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Abstract. Topology-hiding broadcast (THB) enables parties communicating over an
incomplete network to broadcast messages while hiding the topology from within a
given class of graphs. THB is a central tool underlying general topology-hiding secure
computation (THC) (Moran et al. TCC’15). Although broadcast is a privacy-free task,
it was recently shown that THB for certain graph classes necessitates computational
assumptions, even in the semi-honest setting, and even given a single corrupted party. In
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this work, we investigate the minimal assumptions required for topology-hiding commu-
nication: both Broadcast or Anonymous Broadcast (where the broadcaster’s identity is
hidden). We develop new techniques that yield a variety of necessary and sufficient con-
ditions for the feasibility of THB/THAB in different cryptographic settings: information
theoretic, given existence of key agreement, and given existence of oblivious transfer.
Our results show that feasibility can depend on various properties of the graph class,
such as connectivity, and highlight the role of different properties of topology when kept
hidden, including direction, distance, and/or distance-of-neighbors to the broadcaster.
An interesting corollary of our results is a dichotomy for THC with a public number of
at least three parties, secure against one corruption: information-theoretic feasibility if
all graphs are 2-connected; necessity and sufficiency of key agreement otherwise.

Keywords. Foundations, Secure multiparty computation, Topology-hiding computa-
tion.

1. Introduction

Reliable communication between a set of mutually distrustful parties lies at the core of
virtually any distributed protocol, ranging from consensus tasks [25,30] to secure multi-
party computation [8,13,19,33]. Classical protocols from the ’80 s considered complete
communication graphs between the parties, where each pair of parties is connected by a
communication channel. However, in many real-life scenarios the parties are not pairwise
connected; this raises the need for distributed interactive computations, and in particular
communication protocols, over an incomplete graph. Often, the network topology itself
may be sensitive information that should not be revealed by the protocol.

Topology-hiding broadcast With this motivation, Moran et al. [29] formalized the con-
cept of topology-hiding computation (THC). Here, the goal is to allow parties who see
only their immediate neighborhood (and possibly know that the graph belongs to some
class), to securely compute arbitrary functions without revealing any additional infor-
mation about the graph topology other than the output. (Computations on the graphs,
e.g., establishing routing tables, are also supported.) THC is of theoretical interest,
but is also motivated by real-world settings where it is desired to keep the underly-
ing communication graph private. These include social networks, ISP networks, ad hoc
(or mesh) networks, vehicle-to-vehicle communications, and possible approaches for
contact tracing.

Given the existence of general MPC protocols, achieving THC for arbitrary functions
hinges on communicating in a topology-hiding way, rather than on keeping inputs private.
In particular, a core bottleneck for achieving general THC is the special case of topology-
hiding broadcast (THB), where a designated party (the broadcaster) reliably sends its
message to all other parties. Indeed, given an MPC protocol for a function f defined in
the broadcast model (where all communication is sent via a broadcast channel, possibly
encrypted),1 the parties can replace the broadcast channel by a THB protocol to obtain
a THC protocol for the function f .

1Such protocols exist in the honest-majority setting assuming key agreement, and thus under this as-
sumption, THB implies THC. In the information-theoretic setting, THC can be strictly stronger, as we will
see.
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Although broadcast is a privacy-free task, realizing THB turns out to be challenging,
even in the semi-honest setting where all parties follow the protocol. This is in stark
contrast to standard (topology-revealing) broadcast, which is trivially achievable in the
semi-honest setting, e.g., simply “flooding” the network, forwarding received messages.
For general semi-honest corruptions, the best THB constructions follow from a series of
works [1,2,21,26,29], culminating in THB (as well as THC) protocols for all graphs [2].
However, even for THB, all known protocols require structured public-key cryptographic
assumptions, such as QR, DDH, or LWE.2 The use of strong assumptions was justified by
Ball et al. [3] who showed that without an honest majority, even THB implies oblivious
transfer (OT).3

A central paradigm in standard (topology-revealing) secure computation is to ex-
change cryptographic assumptions with an honest-majority assumption [8,13,31]. A
recent work of Ball et al. [4] asked whether such a paradigm can be applied in the
topology-hiding realm. The results of [4] demonstrated that answering this question is
more subtle than meets the eye, even when considering the basic case of one semi-honest
corruption. On the one hand, they showed that information-theoretic THB (IT-THB) can
be achieved for the graph class of cycles, where the protocol hides the ordering of parties
within the cycle. On the other hand, they identified that THB for paths of n ≥ 4 nodes
(again hiding ordering) implies key agreement.

This work In a sense, [4] unveiled the tip of the iceberg, revealing a range of questions:
Which aspects of the topology can be hidden information theoretically, and which require
cryptographic hardness? Is key agreement sufficient for 1-corruption THB, or are there
graph classes that require stronger assumptions?

In this paper, we study the cryptographic power of THB. The main question that we
ask is:

What are the minimal cryptographic assumptions
required for THB for a given class of graphs?

We focus on a minimal setting, with a small number of parties and a single, or few,
semi-honest corruptions, which we denote by t-THB for t corruptions. This makes our
lower bounds stronger; and, as we demonstrate, even this simple setting offers a rich
multi-layered terrain, and provides insights and implications for more general settings
(including THC).

Before proceeding to state our results, we note that prior THB protocols actually
achieved the stronger property of topology-hiding anonymous broadcast (THAB), where
the identity of the broadcaster remains hidden [11,12]. From the definitions of these
primitives, we have that4

THC �⇒ THAB �⇒ THB.

2That is, theQuadratic Residuosity assumption, theDecisional Diffie–Hellman assumption, and theLearn-
ing With Errors assumption, respectively.

3The lower bound of [3] holds for 4-party 2-secure THB with respect to a small class of 4-node graphs,
namely a square, and a square with any of its edges removed.

4To see thatTHC ⇒ THAB, observe that semi-honest anonymous broadcast can be realized using a secure
sum, where the broadcaster inputs the message to be broadcast anonymously, and all other parties input 0.
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Thus, all lower bounds for THB (such as the one from [4] and our own results) apply
also for THAB and THC. As we will show, there are classes of graphs where THB is
possible information theoretically, but THAB, and thus THC, requires strong crypto-
graphic assumptions. Understanding for which topologies the reverse implications hold
is addressed here in part, but the full answer remains an interesting open question.

1.1. Our Results

This work makes significant strides in mapping the landscape of THB, THAB, and
THC in minimal settings, in the process developing new techniques that may be useful
to achieve a full understanding of its complexities. As standard in the THC literature,
we consider a synchronous setting, where the protocol proceeds in rounds.5

New Lower Bounds and Techniques

• THB.We explore which properties of graph topology are “hard” to hide, in the sense
of requiring cryptographic assumptions to do so. We show that hiding any one of the
properties of direction, distance, and/or distance-of-neighbors to the broadcaster
is hard—while revealing all three but nothing else (in fact, only revealing distance-
of-neighbors) can always be achieved information theocratically, using the trivial
flooding protocol.

• THAB. We observe that t-THAB for any graph class containing a graph that is not
(t + 1)-connected6 implies key agreement. We further show that hiding the number
of participants in certain graph classes implies infinitely often oblivious transfer,
even for 1-THAB.

Unconditional and KA-Based Upper Bounds

• Unconditional. We provide a construction of 1-THAB for all 2-connected graphs,
whose complexity grows with the number of potential graphs in the class (in partic-
ular, it is efficient for constant-size graphs), which achieves statistical information-
theoretic security.

• Key Agreement. Assuming the existence of key agreement, we achieve 1-THB for
all graphs, and 1-THAB for all graphs of ≥ 3 nodes.

Corollaries and Conclusions

• Dichotomy for1-THCwith≥ 3parties.An interesting corollary of our results is a di-
chotomy for 1-THCwith a fixed and known set of at least three parties7 (i.e., where
all graphs share the same vertex set): If all graphs in a class are 2-connected, the
class supports information-theoretic 1-THC; otherwise, key agreement is necessary
and sufficient for 1-THC.

• Dichotomy for 1-THAB with ≥ 3 parties. A similar result holds for 1-THAB
for a dynamic set of parties (i.e., the vertex set of every graph is a subset of
[n]) as long as each graph contains at least three nodes: If all graphs in a class

5LaVigne et al. [27] recently studied THC in a non-synchronous setting, demonstrating many barriers.
6A graph is k-connected if and only if every pair of nodes is connected by k vertex-disjoint paths.
7If the class of graphs contains a 2-path, then oblivious transfer is necessary for secure computation [24].
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are 2-connected, the class supports information-theoretic 1-THAB; otherwise, key
agreement is necessary and sufficient for 1-THAB.

• Characterization of 1-THB for small graphs. Our results introduce several new
constructions and analysis techniques; as a demonstration of their wider applicabil-
ity, we provide a characterization of the more complex case of 1-THB for all graph
classes on four nodes or fewer. Note that the feasibility boundaries of 1-THB are
more complex than 1-THAB since, as we show, certain lower bounds for 1-THAB
do not apply to 1-THB.

• THB without OT. Our upper bounds constitute the first protocols using machinery
“below” oblivious transfer,8 aside from the specific graph class of cycles of fixed
length (that was shown in [4]).

We next describe these results in more detail.

1.1.1. Lower Bounds

We begin by investigating the conditions under which THB and THAB for a graph class
G necessitate cryptographic assumptions.

THB: Hiding direction, distance, or distance-of-neighbors Recall that restricting at-
tention to a class of graphs G captures that a THB protocol hides partial information
about a graph. For example, if all graphs in G have property P , then the THB proto-
col need not hide whether P is satisfied when providing indistinguishability within this
class. Our question thus becomes: For which properties of a graph topology is it the case
that hiding necessitates cryptography?

Consider as a baseline the trivial “flooding” protocol, which in general is not topology
hiding. Parties flood the network: On receiving the broadcast message, a party forwards
it to all neighbors from which it was not previously received. Indeed, this protocol
reveals information; e.g., the round number in which a party first receives the message
corresponds directly to its distance from the broadcaster. However, even for this simple
protocol, the amount of information revealed is limited. The leakage can be quantified
precisely: Each party learns exactly the distance from the broadcaster of each of its
neighbors,9 or “distance-of-neighbors.” In particular, this includes the information of
(a) direction of the broadcaster (i.e., which neighbors are on a shortest path to the
broadcaster), and (b) distance to the broadcaster. Since the flooding protocol can be
executed unconditionally for any graph class G, it can only be some combination of this
leaked distance-of-neighbors information for which hiding requires cryptography.

Examining the lower bound of [4], we observe that it constitutes an example where hid-
ing the direction of the broadcaster from a given party necessitates key agreement (KA).
This is embodied via the class of two graphs G4-path = { 1 - 2 - 3 - 4 , 2 - 3 - 4 - 1 }
on a path, where party 3 is unaware whether the broadcasting party 1 lies to its left

8Note that OT is strictly stronger than KA in terms of black-box reductions, since OT implies KA in a
black-box way, but the converse does not hold [18].

9If the neighbor sends the message in the first round that the party learns it, then its distance is one less of
the party’s distance. If the neighbor sends after the party learned it, then its distance equals the party’s distance.
If the neighbor does not send, then its distance is one more than the party’s distance.
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or right. Indeed, broadcaster direction is central to their lower bound, where KA agents
Alice and Bob emulate the THB parties 1 and 4 , respectively, and jointly emulate 3 .
Each flips a (private) coin to decide whether to also emulate 1 on their corresponding
side. The two parties can detect cases where both (or neither) party decided to emulate
1 . In the remaining cases, both parties agree on which side the broadcaster appears:
This will serve as the secret common key bit.

At a high level, the security of this KA protocol relies on the fact that the eavesdropper’s
view is essentially that of party 3 —who, by topology hiding, cannot distinguish the
relative direction of 1 . Thus, one may naturally ask whether hiding the direction to the
broadcaster captures the essence of the cryptographic power of THB.

Our first result shows that the direction to the broadcaster is not the complete answer.
We present a class of graphs Goriented-5-path for which any constant-round 1-secure THB
implies infinitely often key agreement,10 but for which the direction to the broadcaster is
always known. Specifically, we consider the class of 5-path graphs where the broadcaster
1 is always on the left,11 i.e.,

Goriented-5-path =
{

1 - 2 - 3 - 4 - 5 , 1 - 5 - 2 - 3 - 4 , 1 - 4 - 5 - 2 - 3 , 1 - 3 - 4 - 5 - 2
}
.

Because of this structure, the lower bound techniques of Ball et al. [4] do not apply.
Proving a key-agreement implication for Goriented-5-path requires a new, more subtle
approach, which we discuss in Sect. 1.2. In particular, unlike [4], we must leverage the
fact that topology hiding holds for any choice of corrupted party. For example, party 3
cannot distinguish between 1 - 2 - 3 - 4 - 5 and 1 - 5 - 2 - 3 - 4 , and party 2 cannot

distinguish between 1 - 5 - 2 - 3 - 4 and 1 - 4 - 5 - 2 - 3 .
Taking a broader view of this example, we observe that while the direction of the

broadcaster is public for Goriented-5-path, the information to be hidden corresponds di-
rectly to the distance of the given parties to the broadcaster. One may thus once again
wonder whether revealing both the direction and distance to the broadcaster dictates
unconditional THB feasibility.

Our second result reveals that the answer is even more intricate. We demonstrate a
class of graphs for which each party publicly knows both its direction and distance to
the broadcaster, but for which 1-THB still implies key agreement.

Specifically, we consider the class Gtriangle consisting of a triangle, with possibly one
of its edges missing (see Fig. Fig. 1). Interestingly, this is a very basic communication
pattern: If a party has two neighbors, it does not know if its neighbors are directly
connected or not, but a party with one neighbor knows the entire topology. Notably,
direction and distance from the broadcaster are both clearly identifiable to each party
given just its neighbor set; the only information hidden from a party is its neighbor’s
distance to the broadcaster. We show that this is enough to imply KA (see Sect. 1.2 for
details).

10An infinitely often key agreement guarantees correctness and security for infinitely many λ ∈ N (where
λ stands for the security parameter).

11In particular, the “left/right” orientation can be deduced locally from each node’s neighbor set.
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Fig. 1. The class Gtriangle.

To summarize, for each strict subset of the properties that are leaked by the flood-
ing protocol (namely direction and/or distance to the broadcaster) we demonstrate a
graph class for which hiding only these properties implies public-key cryptographic
assumptions. Complementarily, if all three properties (essentially, just the distance-of-
neighbors) are known then one can use the flooding protocol to obtain THB information
theoretically.

Theorem 1.1. (THB lower bounds, informal) We consider THB with one semi-honest
corruption.

• 1-secure THB for the graph class Goriented-5-path of 5-path graphs for which the
broadcasting party is always in the left-most direction (see above) implies infinitely
often key agreement.

• 1-secure THB for the graph class Gtriangle (Fig. 1), for which the broadcasting party
is always at a known distance and direction, implies key agreement.

In contrast, for any class G such that for every party the distance of each of its neighbors
to the broadcaster is fixed and known across all graphs, there exists an unconditionally
1-secure THB protocol.

THAB:Key Agreement and Beyond We next turn to topology-hiding anonymous
broadcast (THAB). As mentioned above, any lower bound for THB is also a lower
bound for THAB; however, we show even stronger results for THAB.

The connection between anonymous communication and cryptographic hardness was
previously studied by Ishai et al. [22]. They showed that in a communication network
that provides sender-anonymity (under relatively strong adversarial observation), key
agreement exists unconditionally; i.e., each pair of parties within the system can agree
on a secret key. Our setting is slightly different, however, using the lower bound technique
from [4] a similar observation can be made: Sender-anonymous communication over a
path of three nodes implies the existence of standard Alice–Bob key agreement, where
the eavesdropper can see which party sends which message.

This clear-cut impossibility of information-theoretic 1-THAB (in fact, 1-secure anony-
mous broadcast) on arbitrary incomplete networks stands in contrast to 1-THB, where
the determination of when a graph class yields an implication to key agreement was
demonstrably complex. Concretely, consider the following (singleton) class G{1-2-3}:

G{1-2-3} = {
1 - 2 - 3

}
.

THB for this class is glaringly trivial (indeed, there is no information to hide because the
topology is fixed); however, as discussed, 1-THAB on this class implies key agreement.
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For completeness, in Sect. 5.1 we prove this implication as a direct corollary of the key-
agreement lower bound of Ball et al. [4], where the “direction” of the broadcaster (either
1 or 3 ) in this case is hidden from the intermediate party 2 by anonymity.

At this moment, the reader may pause, ensnared in the underwhelming nature of the
above class G{1-2-3}. However, by a standard player-partitioning argument (“projecting”
a larger graph down onto the 3-path), the above result yields a much broader statement.

Proposition 1.2. (THAB lower bound 1, informal, [4,22]) Let G be a class of graphs
that contains a graph with at least (t + 2) nodes that is not (t + 1)-connected. Then,
t-secure THAB for G implies KA.

In our final lower bound result, we demonstrate an even more extreme form of sepa-
ration between THB and THAB. We consider the graph class G2-vs-3 that consists of all
possible 2-path and 3-path graphs over three parties, i.e.,

G2-vs-3 =
{

1 - 2 , 1 - 3 , 2 - 3 , 1 - 2 - 3 , 2 - 3 - 1 , 3 - 1 - 2
}
.

In this class, for example, if 1 is connected only to 2 , then it does not know whether
2 has a second neighbor (necessarily 3 ) or not. It is easy to see that 1-secure THB
exists unconditionally for this class (by the flooding protocol); however, we show that 1-
secure THAB implies infinitely often oblivious transfer.12 We emphasize that as opposed
to other classes of graphs discussed thus far, the “hardness” of the class G2-vs-3 is based
on hiding the number of nodes participating in the protocol. We refer the reader to
Sects. 1.2 and 5.2 for further details on the lower bound.

Overall, we obtain the following theorem.

Theorem 1.3. (THAB lower bound 2, informal) 1-secure THAB for G2-vs-3 implies
infinitely often OT.

We remark that these results separate THB from THAB for very simple graph classes,
where THAB requires computational assumptions whereas unconditional THB exists
via the trivial flooding protocol. Later, in Sect. 1.1.2 we will show a more interesting
separation via the “butterfly” graph, where the existence of information-theoretic THB
itself is non-trivial.

1.1.2. Upper Bounds

Before stating our results, we recall the state of the art for semi-honest THB and THAB
with one corruption. Assuming oblivious transfer (OT), 1-THAB can be obtained for
all graphs following the construction approach of Moran et al. [29].13 Without assum-

12An infinitely often OT protocol guarantees correctness and security for infinitely many λ ∈ N (where λ

stands for the security parameter).
13The result of [29] was limited to graphs of small diameter to allow an arbitrary number of corruptions.

With a single corruption, the same construction can support all graphs.
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Fig. 2. The butterfly graph.

ing OT, the only previously known non-trivial14 construction of THB or THAB is the
information-theoretic 1-THAB for the specific graph class of cycles on a known number
of nodes in [4].

We consider three settings of upper bounds: (1) with information-theoretic security,
(2) assuming only key agreement, and (3) converting generically from THB to THAB.

Information-theoretic security First, we consider protocols for achieving 1-THAB (and
THB) in the information-theoretic setting, without cryptographic assumptions. Recall
that the lower bound in Proposition 1.2 rules out the possibility of 1-THAB for any graph
class containing a graph that is not 2-connected. We show that conversely, if a class of
graphs G contains only 2-connected graphs, then 1-THAB for G is feasible.

The protocol’s communication grows polynomially in the size of the class G, and
its computation grows polynomially in the size of G and exponentially in the maximal
degree of any G ∈ G. However, our results are meaningful despite this caveat: First,
the protocol is efficient when considering a constant number of parties (or appropriate
graph classes of polynomial size). Second, since the protocol remains secure against
computationally unbounded adversaries, it is still meaningful to consider protocols that
are inefficient in the class.

Theorem 1.4. (1-IT-THAB for 2-connected, informal) LetG be a class containing only
2-connected graphs. Then, there exists a statistical information-theoretic 1-THAB for G
whose communication complexity is polynomial in the size of G, and whose computation
complexity is polynomial in the size of G and exponential in the maximal degree of G.

Combining Proposition 1.2 and Theorem 1.4 gives a characterization for information-
theoretic 1-THAB: Namely, a protocol exists if and only if all graphs in the class are
2-connected (with the exception of the trivial class containing only the 2-path). For the
case of 1-THB, such dichotomy does not hold and, as we show, there exist graph classes
with 1-connected graphs that still admit information-theoretic 1-THB protocols.

