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Abstract

The ability to accurately identify authorship is

crucial for verifying content authenticity and

mitigating misinformation. Large Language

Models (LLMs) have demonstrated an excep-

tional capacity for reasoning and problem-

solving. However, their potential in authorship

analysis remains under-explored. Traditional

studies have depended on hand-crafted stylistic

features, whereas state-of-the-art approaches

leverage text embeddings from pre-trained lan-

guage models. These methods, which typically

require fine-tuning on labeled data, often suffer

from performance degradation in cross-domain

applications and provide limited explainability.

This work seeks to address three research ques-

tions: (1) Can LLMs perform zero-shot, end-to-

end authorship verification effectively? (2) Are

LLMs capable of accurately attributing author-

ship among multiple candidates authors (e.g.,

10 and 20)? (3) Can LLMs provide explainabil-

ity in authorship analysis, particularly through

the role of linguistic features? Moreover, we

investigate the integration of explicit linguistic

features to guide LLMs in their reasoning pro-

cesses. Our assessment demonstrates LLMs’

proficiency in both tasks without the need for

domain-specific fine-tuning, providing explana-

tions into their decision making via a detailed

analysis of linguistic features. This establishes

a new benchmark for future research on LLM-

based authorship analysis1.

1 Introduction

Authorship analysis is the study of writing styles to

determine the authorship of a piece of text, impact-

ing areas from forensic investigation, such as dis-

tinguishing between murders and suicides (Chaski,

2005), to tracking terrorist threats (Winter, 2019;

Cafiero and Camps, 2023). It addresses challenges

in digital forensics and cybersecurity, including the
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fight against misinformation, impersonation, and

cyber threats such as phishing and deceptive so-

cial media posts (Argamon, 2018; Shu et al., 2020;

Stiff and Johansson, 2022a). Authorship analy-

sis is essential for tracing cyber threats to their

sources, combating plagiarism to uphold intellec-

tual property rights (Stamatatos and Koppel, 2011),

and identifying compromised accounts (Barbon

et al., 2017). In addition, it helps link user accounts

across social platforms (Shu et al., 2017; Sinnott

and Wang, 2021) and detect fraudulent activities

such as fake reviews (Ott et al., 2011).

Historically, authorship analysis relied on meth-

ods based on human expertise to distinguish be-

tween authors (Mosteller and Wallace, 1963).

Later, a line of research known as stylometry

emerged, which developed various features to quan-

tify writing styles (Holmes, 1994). The evolution

continued with the adoption of rule-based computa-

tional linguistic methods (Stamatatos, 2009). The

development of statistical algorithms provides the

capability to handle data with higher dimensions,

enabling more expressive representations. These

methods relied heavily on extensive text preprocess-

ing and feature engineering (Bozkurt et al., 2007;

Seroussi et al., 2014).

Compared to traditional statistical methods, deep

learning techniques require less feature engineer-

ing. Among these techniques, pre-trained language

models (PTMs) are widely used for representing

authorship (Huang et al., 2024a). These mod-

els, built predominantly on BERT-based architec-

tures (Devlin et al., 2018) and contrastive learn-

ing paradigms, demonstrate efficacy in domain-

specific applications. However, they fall short in

cross-domain scenarios (Rivera-Soto et al., 2021).

The performance of these methods also declines

significantly with shorter query texts (Eder, 2015;

Grieve et al., 2019) and limited data from the can-

didate authors. This reduction in performance

limits their applicability in real-world situations,
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where data scarcity and diversity are the norms.

While some studies have attempted to overcome

these challenges by applying text style transfer

to learn content-independent style representations,

they have not addressed the cross-domain issue

effectively (Boenninghoff et al., 2019; Wegmann

et al., 2022). These deep learning methods require

extensive time and labeled data for training, are not

effectively applicable across different data domains,

and suffer from limited explainability.

