[2] ∈ [p̂[1]− 4, p̂[1]− 2) (v∗ = d)
p̂[2] + 2 if p̂[2] < p̂[1]− 4 (v∗ = b)









=







p̂[1]− 1 if p̂[2] ≥ p̂[1]− 1 (v∗ = d)
2/3p̂[1] + 1/3p̂[2]− 2/3 if p̂[2] ∈ [p̂[1]− 4, p̂[1]− 1) (mixed strategy)
p̂[2] + 2 if p̂[2] < p̂[1]− 4 (v∗ = b)

(71)

22



State-Constrained Zero-Sum Differential Games with One-Sided Information

Figure 8: Conjugate value maxv C(2, B, p̂) at t = 2.

Fig. 8 visualizes C(1, B, p̂). For p̂ = [3/2,−1]T which satisfies p̂[2] ∈ [p̂[1] − 4, p̂[1] − 1), Player 2 follows a mixed

strategy determined based on {λ1, λ2, λ3} ∈ ∆(3) and p̂j ∈ R
2 for j = 1, 2, 3 such that

(i) At least one of p̂j for j = 1, 2, 3 should satisfy p̂[2] = p̂[1]− 1 (denoted as line 1) and another p̂[2] = p̂[1]− 4 (denoted

as line 2). The last could be on either line 1 or 2. These conditions are necessary for C(1, B, p̂) to be a concave hull:

C(1, B, p̂) =
3
∑

j=1

λj max
v

C(2, (B, v), p̂j). (72)

Without loss of generality, we will set p̂1 on line 1 and both p̂2 and p̂3 on line 2;

(ii)
∑3

j=1 λj p̂
j = p̂.

These conditions leads to λ1 = 1/2 and λ2 + λ3 = 1/2. Therefore Player 2 chooses to defer and bully with equal chance

when Player 1 takes beer.

When u = Q, we similarly have

C(1, Q, p̂) =







p̂[1] if p̂[2] ≥ p̂[1] + 2 (v∗ = d)
... if p̂[2] ∈ [p̂[1]− 2, p̂[1] + 2) (mixed strategy)
p̂[2] + 1 if p̂[2] < p̂[1]− 2 (v∗ = b)

(73)

We omitted the derivation of the concave hull when p̂[2] ∈ [p̂[1]− 2, p̂[1] + 2) because for p̂ = [3/2,−1]T , C(1, Q, p̂) =
p̂[2] + 1 = 0 while v∗ = b, i.e. if Player 1 takes quiche, Player 2 chooses to bully with certainty.

The value and its conjugate provide behavioral strategies for Player 1 (informed) and Player 2 (non-informed), respectively,

for arbitrary initial belief p. Moreover, the convexity of the value reveals subsets of p where Player 1 should use a mixed

strategy that manipulates the belief in order to improve its value. Similarly, the convexity of the conjugate value reveals

subsets of dual variables p̂ where Player 2 should use a mixed strategy to mitigate risks due to its uncertainty about Player 1.
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D.2. Hexner’s game

Here we discuss the solution to Hexner’s game using Cardaliaguet’s method based on the reformulation proposed by Hexner.

To recap, the payoff to be minimized by Player 1 is

J(t, θ̃1, θ̃2) = Eθ

[

∫ T

τ=t

(θ̃1(τ)− θ)2d1(τ)− (θ̃2(τ)− θ)2d2(τ)dτ

]

, (74)

where d1, d2, pθ are common knowledge; θ is only known to Player 1; the scalar θ̃1 (resp. θ̃2) is Player 1’s (resp. Player 2’s)

strategy. We consider two player types θ ∈ {−1, 1} and therefore pθ ∈ ∆(2). Since the reformulation contains no system

state, the strategies are functions of only time. Hexner’s solution is as follows:

θ̃1(s) = θ̃2(s) = 0 ∀s ∈ [0, tr] (75)

θ̃1(s) = θ̃2(s) = θ ∀s ∈ (tr, T ], (76)

where

tr = argmin
t

∫ t

0

(d1(s)− d2(s))ds, (77)

and (d1, d2) are defined in Eq. (2).