Remark 1.5. (1-IT-THB forGbutterfly) Consider the 5-node, 1-connected butterfly graph
(Fig. 2), and let Gbutterfly contain all permutations of the nodes on the graph (where
parties’ positions are permuted). In Sect. 6.2, we show that although the simple flooding
protocol does not directly hide topology, there exists a (perfectly secure) information-
theoretic 1-THB protocol for Gbutterfly.

14THB exists trivially for any graph class in which each party’s neighborhood uniquely identifies the graph
topology.
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Upperbounds fromKARecall that from the lower bounds presented above (see Sect. 1.1.1),
key agreement is a necessary assumption for 1-THB and 1-THAB for many classes of
graphs. This begs the question of when key agreement is also a sufficient assumption for
1-THB and 1-THAB. We show that assuming key agreement there exist 1-secure THB
for all graphs, and 1-secure THAB for all graphs containing at least 3 nodes.

Theorem 1.6. (1-THAB and 1-THB from KA, informal)

• Let G be a class consisting of graphs with at least three nodes. Assuming key
agreement, there exists 1-THAB for G.

• Let G be a class of graphs. Assuming key agreement, there exists 1-THB for G.

We note that in the first item of Theorem 1.6, removing the restriction of at least three
nodes would require bypassing black-box separation results, due to Theorem 1.3 that
asserts the necessity of (infinitely often) OT for the class G2-vs-3. On the other hand, by
[29], assuming OT there exists 1-THAB for all graphs, essentially closing the gap in this
regime.

THC dichotomy Upon closer inspection, we observe that our upper bounds—both the
information-theoretic protocols for 2-connected graphs, as well as the results from KA
above—give something even stronger than 1-THAB: They give topology-hiding secure
message transmission, i.e., emulating pairwise secure point-to-point channels. In this
case, assuming that the number of parties is fixed and known across all graphs, we can
run the semi-honest “BGW” protocol [8], which only requires pairwise secure channels
and works for an honest majority. Thus, together with our lower bounds, we arrive at
the following dichotomy for 1-THC:

Corollary 1.7. (1-secure THC dichotomy, informal) Consider a class of graphs G on
n ≥ 3 nodes. Then, the following hold regarding existence of THC for G secure against
1 semi-honest corruption:

• If all graphs G ∈ G are 2-connected, then there exists a statistically information-
theocratically secure, 1-THC protocol for G, whose communication is polynomial
in the size ofG andwhose computation is polynomial in the size ofG and exponential
in the maximal degree of G.

• If there exists G ∈ G that is not 2-connected, then KA is necessary and sufficient
for 1-secure THC for G.

Generically converting THB to THAB Our results have demonstrated a number of non-
trivial separations between THB and THAB, identifying classes of t-connected graphs
and computational assumptions which admit t-THBprotocols but provably cannot obtain
t-THAB. This includes, for example, G{1-2-3} and Gbutterfly for information theoretic vs.
key agreement, as well as G2-vs-3 for information theoretic vs. oblivious transfer.

Finally, we show that graph connectivity is, indeed, a critical property for determining
the relation between THB and THAB on a class of graphs. Specifically, we show that
(t + 1)-connectivity is a sufficient condition for equivalence of the two notions against
t corruptions.
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Table 1. Summary of upper and lower bound results.

1-THB 1-THAB

Sufficient Necessary Sufficient Necessary

IT Gcycle [4] – 2-connected
(Thm 1.4)

–

Gbutterfly
(Re-
mark 1.5)
2-
connected
(Thm 1.4)

KA All graphs
(Thm 1.6)

G4-path [4] All graphs (≥ 3
nodes) (Thm 1.6)

Not 2-connected

Goriented-5-path
(Thm 1.1)

(≥ 3 nodes)

Gtriangle
(Thm 1.1)

(Prop 1.2)

OT All graphs
[29]

– All graphs[29] G2-vs-3 (Thm 1.3)

Theorem 1.8. (t-THB ⇒ t-THAB given (t + 1)-connectivity, informal) Let n ∈ N,
and let G be a class consisting of (t + 1)-connected graphs over n nodes. If there exists
t-THB for G, then there exists t-THAB for G.

Our reduction builds upon the “Dining Cryptographers” approach for anonymous
broadcast due to Chaum [12]. Recall in THAB there exists a unique broadcaster who
wishes to convey its input bit x ∈ {0, 1} to all parties without revealing its identity (or
the topology). To do so, each party first additively secret shares its input—defined to
be 0 for any non-broadcaster—across its neighbors, locally sums all received shares to
si ∈ {0, 1}, and then acts as broadcaster within the underlying (non-anonymous) THB
with input value si . After this phase, all parties receive the vector of shares (s1, . . . , sn),
which can be summed to yield the original input x . It was shown by [12] that if the graph
is (t + 1)-vertex connected (so as to ensure that the adversary cannot corrupt a vertex
cut), then the protocol is anonymous. We observe that the protocol further preserves the
topology hiding of the underlying THB protocol. Indeed, given (t + 1)-connectivity, the
vector of broadcasted shares (s1, . . . , sn) will be uniform conditioned on the necessary
sum, independent of the graph structure.

1.1.3. Summary and Characterization of Graphs with up to Four Nodes

We summarize our combined contributions in Table 1, together with relevant prior results.
In addition, and as a demonstration of the power and applicability of the techniques

developed, in Sect. 8.2 we provide a characterization of the feasibility of 1-THB and
1-THAB for all graph classes on up to 4 parties. The characterization uses a partition
of the 4-node graphs into multiple classes, each of which can be handled by a separate
technique.
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1.2. Technical Overview

We next highlight a selection of our new analysis and protocol-construction techniques,
described in Sects. 1.2.1 to 1.2.4. We will describe two analysis techniques that are used
in our lower bounds: “phantom jump” and “artificial over-extension.” In addition, we will
describe two protocol-design techniques that are used in our upper bounds: “censored
brute force” and “dead-end channels.”

1.2.1. Analysis Technique: “Phantom Jump”

The “phantom jump” technique is a means for proving indistinguishability of the tran-
script of messages sent across a given edge 1 - 2 in THB executions on two different
graphs, via a sequence of intermediate indistinguishability steps, each appealing to THB
security for a different graph pair. In applications, the initial and final graphs will have
a party “jump” from one side of the graph to the other, which will be used within the
key-agreement implication analysis.

This technique is used within some of our key-agreement lower bounds. We focus
here on a specific example for the class Gtriangle (of a triangle graph with a potential
edge missing). We point the reader to more elaborate examples on 4-node graph classes
in Sect. 8.2.

We start by recalling how a 1-THB protocol π for G4-path = { 1 - 2 - 3 - 4 , 2 - 3 - 4 -
1 } was used to construct key agreement in [4]. The idea is for Alice to choose two long
random strings m1 and m2 and send them to Bob in the clear. Next, Alice and Bob
continue in phases as follows:

• In each phase, Alice and Bob locally toss coins A and B, respectively.
• They proceed to run two executions of π in which Alice always emulates 2 and 3

and Bob emulates 4 . In addition, if A = 0, then Alice emulates 1 (as a neighbor
of 2 ) broadcasting m1 in the first run; otherwise, she emulates 1 broadcasting m2
in the second run. Similarly, if B = 1, then Bob emulates 1 (as a neighbor of 4 )
broadcasting m1 in the first run; otherwise, he emulates 1 broadcasting m2 in the
second run.

• If parties 2 and 4 output m1 in the first run and m2 in the second, Alice and Bob
output their bits A and B, respectively; otherwise, they execute another phase.

Clearly, if A = B in some iteration, then Alice and Bob will output the same coin,
and by the assumed security of π , the eavesdropper Eve will not be able to learn who
emulated 1 in the first run and who in the second. If A �= B, then in at least one of the
runs nobody emulates the broadcaster 1 , so with overwhelming probability Alice and
Bob will detect this case.

We proceed to adjust this argument to Gtriangle. Constructing the KA protocol is rather
similar, where Alice always emulates 2 and Bob always emulates 3 , and each party
emulates the broadcaster 1 based on their local coins A and B (see Fig. 3). Proving
correctness follows exactly as in the argument from [4]; however, proving security is
more involved. Indeed, in G4-path the view of Eve corresponds to a partial view of the
intermediate node 3 who is never a neighbor of 1 and, so by the security of π , never
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Fig. 3. 1-THB on Gtriangle implies KA.

learns its direction to 1 . When considering Gtriangle, the view of Eve consists of the
communication between 2 and 3 , and one of them must be a neighbor of 1 .

This is where the new phantom-jump technique comes into play. As opposed to [4],
we do not construct a reduction from Eve to the security of the THB protocol; rather, we
use a direct indistinguishability argument. Notice that the KA construction required the
use of only two graphs 1 - 2 - 3 and 2 - 3 - 1 . The third graph (the triangle) is needed
for the proof.

As depicted in Fig. 3, the view of Eve consists of the communication between 2
and 3 . By THB security 2 cannot distinguish between the 3-path 1 - 2 - 3 and the
complete triangle; in particular, the distribution of the messages on the channel between
2 and 3 is indistinguishable in both cases. Similarly, by THB security 3 cannot
distinguish between the 3-path 2 - 3 - 1 and the complete triangle; in particular, the
distribution of the messages on the channel between 2 and 3 is indistinguishable in
both cases. By a simple hybrid argument, it follows that the messages between 2 and
3 are indistinguishable when communicating in 1 - 2 - 3 and when communicating in
2 - 3 - 1 . It follows that the distinguishing advantage of Eve is negligible.

1.2.2. Analysis Technique: “Artificial Over-Extension”

The artificial over-extension technique is used for proving two of our lower bounds:
first, Theorem 1.1 where 1-THB for Goriented-5-path is used to construct infinitely often
KA (see also Sect. 4.1) and second, Theorem 1.3 where 1-THAB for G2-vs-3 is used to
construct infinitely often OT (see Sect. 5.2). In the following, we focus on the latter.

Recall that in the class G2-vs-3 a party (say 1 ) that has a single neighbor (say 2 ) does
not know whether 2 has another neighbor, 3 , or not. This uncertainty is the source
of the cryptographic hardness we present; indeed, if the parties know that an honest
majority cannot be assumed (i.e., there are only two parties), then 1-THAB is trivial,
whereas if an honest majority can be assumed (i.e., there are three parties), then 1-THAB
exists assuming KA (by Theorem 1.6). We also note that without anonymity, 1-THB
trivially exists in G2-vs-3 (via the flooding protocol).

We start with an intermediate goal, that of constructing oblivious transfer from a two-
round 1-THAB protocol π for the graph class G2-vs-3,15 and later explain how the novel
“artificial over-extension” technique allows us to extend this construction to arbitrary
constant-round protocols. Note that using this technique we can only construct infinitely

15In fact, for this step we will only need for the subclass { 2 - 3 , 1 - 2 - 3 , 2 - 3 - 1 } ⊆ G2-vs-3.
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Fig. 4. Boolean AND from two-round 1-THAB for { 2 - 3 , 1 - 2 - 3 , 2 - 3 - 1 }.

often OT, and extending the implication to a full-blown OT is left as an interesting open
question.

OT from two-round 1-THAB Given a two-round 1-THAB protocol π , we construct a
secure two-party protocol for Boolean AND (which in turn implies OT, by Kilian [24]).

In the protocol, Alice and Bob will emulate an execution of the 1-THAB protocol on
a path, where each extends the length of the path (by emulating an extra party) if their
input is 1. More concretely, Alice simulates a single node 2 if her input is 0, and two
nodes 1 - 2 if her input is 1. Similarly, Bob simulates a single node 3 if his input is 0
and two nodes 3 - 1 if his input is 1 (see Fig. 4). Next, Alice chooses a random message
m ← {0, 1}λ, sends it to Bob in the clear, and initiates an execution of π on message m
on the graph with her left-most node (either 2 or 1 ) as broadcaster. At the conclusion
of π , Bob identifies whether his right-most emulated party (either 3 or 1 ) correctly
outputs m. If so, then Bob outputs 0; if not, he outputs 1.

We show that this protocol securely computes AND of Alice and Bob’s inputs.

• For security, we exploit the fact that the only case where there is something to
hide (namely if a party holds input 0) is where the respective party has control
over just a single node in π . Security therefore follows from the fact that π is a
THAB protocol with security against one corruption. For example, the views of a
corrupt Alice emulating 2 within executions over graphs 2 - 3 (Bob has input 0)
and 2 - 3 - 1 (Bob has input 1) are indistinguishable.
Note here that for security it is crucial that π is an anonymous broadcast protocol,
because in case x = 0, Alice broadcasts from node 2 and in case x = 1 from node
1 . In fact, as noted above, 1-THB can be achieved trivially on G2-vs-3.

• For correctness, first note that when at least one party has input 0, the corresponding
graph is an element of { 2 - 3 , 1 - 2 - 3 , 2 - 3 - 1 } ⊆ G2-vs-3, in which case proper
delivery of m to Bob’s right-most node is guaranteed by correctness of π . On the
other hand, when x ∧ y = 1 (i.e., both Alice and Bob emulate node 1 ), the parties
effectively emulate π over an “invalid” length-4 path 1 - 2 - 3 - 1 . While behavior
of π within such execution is unclear, since π runs in only 2 rounds, the message
m simply cannot reach the right-most node emulated by Bob at distance 3. Thus,
Bob will correctly output 1 with overwhelming probability.

Infinitely often OT from constant-round 1-THAB Note that correctness of the con-
struction above crucially relies on efficiently detecting an execution of π on the graph
1 - 2 - 3 - 1 , leveraging its insufficient round complexity. However, this argument is
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no longer guaranteed when π completes in more than two rounds. This is where the
“artificial over-extension” technique comes into play.

The insight is that either an execution of π on graph 1 - 2 - 3 - 1 can indeed be
efficiently detected, in which case the protocol above extends (and we are done), or
π actually provides a stronger form of topology hiding that we can further leverage.
Namely, if neither Alice nor Bob can identify when π is executed on 1 - 2 - 3 - 1 as
opposed to a legal graph, then in particular π provides 1-THAB for the larger graph
class G′

2-vs-3
..= G2-vs-3 ∪ { 1 - 2 - 3 - 1 }.

In the latter case, we can take a similar approach to above, but with the graph class
{ 1 - 2 , 3 - 1 - 2 , 1 - 2 - 3 - 1 } ⊆ G′

2-vs-3, with Alice emulating 1 or 3 - 1 , and Bob
emulating 2 or 2 - 3 - 1 , and hope that π identifiably breaks down on the “over-
extended” path 3 - 1 - 2 - 3 - 1 of length 5. If not, this argument repeats, until—via
this artificial over-extension technique—ultimately we reach a graph class G for which:

• π is 1-THAB on G, including { u∗
2 - u∗

3 , u∗
1 - u∗

2 - u∗
3 , u∗

2 - u∗
3 -P∗} ⊆ G

• π is not 1-THAB on G ∪ { u∗
1 - u∗

2 - u∗
3 -P∗}

where u∗
1 , u∗

2 , u∗
3 ∈ { 1 , 2 , 3 }, and P∗ is a path of length upper bounded by the

round complexity of π . Once we do, then the original secure-AND protocol approach
will succeed, modulo some differences described below, with Alice emulating u∗

2 or

u∗
1 - u∗

2 , and Bob emulating u∗
3 or u∗

3 -P∗.

To argue that eventually we find a path u∗
1 - u∗

2 - u∗
3 -P∗ for which π identifiably breaks

down, we again appeal to its bounded round complexity, i.e., π must fail identifiably
(with probability 1) once the length of the path exceeds the round complexity. The
limitation of constant rounds is a subtle side effect of the corresponding hybrid argument,
to argue that there must be some step where we jump sufficiently from indistinguishable
to efficiently identifiable.

Consider the resulting secure-AND protocol, once an appropriate u∗
1 , u∗

2 , u∗
3 , P∗

are found. The only modification from the simpler two-round version is how to detect
the (over-extended) case x ∧ y = 1. When π was two rounds, identifying this event was
immediate: Bob’s right-most party simply will not receive the delivered message. Here,
this is not necessarily the case, as the identifiable “breakdown” of π may occur before
the length of u∗

1 - u∗
2 - u∗

3 -P∗ exceeds π ’s round complexity. Thus, instead, the parties
will run the distinguisher that—roughly speaking—exists from the fact that π is not
1-THAB on G ∪ { u∗

1 - u∗
2 - u∗

3 -P∗}. This is the reason why our final protocol guarantees
correctness only for infinitely many λ ∈ N: All we can say is that either the protocol π is
1-THAB on G ∪ { u∗

1 - u∗
2 - u∗

3 -P∗} and we can continue with the extension argument, or
π is not 1-THAB, i.e., there exists a distinguisher that efficiently detects the “too-long”
path u∗

1 - u∗
2 - u∗

3 -P∗ with noticeable advantage for infinitely many λ ∈ N.
Finally, in order to boost correctness toward negligible correctness error (for infinitely

many λ), Alice and Bob simply run the protocol π and the distinguisher sufficiently many
times, each time on input of a fresh message m, and take a corresponding majority vote.
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1.2.3. Protocol Design: “Censored Brute Force”

The Censored Brute Force technique enables constructing unconditionally secure pair-
wise channels between each pair of parties which further guarantees sender anonymity.
Such anonymous and private channels are used for proving Theorem 1.4 and Corollary
1.7, by constructing 1-THAB and 1-THC with information-theoretic security for any
class G for which all graphs are 2-connected (see Sect. 6.1 for more details). Recall that
the communication complexity of the resulting protocols is polynomial in the size of G
(i.e., the number of graphs in the class, which could be superpolynomial in the number of
parties) and the computation complexity is polynomial in the size of G and exponential
in the maximal degree of G.

The high-level idea is twofold: For any single 2-connected graph G, we show how to
unconditionally perform sender-anonymous point-to-point communication on G with
an ability for any party to (anonymously) “censor” the communication, i.e., yielding
delivery of random garbage instead of the intended message. Then, for a given class of
2-connected graphs G, the parties will simultaneously execute (in parallel) a separate
anonymous-communication protocol for every graph G ∈ G; for each such G-execution,
a party will censor the execution if its true neighborhood is inconsistent with its neigh-
borhood in G. As such, the only protocol execution that remains uncensored will be the
one corresponding to the correct execution graph G (and the identity of which G this
corresponds to can be made hidden to the receiving party). We elaborate on these two
aims below.

Communicating anonymously in a 2-connected graph More concretely, suppose we
have a single 2-connected graph G on vertex set [n], and fix some designated source and
target nodes σ �= τ ∈ [n]. Let Hστ denote an arbitrary στ -orientation of G,16 i.e., a
directed acyclic graph with unique sink τ and unique source σ formed by assigning
a direction to each edge in G. Moreover, label all nodes 1, 2, . . . , n according to a
topologically consistent ordering of Hστ (beginning with σ and ending at τ ). We consider
the numbering/orientation of any graph G to be a public parameter, computed according
to some deterministic procedure (see Proposition 6.3).

Now, suppose node u wishes to send a message m to the target node τ anonymously
and securely on the graph G. In the first round, the source σ (i.e., the node labeled 1)
prepares additive shares of 0 (or of m if σ = u) for each of its outgoing edges in Hστ .

In round 2, the source σ sends the corresponding share to its neighbor node labeled
2, who then prepares secret shares of what it received (+m if it is u) for each outgoing
edge. More generally, in round i < n all nodes with an edge to the i th node send their
shares to the i th node. The i th node, having received shares on all incoming edges, then
sums up what it receives (adds m if it is u) and prepares additive shares of the result for
each of its outgoing edges. In round n, all nodes with edges to τ (the target node) send
their shares to τ and τ outputs their summation.

Correctness follows from the homomorphic properties of additive secret sharing. To
see why this protocol is secure (namely that it hides u andm), note that the 2-connectivity
of G implies that there are at least 2 vertex-disjoint στ -paths in Hστ . Thus, the messages

16The standard notation in the literature is st-orientation; to avoid confusion with the notation t that stands
for the corruption threshold, we use στ -orientation instead.
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any intermediate party (corresponding to 2, . . . , n − 1) receives are uniformly random
because that node is in some sense always missing at least one share (corresponding to
a disjoint στ -path); the source σ does not receive anything at all, and the view of the
target τ is simply a random sharing of its output m.

This protocol enjoys some other useful properties. Most notably, any non-sink node
can covertly “censor” communication by simply preparing (and sending) shares of a
uniformly random message, instead of preparing shares corresponding to what they
received (as per the protocol). The view of every other party is identically distributed,
with the exception of τ who now receives secret shares of a uniformly random message
in the final round.