Despite the rapid development of LLMs, there

has been insufficient analysis and evaluation of

their capabilities in authorship analysis (Huang

et al., 2024a). Some initial studies have utilized

GPT-3 (Brown et al., 2020) for annotating data (Pa-

tel et al., 2023) before employing a T5 Encoder

(Raffel et al., 2020) for learning representations of

authorship. LLMs have demonstrated proficiency

in zero-shot learning scenarios within domains

lacking extensive resources (Kojima et al., 2022).

However, their ability to grasp subtle nuances of

language and extract critical features for authorship

identification has not been extensively examined.

Consequently, this paper aims to investigate the

potential of LLMs for authorship identification by

addressing the following research questions:

• RQ1: Can LLMs perform zero-shot, end-to-

end authorship verification effectively?

• RQ2: Are LLMs capable of accurately at-

tributing authorship among multiple candi-

dates authors (e.g., 10 and 20)?

• RQ3: Can LLMs provide explainability in

authorship analysis, particularly through the

role of linguistic features?

We also propose a prompting technique named

Linguistically Informed Prompting (LIP) to guide

LLMs in identifying linguistic features that are

used in practice by forensic linguists (Grant, 2022).

This approach exploits the inherent linguistic

knowledge embedded within LLMs, unleashing

their potential to discern subtle stylistic nuances

and linguistic patterns indicative of individual au-

thorship. Figure 1 demonstrates the application of

the LIP method in verifying authorship through lin-

guistic feature analysis using GPT-4. It compares

two texts from the Blog dataset (Schler et al., 2006).

Analysis can provide specific linguistic evidence

such as the use of informal language, punctuation

patterns, and typographical errors.

Our empirical evaluation includes data with dif-

ferent genres and topics to validate the robustness

and versatility of LLMs. The results demonstrate

that LLMs can effectively perform zero-shot author-

ship verification and attribution, thereby obviating

the need for fine-tuning. With the introduction of

linguistic guidance, LLMs are further leveraged

for authorship analysis, where our LIP technique

sets a new benchmark for LLM-based authorship

prediction. The key contributions of this work are

summarized as follows:

• We conduct a comprehensive evaluation of

LLMs in authorship attribution and verifica-

tion tasks. Our results demonstrate that LLMs

outperform existing BERT-based models in

a zero-shot setting, showcasing their inher-

ent stylometric knowledge essential for dis-

tinguishing authorship. This enables them to

excel in authorship attribution and verification

across low-resource domains without the need

for domain-specific fine-tuning.

• We develop a pipeline for authorship analysis

with LLMs, encompassing dataset prepara-

tion, baseline implementation, and evaluation.

Our novel Linguistically Informed Prompting

(LIP) technique guides LLMs to leverage lin-

guistic features for accurate authorship analy-

sis, enhancing their reasoning capabilities.

• Our end-to-end approach improves the ex-

plainability of authorship analysis. This

approach elucidates the reasoning and evi-

dence behind authorship predictions, shedding

light on how various linguistic features influ-

ence these predictions. This contributes to a

deeper understanding of the mechanisms be-

hind LLM-based authorship identification.

