

Disrupting Bipartite Trading Networks: Matching for Revenue Maximization

LUCA D'AMICO-WONG, Harvard University, USA YANNAI A. GONCZAROWSKI, Harvard University, USA GARY QIURUI MA, Harvard University, USA DAVID C. PARKES, Harvard University, USA

We model the role of an online platform disrupting a market with unit-demand buyers and unit-supply sellers. Each seller can transact with a subset of the buyers whom she already knows, as well as with any additional buyers to whom she is introduced by the platform. Given these constraints on trade, prices and transactions are induced by a competitive equilibrium. The platform's revenue is proportional to the total price of all trades between platform-introduced buyers and sellers.

In general, we show that the platform's revenue-maximization problem is computationally intractable. We provide structural results for revenue-optimal matchings and isolate special cases in which the platform can efficiently compute them. Furthermore, in a market where the maximum increase in social welfare that the platform can create is ΔW , we prove that the platform can attain revenue $\Omega(\Delta W/\log(\min\{n,m\}))$, where n and m are the numbers of buyers and sellers, respectively. When ΔW is large compared to welfare without the platform, this gives a polynomial-time algorithm that guarantees a logarithmic approximation of the optimal welfare as revenue. We also show that even when the platform optimizes for revenue, the social welfare is at least an $O(\log(\min\{n,m\}))$ -approximation to the optimal welfare. Finally, we prove significantly stronger bounds for revenue and social welfare in homogeneous-goods markets.

A full version of this paper can be found at https://arxiv.org/abs/2406.07385.

 $\label{eq:concepts:one} {\sf CCS\ Concepts:one Theory\ of\ computation} \rightarrow {\sf Market\ equilibria}; \\ {\sf Network\ formation}; \\ {\sf Representations\ of\ games\ and\ their\ complexity}.$

Additional Key Words and Phrases: Online Platforms, Competitive Equilibria, Bipartite Graphs, Revenue-Optimal Matchings

ACM Reference Format:

Luca D'Amico-Wong, Yannai A. Gonczarowski, Gary Qiurui Ma, and David C. Parkes. 2024. Disrupting Bipartite Trading Networks: Matching for Revenue Maximization. In *Conference on Economics and Computation (EC '24), July 8–11, 2024, New Haven, CT, USA*. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3670865. 3673567

Acknowledgments

The authors thank Sid Banerjee for helpful comments and discussions. Gonczarowski gratefully acknowledges research support by the National Science Foundation (NSF-BSF grant No. 2343922),

Authors' Contact Information: Luca D'Amico-Wong, ldamicowong@g.harvard.edu, Harvard University, Cambridge, MA, USA; Yannai A. Gonczarowski, yannai@gonch.name, Harvard University, Cambridge, MA, USA; Gary Qiurui Ma, qiurui_ma@g.harvard.edu, Harvard University, Cambridge, MA, USA; David C. Parkes, parkes@eecs.harvard.edu, Harvard University, Cambridge, MA, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

EC '24, July 8–11, 2024, New Haven, CT, USA © 2024 Copyright held by the owner/author(s). ACM ISBN 979-8-4007-0704-9/24/07 https://doi.org/10.1145/3670865.3673567

EC '24, July 8–11, 2024, New Haven, LGTa WSA mico-Wong, Yannai A. Gonczarowski, Gary Qiurui Ma, and David C. Parkes

Harvard FAS Inequality in America Initiative, and Harvard FAS Dean's Competitive Fund for Promising Scholarship.