Compiling to hide topology Now, let G be a class of 2-connected graphs on vertex set
[n]. Loosely speaking, the parties will simulate the above protocol for every possible
graph in G simultaneously. Each node will covertly censor every protocol corresponding
to a graph that is not locally consistent with their local neighborhood (sending random
messages at the appropriate times). As a result, exactly one protocol (corresponding to
the “real” graph) will give the correct output message and all others will give uniformly
random output.

To be slightly more concrete, all nodes will execute the protocol above for each graph
in the class in parallel. To keep track of which message is which, for every node but τ we
will label the messages with the graph/protocol that the message corresponds to. If an
edge is missing from the real graph, but present in a graph corresponding to one of the
simulated protocols, the corresponding message cannot be sent. However, the receiving
node knows not to expect a message either. From this and the uniformly random nature
of non-terminal messages in the above protocol, nothing is leaked locally by labeling
the simulations. However, sending labeled messages to τ would clearly identify the
“real” topology. So instead, all parties will send all final protocol messages in randomly
permuted order. To enable τ identifying the real output, the sender will append a long
checksum to the message. The target τ will try all message combinations (this is the
reason for the exponential dependency in the maximal degree) and output the unique
one with a correct checksum (or abort if more than one message has a valid checksum).

1.2.4. Protocol Design Technique: “Dead-End Channels”

The Dead-End Channels technique is used for proving Theorem 1.6 (see also Sect. 7),
i.e., to obtain 1-THAB for all graphs of at least three nodes (and 1-THB for all graphs),
assuming existence of key agreement. Recall that before the present work, such results
were only known assuming oblivious transfer [29].

The high-level idea of our 1-THAB protocol, as in Moran et al. [29], is to broadcast
the message via flooding, but in a way that hides from the parties at which round they
received the broadcast message. This can be achieved by passing the message between
virtual parties, each consisting of two real parties that hold additive secret shares of the
message (depicted, e.g., as pink bars for each neighboring pair of parties below). Only
in the final round will the parties exchange their secret shares and recover the message.
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The challenge thus becomes passing the messages between virtual parties. In [29],
this is solved by using oblivious transfer (OT) to run an MPC protocol realizing the
virtual party, and allowing every adjacent pair of virtual parties to securely compute the
OR of their messages.

In our setting, we do not have the ability to perform secure computations pairwise
between parties without OT. Instead, we leverage the fact that given at least three nodes
we are guaranteed an honest majority and can therefore (once the parties establish se-
cure channels using the key agreement protocol) build on techniques from information-
theoretic secure computation to appropriately pass along the message.

However, this itself is not so straightforward. For example, in the image above, the
neighboring parties 2 - 3 - 4 would wish to jointly emulate a three-party secure com-
putation to perform the secure transfer from 2 - 3 to 3 - 4 . But, the issue is that parties
cannot reveal whether they truly have neighbors with which to jointly compute: For
example, party 2 above must then emulate a nonexistent neighbor 1 to hide its true
degree. Thus, grouping parties in three, including possibly a simulated neighbor, would
allow the adversary to gain control over a majority. (On the other hand, building on
secure computation including four our more neighbored parties, the same party could
appear several times in the protocol and therefore potentially learn about the connectivity
of its neighbors.)

Our approach builds on the following idea: We will give one party within each group
of three the role of a dealer to deal OT correlations, which can be used to establish
a secure OT channel between two other parties. This alone is not sufficient, as one
of the parties could be simulated by the dealer (in the case that the dealer has degree
one), and therefore allows the dealer to gain full control over the OT channel, and in
particular learn the honest parties’ inputs. To prevent this, we observe that—again using
OT correlations—one can establish dead-end channels (i.e., information sent via such
a channel cannot be read by anyone apart from the sender) if and only if the receiver
is a simulated party. Therefore, even if the dealer simulates one of the parties, it does
not learn anything about the honest parties’ inputs. Note that it is crucial that dead-end
channels are indistinguishable from secure channels from the view of the sender. Further,
a key observation is that using OT correlations to establish dead-end channels does not
leak anything about the topology, even if the dealer of the OT correlations has degree
one. This is the case, because the only thing the dealer could potentially learn from the
other party is whether its degree is one—but if the dealer has degree one it already knows
that the degree of its neighbor must be at least two (as we are guaranteed a connected
graph with a strict honest majority).

1.2.5. Organization of the Paper

In Sect. 2, we provide the necessary definitions and preliminaries. In Sects. 4 and 5, we
present our THB and THAB lower bounds, respectively. In Sects. 6 and 7, we present
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our information-theoretic and KA-based upper bounds. In Sect. 8, we present corollaries
and implications of our techniques as well as a characterization of 1-THB for graphs
with at most four nodes.

2. Preliminaries

Notations For n ∈ N let [n] = {1, . . . , n}. In our protocols, we sometimes denote by n
an upper bound on the number of participating parties and by t an upper bound on the
number of corrupted parties. The security parameter is denoted by λ.

Graph notations and properties A graph G = (V, E) is a set V of vertices and a set
E of edges, each of which is an unordered pair {v,w} of distinct vertices. A graph is
directed if its edges are instead ordered pairs (v,w) of distinct vertices. An oriented
graph is a directed graph having no symmetric pair of directed edges, and an orientation
of an undirected graph is an assignation of a direction to each of its edges so as to make
it oriented. A graph is k-connected if it has more than k vertices and remains connected
whenever fewer than k vertices are removed. A graph class G is k-connected if every
graph G ∈ G is k-connected. Throughout this paper, we only consider connected graphs,
even if we do not systematically make this explicit. The (open) neighborhood of a vertex
v in an undirected graph G, denoted NG(v), is the set of vertices sharing an edge with v

in G. The closed neighborhood of v in G is in turn defined by NG [v] ..= NG(v) ∪ {v}.

2.1. Topology-Hiding Computation (THC)

Following [29], we consider two definitions of topology-hiding computation. Our pos-
itive results (protocol constructions) in Sects. 6 and 7 are defined with respect to the
stronger simulation-based definition, while our lower bounds in Sects. 4 and 5 are given
with respect to the weaker indistinguishability-based definition.

UC framework The simulation-based definition is defined in the UC framework of
Canetti [9]; we present an informal overview of the model in Appendix A. Unless
stated otherwise, we will consider computationally unbounded, static, and semi-honest
adversaries and environments.

2.1.1. Simulation-Based THC.

We recall the definition of simulation-based topology-hiding computation from [4,29].
The real-world protocol is defined in a model where all communication is transmitted
via the functionality FG

graph (described in Fig. 5). The functionality is parameterized by
a family of graphs G, representing all possible network topologies (aka communication
graphs) that the protocol supports. We implicitly assume that every node in a graph is
associated with a specific party identifier, pid. To simplify the notation, we will consider
that Pv in the protocol is associated with node v in the graph.

Initially, before the protocol begins, FG
graph receives the network communication

graph G from a special graph party Pgraph, makes sure that G ∈ G, and provides to
each party Pv with v ∈ V its local neighbor-set. Next, during the protocol’s execution,
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Fig. 5. The communication graph functionality.

whenever party Pv wishes to send a message m to party Pw, it sends (v,w,m) to the
functionality; the functionality verifies that the edge (v,w) is indeed in the graph, and
if so delivers (v,w,m) to Pw.

Note that if all the graphs in G have exactly n nodes, then the exact number of par-
ticipants is known to all and need not be kept hidden. In this case, defining the ideal
functionality and constructing protocols become a simpler task. However, if there exist
graphs in G that contain a different number of nodes, then the model must support func-
tionalities and protocols that only know an upper bound on the number of participants.
In the latter case, the actual number of participating parties must be kept hidden.

Given a class of graphs G with an upper bound n on the number of parties, we define
a protocol π with respect to G as a set of n ppt interactive Turing machines (ITMs)
(P1, . . . ,Pn) (the parties), where any subset of them may be activated with (potentially
empty) inputs. Only the parties that have been activated participate in the protocol, send
messages to one another (via FG

graph), and produce output.
An ideal-model computation of a functionality F is augmented to provide the cor-

rupted parties with the information that is leaked about the graph; namely, every cor-
rupted (dummy) party should learn its neighbor-set. Note that the functionality F can
be completely agnostic about the actual graph that is used, and even about the family G.
To augment F in a generic way, we define the wrapper-functionality WG

graph-info(F) that

runs internally a copy of the functionality F. The wrapper WG
graph-info(·) acts as a shell

that is responsible to provide the relevant leakage to the corrupted parties; the original
functionality F is the core that is responsible for the actual ideal computation.

More specifically, the wrapper receives the graph G = (V, E) from the graph party
Pgraph, makes sure that G ∈ G, and sends a special initialization message containing
G to F. (If the functionality F does not depend on the communication graph, it can
ignore this message.) The wrapper then proceeds to process messages as follows: Upon
receiving an initialization message from a partyPv responds with its neighbor setNG(v)
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Fig. 6. The broadcast functionality.

(just like FG
graph). All other input messages from a party Pv are forwarded to F, and

every message from F to a party Pv is delivered to its recipient.
Note that formally, the set of all possible parties V ∗ is fixed in advance. To represent

a graph G ′ = (V ′, E ′) where V ′ ⊆ V ∗ is a subset of the parties, we use the graph
G = (V ∗, E ′), where all vertices v ∈ V ∗ \ V ′ have degree 0.

Definition 2.1. (Topology-hiding computation) We say that a protocol π securely re-
alizes a functionality F in a topology-hiding manner with respect to G tolerating a
semi-honest adversary corrupting t parties if π securely realizes WG

graph-info(F) in the

FG
graph-hybrid model tolerating a semi-honest adversary corrupting t parties.

Broadcast and anonymous broadcast In this work, we will focus on topology-hiding
computation of two central functionalities. The first is the broadcast functionality (see
Fig. 6), where a designated and publicly known party, named the broadcaster, starts
with an input value m. Our broadcast functionality guarantees that every party that
is connected to the broadcaster in the communication graph receives the message m
as output. In this paper, we assume the communication graphs are always connected.
However, the broadcaster may not be participating, in which case it is represented as
a degree-0 node in the communication graph. (And all the participating nodes are in a
separate connected component.)

Parties that are not connected to the broadcaster receive a message that is supplied by
the adversary. (We can consider stronger versions of broadcast, but this simplifies the
proofs.)

We denote the broadcast functionality where the broadcaster is Pi by Fbc(Pi ).

Definition 2.2. (t-THB) Let G be a family of graphs, and let t be an integer. A pro-
tocol π is a t-THB protocol with respect to G if π(Pv) securely realizes Fbc(Pv) in
a topology-hiding manner with respect to G, for every Pv , tolerating a semi-honest
adversary corrupting t parties.

The second functionality is the anonymous broadcast (see Fig. 7). This functionality
is similar to broadcast with the exception that the broadcaster is not known and its
identity is kept hidden even after the computation completes. Namely, the environment
will activate exactly one of the parties with an input value, informing this party that it is
the broadcaster. We denote the anonymous broadcast functionality Fanon-bc.
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Fig. 7. The anonymous-broadcast functionality.

Definition 2.3. (t-THAB) Let G be a family of graphs, and let t be an integer. A
protocol π is a t-THAB protocol with respect to G if π securely realizes Fanon-bc in a
topology-hiding manner with respect to G, tolerating a semi-honest adversary corrupting
t parties.

2.1.2. Indistinguishability-Based THC.

Moran et al. [29] gave a weaker definition of topology-hiding computation: IND-CTA
security (indistinguishability under Chosen Topology Attack). We will next provide the
explicit definitions for THB and THAB.

Definition 2.4. (1-IND-CTA THB) A broadcast protocol π is indistinguishable under
chosen topology attack against one semi-honest corruption (1-IND-CTA secure) with
respect to a graph class G, if for any ppt adversary A there exists a negligible function
negl, such that for every λ ∈ N it holds that

Pr
[
ExpTHB1-ind-cta

π,G,A (λ) = 1
]

≤ 1/2 + negl(λ),

where ExpTHB1-ind-cta
π,G,A (λ) is as defined in Fig. 8 and the probability is taken over the

random coins of the experiment and of the adversary.

Definition 2.4 can be extended to support t corruptions, denoted t-IND-CTA broadcast,
by having the adversary choose a set I ⊆ [n] of size t satisfying I ⊆ V (G0) ∩ V (G1)

in ExpTHB1-ind-cta, instead of choosing a single node v.
The definition of anonymous broadcast is similar except that the adversary can choose

different broadcasting parties for the different executions; this is opposed to broadcast
where the same node acted as broadcaster in both executions.

Definition 2.5. (1-IND-CTA THAB) An anonymous broadcast protocol π is indistin-
guishable under chosen topologyattackagainst one semi-honest corruption (1-IND-CTA
secure) with respect to a graph classG, if for any ppt adversaryA there exists a negligible
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Fig. 8. The 1-IND-CTA broadcast experiment.

Fig. 9. The 1-IND-CTA anonymous broadcast experiment.

function negl, such that for every λ ∈ N it holds that

Pr
[
ExpTHAB1-ind-cta

π,G,A (λ) = 1
]

≤ 1/2 + negl(λ),

where ExpTHAB1-ind-cta
π,G,A (λ) is as defined in Fig. 9 and the probability is taken over

the random coins of the experiment and of the adversary.

Definition 2.5 can be extended to support t corruptions, denoted t-IND-CTA anony-
mous broadcast, by having the adversary choose a set I ⊆ [n] of size t satisfying
I ⊆ V (G0) ∩ V (G1) in ExpTHAB1-ind-cta, instead of choosing a single node v.

As shown in [29], the indistinguishability-based definition is in fact implied by its
simulation-based counterpart.

Proposition 2.6. If π is 1-THB (resp., 1-THAB) with respect to G, then π is a
1-IND-CTA secure broadcast (resp., anonymous broadcast) protocol with respect to
G.

In our lower bounds in Sects. 4 and 5, we will require basic sequential composition
guarantees from 1-IND-CTA (anonymous) broadcast protocols. Namely, we will com-
pose λ executions of 1-bit (anonymous) broadcast protocols over the same graph to
transmit longer messages, and we will run two instances of λ-bit (anonymous) broad-
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cast over two different graphs within the class G. Definitions 2.4 and 2.5 remain secure
under sequential composition via a simple hybrid argument, as we consider independent
executions and a semi-honest adversary.

Definition 2.7. (sequential composition) A broadcast protocol π is 1-IND-CTA secure
under q sequential composition with respect to a graph class G, if for any ppt adversary
A there exists a negligible function negl, such that for every λ ∈ N it holds that

Pr
[
ExpTHB1-ind-cta

π,G,A (q, λ) = 1
]

≤ 1/2 + negl(λ),

where ExpTHB1-ind-cta
π,G,A (q, λ) is as defined in a similar way to ExpTHB1-ind-cta

π,G,A (λ)

with the exception that the adversary chooses q tuples (Gi
0,G

i
1, u

i ,mi ) and the chal-
lenger sequentially runs q executions of π where the i th execution is with graph Gi

b and
sender ui broadcasts message mi .

1-IND-CTA anonymous broadcast secure under q sequential composition is defined
in an analogous way.

Lemma 2.8. Let q ∈ poly(λ). Ifπ is a 1-IND-CTA secure broadcast (resp., anonymous
broadcast) protocol with respect to G, then π is secure under q sequential composition.

Proof. We prove the lemma for broadcast; the case of anonymous broadcast follows
in an analogous way. The proof proceeds via a sequence of hybrid experiments, where
the i th hybrid Hi is defined as ExpTHB1-ind-cta

π,G,A (q, λ), except that for j = 1, . . . , i

the j th execution of π is with graph G j
1 and for j = i + 1, . . . , q with graph G j

0.
It follows that H0 is exactly ExpTHB1-ind-cta

π,G,A (q, λ) with b = 0 and Hq is exactly

ExpTHB1-ind-cta
π,G,A (q, λ) with b = 1.

For each i = 0, . . . , q, let εi be the probability that Hi outputs 1 after interacting with
adversaryA. It is thus left to show that for each i ∈ [q] it holds that |εi−1−εi | ≤ negl(λ).
Indeed, for every i we construct an adversary Ai that wins ExpTHB1-ind-cta

π,G,A (λ) with

the same probability. Adversary Ai awaits input {(G j
0,G

j
1, u

j ,m j )} j∈[q] and v from A
and forwards (Gi

0,G
i
1, u

i ,mi , v) to its own experiment. During the challenge phase, Ai

proceeds as follows:

• For j = 1, . . . , i −1, Ai simulates the j th execution toward A using (G j
1, u

j ,m j ).
• For j = i ,Ai interacts withA by redirecting the messages from its own experiment.
• For j = i +1, . . . , q, Ai simulates the j th execution toward A using (G j

0, u
j ,m j ).

Now, if in the experiment ExpTHB1-ind-cta
π,G,A (λ) the challenger tossed b = 0, then the

experiment simulated by Ai is equal to Hi−1; otherwise, if b = 1, the experiment is
equal to Hi . We thus have |εi−1 − εi | ≤ negl(λ), as required. �
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Fig. 10. Oriented lines on five nodes. Each node knows its direction to the broadcaster 1 , but may not know

its distance. For example, the view of node 4 is identical in the first and second lines; the view of node 5
is identical in the second and third lines; the view of node 2 is identical in the third and fourth lines; and the
view of node 3 is identical in the first and fourth lines.

3. Key Agreement

We recall in Definition 3.1 the definition of key agreement and infinitely often key
agreement from [20].

Definition 3.1. (Two-Party (infinitely often) Key-Agreement [20, Def. 2.2]) Let π be
two party, interactive Turing machine protocol which generates communication tran-
script �, and outputs A ∈ {0, 1} (for the first party) and B ∈ {0, 1} for the second. π is
a key-agreement (KA) protocol if on input 1λ, Pr[A = 0] = Pr[B = 0] = 1/2 and for
any ppt Turing machine E , for almost all λ it holds that

1. (hiding) Pr[E(1λ, �) = A | A = B] < 1/2 + negl(λ).
2. (agreement) Pr[A = B = 0] = Pr[A = B = 1] ≥ 1 − negl(λ).

We say that a protocol achieves infinitely often key agreement (io-KA) if for any
probabilistic polynomial time E , (1) and (2) hold for infinitely many values of λ.

4. THB Lower Bounds

In this section, we demonstrate that achieving broadcast while hiding certain graph
properties necessitates cryptographic assumptions. In Sect. 4.1, we show that hiding the
distance to the broadcaster requires infinitely often KA, and in Sect. 4.2 that hiding
distance-of-neighbors requires KA.

4.1. Hiding Distance Requires io-KA (The Oriented 5-Path)

In this section, we show that hiding the distance from the broadcaster, in constant rounds,
requires infinitely often key agreement (io-KA). In particular, we will show that any
constant-round protocol for the class Goriented-5-path (Fig. 10) implies io-KA. In this
class, the nodes 2 , 3 , 4 , 5 always know the direction of the broadcaster, node 1 (it
is in the direction of their lowest-valued neighbor, mod 5), but cannot distinguish (from
their local neighborhood) whether they are distance 2 or 3 from the broadcaster. For
example, 3 cannot distinguish between 1 - 2 - 3 - 4 - 5 and 1 - 5 - 2 - 3 - 4 , as in both
cases its local neighborhood is 2 - 3 - 4 . Note that if just distance is leaked to this class,
the trivial flooding protocol is secure.
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Intriguingly, the key-agreement “construction” of this section is not fully black-
box (nor is it even explicit). Our result critically requires that the THB protocol for
Goriented-5-path is constant-round. We remark that such a limitation is inherent, as we
demonstrate in Appendix C that Goriented-5-path unconditionally admits an ε-statistically
1-secure THB protocol that works in O(1/ε) rounds, for any ε > 0.17 In contrast, the
key-agreement construction of Sect. 4.2 is fully black-box and rules out the existence
of such an upper bound for the class Gtriangle. It remains open whether an ε-statistically
1-secure THB for Goriented-5-path in o(1/ε) rounds requires io-KA, or more generally
whether negligible security in polynomial rounds requires io-KA.18

We refer to Definition 3.1 for the definitions on key agreement and infinitely often
key agreement, as taken from Haitner et al. [20]. We now state the main theorem of this
section.

Theorem 4.1. If there exists a constant-round 1-IND-CTA-secure broadcast protocol
for the class Goriented-5-path, then infinitely often key agreement exists.