2 Datasets

We choose two representative datasets to highlight

the importance of user-generated content such as

emails and social media posts. The first dataset

is the Enron Email dataset, which consists of ap-

proximately half a million messages from senior

Enron managers. This dataset offers insights into

corporate communication, featuring long texts and

a high variance in text-per-author (Klimt and Yang,

2004). The second dataset is the Blog Authorship

Attribution corpus Schler et al. (2006). This corpus

includes blog articles from 2004 and earlier, col-

lected from Blogger.com, comprising over 680,000







10 candidate authors 20 candidate authors

Model Prompt Weighted F1 Macro F1 Micro F1 Weighted F1 Macro F1 Micro F1

TF-IDF 11.89 11.89 20.00 1.20 1.20 5.00

BERT 42.22 42.22 50.00 27.50 27.50 33.33

RoBERTa 34.44 34.44 43.33 23.33 23.33 28.33

ELECTRA 34.67 34.67 40.00 10.55 10.55 13.33

DeBERTa 38.89 38.89 46.67 19.09 19.09 23.33

GPT-3.5 Turbo

no_guidance 16.67 15.15 20.00 24.50 18.69 27.50

little_guidance 27.22 24.75 33.33 37.83 27.94 37.50

grammar 31.85 31.85 40.00 29.50 23.06 32.50

LIP 30.56 27.78 40.00 33.33 25.20 37.50

GPT-4 Turbo

no_guidance 36.67 33.33 36.67 37.50 32.20 35.00

little_guidance 36.67 33.33 36.67 40.83 37.12 40.00

grammar 58.89 53.54 60.00 59.84 49.86 57.50

LIP 84.45 79.40 86.67 60.50 55.00 62.50

Table 1: Authorship attribution results with 10 and 20 candidate authors in terms of Weighted F1(%), Macro F1(%),

and Micro F1(%) on the Blog dataset.

10 candidate authors 20 candidate authors

Model Prompt Weighted F1 Macro F1 Micro F1 Weighted F1 Macro F1 Micro F1

TF-IDF 15.25 15.25 26.67 5.95 5.95 8.33

BERT 41.67 41.67 46.67 38.89 38.89 45.00

RoBERTa 36.67 36.67 43.33 22.06 22.06 26.67

ELECTRA 28.89 28.89 36.67 22.78 22.78 30.00

DeBERTa 27.22 27.22 33.33 21.67 21.67 25.00

GPT-3.5 Turbo

no_guidance 23.33 21.21 23.33 20.00 16.92 20.00

little_guidance 28.89 26.26 30.00 26.67 24.24 26.67

grammar 18.89 17.17 20.00 20.00 17.93 20.00

LIP 22.22 20.20 23.33 28.89 26.26 30.00

GPT-4 Turbo

no_guidance 73.33 66.67 73.33 67.22 57.66 70.00

little_guidance 71.67 65.15 73.33 73.33 66.67 73.33

grammar 80.00 77.98 83.33 73.89 67.76 76.67

LIP 88.89 86.87 90.00 77.22 73.33 80.00

Table 2: Authorship attribution results with 10 and 20 candidate authors in terms of Weighted F1(%), Macro F1(%),

and Micro F1(%) on the Email dataset.

forward. This is because we instruct LLMs to di-

rectly output their final answer, as illustrated in

the system instructions from Figure 6 in Appendix.

In contrast, traditional pre-trained models, such as

BERT, require fine-tuning along with a prediction

head (typically a trained machine learning classi-

fier) to map hidden embeddings to the final output.

Our experiments indicate that employing cosine

similarity with BERT embeddings, which are pre-

dominantly distributed around 0.9, makes it chal-

lenging to distinguish authorship for verification

purposes in this zero-shot setting. The experimen-

tal results for both TF-IDF and BERT are provided

in Appendix D.

Evaluation metrics for this task include accuracy,

precision, recall, and F1 Score. Accuracy is a fun-

damental metric that measures the proportion of

correct predictions out of the total predictions made.

Precision focuses on the proportion of true positive

predictions within the pool of positive predictions,

evaluating the model’s ability to avoid false posi-

tives. Recall assesses the model’s ability to identify

all actual positives, reflecting its capability to min-

imize false negatives. The F1 Score harmonizes

precision and recall by providing a single metric

that balances both aspects through the calculation

of their harmonic mean.

The experiment results are demonstrated in Fig-

ure 2 and 3. They provide a comparative analysis of

the performance of LLMs in authorship verification

tasks across two different datasets. Four models are

evaluated with four different prompt settings. GPT-

4 Turbo consistently outperforms the other models

in both datasets, indicating its superior capability in

understanding authorship. The LIP method gener-

ally yields the highest scores across all metrics for



most models. Across both datasets, performance

metrics improve as the level of prompt guidance

increases from no guidance to LIP. This trend un-

derscores the importance of linguistic guidance in

leveraging LLMs for authorship verification. The

analysis of these figures reveals that the effective-

ness of LLMs in authorship verification tasks can

be significantly influenced by the type of prompt

guidance provided.