We will need the following preparation before introducing Cardaliaguet’s solution. First, introduce time stamps [Tk]
2r
k=1 as

roots of the time-dependent function d1 − d2, with T0 = 0, T2q+1 = tr, and T2r+1 = T . Without loss of generality, we

assume that:

d1 − d2 < 0 ∀t ∈ (T2k, T2k+1) ∀k = 0, ..., r, (78)

d1 − d2 ≥ 0 ∀t ∈ [T2k−1, T2k] ∀k = 1, ..., r. (79)

We also introduce Dk :=
∫ Tk+1

Tk
(d1 − d2)ds and

D̃k =

{

D̃k+1 +Dk if D̃k+1 +Dk < 0
0 otherwise

, (80)

with D̃2r+1 = 0.

Lemma 8. (Properties of Dk and D̃k) The following properties will be useful:

1.
∫ 2q+1

k
(d1 − d2)ds =

∑2q
k Dk < 0, ∀k = 0, ..., 2q;

2.
∫ k

2q+1
(d1 − d2)ds =

∑k−1
2q+1 Dk > 0, ∀k = 2q + 2, ..., 2r + 1;

3. D̃2q+2 +D2q+1 > 0;

4. D̃k < 0, ∀k < 2q + 1.

Proof. Properties 1 and 2 are results directly from the definition of Dk.

For property 3, if D̃2q+2+D2q+1 ≤ 0, then D̃2q+2 = D̃2q+3+D2q+2 ≤ −D2q+1, then D̃2q+3 ≤ −(D2q+2+D2q+1) < 0

(property 2). This leads to D̃2q+k ≤ −
∑k−1

i=1 D2q+i < 0 for k = 1, ..., 2r − 2q. Thus D̃2r < 0. Contradiction.

For property 4, first we have D̃2q+1 = 0 (property 3). Since D2q < 0 (property 1), D̃2q = D2q < 0.

Primal game. We start with V (T, p) = 0 where we use p := pθ[1] as the probability of θ = −1. The Hamiltonian can be

derived as

H(p) = min
θ̃1

max
θ̃2

Eθ

[

(θ̃1 − θ)2d1 − (θ̃2 − θ)2d2

]

= 4p(1− p)(d1 − d2).
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The optimal actions for the Hamiltonian are θ̃1 = θ̃2 = 1− 2p. From Bellman backup, we can get

V (Tk, p) = 4p(1− p)D̃k.

Therefore, at T2q+1, we have

V (T2q+1, p) = V exp (V (T2q+2, p) + 4p(1− p)D2q+1)

= V exp

(

4p(1− p)(D̃2q+2 +D2q+1)
)

.

Notice that D̃2q+2 +D2q+1 > 0 (property 3) and D̃k < 0 for all k < 2q + 1 (property 4), T2q+1 is the first time such that

the right-hand side term inside the convexification operator, i.e., 4p(1− p)(D̃2q+2 +D2q+1), becomes concave. Therefore,

splitting of belief happens at T2q+1 with p1 = 0 and p2 = 1. Player 1 plays θ̃1 = −1 (resp. θ̃1 = 1) with probability 1 if

θ = −1 (resp. θ = 1), i.e., Player 1 reveals its type. This result is consistent with Hexner’s.

Dual game. To find Player 2’s strategy, we need to derive the conjugate value which follows

C(t, p̂) =



















maxi∈{1,2} p̂[i] ∀t ≥ T2q+1

p̂[2]− D̃t

(

1− p̂[1]−p̂[2]

4D̃t

)2

∀t < T2q+1, 4D̃t ≤ p̂[1]− p̂[2] ≤ −4D̃t

p̂[1] ∀t < T2q+1, p̂[1]− p̂[2] ≥ 4D̃t

p̂[2] ∀t < T2q+1, p̂[1]− p̂[2] < 4D̃t

Here p̂ ∈ ∇pθ
V (0, pθ) and V (0, pθ) = 4p[1]p[2]D̃0. For any particular p∗ ∈ ∆(2), from the definition of subgra-

dient, we have p̂[1]p∗[1] + p̂[2]p∗[2] = 4p∗[1]p∗[2]D̃0 and p̂[1] − p̂[2] = 4(p∗[2] − p∗[1])D̃0. Solving these to get

p̂ = [4p∗[2]
2D̃0, 4p∗[1]

2D̃0]
T . Therefore p̂[1]− p̂[2] = 4D̃0(1− 2p∗[1]) ∈ [4D̃0,−4D̃0], and

C(0, p̂) = p̂[2]− D̃0

(

1−
p̂[1]− p̂[2]

4D̃0

)2

.