The high-level idea of the proof follows the artificial overextension argument, de-
scribed in Sect. 1.2.2. Consider for simplicity that there exists an R-round THB protocol
for Goriented-5-path we will attempt to construct a candidate KA protocol. This protocol
works by trying to simulate the THB protocol on two graphs in the class. The hiding
property follows from the security of THB protocol, but agreement is not clear. What we
can argue is that either, there exists a means achieving agreement (in which case we have
a key-agreement protocol) or we can argue that a new candidate protocol has the hiding
property. This new protocol has the feature that one of the graphs contains a node that
is distance 5 from the broadcaster (as opposed to 4, as before). We then have the same
either/or guarantee as before: Either there exist a means of achieving agreement, or a new
candidate protocol is hiding (which contains a node distance 6 from the broadcaster).
We continue arguing in this manner. We ultimately conclude that some intermediate KA
protocol must be secure, because the Rth such protocol contains a node distance R + 3
from the broadcaster. There is no hope of the broadcast bit ever reaching such a node,
and from this fact, agreement is trivial. It follows that some intermediate protocol must
have achieved both hiding as well as agreement.

Proof. Let R be a constant, and let π be an R-round 1-IND-CTA-secure broadcast
protocol for Goriented-5-path. By the 1-IND-CTA security of π , it holds that for each of
the nodes 2 , 3 , 4 , and 5 there exist a pair of graphs in Goriented-5-path in which they
cannot know their distance to the broadcaster 1 ; see Fig. 10 for an illustration.

We leverage this fact to specify a basic key-agreement protocol, π1 (see Fig. 11),
that we will either be able to extend into genuine key agreement or reason about a
new protocol, π2, on longer graphs (that, in turn, we will either be able to extend into
key agreement or reason about a new protocol on longer graphs, π3, etc.). If none of
π1, . . . , πR can be extended into key agreement, we will reach a contradiction.

17In fact, the upper bound holds for a large body of graph classes, where only distance needs to be hidden.
18Our techniques can be extended to show an ε-statistically 1-secure THB forGoriented-5-path in c · log ε−1

rounds, where c is a constant, requires io-KA, but the gap between this and the upper bound remains exponential.
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Fig. 11. The basic key-agreement protocol π1.

The basic protocol π1 starts with Alice sending two long and random message m1

and m2 to Bob. Next, Alice and Bob flip secrets coins A and B, resp., and execute two
instances of the broadcast protocol: the first on m1 and the second onm2. If A = 0, Alice
simulates 1 - 2 - 3 in the first execution and 1 - 5 - 2 - 3 in the second, and if A = 1,
she reverses the order. Similarly, if B = 0, Bob simulates 4 - 5 in the first execution and
4 in the second, and if B = 1, he reverses the order. If the output of Bob’s “rightmost”
node is m1 in the first execution and m2 in the second, Alice and Bob output A and B,
resp.; otherwise, they abort. For convenience, we show all possible graphs that Alice
and Bob might jointly simulate the THB protocol in Fig. 12.

Observe that conditioned on A = B (Alice and Bob’s coins agreeing), both executions
of π (within π1) are on graphs in Goriented-5-path. Thus, if Eve is eavesdropping on Alice
and Bob’s communication, her view is a subset of the view of node 3 under protocol π .
Because the view of 3 is locally identical in all possible graphs, if Eve can distinguish
between the case of A = B = 0 and A = B = 1 with non-negligible advantage, we can
use Eve to break the security of π .
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Fig. 12. The possible graphs simulated in π1. Color indicates who is responsible for simulation: Alice - Bob.
Eve can see communication on the dotted edges between them.

Thus, we are halfway to a key agreement. The problem is that A and B are uncorrelated.
We would like to “filter out” the cases where A �= B, without hurting the security of
π too much. We will focus on a very specific method for doing so which will allow us
make progress: distinguishing via the view of 4 in GB = 4 - 5 .

We have two cases:
Case 1: The view of 4 in 1 - 2 - 3 - 4 - 5 under π(1λ) with message m (denoted
V I EW 12345

4 (λ,m)) is not computationally indistinguishable from the view of 4 in
1 - 5 - 2 - 3 - 4 - 5 under π(1λ) with message m (denoted V I EW 152345

4 (λ,m)). In par-
ticular, there exist a distinguisher D and a constant cD such that D runs in time λcD and
for infinitely many values of λ can distinguish with advantage λ−cD . Moreover, let pD
denote the probability D outputs 1 on V I EW 12345

4 (λ,m).19

We will use such a distinguisher, D, to construct an infinitely often key-agreement
protocol, KAD,cD

1 (formally described in Fig. 13).20 It is tempting to use D to reject runs
where A �= B, but we have no guarantee that the view of Eve when A = B = 0 and
A = B = 1 remains indistinguishable after conditioning on D = 1. We get around
this by simply amplifying the distinguisher’s advantage until it effectively never makes
a mistake, and thus, Eve’s view conditioning on the amplified decision is statistically
close to simply conditioning on A = B.

Claim 4.2. If there exists an infinite set I ⊆ N and a constant cD such that there is a
randomized D that runs in time λcD and for which

∣∣∣Pr
[
D

(
1λ,m, V I EW 12345

4 (λ,m)
)

= 1
]

19Note that because the advantage of D is bounded from below by λ−cD , for each λ we can approximate
pD in polynomial time up to a λ−cD /2 factor.

20Note that our protocol is only infinitely often correlated (A = B); hence, the security property will hold
for all but finitely many λ for any efficient distinguisher.
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Fig. 13. First attempt at secure bit agreement, KAD,cD
1 .

−Pr
[
D

(
1λ,m, V I EW 152345

4 (λ,m)
)

= 1
]∣∣∣ > λ−cD

(wherem is uniformly distributed) for allλ ∈ I , thenKAD,cD
1 (Fig.13) is a key-agreement

protocol in the infinite set I .

Proof. Without loss of generality, assume cD ≥ 1. Let A′ and B ′ denote the final
outputs of Alice and Bob.
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First notice that by symmetry our distinguisher does not bias Alice and Bob’s output
when they agree:

Pr
[
A′ = B ′ = 0

∣∣∣
∑

di ≥ p̃A=B
D · λ2cD/2

]

= Pr
[
A′ = B ′ = 1

∣∣∣
∑

di ≥ p̃A=B
D · λ2cD/2

]
.

Now, we will restrict our attention toλ ∈ I (where |Pr[D(1λ,m, V I EW 12345
4 (λ,m)) =

1] − Pr[D(1λ,m, V I EW 152345
4 (λ,m)) = 1]| > λ−cD ).

Observe that by Hoeffding bounds21 the following event happens with probability at
most exp(−�(λ)):

∣∣∣ p̃A=B
D − E[D(1λ,m, V I EW 12345

4 (λ,m))]
∣∣∣ > λ−cD/4,

where p̃A=B
D is the fraction of instances that output 1 in Bob’s sampling of λ2cD i.i.d.

instances of D(1λ,m, V I EW 12345
4 (λ,m)) (in the Initialization step).

Note that by our assumption on the distinguisher D, it holds that

∣∣∣E[D(1λ,m, V I EW 12345
4 (λ,m))] − E[D(1λ,m, V I EW 152345

4 (λ))]
∣∣∣ > λ−cD .

Thus from the triangle inequality we can deduce that conditioned on the above event not
happening,

∣∣∣ p̃A=B
D − E[D(1λ,m, V I EW 152345

4 (λ,m))]
∣∣∣ > 3λ−cD/4.

Next, by applying Hoeffding’s bound again we have that with probability exp(−�(λ)),
| ∑i di −E[D(1λ,m, V I EW 12345

4 (λ,m))] ·λ2cD | > λcD/4 in the case that A = B, and
| ∑i di − E[D(1λ,m, V I EW 152345

4 (λ,m))] · λ2cD | > λcD/4 in the case that A �= B.
By a union bound, none of these events happen with probability 1−exp(−�(λ)). If this

is indeed the case, then we can apply the triangle inequality again to deduce that if A = B,
then | ∑i di− p̃A=B

D ·λ2cD | < λcD/2, and if A �= B then |∑i di− p̃A=B
D ·λ2cD | > λcD/2.

Therefore, if A = B, Alice and Bob will output A and B, resp., with overwhelming
probability. And if A �= B, they will start over with overwhelming probability.

Finally, because A = B with probability 1/2, we expect that Alice and Bob will
produce output in λ iterations with overwhelming probability. Let O denote the event
that Alice and Bob produce output.

It remains to show that security is preserved. Because V I EW 12345
3 is computation-

ally indistinguishable from V I EW 15234
3 , by a hybrid argument (X1, . . . , Xλ2cD ) is com-

putationally indistinguishable from (Y1, . . . ,Yλ2cD ) where each Xi ∼ (V I EW 12345
3 ,

21Recall that Hoeffding’s bound says that given X1, . . . , Xn i.i.d. indicator random variables, for any δ ≥ 0,
Pr

[| ∑ Xi − E[∑ Xi ]| ≥ δ
] ≤ 2 exp(−2δ2/n).
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Fig. 14. The possible graphs simulated in π2. Color indicates who is responsible for simulation: Alice - Bob.
Eve can see communication on the dotted edges between them.

V I EW 15234
3 ) (corresponding to A = B = 0) and eachYi ∼ (V I EW 15234

3 , V I EW 12345
3 )

(corresponding to A = B = 1),22

We showed that conditioned on A = B, the event O happens with overwhelm-
ing probability. Thus, we have that (X1, . . . , Xd) is computationally indistinguishable
from (X1, . . . , Xd) conditioned on O . Similarly, (Y1, . . . ,Yd) is computationally in-
distinguishable from (Y1, . . . ,Yd) conditioned on O . Thus, no efficient adversary can
distinguish the case that the output bits are A′ = B ′ = 0 from the case that the output
bits are A′ = B ′ = 1.

This concludes the proof of Claim 4.2. �

Case 2: The view of 4 in 1 - 2 - 3 - 4 - 5 under π(1λ) is computationally indistinguish-
able from the view of 4 in 1 - 5 - 2 - 3 - 4 - 5 under π(1λ).

By the security ofπ , we have thatV I EW 12345
4 ≈c V I EW 13452

4 . Thus,V I EW 13452
4 ≈c

V I EW 152345
4 . In this case, we construct the basic key-agreement protocol π2 which is

defined identically as π1 with the sole exception that Alice and Bob use different un-
derlying graphs. If Alice’s coin is A = 0, she simulates G1

A = 1 - 3 - 4 in the first
execution and G2

A = 1 - 5 - 2 - 3 - 4 in the second, and if A = 1, she reverses the order.
Similarly, if B = 0, Bob simulates G1

B = 5 - 2 in the first execution and G2
B = 5 in

the second, and if B = 1 he reverses the order. See Fig. 14 for an illustration.
It follows from a hybrid argument, that conditioned on A = B, no efficient eaves-

dropper can distinguish A = 0 from A = 1 in π2. Thus again, we are halfway to key
agreement. Notice (Fig. 14) that the length of the longest line graph has increased by 1
over π1.

As before, we have two cases based on whether the view of the second to last node
in the longest graph can be distinguished from the other graph where that node is also
penultimate: here, whether or not V I EW 15′23452

5 is indistinguishable from V I EW 13452
5

22Lemma 2.8 implies that each X1, . . . , X
λ2cD (and similarly, Y1, . . . ,Y

λ2cD ) is indistinguishable from

Z1, . . . , Z
λ2cD where each Zi ∼ (V I EW 12345

3 V I EW 12345
3 ).
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(where the prime in 5′ is simply used to indicate which copy of 5 ’s view we are
considering, both copies “think” they are 5 ):

1. If they arenot indistinguishable, then we can build an infinitely often key-agreement
protocol, KAD,cD

2 (see Fig. 15), via the same method as before.
2. If they are indistinguishable, then we will build a new protocol stub, π3, with

security properties that contains a graph longer than any in π2.

We proceed iteratively in this manner for R iterations. Assume for the sake of contra-
diction that π does not imply key agreement. If so, it must be that after R iterations, in
each protocol πi the view of the node second from right in the longest graph is indistin-
guishable from a graph in Goriented-5-path (i.e., none of π1, . . . , πR could be turned into

a key agreement KAD,cD
i as described in Fig. 15). But because π only runs for R rounds

and the second to last node is distance greater than R from 1 in the longest graph of
πR , the node’s final output is independent of the broadcast message. Thus, there must
exist a distinguisher with success probability at least 1/2 − negl(λ) that simply checks
if that node gets the correct output and we reach a contradiction. It follows that one
of the protocols πi , for some i ∈ [R], can be transformed into an infinitely often key
agreement KAD,cD

i .
More formally, we can generalize our above argument to the following claim.

Claim 4.3. For i ∈ [R] and j ∈ [4] let u j = (i + j − 2 mod 4)+ 2. Then, there exists
i ∈ [R] for which the following hold:

1. For all ppt D, the following holds for almost all λ

∣∣∣Pr
[
D(1λ,m, V I EW 1u1u2u3u4

u2
(λ,m)) = 1

]

−Pr
[
D(1λ,m, V I EW 1523452···u1u2u3

u2
(λ,m)) = 1

]∣∣∣ ≤ negl(λ),

where m is uniformly distributed and 15234523452 · · · u1u2u3 is the graph with
i + 4 nodes.

2. There exist an infinite set I ⊆ N and a distinguisher D∗ that runs in time λc
∗
D , for

some constant c∗
D, such that for all λ ∈ I ,

∣∣∣Pr
[
D∗(1λ,m, V I EW 1u1u2u3u4

u3
(λ,m)) = 1

]

−Pr
[
D∗(1λ,m, V I EW 1523452···u1u2u3u4

u3
(λ,m)) = 1

]∣∣∣ > λ−c∗
D ,

where m is uniformly distributed 15234523452 · · · u1u2u3 is the graph with i + 4
nodes.

By inspecting KA
D∗,c∗

D
i (Fig. 15) and following the same argument above, we see that

Item 1 in Claim 4.3 implies that KA
D∗,c∗

D
i has the hiding property (for any algorithm

D∗ and constant c∗
D), whereas Item 2 implies that KA

D∗,c∗
D

i has the agreement property
(infinitely often). Thus given this claim, we can apply the same analysis from Case 1
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above to immediately get that for some i ,KA
D∗,c∗

D
i realizes infinitely often key agreement.

So it suffices to prove the claim to complete the proof.
To prove the claim, observe the following:

1. Item 1 of Claim 4.3 is true for i = 1 by the topology-hiding property of π .
2. Item 2 of Claim 4.3 is true for i = R. This is by virtue of the fact that in the case of

i = R, u3 is distance > R from 1 in the graph 1 - 5 - 2 - 3 - 4 - 5 - · · · - u4 - u1

- u2 - u3 - u4 and thus its output is independent of m and will only coincide with

negligible probability. On the other hand, in the case that graph is 1 - u1 - u2 - u3 - u4 ,

by the correctness of the topology-hiding broadcast, u3 will output m with over-
whelming probability.

3. If Item 2 of Claim 4.3 is false for i , then Item 1 of Claim 4.3 is true for i + 1. (Item
1 for i + 1 is the negation of Item 2 for i , for any i ∈ [R − 1].)

Now, suppose the claim is false, then for all i at least one of the properties must be false.
Then, by Observation 1 above, this means Item 2 of Claim 4.3 must be false for i = 1.
Further, by Observation 3 and the assumption the claim is false, it follows by induction
that Item 2 of Claim 4.3 must be false for all i . But, this contradicts Observation 2: the
validity of Item 2 of Claim 4.3 for i = R.

This concludes the proof of Theorem 4.1. �

4.2. Hiding Distance-of-Neighbors Requires KA (The Triangle)

In this section, we show that THB on the triangle (with a potential missing edge), in
which the direction/distance of each party to the broadcaster is fixed but the distance-
of-neighbors is kept hidden, implies the existence of a key-agreement protocol.

Consider the class Gtriangle = {G0
tr,G

1
tr,G

2
tr} as defined in Fig. 16, which we (abu-

sively) call “the Triangle.” The players are the nodes 1 , 2 , 3 with the broadcaster
always being 1 ; nodes 2 and 3 are connected, and 2 and/or 3 is connected to
1 . The secret of the topology can be summarized as follows: If one of the two non-
broadcasting parties 2 or 3 is connected to the broadcaster, it does not know whether
the other is connected as well. In other words, 2 cannot distinguish between G0

tr and G2
tr,

while 3 cannot distinguish between G0
tr and G1

tr. As discussed in Sect. 1.2.1, an eaves-
dropper Eve having access to only the communication between 2 and 3 has strictly
less information than either 2 or 3 individually. In particular, it follows that Eve cannot
distinguish neither between G0

tr and G2
tr nor between G0

tr and G1
tr and transitively cannot

distinguish between G1
tr and G2

tr: the paths 1 - 2 (Eve)---------- 3 and 2 (Eve)---------- 3 - 1 , where node
1 is the broadcaster. With this observation, we adopt the technique from [4], which
shows how 1-THB on a line implies KA, to show that 1-THB on Gtriangle implies KA.

Note that preserving the secret of the topology of Gtriangle can also be reformulated as
“hiding the neighbor distances” from the parties. Indeed, for 2 (resp., 3 ) knowing the
topology means knowing if 3 (resp., 2 ) is at distance one or two from the broadcaster.

Theorem 4.4. (THB on Gtriangle requires KA) If there exists a 1-IND-CTA-secure
broadcast protocol for the class Gtriangle, then there exists a key-agreement protocol.
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Fig. 15. i th attempt at secure bit agreement, KAD,cD
i .

Fig. 16. The class Gtriangle.
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Fig. 17. Key-agreement protocol from 1-THB on Gtriangle.

The rest of this section is dedicated to proving Theorem 4.4. Given a 1-THB protocol
π for Gtriangle, we will construct a key-agreement protocol. The construction of this KA
protocol follows very closely the proof of Theorem 3.1 in [4], but we use the novel
phantom bridge argument (see Remark 4.6) to reduce the security of the key-agreement
scheme to the topology-hiding properties of π . Alice and Bob simulate two executions
of the THB protocol π where each of the two players tosses a coin to determine whether
to emulate the broadcaster in the first run or the second. Both they and an eavesdropper
can identify when their coins yield the same outcome, and what it is, and the parties can
try again. When the coins differ, however, we show that the eavesdropper cannot learn
what the coins are (only that they indeed differ) and Alice and Bob can therefore use
their coins to establish a secure shared key.

Lemma 4.5. Let π be a 1-IND-CTA-secure broadcast protocol for Gtriangle. Then, the
protocol in Fig.17 is a key-agreement protocol.

Proof. Via sequential composition (Lemma 2.8) we may assume π is a λ-bit broadcast
protocol. In a similar way to [4], we use π to construct the key-agreement protocol in
Fig. 17.

Correctness The proof of correctness is analogous to that of [4]. The high-level idea
is that if A �= B (which occurs with probability 1/2), then both Alice and Bob output
⊥ (i.e., fails identifiably) with probability at least 1 − 21−λ, since in one of the two
executions of π neither Alice nor Bob are simulating a broadcasting node and therefore
cannot both output the control string m1 or m2 with probability ≥ 2−λ. In the case where
A = B (which occurs with probability 1/2), the behavior of the parties simulated by
Alice and Bob in both executions falls under the correctness guarantees of π , which
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Fig. 18. Overview of the security proof: (a) �⇒ (b) �⇒ (c).

means that with overwhelming probability both will output the same bit A = B. Wrap-
ping up, both parties output ⊥ with probability 1/2 +negl(λ) and both output the same
bit with probability 1/2 − negl(λ). The parties can sequentially repeat the process until
both output the same bit with overwhelming probability.

Security It remains is to prove that this candidate KA construction is secure. It suffices
to show that when A = B an eavesdropper Eve who has access to the communication
between Alice and Bob has no advantage in determining the key-agreement output bit,
i.e., in determining whether A = B = 0 or A = B = 1. Eve has access to the transcript
of the communication between 2 and 3 on two different runs of π , one on G1

tr and the
other G2

tr. We reduce the problem of determining the order in which these executions
are performed to that of determining, given the transcript of the communication between
2 and 3 in a single run of π , if π was run on G1

tr or G2
tr. Finally, we show that this

target problem is difficult, by topology-hiding of π . The proof overview is illustrated in
Fig. 18. The technical novelty when compared to [4] resides in the proof of the last step,
illustrated in Fig. 18a.