4 Authorship Attribution (RQ2)

In this section, we present a comprehensive anal-

ysis of experiments conducted to evaluate the ef-

ficacy of our proposed models on the zero-shot

authorship attribution task. We selected the Blog

and Enron email datasets to ensure a robust assess-

ment across different domains and genres. Figure 7

in Appendix F shows the prompts of this task, we

utilize four prompt similar to the authorship verifi-

cation task, with LIP being the most effective due to

its linguistic guidance effect. The experiments were

structured to compare the performance of LLMs

not only against each other but also against estab-

lished benchmarks in the field, such as TF-IDF and

BERT-based models.

Authorship attribution, the task of determining

the most likely author of a given text from a set

of candidates, is commonly formulated as a multi-

class, single-label text classification problem. Ta-

bles 1 and 2 provide a overview of the performance

of various models. These models were evaluated

across two different datasets (Blog and Email) with

varying numbers of candidate authors (10 and 20).

Weighted F1, micro F1, and macro F1 are used

as evaluation metrics. Weighted F1 gives an av-

erage F1 score weighted by class size. Micro F1

calculates the overall average F1 score, combin-

ing all classes, and is sensitive to class imbalance.

Macro F1 computes the unweighted average of F1

scores across classes, treating each class equally,

ideal for assessing minority class performance.

We also tested Llama 2 and Mistral 7B. However,

input texts from the datasets we used for evaluating

other LLMs are too long and exceed the context

limit of Llama 2 because of their context length lim-

itations (4k tokens for Llama 2 and 8k for Mistral,

versus 16k for GPT-3.5 Turbo and 128k for GPT-4

Turbo). Therefore the experiment on Mistral are

shown in a separate table (Table 3).

Table 4 outlines the results of an ablation study

focused on evaluating the impact of various lin-

Dataset Prompt Weighted F1 Macro F1 Micro F1

Blog

no_guidance 10.00 9.09 13.33

little_guidance 6.89 6.26 10.00

grammar 7.22 6.57 10.00

LIP 10.56 9.90 13.33

Email

no_guidance 22.22 20.20 26.67

little_guidance 22.45 20.40 26.67

grammar 15.00 13.64 20.00

LIP 29.44 28.53 33.33

Table 3: Mistral’s performance on the authorship attri-

bution task with 10 candidate authors.

Model Prompt Weighted F1 Macro F1 Micro F1

GPT-3.5

phrasal verbs 22.67 20.61 30.00

modal verbs 20.95 20.04 26.67

punctuation 23.06 22.60 33.33

rare words 26.00 23.64 33.33

affixes 23.00 20.91 30.00

quantities 19.44 18.23 30.00

humor 23.22 21.66 33.33

sarcasm 23.89 21.72 33.33

typos 24.67 23.36 33.33

misspellings 28.33 26.67 40.00

GPT-4

phrasal verbs 62.22 56.57 63.33

modal verbs 56.67 51.52 56.67

punctuation 71.11 67.27 73.33

rare words 62.22 56.57 63.33

affixes 75.56 71.32 76.67

quantities 75.56 71.32 76.67

humor 66.67 60.61 70.00

sarcasm 72.22 65.66 73.33

typos 55.56 50.51 56.67

misspellings 46.67 42.42 46.67

Table 4: Ablation study on the impact of 10 linguistic

features for the Blog dataset (with 10 candidate authors).

guistic features on the performance of LLMs. This

study examines how the exclusion of specific fea-

tures affects the models’ abilities. Features such as

affixes and quantities are crucial for GPT-4 Turbo,

while misspellings hold more significance for GPT-

3.5 Turbo. We use all of these linguistic features

provided by forensic linguistics (Grant, 2022), and

find that LLMs perform optimally when all of these

features are provided, as shown in the LIP tech-

nique in Table 1, allowing LLMs to determine

which features to utilize.

The experiment results highlight the superiority

of GPT-4 Turbo over BERT-based language models

and basic statistical approaches, such as TF-IDF.

These advancements not only demonstrate signifi-

cant improvements in scores but also show robust-

ness against increased task complexity. The incor-

poration of linguistic guidance for LLMs markedly

improves performance and generates more explain-

able authorship analysis. This progression empha-

sizes the importance of adopting LLMs for com-





none to LIP, there is a clear shift from general and

diverse terms to more specific linguistic features.