Notice that C(t, p̂) is convex to p̂ since D̃0 < 0 (property 4) for all t ∈ [0, T ]. Therefore, there is no splitting of p̂ during the

dual game, i.e., θ̃2 = 1− 2p. This result is also consistent with Hexner’s.

E. Backward Reachable Tube

The computation of the Backward Reachable Tube (BRT) allows us to classify the state space into feasible and infeasible

regions at different times from Player 1’s perspective.

Computation of BRT. For the simplified football game, the state constraint is defined as c(x) := ∥(dx1
, dy1

) −
(dx2

, dy2
)∥2 − r, and C = {x : c(x) ≤ 0}. The Hamilton-Jacobi-Isaacs Variational Inequality (HJI VI) is denoted

by L and satisfies the boundary condition D (Bansal & Tomlin, 2021):

L(Ṽ , t, x) = min{∇tṼ (t, x) +H(t, x), c(x)− Ṽ (t, x)} = 0,

D(Ṽ , x) = Ṽ (T, x)− c(x) = 0,
(81)

where H is the Hamiltonian:

H(t, x) = max
u

min
v
⟨∇xṼ (t, x), f(x, u, v)⟩. (82)

We use Physics-Informed Neural Network (PINN) to learn the value function Ṽ (t, x), the sub-zero level set of which

represents the BRT:

Q̄(t) = {x ∈ R
dx : Ṽ (t, x) ≤ 0}. (83)

We denote PINN dataset D =
{(

t(k), x(k)
)}K

k=1
containing uniformly sampled data points in [0, T ]× R

dx and define the

loss function as:

min
Ṽ

L
(

Ṽ
)

=
K
∑

k=1

∥

∥

∥
L(Ṽ (k), t(k), x(k))

∥

∥

∥

1
+ C1

∥

∥

∥
D(Ṽ (k), x(k))

∥

∥

∥

1
, (84)

where Ṽ (k) is an abbreviation for Ṽ
(

t(k), x(k)
)

and C1 is the hyperparameter that balances the loss term ∥L∥1 and ∥D∥1.
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Figure 9: A visualization of safe/unsafe initial position for the attacker when the defender is fixed at (−0.05, 0). The initial

velocities for both players are zero in the beginning. The red (blue) region represents unsafe (safe) states.

Training. We uniformly sample 60k input states x ∈ [−1, 1] (specifically, 10k states x ∈ C) and use curriculum learning

proposed in (Bansal & Tomlin, 2021) to improve the training convergence. The rest of the dynamics parameters are chosen

as: T = 1, r = 0.05, ux ∈ [−6, 6], uy ∈ [−12, 12], vx ∈ [−6, 6], vy ∈ [−4, 4], velocities are sampled as mentioned in

Sec. G.2 and are normalized between [−1, 1]. The PINN utilizes a fully-connected network with 3 hidden layers, each

comprising 512 neurons with sin activation function. The network adopts the Adam optimizer with a fixed learning rate of

2× 10−5. We first pretrain the network over 10k iterations to satisfy the boundary condition D and then refine the network

through 100k gradient descent steps, with states sampled from an expanding time window starting from the terminal. Fig. 9

shows the visualization of BRT in a 2D frame given t = 0 and fixed states except (dx1
, dy1

).

F. Proof of Proposition 1

Proof. Let f0 : [0, 1]I−1 → R be a bounded and Lipschitz continuous function, P ⊂ [0, 1]I−1 be a lattice, and f be a

convex hull computed from the data {f(p), p}p∈S . Let the true convex hull of f0 be V ex(f0): V ex(f0)(p) ≤ f(p) for all

p ∈ [0, 1]I−1, with equality reached at least for p ∈ S .

Introduce a set P 0 = {p(i) ∈ S}Ii=1 and a space P0 = {p ∈ [0, 1]I−1 | ∃λ ∈ ∆(I) s.t. p =
∑I

i=1 λ[i]p
(i), p(i) ∈ P 0} so

that f(p) =
∑I

i=1 λ[i]f(p
(i)) for all p ∈ P0, i.e., P 0 are vertices of a segment P0 of [0, 1]I−1 within which f is affine.