We now proceed with the reduction. Let V σ
2,3, V σ

2 , and V σ
3 be the random variables

equal to, respectively, the transcript of the communication between 2 and 3 , the view
of 2 , and the view of 3 for the execution σ ∈ {1, 2} of the protocol π . We denote
π2,3(G), π2(G), and π3(G) their respective distributions on graph G. From now on
condition on the event A = B, which occurs with probability 1/2. The (conditional)
advantage of Eve is the following:

Adv(Eve) ..= |Pr[Eve wins] − 1/2|
= |PrV 1

2,3,V
2
2,3∼π2,3(G2

tr)
[Eve(V 1

2,3, V
2
2,3) = 1]

−PrV 1
2,3,V

2
2,3∼π2,3(G1

tr)
[Eve(V 1

2,3, V
2
2,3) = 1]|

(1)

We now use the reduction from [4, Claim 3.3],23 which shows that if Eve has non-
negligible advantage then there is an efficient distinguisher between the transcripts of

23The claim itself cannot be invoked as the graphs are different, but the same proof works verbatim.
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the communication between 2 and 3 on graphsG1
tr andG2

tr in a single run of π (whereas
Eve has to distinguish between the transcript for G1

tr followed by the transcript for G2
tr

and the reverse). We then get that

Adv(Eve) ≤ 2 · sup
A ppt

∣∣∣PrV2,3∼π2,3(G2
tr)

[A(V2,3) = 1] − PrV2,3∼π2,3(G1
tr)

[A(V2,3) = 1]
∣∣∣ .

(2)

The reduction works by constructing a distinguisher A from Eve. A starts with a view
V2,3 ∼ π2,3(Gσ

tr) for some unknown σ ∈ {1, 2}, and flips two coins σ ′ ∈ {1, 2} and

b ∈ {0, 1}. A then crafts a view V ′
2,3 ∼ π2,3(Gσ ′

tr ) and gives both views V2,3, V ′
2,3 to

Eve in the order determined by coin b. With probability 1/2, σ = σ ′ and Eve is of no
help, and with probability 1/2, σ �= σ ′ and A inherits Eve’s distinguishing advantage.
It can be shown that Adv(A) ≥ Adv(Eve)/2.

Finally, we show that the target problem of the reduction is hard. Namely, for every
ppt A it holds that

∣∣∣PrV2,3∼π2,3(G2
tr)

[A(V2,3) = 1] − PrV2,3∼π2,3(G1
tr)

[A(V2,3) = 1]
∣∣∣

≤
∣∣∣PrV2,3∼π2,3(G2

tr)
[A(V2,3) = 1] − PrV2,3∼π2,3(G0

tr)
[A(V2,3) = 1]

−PrV2,3∼π2,3(G1
tr)

[A(V2,3) = 1] + PrV2,3∼π2,3(G0
tr)

[A(V2,3) = 1]
∣∣∣

≤
∣∣∣PrV2,3∼π2,3(G2

tr)
[A(V2,3) = 1] − PrV2,3∼π2,3(G0

tr)
[A(V2,3) = 1]

∣∣∣
+

∣∣∣PrV2,3∼π2,3(G1
tr)

[A(V2,3) = 1] − PrV2,3∼π2,3(G0
tr)

[A(V2,3) = 1]
∣∣∣

≤
∣∣∣PrV2∼π2(G2

tr)
[A(V2) = 1] − PrV2∼π2(G0

tr)
[A(V2) = 1]

∣∣∣
+

∣∣∣PrV3∼π3(G1
tr)

[A(V3) = 1] − PrV3∼π3(G0
tr)

[A(V3) = 1]
∣∣∣

≤ 2 · negl(λ). (3)

The third inequality holds since V2 and V3 encapsulate V2,3 and giving more informa-
tion as input to A can only increase its distinguishing advantage. The fourth inequality
follows from the topology-hiding properties of π since 2 (resp., 3 ) has the same neigh-
borhood in G2

tr and G0
tr (resp., G1

tr and G0
tr). Combining Equations (2) and (3) concludes

the proof of Lemma 4.5. �

Remark 4.6. (The Phantom-Bridge) Theorem 4.4 relies on one core property ofGtriangle
and can be extended to other graph-classes with that same property. If a graph class
contains two graphs G1 and G2 with a bridge between two nodes u and v (i.e., an edge
whose removal would separate the graph in two connected components) such that the
broadcaster is on u’s side in G1 and on v’s side in G2, then 1-THB on this class implies
KA. This observation is used in Sect. 8.1 to demonstrate the generality if this technique.
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5. THAB Lower Bounds

In this section, we present our lower bounds for topology-hiding anonymous broadcast.
In Sect. 5.1, we show that t-THAB on graphs that are not (t + 1)-connected implies
key agreement. In Sect. 5.2, we show that 1-THAB on the class of either 2 or 3 parties
connected on a line implies infinitely often oblivious transfer (Definitions 5.3 and 5.2).

5.1. Low Vertex Connectivity Requires KA

We start by showing how t-THAB on a class which contains even a single graph with
at least t + 2 vertices and which is not (t + 1)-connected implies key agreement. As
discussed in Introduction, this result does not rely on the topology-hiding aspect of
the broadcast protocol, but on the anonymity aspect, and in fact, it can be derived by
combining ideas from Ishai et al. [22] and Ball et al. [4]. We choose to present the
result in this form for completeness and because it provides a matching lower bound to
Theorem 7.1.

Proposition 5.1. Let t be an integer, and let G be a class containing a graph with at
least t + 2 vertices which is not (t + 1)-vertex-connected. Then, t-IND-CTA anonymous
broadcast with respect to G implies the existence of key agreement.

Proof sketch. We prove the proposition for the case of t = 1, i.e., for the singleton
class G{1-2-3} = { 1 - 2 - 3 }. The general case follows via a standard player-partitioning
argument (in a similar way to [4, Cor. 3.4]).

The key-agreement protocol follows in a similar way to Sect. 4.2 (the triangle graph).
Alice simulates nodes 1 - 2 , while Bob simulates 3 . Alice and Bob simulate two
instances of π , where each party randomly chooses whether to simulate the anonymous
broadcaster in the first instance or in the second. The protocol is formally described in
Fig. 19. The proof follows in the same lines as the proof of Lemma 4.5 (see also [4]),
since the transcript that Eve can see forms a partial view of node 2 ; therefore, security
of the KA protocol is reduced to the 1-IND-CTA security of π . �

5.2. Uncertain Honest Majority Requires io-OT (The 2-vs-3 Paths)

In the previous section, we showed that, for a large number of graph classes, key agree-
ment is necessary to achieve 1-THAB. A natural follow-up question is to ask whether
key agreement is sufficient to achieve 1-THAB on all graphs or not. We answer this
question in the negative (at least in a black-box way) by showing that constant-round
1-THAB on the class of paths of length two and three implies infinitely often oblivious
transfer.24

This result may be reminiscent to the result of Ball et al. [3] who showed that without
assuming an honest majority, THB on arbitrary graphs implies the existence of oblivious

24Recall that although KA can be constructed from OT in a black-box way, OT cannot be constructed from
KA in a black-box way [18].
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Fig. 19. Key agreement from 1-THAB on G{1-2-3}.

transfer. We note that our result requires inherently different techniques, as in the one-
corruption setting there exists only one graph with no honest majority (the path of length
2), and 1-THAB on this graph is trivial. However, considering in addition the path of
length 3 (where an honest majority is guaranteed), we prove an implication to infinitely
often oblivious transfer (io-OT).

Note that this lower bound only applies to anonymous broadcast. In fact, even simple
flooding gives secure THB on the path of length 2 and the path of length 3, because
given the identity of the broadcaster every node can trivially derive its distance from the
broadcaster by its local view.

Before stating the result, we need to recall the definition of io-OT and define the class
of graphs we will be working with.

5.2.1. Infinitely Often Oblivious Transfer

We start by recalling the definition of uniform infinitely often security for deterministic
two-party functionalities by Lindell et al. [[28], Def. 2.3].

Definition 5.2. (Uniform infinitely often security) A protocol π securely computes a
deterministic functionality F in the presence of semi-honest adversaries with uniform
infinitely often security if there exists an infinite subset I ⊆ N such that:

• Correctness There exists a negligible function such that for every λ ∈ I and every
pair of inputs x, y ∈ {0, 1}∗ it holds that

Pr
[
OUT PUT π (x, y, λ) = F(x, y)

] ≥ 1 − negl(λ),

where the probability is taken over the random coins of the parties, and where
OUT PUT π (x, y, λ) is the random variable denoting the output of both parties in
an honest execution on inputs x and y and with security parameter λ.
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• Privacy There exist two ppt algorithms SAlice and SBob (called “simulators”), such
that:

{SAlice(x,FAlice(x, y), 1λ)
}
x,y∈{0,1}∗,λ∈I ≈c

{
V I EWπ

Alice(x, y, λ)
}
x,y∈{0,1}∗,λ∈I

and

{SBob(y,FBob(x, y), 1λ)
}
x,y∈{0,1}∗,λ∈I ≈c

{
V I EWπ

Bob(x, y, λ)
}
x,y∈{0,1}∗,λ∈I ,

where FAlice and FBob correspond to the output of the functionality F to Alice and
Bob, respectively.

We can now define infinitely often oblivious transfer (io-OT), building on the 1-out-of-
2 OT functionality defined as FOT((m0,m1), b) = (ε,mb), where ε denotes the empty
string.

Definition 5.3. (io-OT) A protocol π is an infinitely often oblivious transfer protocol,
if π computes FOT in the presence of semi-honest adversaries with uniform infinitely
often security.

5.2.2. The Lower Bound

We define the class of all paths of length two or three labeled with {1, 2, 3} in cyclic
order as

G2-vs-3 =
{

1 - 2 , 2 - 3 , 3 - 1 , 1 - 2 - 3 , 2 - 3 - 1 , 3 - 1 - 2
}
.

Theorem 5.4. Let π be a constant-round 1-IND-CTA anonymous broadcast with re-
spect to G2-vs-3. Then, there exists a uniform io-OT protocol secure in the presence of a
semi-honest adversary.

In Sect. 1.2.2, we gave a high-level overview of the proof of Theorem 5.4. Recall
that the proof in the simple case where π is a 2-round protocol relied on the following
properties:

• π is 1-IND-CTA anonymous broadcast with respect to G = { 2 - 3 , 1 - 2 - 3 , 2 -
3 - 1 }.

• π is not 1-IND-CTA anonymous broadcast with respect to G ∪ { 1 - 2 - 3 - 1 }.
To mirror this in the general case, we have to find a path P∗ = u∗

1 - u∗
2 - u∗

3 -P∗
R , where

u∗
i is a single node for i ∈ {1, 2, 3} and P∗

R consists of the rest of the nodes, such that

• π is 1-IND-CTA anonymous broadcast with respect to

G =
{

u∗
2 - u∗

3 , u∗
1 - u∗

2 - u∗
3 , u∗

2 - u∗
3 -P∗

R

}
.
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• π is not 1-IND-CTA anonymous broadcast with respect to G ∪ {P∗}.
In order to find such a path we perform an over-extension argument, observing that any
protocol π that is 1-IND-CTA with respect to G2-vs-3 either breaks down on P∗ or is
still secure and thus can be extended to include P∗ in G.

More precisely, assume we start with G = { 2 - 3 , 1 - 2 - 3 , 2 - 3 - 1 }. Then, either
π breaks down on P∗ = 1 - 2 - 3 - 1 and we are done, or we use an extension argument
as follows. We set the new graph class to be G = { 1 - 2 , 3 - 1 - 2 , 1 - 2 - 3 - 1 }
and obtain a new P∗ = 3 - 1 - 2 - 3 - 1 . As we started with a protocol π that is
1-IND-CTA with respect to G2-vs-3, by assumption π is indeed 1-IND-CTA with re-
spect to the new graph class G. Now, either π breaks down on P∗ = 3 - 1 - 2 - 3 - 1 , or
we can extend the argument, starting with G = { 3 - 1 , 2 - 3 - 1 , 3 - 1 - 2 - 3 - 1 } and
P∗ = 2 - 3 - 1 - 2 - 3 - 1 .

Note that for this argument to go through, it is crucial that G2-vs-3 comprises all
possible paths with cyclic labeling of length 2 and 3, as with the extension argument the
paths that we use in G change. Further, note that in order to argue that π has to eventually
break down, we need that π has constant round complexity and thus breaks down as
soon as the length of the path on which π is run exceeds the round complexity of π .

Proof of Theorem 5.4. We start by defining the class G� of all paths of length � with
cyclic labeling from {1, 2, 3} as follows: For a path P and an integer a ∈ N denote by
(P)a , the concatenation of a copies of P . We use this notation to extend G2-vs-3 to longer
paths by defining for every � = 3a + b ∈ N

• G� = {(
1 - 2 - 3

)a
,

(
2 - 3 - 1

)a
,

(
3 - 1 - 2

)a} if b = 0,
• G� = {(

1 - 2 - 3
)a- 1 ,

(
2 - 3 - 1

)a- 2 ,
(

3 - 1 - 2
)a- 3

}
if b = 1, and

• G� = {(
1 - 2 - 3

)a- 1 - 2 ,
(

2 - 3 - 1
)a- 2 - 3 ,

(
3 - 1 - 2

)a- 3 - 1
}

if b = 2.

Note that as for � ≥ 4 labels do not point to a unique nodes anymore; therefore, it is not
sufficient to simply describe a node by its label in {1, 2, 3}. Given a node v ∈ V (P),
the neighborhood NP (v) ⊆ {1, 2, 3} refers to only the labels of the neighbors of v,
which—together with its own label—correspond to the local view of v. �

Claim 5.5. Let R ∈ N be a constant, and let π be an R-round 1-IND-CTA anonymous
broadcast (AB) with respect to G2-vs-3. Then, there exists an integer �∗ ≤ R + 1 such
that

1. π is 1-IND-CTA secure AB protocol with respect to G2-vs-3 ∪ G�∗ , where the
broadcaster is always the left-most node on a path.25

2. π is not 1-IND-CTA secure AB protocol with respect to G2-vs-3 ∪G�∗+1, where the
broadcaster is always the left-most node on a path.

Proof. For each � ∈ N, we have:

• either π is 1-IND-CTA secure AB protocol with respect to G2-vs-3 ∪ G� (with left-
most broadcaster) (�)

25Note that the cyclic labeling implicitly defines an orientation of the path, allowing to talk about “left”
and “right”
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• or π is not 1-IND-CTA secure AB protocol with respect to G2-vs-3 ∪ G� (with
left-most broadcaster) (��).

We set �∗ ∈ N to be the minimal number such that (�) holds for �∗, but (��) holds for
�∗ + 1. By assumption, we have that π is 1-IND-CTA with respect to G2-vs-3, which
implies that (�) holds for � = 3. On the other hand, we know that for � = R + 2 the
message cannot reach from the left-most node to the right-most node in R rounds and we
thus have a distinguisher with success probability ≥ 1/2. This implies �∗ + 1 ≤ R + 2
as required. �

Note that by Item 2 of Claim 5.5 there exists a path P∗ ∈ G�∗+1 that can be
efficiently distinguished from all paths in G2-vs-3 ∪ G�∗ . In particular, when parsing
P∗ = u∗

1 - u∗
2 - u∗

3 -P∗
R , where u∗

i is a single node for i ∈ {1, 2, 3} and P∗
R consists of

�∗−2 nodes, we have that P∗ can be efficiently distinguished from u∗
2 - u∗

3 , u∗
1 - u∗

2 - u∗
3 ∈

G2-vs-3 and u∗
2 - u∗

3 -P∗
R ∈ G�∗ as required. In order to simplify the description of the

AND protocol in the following we assume that the distinguisher in fact distinguishes
between a run of π on P = u∗

2 - u∗
3 -P∗

R and P∗.
More precisely, there exists a constant cD ∈ N, a distinguisher D running in time at

most λcD , an infinite set I ⊆ N, and a node v∗ ∈ V (P) ∩ V (P∗) = V ( u∗
2 - u∗

3 -P∗
R)

such that for all λ ∈ I it holds that:
∣∣∣Pr

[
D

(
1λ,m, V I EW P∗

v∗ (λ,m)
)

= 1
]

−Pr
[
D

(
1λ,m, V I EW P

v∗(λ,m)
)

= 1
]∣∣∣ ≥ λ−cD ,

where the randomness is taken over the random coins of π , of D, and the choice of m,
and where V I EW P

v (λ,m) denotes the view of node v in an execution of π on the path
P on input m and security parameter λ.

Given this distinguisher, we can construct a protocol (as we show below) for securely
computing the AND of two bits x ∧ y with infinitely often security. By Kilian [24] (see
also Lindell [28]) this implies io-OT as required. The rest of the proof is thus dedicated
to the construction and proof of security of the protocol for AND.

The high-level idea of our protocol is as follows. In the first step, the parties establish
a path P as follows. Alice will add one node to P if x = 0, and two nodes if x = 1.
Bob will add one node to P if y = 0, and �∗ − 1 nodes if y = 1. Now, the parties can
use the distinguisher D (as implied by Item 2 of Claim 5.5) to distinguish the case of
x ∧ y = 0 (where P ∈ G2-vs-3 ∪ G�∗ ) from the case x ∧ y = 1 (where P ∈ G�∗+1). See
Fig. 20 for an illustration.

Before formally describing the AND protocol, we have yet to deal with one technical
issue (in a similar way to Sect. 4.1). Namely, let

ρD(λ) ..= Pr
[
D

(
1λ,m, V I EW P∗

v∗ (λ,m)
)

= 1
]

be the probability of the distinguisher D successfully recognizing the “over-extended”
path P∗. In order for the parties to distinguish the two cases, they need to know ρD(λ),
but ρD might not be efficiently computable.
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Fig. 20. The possible graphs simulated in the Boolean AND protocol (Fig. 21). Color indicate who is respon-
sible for simulation: Alice - Bob.

This can be dealt with by running the distinguisher λ2cD+1 times on P∗, each time with
a fresh random message and fresh coins, and let σ = σ(λ) denote the number of times
on which the algorithm D outputs 1 in λ2cD+1 runs. Then, we obtain an approximation
of ρD by setting ρ̃D(λ) ..= σ/λ2cD+1. Hoeffding’s inequality yields that

Pr
[
ρD(λ) − ρ̃D(λ) > λ−cD/4

]
= Pr

[
σ < (ρD(λ) − λ−cD/4) · λ2cD+1

]

< e−2·(λ−cD /4)2·λ2cD+1
< e−λ/8.

On the other hand, we have

Pr
[
ρ̃D(λ) − ρD(λ) > λ−cD/4

]
= Pr

[
σ > (ρD(λ) + λ−cD/4) · λ2cD+1

]
< e−λ/8.

and thus |ρD(λ) − ρ̃D(λ)| ≤ λ−cD/4 except with probability negligible in λ.
With this we are ready to give a full description of the protocol in Fig. 21.

Lemma 5.6. Letπ be a constant-round 1-IND-CTA anonymous broadcastwith respect
to G2-vs-3. Then, the protocol in Fig.21 securely realizes the Boolean AND functionality
with uniform infinitely often security in the presence of a semi-honest adversary.

Proof. We prove correctness and security separately.

Correctness We first show that for all λ ∈ I the protocol yields the correct output with
overwhelming probability in the case that both Alice and Bob follow the protocol. Recall
that the probability that D outputs 1 on the “over-extended” path (i.e., in case x∧ y = 1)
is ρD(λ) and the probability that D outputs 1 on a “short” path (i.e., in case x ∧ y = 0)
is at most ρD(λ) − λ−cD for all λ ∈ I . Let B denote the number of runs for which D
outputs 1. Applying Hoeffding’s inequality and ρ̃D ≤ ρD + λ−cD/4 yields

Pr
[
Bob outputs 0 | x ∧ y = 1

]

≤ Pr
[
B < (ρ̃D(λ) − λ−cD/2) · λ2cD+1 | x ∧ y = 1

]

≤ Pr
[
B < (ρD(λ) − λ−cD/4) · λ2cD+1 | x ∧ y = 1

]
< e−λ/8.
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Fig. 21. Infinitely often Boolean AND protocol.

On the other hand, applying Hoeffding’s inequality and ρ̃D ≥ ρD − λ−cD/4 yields

Pr
[
Bob outputs 1 | x ∧ y = 0

]

≤ Pr
[
B ≥ (ρ̃D(λ) − λ−cD + λ−cD/2) · λ2cD+1 | x ∧ y = 0

]

≤ Pr
[
B ≥ (ρD(λ) − λ−cD + λ−cD/4) · λ2cD+1 | x ∧ y = 0

]
≤ e−λ/8

for all λ ∈ I .