The word cloud for LIP, being the most effective,

underscores a thorough analysis by highlighting

particular linguistic characteristics.

Similarly, the word clouds in Figure 5 illustrate

that LLMs can offer in-depth explanations for au-

thorship attribution tasks. The effectiveness and

focus of these explanations can be significantly im-

proved through explicit linguistic guidance, which

directs the model to base its decisions on linguistic

attributes used in practice (Grant, 2022). The word

cloud of the LIP method prominently features terms

such as "humor", "sarcasm", "casual", and "collo-

quial." This demonstrates that with LIP, the LLM is

steered towards making decisions grounded in lin-

guistic features, especially high-level and complex

features such as humor and sarcasm. The speci-

ficity achieved through the LIP method highlights

the model’s ability to provide clear and focused

explanations for its authorship decisions, offering a

notable improvement over traditional methods that

rely on hidden embeddings. The enhanced clarity

in the LLM’s outputs not only facilitates a better

understanding of the decision-making process but

also has the potential to increase the reliability of

the authorship analysis process.

6 Related Work

In this section, we review the literature on tradi-

tional and contemporary methods of authorship

analysis, as well as research on utilizing LLMs for

authorship analysis and related tasks.

6.1 Authorship Analysis

The primary goal of authorship analysis is to an-

alyze writing styles to determine authorship. It

encompasses two main tasks: authorship attribu-

tion and verification. Authorship attribution, also

known as authorship identification, aims to at-

tribute a previously unseen text of unknown author-

ship to one of a set of known authors. Authorship

verification involves determining whether a single

candidate author wrote the query text by comparing

text similarities (Koppel et al., 2007). This process

requires establishing whether a query text was writ-

ten by a specific author, compared to a set of their

known works. Authorship attribution can be bro-

ken down into a series of authorship verification

instances, focusing on measuring text similarity

based on stylistic features. We specifically focus

on closed-set authorship attribution, which deals

with a predetermined, finite list of potential authors

that always includes the true author of a query text.

Authorship verification can also be seen as a spe-

cific case of authorship attribution, but with only

one potential author.

Central to these tasks is the extraction of useful

authorship features from textual data using natu-

ral language processing methods such as n-grams

(Sharma et al., 2018), POS-tags (Sundararajan and

Woodard, 2018), topic modeling (Seroussi et al.,

2014), and Linguistic Inquiry and Word Count

(LIWC) (Uchendu et al., 2020). More recently, the

focus has shifted towards extracting embeddings

from text, considering both content and style while

often disregarding external contextual cues. These

embeddings, serving as a numeric representation

of a text segment, facilitate further analysis. When

comparing a document embedding with another

from the same author, the representation tends to

orient toward the author’s style rather than the doc-

ument’s content (Huertas-Tato et al., 2022).

Barlas and Stamatatos (2020) found that BERT

models perform well when dealing with large vo-

cabularies, outperforming multi-headed RNNs. Fa-

bien et al. (2020) fine-tuned a BERT model for

authorship attribution. They showed that incorpo-

rating stylometric and hybrid features into an en-

semble model enhances its performance. Huertas-

Tato et al. (2022) introduced a semi-supervised

contrastive learning approach using a BERT-based

model for cross-domain authorship attribution and

profiling. Rivera-Soto et al. (2021) also explored

cross-domain authorship representation learning

through contrastive learning, revealing that neural

authorship representations learned by deep learning

models, such as Sentence-BERT (SBERT), are not

universal. They concluded that topic diversity and

the size of the training dataset are crucial for effec-

tive zero-shot cross-domain transfer. For instance,

models trained on the Reddit comments (Baum-

gartner et al., 2020) exhibited significantly better

transfer than those trained on the Amazon Reviews

corpus (Ni et al., 2019) and the Fanfiction dataset

(Bevendorff et al., 2020). Deep learning methods,

despite their potential, require substantial training

time and labeled data, offer limited generalization

capabilities, and lack explainability. In contrast,

our approach, which leverages the intrinsic linguis-

tic knowledge and zero-shot reasoning abilities of

LLMs, does not require fine-tuning and is effective

in low-resource domains.