Let U := {u(i)}Ni=1 = P
⋂

P0 be the set of lattice nodes contained in P0. Since f is a convex hull of f0, we have f(u(i)) ≤
f0(u(i)) for all i = 1, ..., N . U defines a segmentation E of P0: Each e ∈ E is associated with Ue := {u

(ei)}Ii=1 ⊂ U such

that e = {p ∈ [0, 1]I−1 | ∃λ ∈ ∆(I) s.t. p =
∑I

i=1 λ[i]u
(ei), u(ei) ∈ Ue} and u /∈ e for any u ∈ U \ Ue.

For any p ∈ e, we have the following loose lower bound on f0(p):

f0(p) ≥ min
i

f0(uei)−∆L ≥ min
i

f(uei)−∆eL, (85)

where ∆ := maxi,j ∥u
ei − uej∥2, and L is the Lipschitz constant of f0. ∆ is a constant for a given lattice P .

Therefore within e, the convexification error is lower bounded by

max
λ∈∆(I)

{

f(
∑

i

λ[i]u(ei))−min
i

f(uei) + ∆L

}

= max
i

f(uei)−min
i

f(uei) + ∆L ≤ 2∆L. (86)

Since this error is constant, and f − 2∆L is a convex lower bound of V ex(f0), we have εvex ≤ 2∆L.

G. Details on Case Studies

The code for the implementation is available at https://github.com/ghimiremukesh/OSIIG.
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G.1. Hexner’s Strategy

For the unconstrained simplified football game discussed in Sec. 6, the strategies depend on the trajectory of the d1 − d2. In

Fig.10, we plot the trajectory and determine the critical time from Eq.(77). For the choices of parameters, we determine

tr = 0.4s. We set RA = diag(0.05, 0.025), and RD = diag(0.05, 0.1).
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Figure 10: Plot of d1 and d2 along time. The critical time tr occurs at t ≈ 0.4. The attacker will conceal its type until tr and

reveal it after tr.

G.2. Data Sampling

Unconstrained Game. For the unconstrained game, we sample positions (dx, dy) and velocities (ḋx, ḋy) for both players.

As the arena is bounded between [−1, 1] in both x and y directions, we sample the positions of the two players in [−1, 1].
However, when it comes to velocities, we experimentally determine the range from the LQR problem as the following:

ḋx1
∈ [−6, 6], ḋy1

∈ [−4, 4], ḋx2
∈ [−6, 6], and ḋy2

∈ [−4, 4]. We then normalize the velocities between [−1, 1] and

compute the values as described in algorithm 1. The resulting normalized joint states (X ) and values (V ) are stored for

training the value network. At each time step we sample 10000 states and set |P| = 100. This brings the total training data

at each time step to 1M for the unconstrained case.

Constrained Primal Game. For the constrained game, we sample the positions between [−1, 1] and all velocities between

the ranges discussed above. As in the unconstrained case, these are normalized to [−1, 1] before computing the values and

storing the training data. With the same P , we sample 5000 states from the feasible set Q(t), resulting in 500,000 training

data at each time step. Solving constrained game requires evaluating minu maxv V (t, x+ τf(x, u, v), p) over all possible

pairs of x′(i.e. x+ τf(x, u, v)), which is memory intensive. Based on the available resources we set the total number of

initial states to be sampled to 5000. To speed up the calculation, and capture a wide range of data, we divide the state space

into 50 uniform intervals, and distribute the computation to 56 CPU cores, with 515,271 MB of total memory. Each minimax

computation is independent and hence can be evaluted in parallel.

Constrained Dual Game. In the dual game, the uninformed player keeps track of the process p̂ ∈ R
I . As a result, the

dual value is a 10-D function, which increases the complexity of the computation due to the need for convexification of the
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value along I dimensions (here, I = 2). We follow the same procedure as in the primal game and collect 250,000 samples

for training. The range of p̂ was determined to be [−14, 14] based on the primal value at the initial time as discussed in

Sec. 5. Furthermore, due to the additional input dimension in the dual value network, the dual value approximation suffers

from relatively higher error compared to the primal value. Ultimately this affects the strategy of the uninformed player

(Player 2). We compare the resulting strategy of Player 2 from the dual value with that of the ground truth strategy in the

unconstrained game.
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Figure 11: Comparison between the P2’s ground truth strategy and the strategy synthesized from the dual value. P1’s

trajectory is shown red and P2’s in blue. Solid trajectories correspond to that obtained when P2 plays its equilibrium strategy.

Dotted trajectories represent the ground truth solution.
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