Security First, assume that Alice is corrupt. The simulator is given the input x by the
environment, forwards x to the AND functionality and receives the output bit b = x∧ y.
It simulates the sub-graph GB of P set by Bob as follows. If b = 0, it adds one node
u∗

3 ; otherwise, it adds �∗ − 1 nodes u∗
3 -P∗

R . To simulate the executions of the protocol
π (which can be executed independently of the parties’ inputs) the simulator imitates
the parties’ behavior in a real protocol execution.
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Now, assume Bob is corrupt. The simulator proceeds exactly as above, but simulates
the sub-graph GA of P set by Alice as follows. If b = 0, it adds one node u∗

2 ; otherwise,

it adds two nodes u∗
1 - u∗

2 .
It is left to show that the simulated run is indistinguishable from a real protocol

execution. Note that if b = x ∧ y = 1, then the simulator behaves exactly according to
a real protocol execution. We thus only have to consider the case b = 0. In this case, the
adversary is only in control of one node and the security reduces to the security of π .

More precisely, we have to show that

{
V I EW P0

u∗
2
(λ,mi )

}
i∈[λ2cD+1] ≈c

{
V I EW P1

u∗
2
(λ,mi )

}
i∈[λ2cD+1] ,

where P0 = u∗
2 - u∗

3 and P1 = u∗
2 - u∗

3 -P∗
R for the case that Alice is corrupt, and

{
V I EW P0

u∗
3
(λ,mi )

}
i∈[λ2cD+1] ≈c

{
V I EW P1

u∗
3
(λ,mi )

}
i∈[λ2cD+1] ,

where P0 = u∗
2 - u∗

3 and P1 = u∗
1 - u∗

2 - u∗
3 for the case that Bob is corrupt.

Since all executions of π are independent of each other, this follows using the
1-IND-CTA security of π on G2-vs-3 ∪ G�∗ and Lemma 2.8.

This concludes the proof of Lemma 5.6. �

This concludes the proof of Theorem 5.4. �

6. Information-Theoretic Upper Bounds

In this section, we present our information-theoretic constructions: In Sect. 6.1, we
present 1-IT-THAB for 2-connected graphs, and in Sect. 6.2,1-IT-THB for the 1-connected
butterfly graph.

6.1. 2-Connectivity is Sufficient for 1-IT-THAB

We start by showing that 1-IT-THAB is possible on all 2-vertex-connected graphs.
Our protocol requires communication scaling polynomially in the number of graphs
in the class and computation additionally scaling exponentially in the maximal degree
(i.e., the maximal number of neighbors of a node in any graph of the class). In fact,
we show how to establish a stronger notion, namely 1-IT topology-hiding anonymous
secure channels, where each party can anonymously send a message to each other party
without anyone else learning the content of the message and without leaking anything
about the topology. As we show in Sect. 8.1, when the number of parties is fixed and
known this communication network can be used to run the BGW protocol, and support
1-IT-THC.

We refer the reader to Sect. 1.2.3 for a high-level overview of the censored brute
force technique that is used in this section. In Sect. 6.1.1, we establish the required
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Fig. 22. The sum functionality with a single known receiver.

definitions and terminology for the protocol; in Sect. 6.1.2 we state the main technical
lemma (Lemma 6.4) and its corollaries; and finally, in Sect. 6.1.3 we prove Lemma 6.4.

6.1.1. Definitions and Notations

The sum functionalityThe protocol presented in this section will realize the sum function-
ality Fsum(Pτ ), formally described in Fig. 22. This functionality takes an input message
from each node and outputs the sum of all messages to the designated receiver Pτ . Note
that this in particular implies topology-hiding anonymous communication between an
anonymous sender and Pτ , by having the sender enter its message and all other parties
enter zero as their input.

The protocol we present in Fig. 23 for realizing Fsum(�,Pτ ) provides perfect privacy
but it has a positive correctness error that can be made arbitrarily small. Stated differ-
ently, for adequate parameters that guarantee a negligible correctness error, the protocol
provides statistical security. We choose to state the slightly stronger form of achieving
perfect security albeit for a functionality that may err with small probability.

Definition 6.1. ((1 − δ)-correct functionality) Let F be a functionality and let δ > 0
be an arbitrarily small positive number. The (1 − δ)-correct functionality F δ proceeds
just like F, except that the functionality initially tosses a biased coin that outputs 0 with
probability δ, in which case the functionality outputs ⊥ as the output value for each
output party.

A protocol π securely realizesF with (1−δ)-correctness if π realizesF δ with perfect
security.

Bipolar orientation Our protocol relies on an agreed upon bipolar graph orientation
for each graph in the class. We define bipolar graph orientations in a manner that is
convenient for situations where only an upper bound on the number of nodes is known.

Definition 6.2. (Bipolar graph orientation) Let n ∈ N, let H be an undirected graph
with V (H) ⊆ [n], and let σ, τ ∈ V (H). A στ -orientation 〈H〉τ of H is a directed
acyclic graph with a unique sink τ and a unique source σ formed by assigning a direction
to each edge in H . A στ -numbering of H is a topological ordering of a στ -orientation
of H , i.e., a map ψH,τ : V (H) → [n] such that

1. ψH,τ is injective.
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2. ψH,τ (σ ) = 1.
3. ψH,τ (τ ) = n.
4. There exists a στ -orientation 〈H〉τ of H , such that (u, v) ∈ E(〈H〉τ ) �⇒

ψ(u) < ψ(v).

Proposition 6.3. ([16,17,32]) For any graph H and vertices σ, τ ∈ V (H), a στ -
orientation and a στ -numbering can be found in polynomial time (in n).

6.1.2. Topology-Hiding Communication for 2-Connected Graphs

We now present our main technical lemma of the section: a protocol for topology-hiding
computation of the sum functionality with (1 − δ)-correctness against one computa-
tionally unbounded semi-honest corruption with respect to 2-connected graphs. Before
proving the lemma in Sect. 6.1.3, we present corollaries to THAB and THC.

In the results stated below we denote the class of 2-connected graphs with up to n
nodes as

G≤n
2-conn = {G graph : V (G) ⊆ [n] and G is 2-connected} ,

and the class of 2-connected graphs with exactly n nodes as

Gn
2-conn = {G graph : V (G) = [n] and G is 2-connected} .

Lemma 6.4. Let n ∈ N, let G ⊆ G≤n
2-conn, let dmax be the maximal degree of any graph

in G (dmax ≤ n), let � ∈ N, let τ ∈ [n], and let δ > 0. Then, protocol πδ
sum(�,G,Pτ )

(defined in Fig.23) securely realizesFsum(�,Pτ )with (1−δ)-correctness in a topology-
hiding manner with respect to G, tolerating a single semi-honest corruption.

Moreover, πδ
sum(�,G,Pτ ) completes within n rounds with total communication com-

plexity

O
(
n · dmax · |G| · (� + log(1/δ) + dmax · log |G|)

)

and computation complexity O(|G|dmax).

Note that a protocol for Fsum can be used to construct private channels with sender-
anonymity by having the sender enter its input to the protocol and every other party
enter zero. In turn, this enables 1-THAB by having the broadcaster send its message
independently to every potential receiver.

Theorem 6.5. Let n ∈ N, let G ⊆ G≤n
2-conn, let dmax is the maximal degree of any graph

in G, and let δ > 0. Then, there exists a protocol that securely realizes Fanon-bc with
(1 − δ)-correctness in a topology-hiding manner with respect to G, tolerating a single
semi-honest corruption.
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Moreover, the protocol completes within n rounds with total communication complex-
ity

O
(
n2 · dmax · |G| · (� + log(n/δ) + dmax · log |G|)

)

and computation complexity O(|G|dmax) per node.

Proof (sketch). For δ > 0, We define a (1 − δ)-correct 1-THAB protocol in the
F δ/n
sum-hybrid model, by invoking the functionality n times (in parallel) with (1 − δ/n)-

correctness, where in the i th invocation, for each i ∈ [n], the target party is Pi , and each
party enters zero as its input to F δ/n

sum(�,Pi ) except for the broadcaster who enters its
input. The proof immediately follows from Lemma 6.4. �

Further, by using the sum functionality to construct secure channels between every
pair of parties, we get the communication network needed to run the semi-honest BGW
protocol [8]. Since the BGW protocol works for a fixed and known set of parties under
an honest-majority assumption, we get (1 − δ)-correct 1-THC for 2-connected graphs
on exactly n nodes, for n ≥ 3.

Theorem 6.6. Let n ≥ 3, let G ⊆ Gn
2-conn, let δ > 0, and let f be an n-party func-

tion. Then, there exists a protocol that securely realizes F f,δ
sfe with perfect security in a

topology-hiding manner with respect to G, tolerating a single semi-honest corruption.

6.1.3. Security Analysis

Proof of Lemma 6.4. The proof works by considering separately the messages asso-
ciated with each graph in G. With that in mind, let H ∈ G denote an arbitrary graph
and let G ∈ G denote the actual graph used by FG

graph (i.e., in the protocol it holds
that N (u) = NG(u)). Denote the set of messages associated with H in the protocol
πδ
sum(�,G,Pτ ) (Fig. 23) as,

MH =
{
su→v
H ∈ {0, 1}�+κ : (u, v) ∈ E(〈H〉τ ) ∩ E(G)

}
.

In round i , messages are sent to the i th node (numbered according to ψH,τ ) by each
of its predecessors and that node prepares its message for each of its successors. For
i ∈ [n − 1] consider

S i = {
su→v
H ∈ MH : ψH,τ (u) ≤ i ∧ ψH,τ (v) > i

}
.

In other words, if you order the nodes according to ψH,τ and draw a line between nodes
i and i + 1, S i constitutes the messages corresponding to edges crossing that line.
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Fig. 23. Securely realizing Fsum(Pτ ) in a topology-hiding manner, for 2-connected graphs.

Further, we define the messages sent to the i th node in 〈H〉τ (i.e., node vH,i such
that ψH,τ (vH,i ) = i), as

S−
i = {

su→v
H ∈ MH : ψH,τ (u) < i ∧ ψH,τ (v) = i

} ⊆ S i−1

and the messages sent from vH,i as

S+
i = {

su→v
H ∈ MH : ψH,τ (u) = i ∧ ψH,τ (v) > i

} ⊆ S i .
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Fig. 24. The sets S+
i , S−

i , and Si in the intersection of the real graph G and the bipolar orientation of H .
Thick arrows are in both G and H while thin arrows are in H but not in G.

Note that this constitutes the local view of PvH,i : the set S−
i is received in round i (from

the 〈H〉T predecessors in the real graph G), and S+
i is sent in subsequent rounds (to the

〈H〉T successors in G). The sets S i , S+
i , and S−

i are illustrated in Fig. 24.
The following lemma says, among other things, that messages received by the i th in-

termediate node in 〈H〉τ , S−
i , are uniformly random. If the graph H is consistent with

the real graph G, then τ receives random messages conditioned on them summing to
the correct value. And as soon as a neighborhood does not match the real graph, H ,
everything is uniformly random from that point on. �

Claim 6.7. Recall that vH,i such that ψH,τ (vH,i ) = i is the i th node in 〈H〉τ for
i ∈ [n].26 For each h ∈ [n], we distinguish between two cases:

1. If NH (vH,i ) = N (vH,i ) for all i ≤ h, then for all i ≤ h, the set S i con-
sists of independently and uniformly distributed strings from {0, 1}�+κ such that∑

s∈S i s = (
∑

j≤i mvH, j )‖1κ . Moreover for i ≤ h, it holds that:

• If i = 1, the set S−
i is empty;

• If 1 < i < n, S−
i is a set of independently and uniformly distributed strings

from {0, 1}�+κ (Note that |S−
i | only depends on local information and the class

itself);
• If i = n, S−

i (= Sn−1) is a set of independently and uniformly distributed
strings from {0, 1}�+κ such that

∑
s∈S−

i
s = (

∑
u∈V (H) mu)‖1κ .

26To account for the case i /∈ Im(ψH,τ ), which can happen if H has less than n nodes, we set vH,i = 0,
NH (vH,i ) = {0}, and mvH,i = 0.
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2. If NH (vH, j ) �= N (vH, j ) for some j ≤ h, then S j is a set of independently and
uniformly distributed strings from {0, 1}�+κ . Moreover for all j ′ > h, S−

j ′ is a set

of independently and uniformly distributed strings from {0, 1}�+κ .

Proof. We prove the claim by induction. By inspection, the claim holds for h = 1. The
node vH,1 prepares S1 in round 1 in this manner exactly, i.e., uniform conditioned on
the sum being mvH,1‖1κ if NH (vH,1) = N (vH,1), and uniform otherwise.

To prove the inductive step, assume the statement holds for some h ∈ [n− 1], and we
will prove it for h + 1. Note that,

∑

s∈Sh

s =
∑

s∈S−
h+1

s +
∑

s∈Sh\S−
h+1

s and
∑

s∈Sh+1

s =
∑

s∈S+
h+1

s +
∑

s∈Sh\S−
h+1

s.

Therefore,

∑

s∈Sh+1

s =
∑

s∈Sh

s −
∑

S−
h+1

s +
∑

s∈S+
h+1

s.

In addition, note that if h /∈ Im(ψH,τ ), thenSh = Sh+1. So, we will restrict our attention
to the opposite case.
Case 1 In this case, NH (vH,i ) = N (vH,i ) for all i ≤ h. By the inductive hypothesis, Sh

is uniformly random such that
∑

s∈Sh s = (
∑

i≤h mvH,i )‖1κ . Because NH (vH,h+1) =
N (vH,h+1), the set S+

h+1 consists of independently and uniformly distributed strings
conditioned on

∑
s∈S+

h+1
s = mvH,h+1‖0κ +∑

s∈S−
h+1

s. Thus, we have thatSh+1 consists
of independently and uniformly distributed strings conditioned on

∑

s∈Sh+1

s =
∑

s∈Sh

s −
∑

s∈S−
h+1

s +
∑

s∈S+
h+1

s =
⎛
⎝∑

j≤h

mvH, j

⎞
⎠ ‖1κ + mvH,h+1‖0κ

=
⎛
⎝ ∑

j≤h+1

mvH, j

⎞
⎠ ‖1κ .

Moreover, because G is 2-connected, there are at least two vertex-disjoint source-sink
paths in 〈G〉τ . This means that for h+1 < n−1 there is a source-sink path that does not
go through vH,h+1, and thus Sh \S−

h+1 is non-empty. Because Sh is uniform conditioned
on summing to some value, it holds that S−

h+1 is uniformly distributed.
Case 2 In this case, NH (vH, j ) �= N (vH, j ) for some j ≤ h. If NH (vH,h+1) =
N (vH,h+1), then it must be the case that NH (vH, j ) �= N (vH, j ) for some j ≤ h,
in which case Sh is uniformly distributed by the inductive hypothesis. It follows that
Sh \ S−

h+1 and S−
h+1 are comprised of uniform and independent values. (And S−

h+1 is
non-empty because H is connected and h+ 1 cannot label a source.) Thus, the set Sh+1

(i.e., the disjoint union of S+
h+1 and Sh\S−

h+1) is comprised of uniformly random values
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becauseS+
h+1 is uniformly random conditioned on summing tomvH,h+1‖0κ +∑

s∈S−
h+1

s,
which is a uniformly random value.

IfNH (vH,h+1) �= N (vH,h+1), thenS+
h+1 consists of (zero or more) uniformly random

independent values. As by assumption we have h + 1 ∈ Im(ψH,τ ) and vH,h+1 is not
the source, it holds that either S−1

h+1 is not empty (i.e., there exists an ingoing edge
to vH,h+1 in 〈H〉τ ), or it must be that NH (vH, j ) �= N (vH, j ) for some j ≤ h. In
the latter case, Sh is uniformly random by the inductive hypothesis and thus so is
Sh+1 = S+

h+1 ∪ (Sh\S−
h+1) = S+

h+1 ∪ Sh .
If S−

h+1 is non-empty, it follows from the inductive hypothesis that Sh\S−
h+1 is com-

prised of uniformly random values. So if S+
h+1 is empty, then Sh+1 = Sh\S−

h+1 and thus
is uniform. If S+

h+1 is non-empty, then again by the inductive hypothesis we have that
Sh+1 (the disjoint union of S+

h+1 and Sh \ S−
h+1) is comprised of uniform independent

values. This concludes the proof of Claim 6.7. �

From Claim 6.7, it follows that the messages sent to τ in round n that correspond
to H ∈ G are uniformly random such that they sum to (

∑
u∈V (H) mu)‖1κ if G = H , and

are completely uniformly random otherwise. Moreover, the messages corresponding to
each graph are independent of one another.

Thus, we can bound correctness error simply by the probability that some other
combination of messages (one from each neighbor of τ ) not all corresponding to G
sum to x‖1κ . Since τ has degG(τ ) ≤ dmax neighbors, by a union bound (and since
κ = log(1/δ) + dmax · log |G|), this happens with probability at most

2−κ · |G|degG (τ ) = δ · |G|degG (τ )

|G|dmax
≤ δ.

Remark 6.8. Note that the probability of bad checksum only depends onG and degG(τ ).
Thus, by simply not outputting (conditioned on receiving a unique valid checksum) with
the appropriate probability we can perfectly simulate the functionality that outputs τ with
probability (exactly) 1 − δ.

Similarly, it follows from Claim 6.7 that for non-terminal parties Pu �= Pτ , the
messages received corresponding to any particular H ∈ G are independent, uniform
and received from each neighbor v ∈ N−

H (u) ∩ N (u) in round ψH,τ (u). Moreover,
messages corresponding to distinct H ’s are independent. Because of that the view of
the terminal party Pτ in round n is simply uniformly random conditioned on a random
combination (one from each neighbor) summing to (

∑
j m j )‖1κ . Thus, the simulator

below is a perfect simulation of the view of any party Pu .

The Simulator The simulator Sim, controlling party Pu , begins by receiving N (u) from
WG

graph-info(F δ
sum(�,Pτ )) and the input mu from the environment; denote d = |N (u)|

and N (u) = {v1, . . . , vd}. Sim sends mu to WG
graph-info(F δ

sum(�,Pτ )) and if u = τ , it
receives the output y.
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Fig. 25. The class of butterfly graphs consists of all possible permutations of the graph depicted above with
nodes in {1, 2, 3, 4, 5}.

For Pu = Pτ : Sample random (i1, . . . , id) ∈ [n1] × · · · × [nd ], where n j =
|{H ∈ G : v j ∈ NH (τ )}|. For each v j ∈ N (τ ), sample a tuple of nv j indepen-

dent uniformly random strings s j = (s̃ j1 , . . . , s̃ jnv j
) conditioned on the fact that

∑d
j=1 s

j
i j

= y‖1κ .

Before round n, the transcript of Pτ is empty. In round n, Pτ receives s j from each
neighbor v j .

For Pu �= Pτ : In each round i = 2, . . . , n − 1, for each graph H ∈ G such that
ψH,τ (u) = i and each neighbor v ∈ N−

H (u) ∩ N (u), Sim simulates Pu receiving
an independent uniformly random message, and sending messages as in an honest
execution of the protocol on input mu .

This concludes the proof of Lemma 6.4. �

6.2. 2-Connectivity is Not Necessary for 1-IT-THB (Butterfly Graph)

In prior sections, we established a separation between 1-THAB and 1-THB, where the
additional knowledge of the broadcaster can be leveraged. Namely, we presented graph
classes for which 1-IT-THB can be trivially achieved via the flooding protocol, but 1-
THAB requires computational cryptographic assumptions; e.g., 1-THAB on the class
of three parties on a line implies key agreement (Proposition 5.1), and constant-round 1-
THAB on G2-vs-3 implies infinitely often OT (Theorem 5.4). In this section, we provide
a stronger separation by presenting classes of graphs on which 1-IT-THAB is impossible
and flooding is not topology hiding, but there still exists 1-IT-THB.

One such example is the family of butterfly graphs (Fig. 25). As this class is not 2-
connected, Proposition 5.1 rules out 1-IT-THAB. Further, given any graph in this family,
a non-center node cannot tell which of its neighbors is central and which is not, and
the center node cannot tell which of its neighbors are connected. For these reasons,
the flooding protocol is not topology hiding, since, for example, a party of distance 2
from the broadcaster will learn which of its neighbors is central (the one who sends the
message in the second round). Nevertheless, we show 1-IT-THB with perfect security
can be achieved for this class.

Definition 6.9. (Butterfly graph) We denote by G12-3-45 the butterfly graph consisting
of 5 nodes {1, 2, 3, 4, 5} and 6 edges {(1, 2), (1, 3), (2, 3), (3, 4), (3, 5), (4, 5)} (see
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Fig. 25), in which the center 3 forms one triangle with {1, 2} and a second with {4, 5}.
We denote by Gbutterfly the family of all permutations of the butterfly graph.

Theorem 6.10. (IT-THB on butterfly) There exists a 1-IT-THB protocol with respect
to Gbutterfly with perfect security.