6.2 Large Language Models

Large Language Models (LLMs) excel at text gen-

eration, achieving a level of fluency and coherence

that closely mimics human writing. Hence, numer-

ous studies have focused on differentiating LLM-

generated text from human-written text using vari-

ous machine learning methods (Huang et al., 2024a;

Uchendu et al., 2020; Tang et al., 2023; Wu et al.,

2023; Yang et al., 2023). In comparison, our re-

search evaluates LLMs’ capabilities in authorship

verification and attribution, which are complex rea-

soning tasks. Unlike pre-trained language models

(PTMs) that often require specific fine-tuning for

different tasks, LLMs have an inherent capacity

for reasoning and problem-solving. This is lever-

aged through instruction-based few-shot or zero-

shot learning, allowing them to effectively conduct

reasoning tasks with minimal examples (Brown

et al., 2020; Kojima et al., 2022).

The application of LLMs in authorship analysis,

particularly in authorship attribution and authorship

verification, is rarely explored. Traditional meth-

ods have primarily used LLMs for auxiliary tasks,

such as data extraction and annotation, rather than

fully utilizing their capabilities (Patel et al., 2023).

In contrast, our work is pioneering in exploring

LLMs’ end-to-end potential for authorship analysis

tasks. This not only demonstrates the versatility

and effectiveness of LLMs in complex linguistic

tasks but also sets a new benchmark for future re-

search in the field.

Moreover, this novel application of LLMs in au-

thorship analysis aims to overcome the limitations

of traditional methods, such as extensive feature

engineering. Unlike BERT-based models, which

require computationally expensive fine-tuning and

large amounts of domain-specific data for optimal

performance (Grieve et al., 2019), LLMs can gen-

eralize across various domains without any fine-

tuning, addressing the issue of domain specificity

(Barlas and Stamatatos, 2020). They are also capa-

ble of handling shorter texts, reducing the need for

long inputs to derive meaningful representations

(Eder, 2015). A key advantage of our LLM-based

approach is its ability to provide understandable

natural language explanations for its predictions,

addressing the lack of transparency in traditional

models’ hidden text embeddings (Rivera-Soto et al.,

2021). This improvement in explainability and

versatility represents a significant advancement in

overcoming the challenges related to data, domain

specificity, text length requirements, and explain-

ability faced by earlier methods.

7 Conclusion

This paper explores how to leverage LLMs for au-

thorship analysis. Through comprehensive evalu-

ation, it demonstrates that LLMs, equipped with

the novel Linguistically Informed Prompting (LIP)

technique, excel at identifying authorship without

the need for domain-specific fine-tuning. By di-

rectly applying our end-to-end methods to author-

ship attribution and verification tasks, we aim to

bypass the intermediate steps of feature extraction

and manual annotation. This approach not only

surpasses traditional and state-of-the-art methods

in performance, especially in zero-shot and low-

resource settings, but also enhances the explainabil-

ity of authorship predictions by illuminating the

role of linguistic features. The findings underscore

the potential of LLMs to revolutionize authorship

analysis, offering robust solutions for digital foren-

sics, cybersecurity, and combating misinformation.

This work paves the way for future research and

applications in LLM-based authorship prediction.

8 Limitations

Scalability with Increasing Number of Authors

The effectiveness of the method when the number

of candidate authors increases is a major limita-

tion. In real-world scenarios, especially in contexts

like social media and large forums, the number

of potential authors can be vast. If the model’s

performance degrades with more candidates, this

restricts its utility in broader applications. Another

potential limitation is the evaluation of machine-

generated text for authorship analysis, particularly

as machine-generated content becomes more com-

mon and sophisticated. Our method may not ef-

fectively distinguish between human-authored and

machine-generated texts.