The main idea of the protocol is to run four reliable message transmission (RMT)
protocols,27 where the broadcaster PBC acts as the sender and each of the other parties
acts as the receiver PR in one of the RMT executions. In an RMT execution, PBC sends
the message in the first round to the center node, who then forwards it to PR . Two
problems arise: First, the center node must deliver the message to PR obliviously, so
that PR will not realize which of its neighbors is the center. We overcome this issue
by splitting up the message into two additive secret shares and sending one share to
PR directly and the other share via its neighbor. The second problem is that the center
node does not know which is the neighbor of PR , and it therefore prepares a share for
every possible neighbor. To hide the identity of the center node, all other parties behave
accordingly, preparing secret shares of 0 for PR . Finally, PR can choose the correct
shares, as it knows the identity of its neighbors, and reconstruct the message.

This protocol almost suffices for transmission of the message to PR without leaking
the topology, but there is one special case left to consider, namely if the center node itself
is PR . In this case, it could learn which neighbors are connected (by seeing which pairs
of messages can be reconstructed to 0). We solve this by adding a blinding factor, which
only comes into play if PR is the center node. More precisely: If PR has two neighbors
(i.e., is not the center party), then in the first round PR will send the same value to both
its neighbors. (In this case, the additional blinding will be canceled out later.) If PR has
four neighbors (i.e., is the center node), then in the first round PR will send distinct
values to all its neighbors (in order to allow for this we have to work over a field with
at least four elements, say over F4 = Z[X ]/〈X2 + X + 1〉), in which case the blinding
terms will hide which of the parties are connected. The blinding term itself is agreed on
in the second round by each pair of neighbors.

The formal description of the protocol is given in Fig. 26.

Lemma 6.11. The protocol πbutterfly is a perfectly secure 1-THB protocol with respect
to Gbutterfly.

Proof. We start by proving correctness. If PR is the center node, then correctness is
obvious. Otherwise, the output equals

γ v
u ⊕ γ u

v = m0
v,u ⊕ m1

u,v ⊕ βu · (bv,u ⊕ bu,v) ⊕ m0
u,v ⊕ m1

v,u ⊕ βv · (bu,v ⊕ bv,u)

= (m0
v,u ⊕ m1

v,u) ⊕ (m0
u,v ⊕ m1

u,v) ⊕ (βu ⊕ βv) · (bv,u ⊕ bu,v)

= m ⊕ 0 = m,

27Reliable message transmission refers to the concept of transmitting messages in an incomplete network
such that the receiver is guaranteed to receive the message [14,15]. In our setting, the challenge is to realize
reliable message transmission in a topology-hiding manner. Note that as described in the following, reliable
message transmission in particular implies broadcast in the semi-honest setting.



Topology-Hiding Communication from Minimal Assumptions Page 55 of 83 39

Fig. 26. Information-theoretic 1-THB over Gbutterfly .

as βu = βv .
We proceed to prove security. Let Pv∗ be the corrupted party and mv∗ ∈ {0, 1, ε} its

input. The simulator forwards mv∗ to the wrapped functionality WGbutterfly
graph-info(Fbc(PBC))

and receives m and the neighbor-set NG(v∗).
The simulator simulates a real execution of πbutterfly(PBC) as follows. If PBC ∈

NG(v∗), the simulator sends (B,m) to the adversary in the first step. In the second step,
for all u ∈ NG(v∗) the simulator samples random blinding terms bu,v∗ R← F4 and sends
(u, bu,v∗) to the adversary. In each round with R ∈ NG(v∗), to simulate the third step

the simulator samples a random βv∗ R← F4 and sends (R, βv∗) to the adversary. Else,
the simulator receives βu from the adversary for each u ∈ NG(v∗). In the fourth step,
for each u ∈ NG(v∗), the simulator chooses a random message m0

u,v∗
R← F4, sends

(u,m0
u,v∗) to the adversary, and receives m0

v∗,u .
Finally, in the rounds with v∗ = R, the simulator proceeds as follows:

• If Pv∗ is the center node, then for each u �= v∗ and for each v /∈ {u, v∗}, the
simulator samples γ v

u
R← F4 at random and sends (u, {v, γ v

u }v �=v∗) to Pv∗ .
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• Otherwise, let NG(v∗) = {u, v}; the simulator samples γ v
u , γ u

v

R← F4 conditioned

on γ v
u ⊕ γ u

v = m. For all w /∈ NG(v∗)∪ {v∗}, the simulator samples γ w
u , γ w

v

R←F4
at random and sends (u, {w, γ w

u }w �=v∗) (and accordingly for v) to the adversary.

Note that the simulation exactly mirrors the protocols behavior except for the last
step. We therefore only have to analyze the round where v∗ is the receiver.

• If Pv∗ is the center node, note that from the view of Pv∗ in a real protocol execution
every message γ v

u (for u, v �= v∗) is distributed uniformly at random, because Pv∗
does not know m0

v,u . It is left to argue that also the joint distribution of γ v
u and

γ u
v is uniform, because we have m0

v,u = m1
u,v . This is true, because γ v

u ⊕ γ u
v =

βu · (bv,u ⊕ bu,v) ⊕ βv · (bu,v ⊕ bv,u), and we are guaranteed βu �= βv (as we
only consider semi-honest adversaries). Therefore, the simulated view is distributed
identically to the view of Pv∗ in a real protocol execution.

• Otherwise, the messages γ v
u and γ u

v for NG(v∗) = {u, v} in a real execution are
indistinguishable from random conditioned on γ v

u ⊕ γ u
v = m, since Pv∗ has no

knowledge of m1
u,v and m1

v,u . Further, for all w /∈ NG(v∗) ∪ {v∗}, the values γ w
u

and γ w
v are random from the point of view of Pv∗ , as Pv∗ does not know m0

w,u and
m0

w,v and each of these terms appear once only.

This concludes the proof of Lemma 6.11. �

7. Key-Agreement Upper Bounds

In this section, we present our KA-based upper bounds. In Sect. 7.1, we show that 1-
THAB can be achieved, assuming KA, on every class of graphs that contain at least 3
nodes (i.e., where an honest majority is guaranteed), and in Sect. 7.2 that 1-THB can be
achieved, assuming KA, on every class of graphs.

7.1. KA is Sufficient for 1-THAB on All Graphs with at Least Three Nodes

We start by showing that key agreement is sufficient to achieve 1-THAB on all graphs
with at least three nodes, in other words, on all graphs where an honest majority is
guaranteed. As shown in Sect. 5.2, this is the best we can hope to achieve for general
classes of graphs, since if the class contains a 2-path as well as a 3-path infinitely often
OT is required.

At its core, the protocol works by having each pair of neighbors emulate a virtual party,
whose internal state is secret shared between them. These virtual parties—corresponding
to edges in the network—broadcast by running a modified version of flooding on the
line graph of the network. In each round, the virtual parties hold a partial OR of some of
the inputs and at each round will update this by OR-ing it with those of the neighboring
parties; then, in the final round, their (secret shared) outputs are reconstructed by the
real parties, who then learn the broadcast message. Communication from one virtual
party to the next can be achieved using a key-agreement protocol, but we must ensure
the “degree” of each virtual party (i.e., the number of other virtual parties it is adjacent
to in the line graph) remains hidden. Indeed, uv, the virtual party emulated by neighbors
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u and v, has to communicate with deg(u) + deg(v) other virtual parties and this leaks
deg(u) to v and deg(v) to u. This issue is dealt with by having it update its state with the
neighboring virtual parties in a circular fashion: This way, uv only needs to interact with
the previous one on u’s side and the next one on v’s side. As discussed in Introduction
(Sect. 1.2.4), we introduce the dead-end channels technique to deal with the case where
u or v has degree one; hence, when the previous or next virtual party is entirely simulated
by u or v (which should not be allowed to learn the partial-OR too early).

Virtual Parties The player whose label in the communication graph is u will be denoted
u . In addition to these real players, the protocols in this section will introduce some
virtual parties, each emulated by a pair of neighbors in the graph. The virtual party
emulated by 1 and 2 , for instance, will be denoted 1-2 . We extend this notion to
include “fake” virtual parties, between two real parties which are not neighbors; it may
even be that one of the two is not even in the graph. Supposing 1 and 2 are two non-
neighboring parties in the graph, 1-2 denotes both the virtual party entirely emulated
by 2 (who is pretending to talk to 1 ) and the one entirely controlled by 1 ; however,
this abuse will not lead to any confusion as the notation should be clear from context.
There are therefore two types of virtual parties: those between two (distinct) neighboring
parties in the graph, and which we call good, those which are not—e.g., 1-2 or 2-4
in the graph 2 - 3 - 4 —and which we call bad.

Reminder: OT correlations Beaver [7] showed that OT can be “precomputed” in the
following sense. Consider a trusted dealer that independently and uniformly samples
three bits s, R0, R1 ← {0, 1}. The dealer gives (s, Rs) to the OT receiver and (R0, R1)

to the OT sender. Next, on inputs b ∈ {0, 1} and (m0,m1) ∈ {0, 1}2, resp., the OT
receiver and sender proceed as follows:

1. The receiver sends β ← s ⊕ b to the server.
2. The sender crafts the following two messages C0 and C1, then sends (C0,C1) to

the receiver:

• If β = 0: Cσ ← mσ ⊕ Rσ , for σ ∈ {0, 1}.
• If β = 1: Cσ ← mσ ⊕ R1−σ , for σ ∈ {0, 1}.

3. The receiver outputs Cb ⊕ Rs (which is equal to mb).

In particular, note that two OT correlations are sufficient for the secure computation of
an OR b0 ∨ b1 between an input bit b0 of the receiver and an input bit b1 of the sender
[6].

7.1.1. High-Level Overview

In the following, we describe the THAB protocol, on a graph G = (V, E). We will
outline the scheme for the special case of classes of paths of unknown length (subject to
some public upper bound, and lower bounded by three) and then provide a generalization
to classes of arbitrary graphs with at least three nodes.

Overview Part 1: Secure Flooding between Good Virtual Parties For the purposes of
presenting the high-level idea of the protocol, it is sufficient to consider as an example
the class containing exactly the paths 1 - 2 - 3 - 4 and 2 - 3 - 4 , as it captures all the
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Fig. 27. Path 1 - 2 - 3 - 4 versus path 2 - 3 - 4 .

technical difficulties. Here, hiding the topology and the identity of the broadcaster means
in particular that parties 3 and 4 should not learn whether party 1 is present, and no
party should learn their distance to the broadcaster. Our protocol will introduce virtual
parties 1-2 , 2-3 , and 3-4 which are represented in Fig. 27 by thulian pink bars. The
first may be either good or bad depending on the graph, while the other two are always
good.

The state of virtual party u-v is additively secret shared as two bits bu,v and bv,u ,
held, respectively, by u and v (unless the virtual party is bad, in which case both
are held by the same node). This state is initialized to 0, i.e., bu,v = bv,u ← {0, 1}.
Finally, the broadcaster will add the message m to its shares, i.e., u , if broadcasting,
would redefine bu,v ← bu,v ⊕ m for each neighbor v ∈ NG(u). The protocol works by
maintaining the following invariant:

Invariant: At the end of round k, the state of every good virtual party u-v
is the OR of the input bits of all parties in the union of the k-neighborhoods
of u and v . Additionally, the state of every bad virtual party is random.

It follows that after diameter rounds, each pair of neighbors holds the OR of the input
bits of all the parties, which is the broadcast bit.

We first describe a simplified scheme which two neighboring virtual parties, i.e., vir-
tual parties sharing a real party, can use to compute the OR of their states. This protocol
is always correct and is secure if both virtual parties are good. We will then show how
to boost security to tolerate bad ones.

Step 1: Simplified Initialization: Using a key-agreement protocol, each party
establishes a secure channel with each neighbor’s neighbor. (If 1 is not present, 2
will simulate the key exchange, i.e., establish a secure channel with 3 by playing
the role of 1 .) In the following, we simply write “ 3 sends a message to 1 ” to
signify that 3 sends a message to 1 via the secure channel established during
initialization.
Step 2:Computing the newmessage:The following updates the state of the virtual
party 2-3 as the OR of its message and the message held by 1-2 . For now, assume
that if 1 is not present it is fully simulated by 2 . The parties proceed as follows:

• 2 sends b2,1 to 3 .
• 2 sends b2,3 to 1 .
• 2 sends two OT correlations to 1 and 3 .
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Now, 1 and 3 can use the OT correlations to compute β1,3 and β3,1 such that

β1,3 ⊕ β3,1 = (b1,2 ⊕ b2,1) ∨ (b2,3 ⊕ b3,2).

Step 3: Redistributing the new message: Parties 1 and 3 pass on the new
message to the virtual party 2-3 as follows:

• Parties 1 and 3 agree on a random value s1,3 (hidden from 2 if 1 exists).
• Party 3 chooses a share bnew3,2 and sends β3,1 ⊕ s1,3 ⊕ bnew3,2 to 2 .

• Party 3 sends β1,3 ⊕ s1,3 to 2 .
• Party 2 can now receive its share of the new message of 2-3 via:

bnew2,3 = (β3,1 ⊕ s1,3 ⊕ bnew3,2 ) ⊕ (β1,3 ⊕ s1,3).

This protocol is correct, but not topology-hiding because 2 is potentially in control
of both party 1 and 2 and therefore may learn in which round the message reaches
the virtual party 1-2 . We thus have to alter the initialization phase, letting 2 simulate
the setup of a secure channel between 3 and a non-existing party without learning the
key itself. This can be achieved, again, using a third party to set up OT correlations
(specifically, the third party samples m0,m1, σ

R←{0, 1}, then deals out (m0,m1) to one
party and (mσ , σ ) to the other).

Overview Part 2: “Dead-End Channels” We now explain how establishing dead-end
channels (as discussed in Sect. 1.2.4) solves the previous security problem introduced
by bad virtual parties.

Step 1: Initialization: The parties proceed as follows.

• Setting up keys with each neighbor’s neighbor. This step is the exact same as
the simplified initialization from the previous scheme: Each party establishes a
secure channel with each neighbor’s neighbor, where we assume that 2 sim-
ulates 1 if the latter is not present. We denote ku,v the key established by u
with v . Exemplifying, the result of 3 establishing a secure channel with 1
is depicted below.

− If 1 is present:

3 421

k3,1 k3,1

− If 1 is not present:

3 421

k3,1 k3,1

• Establishing dead-end channels. If a party is not present—i.e., when a good
virtual party attempts to communicate with a bad one—we want to replace the
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(in fact in-)“secure” channel to that party with a dead-end channel, over which
the party that is simulating a bad virtual party cannot gain any information.
This replacement must be done obliviously with respect to the other party. In
our example class, the only dead-end channel which may potentially need to
be established is between 3 and 2 —i.e., when 2-3 needs to send a message
to 2-1 . This can be achieved as follows: 3 chooses a fresh key k∗

3,2 for its

neighbor 2 . The idea is that 2 can choose, whether it wants to receive the key
k∗

3,2 or not, depending whether 1 exists or not. This is done by letting 4 set

up OT-correlations for 3 and 2 , where 3 acts as sender and 2 as receiver.
(To pass on the correlation to 2 , party 4 uses the secure channel established
in the first step.)

Now, 2 uses the newly generated OT channel with 3 to receive k�
3,2 if and only if 1

exists. Then, if 1 exists, 2 forwards k∗
3,2 to 1 , who defines the new key as k∗

3,2 ⊕ k3,1,

as depicted below; this key is shared with 3 .

− If 1 is present:

3 421

k∗
3,2 ⊕ k3,1 k∗

3,2 k∗
3,2 ⊕ k3,1

− If 1 is not present:

3

k∗
3,2 ⊕ k3,1

421

k3,1 k∗
3,2 ⊕ k3,1

In particular, 3 has either established a secure channel to 1 if 1 is present,
or a dead-end channel28 otherwise, but is oblivious to which it is. From
now, by sending a message, e.g., from 3 to 1 we mean sending a message
encrypted with k∗

3,2 ⊕ k3,1. When using only the key k3,1 for encryption
(which will be crucial to establish correctness in the following), we will be
explicit.

Note that simulating the OT correlations when establishing dead-end channels (even
for more general graphs) does not leak anything about the topology because when u
has degree one it already knows that its neighbor v must have degree at least two and
therefore will choose29 to receive the key k�·,· (as we are guaranteed |V | ≥ 3).

One problem left to solve is to ensure that correctness is preserved if 1 does not exist,
as 2 no longer knows the keys used to encrypt the messages to and from 1 . This can
be solved by redefining how the new message of the virtual party is computed, such that

28The channel is a dead-end because 3 used a KA protocol to set up a shared key with who they thought
was 1 , simulated by 2 , but 2 obliviously elected not to learn this key. Therefore, whatever information 3
sends over this channel is lost.

29Recall that we are crucially dealing with semi-honest adversaries in this paper.
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2 can ensure correctness even if 1 does not exist, while keeping the topology—and
therefore in particular the message held by the (simulated) virtual party 1-2 —hidden
from 2 .

Note that we assume that 2 can still simulate the messages of 1 (without learning
their content) by simply sending random strings. Assuming that all messages are en-
crypted via one-time pads (by either setting up a long enough key or by using the key
as seed to a pseudorandom function), this is indistinguishable from the view of 3 .

Step 2: Computing the new message: 1 and 3 compute β1,3 and β3,1 as before,
but now use the key k∗

3,2⊕k3,1 to encrypt their communication (i.e., any information

sent between 1 and 3 is in any case hidden from 2 ).
Step 3: Redistributing the new message: To pass on the message from 1 and 3
to the virtual party 2-3 , the parties proceed as follows:

• Parties 1 and 3 agree on a random value s1,3 (hidden from 2 if 1 exists).
• 1 (potentially simulated by 2 ) sends a random message r1,3 to 3 , encrypted
by k3,1. (Note that if 1 exists this message is hidden from 2 , but if 1 does
not exist, 2 has full control over the channel.)
• 2 sends a random message r2,3 to 3 .
• 1 sends β1,3 ⊕ s1,3 to 2 .
• 3 sets bnew3,2 ← b3,2 ⊕ r1,3 ⊕ r2,3 and sends β3,1 ⊕ s1,3 ⊕ bnew3,2 to 2 .

• If 1 exists, 2 defines its new share as: bnew2,3 ← (β3,1 ⊕ s1,3 ⊕ bnew3,2 ) ⊕
(β1,3 ⊕ s1,3).

If 1 does not exist, 2 defines its new share as: bnew2,3 ← b2,3 ⊕ r1,3 ⊕ r2,3.

We re-established correctness, as now the new value of the virtual party 2-3 is simply a
re-randomization of its previous shares. Note that if 1 exists, bnew2,3 constitutes a perfectly

random fresh share both from the view of 2 and 1 individually, therefore the above
change does not hurt security.

Overview Part 3: From Paths to General Graphs The setting for general graphs is more
difficult, because parties no longer know the identities of their neighbors. We solve this
by organizing communication in a particular way that is locally determined and globally
consistent. Again, we consider each pair of neighbors as a virtual party, i.e., in the
example below the virtual parties are z-w , v-w , u-v , and v-x . Second, to
decide on how the message is passed along, each node with degree > 1 establishes a
cyclic ordering on their neighbors, e.g., (Fig. 28) v established the ordering u →
w → x → u . The parties that only have one neighbor will simulate another
neighbor; for example (Fig. 28), z will set up w → z → w . Note that it is crucial
that the neighbors never learn the actual identity of their next node and predecessor
according to such an ordering.

Now, the idea is that the message is passed along node-by-node according to this cyclic
ordering. In each step, one node will act as the center node. These steps are predetermined
by the label in [n]; therefore, each node (and its neighbors) knows exactly in which round
it is their turn. Further, the operations are local, so all nodes that are not direct neighbors
are not affected. In the following, we will describe the protocol at the example of v .
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Fig. 28. Examples of cyclic orderings.

When it is v ’s turn, each neighbor will set up a key with their next node (without
learning their identity), i.e., u will set up a key with w , w will set up a key with
x , and x will set up a key with u . In the next step, the parties potentially set up

dead-end channels—exactly as 2 did when 1 was not present in our example of a line.
This will, e.g., prevent z from learning the messages sent by w to its simulated next
node.

Once the secure channels are established, the message is passed through the graph as
follows: Let mv,w,mv,x , and mv,u be the messages held by the parties v-w , v-u ,
and v-x , respectively, before it is v ’s turn in the protocol. Then, afterward, all three
virtual parties will hold mv,w ∨ mv,x ∨ mv,u . To achieve this, in each step (in parallel)
v-� and v-nextv� will compute the OR of their messages and pass it on to v-� ,

for each neighbor � of v . For example, v-u and v-w will compute mv,u ∨mv,w

(by v acting as the center node and dealing out OT correlations) and pass it on to the
virtual party v-u . By repeating this sufficiently many times (in particular, at most n),
in the end all virtual parties containing v will hold the value mw,v ∨ mv,x ∨ mv,u .
Parties that have degree one proceed exactly according to party 2 before, simulating
dealing out OT correlations and computing the secure OR (obliviously) and finally set
their shares as a fixed re-randomization of the old shares.