Explainability Although authorship analysis by

LLMs offers a level of explainability through the

linguistic features or insights highlighted during

the analysis, the mechanistic interpretability of

how these decisions are made at the neuronal level

within the LLMs is not explored. This means that

while we can observe the decisions that are made,

the fundamental neural activities and interactions

that lead to these decisions remain a black box.

This lack of deeper explainability can be a draw-

back, particularly in critical applications where un-



derstanding the precise reasoning process is neces-

sary for trust and verification.

9 Ethics Statement

The potential to reveal the identities of anonymous

authors presents an ethical challenge. The paper

discusses applications such as linking user accounts

across platforms and identifying compromised ac-

counts. These applications raise privacy concerns

and ethical questions about surveillance and the

profiling of individuals based on their writing style.

The use of such methods must be carefully man-

aged to protect individual privacy and adhere to

ethical standards, particularly in sensitive areas

such as journalism, political dissent, or corporate

whistleblowing. Ensuring that authorship attribu-

tion methods are not used to undermine privacy

rights or expose individuals to risks without their

consent is crucial.
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A Impact Statement

Authorship verification and attribution play an es-

sential role in various applications such as combat-

ing misinformation (Shu et al., 2020; Hanley and

Durumeric, 2024; Chen and Shu, 2024a,b; Chen

et al., 2022; Huang et al., 2024b; Chen et al., 2024;

Stiff and Johansson, 2022b; Beigi et al., 2024),

protecting intellectual property rights (Meyer zu

Eissen et al., 2007; Stamatatos and Koppel, 2011),

identifying fraudulent activities (Ott et al., 2011;

Afroz et al., 2012), tracking terrorist threats (Win-

ter, 2019; Cafiero and Camps, 2023), and aiding

general criminal investigations (Koppel et al., 2008;

Argamon, 2018; Belvisi et al., 2020).

B Future Work

The advent of LLMs has complicated the problem

of authorship attribution since it is increasingly

challenging to distinguish between LLM-generated

and human-written texts (Huang et al., 2024a). The

hardness of differentiating the content produced

by humans and machines potentially undermines

the integrity of authorship, threatens the credibility

of digital content and endangers safety of online

space (Solaiman et al., 2023; Vidgen et al., 2024).

More effort is desired to protect human authorship

from the threat of LLM-generated content.

C Experiment Setup

The baselines used in this paper include: TF-

IDF, pre-trained language models like BERT

(bert-base-uncased) (Devlin et al., 2018),

RoBERTa (roberta-base) (Liu et al., 2019),

DeBERTa (deberta-base) (He et al., 2020),

and ELECTRA (electra-base-discriminator)

(Clark et al., 2020), alongside LLMs repre-

sented by GPT-3.5 Turbo (1106-preview) and

GPT-4 Turbo (1106-preview). We use GPT-

3.5 Turbo (1106-preview) and GPT-4 Turbo

(1106-preview) through the Microsoft Azure Ope-

nAI API, setting the temperature to 0 for all our

experiments. We conducted both authorship verifi-

cation and attribution experiments three times and

calculated the average score. We use py3langid
2 to filter out non-English texts. For running the

quantized versions of Llama 2 (Llama-2-70B-chat-

GPTQ) (Frantar et al., 2023) and Mistral (Mistral-

7B-Instruct-v0.2) (Jiang et al., 2023), we utilize an

NVIDIA RTX A6000 with 48 GB of GPU memory.

2https://github.com/adbar/py3langid

Both models are configured with the temperature

set to 0 and top_p set to 1.

Dataset Name Accuracy Precision Recall F1

Blog
TF-IDF 53.33 100.00 6.67 12.50

BERT 50.00 50.00 100.00 66.67

Email
TF-IDF 73.33 100.00 46.67 63.64

BERT 50.00 50.00 100.00 66.67

Table 5: Authorship Verification results on the Blog and

the Email Dataset for BERT and TF-IDF.

D Additional Results

A challenge in evaluating zero-shot authorship ver-

ification is comparing our approach with conven-

tional models, which often rely on trained clas-

sifiers for classification tasks. To ensure a fair

comparison, we adapt these models to fit within

a zero-shot framework. To establish a comparison,

we consider null accuracy, which is 50% in a per-

fectly balanced dataset. Our experiments suggest

that using cosine similarity scores of BERT embed-

dings are mostly distributed around 0.9 We use a

threshold of 0.5, where above 0.5 means the same

authorship, and vice versa.

The results shown in Table 5 mean that the BERT

model exhibits a tendency to classify each pair of

texts as having been authored by the same indi-

vidual, resulting in a notably high recall rate. In

contrast, the TF-IDF approach is characterized by

high precision paired with low recall. This indi-

cates that the model predominantly identifies pairs

as being written by different authors.

E Scientific Artifacts

We use open-source scientific artifacts in this work,

including pandas (Wes McKinney, 2010), pytorch

(Paszke et al., 2019), HuggingFace transformers

(Wolf et al., 2020), sklearn (Pedregosa et al., 2011),

and NumPy (Harris et al., 2020).

F Prompt Design

This section provides details about the prompt

we used for authorship verification (Figure 6)

and attribution tasks (Figure 7). Including the

system and user instructions for four levels of

prompt designs including "LIP", "no_guidance",

"little_guidance", and "grammar_guidance".



AUTHORSHIP VERIFICATION:

System instruction: Respond with a JSON object including two key elements:

"analysis": Reasoning behind your answer.

"answer": A boolean (True/False) answer.

Prompting with no guidance: Verify if two input texts were written by the same author. Input

text 1: <text 1>, text 2: <text 2>

Prompting with style guidance: Verify if two input texts were written by the same au-

thor. Analyze the writing styles of the input texts, disregarding the differences in topic and content.

Input text 1: <text 1>, text 2: <text 2>

Prompting with grammar guidance: Verify if two input texts were written by the same

author. Focus on grammatical styles indicative of authorship. Input text 1: <text 1>, text 2: <text 2>

Linguistically Informed Prompting (LIP): Verify if two input texts were written by the

same author. Analyze the writing styles of the input texts, disregarding the differences in topic and

content. Reasoning based on linguistic features such as phrasal verbs, modal verbs, punctuation,

rare words, affixes, quantities, humor, sarcasm, typographical errors, and misspellings. Input text

1: <text 1>, text 2: <text 2>

Figure 6: Prompt Design for the Authorship Verification Task.



AUTHORSHIP ATTRIBUTION:

System instruction: Respond with a JSON object including two key elements:

"analysis": Reasoning behind your answer.

"answer": The query text’s author ID.

Prompting with no guidance: Given a set of texts with known authors and a query text, determine

the author of the query text. Input query text: <query text>; Texts from potential authors:

<candidate texts>

Prompting with style guidance: Given a set of texts with known authors and a query

text, determine the author of the query text. Do not consider topic differences. Input query text:

<query text>; Texts from potential authors: <candidate texts>

Prompting with grammar guidance: Given a set of texts with known authors and a

query text, determine the author of the query text. Focus on grammatical styles. Input query text:

<query text>; Texts from potential authors: <candidate texts>

Linguistically Informed Prompting (LIP): Given a set of texts with known authors and

a query text, determine the author of the query text. Analyze the writing styles of the input texts,

disregarding the differences in topic and content. Focus on linguistic features such as phrasal verbs,

modal verbs, punctuation, rare words, affixes, quantities, humor, sarcasm, typographical errors,

and misspellings. Input query text: <query text>; Texts from potential authors: <candidate texts>

Figure 7: Prompt Design for the Authorship Attribution Task. ªquery textº is the text whose authorship needs to

be identified. ªcandidate textsº are a collection of texts written by each potential author, which is a JSON object

formatted with author IDs as keys and values containing the texts written by them.


	Introduction
	Datasets
	Authorship Verification (RQ1)
	Authorship Attribution (RQ2)
	Explainability (RQ3)
	Related Work
	Authorship Analysis
	Large Language Models

	Conclusion
	Limitations
	Ethics Statement
	Impact Statement
	Future Work
	Experiment Setup
	Additional Results
	Scientific Artifacts
	Prompt Design