Note that in one round of the protocol, with this strategy the message travels at least
distance one (as was the case for the line). Thus, after n rounds, all virtual parties will
hold the broadcast message.
7.1.2. The Protocol

For an integer n, denote the set of all graphs with V ⊆ [n] that consist of at least 3 nodes
by

G3≤V≤n = {G graph : V (G) ⊆ [n], |V (G)| ≥ 3} .
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Fig. 29. 1-THAB on the class G3≤V≤n .

Theorem 7.1. (KA is sufficient for 1-THAB on all graphs of size at least 3) Let n ∈ N

and let G ⊆ G3≤V≤n. Assuming the existence of a key-agreement protocol, there exists
a 1-THAB protocol with respect to G.
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Fig. 29. continued.

Proof. For the protocol, we refer to Fig. 29.

Correctness We first consider the case that all parties are honest and show that in this
case every party obtains the correct output, conditioned on all the key agreements being
successful, which occurs with all but negligible probability.

We start by considering the first phase of the protocol, where the parties set up secure
channels.

Setting up secure pre-channels The parties invoke the KA protocol poly(n) times,
such that each pair of parties obtains long enough keys to encrypt all further com-
munication. Since we conditioned on all the KA protocols being correct, for eachv ∈
NG(u)parties u and nextv(u) established a functioning channelchannel1

u→nextv(u)

encrypted by ku,nextv(u).
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Setting up secure/dead-end channels As the OT correlations are perfect, v and
thus nextv(u) will learn k∗

u,v (generated by u ) whenever it has degree at least two.
Thus, for all v ∈ [n] and u ∈ NG(v), the parties u and nextv(u) established a
functioning channel channel2

u→nextv(u) encrypted via ku,nextv(u) ⊕ k∗
u,v .

After initialization, for each edge {u, v} in the graph, we have b0
u,v ⊕ b0

v,u = m if either

u or v is the broadcaster, and b(0)
u,v ⊕b0

v,u = 0, otherwise. We will prove the following
invariant:

Invariant: At the end of round k, the state of every virtual party u-v is the OR of
the input bits of all parties in the union of the k-neighborhoods of u and v .

This is obviously true after initialization. Assume this is true at the end of round k − 1,
and let us show this is also true at the end of round k, i.e.,

For each v ∈ [n] and u, w ∈ NG(v), the following is true: If the virtual party
w-v holds message m at the end of round (k − 1), then u-v holds message m
at the end of the kth round.

Recall that computing and passing on the message for each v ∈ [n] proceeds in n
steps i = 1, . . . , n. We will show the following: If (in the kth round) the virtual
party nextv(u)-v or u-v holds message m at the end of step i − 1, then u-v holds
the message after the i th step. We will further use the following: If at the end of step
i − 1 all virtual parties hold either 0 or m, the same holds true at the end of i th step.
As the protocol runs for i ∈ [n] and v chose a cyclic permutation on its (at most n)
neighbors, this suffices to prove that the message eventually reaches u-v as required.

In the following, we consider the cases that v has degree at least two and v has degree
one separately.

Case I: Node v has degree at least two In the i th step, the parties proceed as follows:

• Computing the new message. u and nextv(u) compute shares β
k−1,i
u,nextv(u),

β
k−1,i
nextv(u),u such that

β
k−1,i
u,nextv(u) ⊕ β

k−1,i
nextv(u),u = (bk−1,i−1

u,v ⊕ bk−1,i−1
v,u ) ∨ (bk−1,i−1

nextv(u),v ⊕ bk−1,i−1
v,nextv(u)).

We thus have the following:

− If before the i th step all virtual parties hold either 0 or m, then u and v
now hold shares of either 0 or m.
− If the virtual parties u-v or nextv(u)-v hold message m before the i th step,
then u and nextv(u) now hold shares of m.

• Redistributing the new message. We have

bk−1,i
v,u = (β

k−1,i
u,nextv(u) ⊕ sk−1,i

u,nextv(u) ⊕ bk−1,i
u,v ) ⊕ (β

k−1,i
nextv(u),u ⊕ sk−1,i

u,nextv(u))

= β
k−1,i
u,nextv(u) ⊕ β

k−1,i
nextv(u),u ⊕ bk−1,i

u,v .

With the previous considerations, this yields:
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− If before the i th step all virtual parties hold either 0 or m, then u and v
now hold shares of either 0 or m.
− If the virtual parties u-v or nextv(u)-v hold message m before the i th step,
then u and v now hold shares of m.

Case II: Node v has degree one. In this case, we only have to show that the message
of the virtual party u-v = nextv(v)-v is not affected. This is true, as we have:

bk−1,i
v,u ⊕ bk−1,i

u,v = bk−1,i−1
v,u ⊕ rk−1,i

u,nextv(v) ⊕ rk−1,i
u,v ⊕ bk−1,i−1

u,v ⊕ rk−1,i
u,nextv(v) ⊕ rk−1,i

u,v

= bk−1,i−1
v,u ⊕ bk−1,i−1

u,v .

As the protocol runs for n rounds, we can be sure that all virtual parties hold the
correct message m.

Security It remains to prove that we can simulate the above protocol for a corrupted
party. We now describe the simulator. Let v∗ be the corrupted party, mv∗ ∈ {0, 1, ε}
(where ε denotes the empty string) its input andNG(v∗) its neighborhood. The simulator
forwards mv∗ to the wrapped functionality WGB

graph-info(Fanon-bc) and receives m. Then,
the simulator proceeds by running the protocol on one of two graphs, depending on the
degree of v∗:

• If v∗ has degree at least two, then the simulator simulates all parties u ∈ NG(v∗)
following the protocol as if they have degree one (v∗ then being their sole neighbor),
i.e., the protocol is simulated using a star graph centered in v∗.

• If v∗ has degree one, then the simulator simulates a single degree-two neighbor u
for it (i.e., the simulated graph is a path of length three, with u in the center).

Additionally, in both cases, if mv∗ = ε, then an arbitrary one of the neighbors of v∗ is
chosen to broadcast m.

Let’s now show that this is indistinguishable from a real protocol execution for v∗ .
For the following, we assume that the key-agreement primitive is perfectly secure and
show that in this case simulation is perfect. Security is then reduced to the security of
the key agreement, via a hybrid argument.

• Setting up pre-channels. This step is perfectly indistinguishable from the real
protocol execution, since v does not learn the identity of the node with which it
performs key agreement, allowing u to perfectly simulate having another neighbor
than v∗ is it does not.
• Setting up secure/dead-end channels. The first step of this phase is also perfectly
simulated, as it only depends on the local view of the graph.

If channel channel1
u→nextv∗ (u) is secure for all u ∈ NG(v∗), then the simulation of

the second step is perfect, as in this case the only information that v∗ can learn is the
receivers bit if it set up the OT correlations itself. Note though that in this case it already
knows that u has degree at least two and therefore picks b = 0.
The last step is perfectly indistinguishable from a real protocol execution, as the only
case where party v does not forward k∗

u,v to nextv(u) is if v has degree one and thus
nextv(u) = v .
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Initializing the messages of the virtual parties to m or 0. This step is perfectly indistin-
guishable from a real execution, because only the local shares held by parties u with
u ∈ NG(v∗) might differ.
• Passing on the message along the virtual parties. We will show this by replacing pro-
gressively, via a sequence of hybrids, the messages received by v∗ with independent
uniformly random messages, and show that the adversary cannot distinguish between
the hybrids and the real world. In particular, this shows that the view of the adversary
is independent of the graph and the identity of the broadcaster (assuming it is not v∗),
and therefore that the adversary cannot distinguish between the real world and our sim-
ulator (which runs the protocol on a certain star or path graph with an arbitrarily chosen
broadcaster).
For each k ∈ [n], v ∈ [n], and i ∈ [n], we define the following hybrids:

− H0 simulates the real world exactly.
− H1,k,v,i simulates the real world exactly up to the end of step (k, v, i) and
then replaces all the subsequent messages received by v∗ (until the output re-
construction phase) with independent random messages.

We will show that

1. H0 and H1,1,1,1
2. H1,k,v,i and H1,k,v,i+1 (for i < n)
3. H1,k,v,n and H1,k,v+1,1 (for k, v < n)
4. H1,k,n,n and H1,k+1,1,1 (for k < n)

are indistinguishable given the view of u . For simplicity, we will only show point (2),
as the others work in exactly the same way (although, as will become apparent in what
follows, it is crucial that we show the indistinguishability of the hybrids in the correct
order). Fix therefore (k, v, i) ∈ [n] × [n] × [n − 1]; the difference between H1,k,v,i

and H1,k,v,i+1 is at step (k, v, i + 1). If v is neither v∗ nor one of its neighbors, then v∗
receives no message and the hybrids are tautologically indistinguishable.

− If v = v∗ and v∗ has degree at least two:

∗ In the phase of “computing the newmessage,” all the messages v∗ receives are
those its neighbors exchange over channels of the form channel2u→nextv∗ (u)

(where u is a neighbor of v∗), but v∗ does not have the key associated to these
channels so all messages received look independent and random.
∗ In the phase of “Redistributing the message,” again whenever two of its
neighbors communicate over a channel of the form channel1u→nextv∗ (u) or

channel2u→nextv∗ (u), the messages v∗ receives look independent and pseudo-

random. Since sk−1,i+1
u,nextv(u)→v is random and unknown to v (by the security

of the channel from u to nextv(u) ), bk−1,i+1
v,nextv(u) looks random to v . Finally,

since rk−1,i+1
u,v is random, bk−1,i+1

nextv(u),v also looks random to v .

− If v = v∗ and v∗ has a single neighbor u:

∗ In the phase of “computing the new message,” since channel2u→nextv∗ (u) is
a dead-end channel, all messages v∗ receives look random.
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∗ In the phase of “Redistributing the message,” all the messages received by
v∗ over channel2u→nextv∗ (u), which is a dead-end channel, look random. In

particular, v does not learn sk−1,i
u,nextv(u)→v and so bk−1,i+1

u→v looks random. Finally,

by definition, rk−1,i+1
u,v is random.

− If v is a neighbor of v∗:

∗ In the phase of “computing the new message” v∗ receives bk−1,i
v,nextv(v∗) (or

a random message instead if v has degree one, which immediately solves the
question) and bk−1,i

v,next−1
v (v∗) from v. But since hybrid H1,k,v,i is indistinguish-

able from H0, these two messages, which v∗ received in the previous phase, are
indistinguishable from random. Additionally, v∗ receives two sets of random
OT selection bits, which look random, and two independent sets of random OT
messages, which also look random. Finally, since the OT correlations are per-
fect, all the communication over channel1u→nextv∗ (u) or channel2u→nextv∗ (u)

looks random to v∗ (whether v has degree one or not).
∗ In the phase of “Redistributing the message,” the messages v∗ receives from
nextv(v

∗) and next−1
v (v∗) are random by definition.

In any case, all messages received by v∗ at step (k, v, i + 1) look random to v∗ and so
H1,k,v,i and H1,k,v,i+1 are indistinguishable to v∗. Then, composing all these hybrids
yields the desired result.

• Output Phase. This phase is perfectly indistinguishable from a real execution as in
both cases v∗ gets the correct shares it was missing of the broadcast bit.

This concludes the proof of Theorem 7.1. �

Achieving 1-THC Note that for graph classes that are over a fixed set of nodes, if all
parties can broadcast in a manner that hides topology, every pair of parties can run a key-
agreement protocol to establish a secure channel. Thus, assuming an honest majority,
we can use the BGW protocol [8] to securely compute any function in a topology-hiding
manner. For an integer n, denote the class of graphs with exactly n nodes as

Gn = {G graph : V (G) = [n]} .

Corollary 7.2. Let n ≥ 3, letG ⊆ Gn, and let f be an n-party function. Then, assuming
the existence of a key-agreement protocol, there exists a 1-THC protocol for f with
respect to G.

7.2. KA is Sufficient for 1-THB on All Graphs

In this section, we show that a minor tweak of the 1-THAB protocol in Sect. 7.1 gives a
1-THB protocol for the class of all graphs of at most n nodes.

For an integer n, denote the class of graphs with at most n nodes as

G≤n = {G graph : V (G) ⊆ [n]} .
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Theorem 7.3. (KA is sufficient for 1-THB on all graphs) Let n ∈ N, and let G ⊆ G≤n.
Assuming the existence of a key-agreement protocol, there exists a 1-THB protocol with
respect to G.

Proof. The protocol is exactly as in Fig. 29, except during the setup of the potentially
dead-end channels. There, we replace the second step as follows:

• u chooses a (long) fresh key k∗
u,v , sets m0 = k∗

u,v and m1 = 0, and v sets b = 0
if and only if it has degree at least two or u or v is the broadcaster. The parties
use the OT correlations dealt by predv(v) to allow v to securely receive mb.

This change does not affect correctness. It is left to prove security.
Again, let v∗ be the corrupted party, let mv∗ ∈ {0, 1, ε} be its input, let NG(v∗)

be its neighborhood, and let u∗ be the broadcaster. The simulator forwards mv∗ to the

wrapped functionality WG≤n

graph-info(Fbc(u∗)) and receives m.
The simulator proceeds with simulations as follows: If u∗ = v∗ or if u∗ ∈ NG(v):

• If v∗ has degree at least two, then the simulator simulates all parties u with
u ∈ NG(v∗) following the protocol as if all nodes u have degree one.

• If v∗ has degree one, then the simulator simulates the single party u with u ∈
NG(v∗) according to the protocol as if u has degree two.

Otherwise:

• The simulator chooses an arbitrary node w ∈ NG(v) and simulates party w as if
it has another neighbor u∗ (of degree one) and all other parties u for u ∈ NG(v)

as if they have degree one.

The proof of the latter case is analogous to the proof of anonymous broadcast, as the
special case does not affect v∗ . We therefore focus on proving security in case u∗ = v∗
or u∗ ∈ NG(v∗). For setting up channels, we only have to reconsider the step of setting
up dead-end channels:

Setting up secure/dead-end channels. If channel channel1
u→nextv∗ (u) is secure

for all u ∈ NG(v∗), then also the simulation of the second step is perfect, as in
this case the only information that v∗ can learn is the receivers bit if it set up the
OT correlations itself. Note though that as either u or v∗ is the broadcaster, v∗
already knows that u will always choose b = 0, regardless of its degree.

The main difference in the rest of the proof is that if v∗ is of degree one, v∗ has access
to all messages sent via channel2

u→nextv∗ (u). Intuitively, this does not harm security

as v∗ already knows that it always shares the message with its (unique) neighbor. As
we only consider the case where the adversary knows its distance from the broadcaster
(either 0 or 1), we only have to show that passing the message does not leak anything
about the topology of the graph. The only step that might leak something about the
topology of the graph is computing the new message, as this step is simulated if and
only if v has degree one. Adapting the proof of Theorem 7.1 boils down the following
claim: �
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Claim 7.4. Let k ∈ [n], let v ∈ [n], let u ∈ NG(u), and let i ∈ [n]. At the end of
the i th step, if nextv(u) �= v, then bk−1,i

nextv(u),v and bk−1,i
v,nextv(u) are individually indis-

tinguishable from random from the view of u , and bk−1,i
u,v and bk−1,i

v,u are individually
indistinguishable from random from the view of nextv(u) .

Proof. • Computing the new message. In this step party, v learns bk−1,i−1
v,nextv(u)

and party nextv(u) learns bk−1,i−1
v,u . If v has degree one and is in the neighbor-

hood of the broadcaster, then v can learn bk−1,i−1
u,v in this step, as it has access

to channel2
u→nextv(u). Note though that this does not leak anything about the

topology of the graph to v , as v already knows bk−1,i−1
u,v = bk−1,i−1

v,u ⊕ m.
• Redistributing the new message. Since nextv(u) �= v, nextv(u) cannot gain any

information about bk−1,i
u,v , bk−1,i

v,u (even conditioned on knowing bk−1,i−1
v,u ), because

rk−1,i
u,v is random and hidden from nextv(u) .

Altogether, this shows that u , nextv(u) cannot distinguish whether they received
the real value or a random message in the first step. �

This shows that regardless of the role that v∗ has in a specific round of the protocol, its
simulated view is perfectly indistinguishable from a real protocol execution regarding the
degree of its neighbors. By the correctness of the protocol, again, outputs are distributed
according to a real protocol execution. As the party v∗ already knows its distance from
the broadcaster, this concludes the proof of Theorem 7.3. �

8. Corollaries and Implications of our Techniques

In this section, we derive corollaries from the techniques and the results given in previous
sections. In Sect. 8.1, we present a characterization of 1-THAB and 1-THC. In Sect. 8.2,
we consider the more complex case of 1-THB and provide a characterization for graphs
with at most four nodes.

8.1. Characterization of 1-IT-THAB and 1-IT-THC

We start by characterizing 1-THAB and 1-THC. In a similar spirit to Sects. 6.1 and 7,
we denote the class of graphs with up to n nodes as

G≤n = {G graph : V (G) ⊆ [n]} ,

and the class of graphs with exactly n nodes as

Gn = {G graph : V (G) = [n]} .

1-THAB Recall that by Theorem 6.5, 1-IT-THAB can be achieved (albeit inefficiently)
with respect to a class G that consists of only 2-connected graphs. Further, by Proposi-
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tion 5.1, 1-IT-THAB cannot be achieved with respect to a class G that contains at least
one graph with ≥ 3 nodes which is not 2-connected.

The degenerate case of the 2-path (two connected nodes) trivially enables 1-IT-THAB
even though it is not 2-connected. We note that augmenting a class of 2-connected graphs
with additional 2-path graphs still enables1-IT-THAB, since each party can locally check
if it has degree one (in which case it is on a 2-path with its sole neighbor) or if its degree
is at least two, in which case the graph is guaranteed to be 2-connected. Therefore, we
get the following corollary.

Corollary 8.1. (Characterization of 1-IT-THAB) Let n ∈ N, and let G ⊆ G≤n. Then,
1-IT-THAB is possible with respect to G if and only if every G ∈ G is either 2-connected
or is a 2-path.

Recall that by Theorem 5.4, if a class includes both a 2-path and a 3-path, then
(constant-round)1-THAB implies infinitely often OT. By considering graphs that contain
at least three nodes, we achieve a cleaner characterization. Denote by Kn

2 the class of all
2-path graphs over n nodes and recall that G≤n

2-conn stands for the class of 2-connected
graphs with at most n nodes whereas Gn

2-conn for the class of 2-connected graphs with
exactly n nodes.

Corollary 8.2. (Characterization of 1-THAB with ≥ 3 parties) Let n ∈ N and let
G ⊆ G≤n \ Kn

2 .

• 1-IT-THAB is possible with respect to G if and only if G ⊆ G≤n
2-conn (i.e., all graphs

in G are 2-connected).
• If G \G≤n

2-conn �= ∅ (i.e., there exist graphs that are not 2-connected), then 1-THAB
is possible with respect to G if and only if key agreement exists.

We note that the communication complexity of the 1-IT-THAB protocol in Corollaries
8.1 and 8.2 is polynomial in |G| and the computation complexity is polynomial in |G|
and exponential in the maximum degree in G.

1-THC To achieve 1-THC, we consider a fixed and publicly known set of parties and
an honest majority, i.e., Gn for some n ≥ 3. Recall that by Theorem 6.6, 1-THC can be
computed with respect to a class G ⊆ Gn that consists of only 2-connected graphs with
information-theoretic security. This matches the lower bound given in Proposition 5.1,
showing that otherwise key agreement is needed even for computing 1-THAB. Finally,
by Corollary 7.2, 1-THC can be achieved over any class of graphs (with at least three
nodes) assuming key agreement. Therefore, we conclude with the following corollary.

Corollary 8.3. Let n ≥ 3, let G ⊆ Gn, and let f be an n-party function.

• If G ⊆ Gn
2-conn (i.e., all graphs in G are 2-connected), thenF f

sfe can be securely
realizedwith statistical information-theoretic security in a topology-hidingman-
ner with respect to G, tolerating a single semi-honest corruption.
The communication complexity of the protocol is polynomial in |G|, and the
computation complexity is polynomial in |G| and exponential in the maximal
degree in G.
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Fig. 30. The nine connected graphs of size at most four.

• If G \ Gn
2-conn �= ∅ (i.e., there exist graphs that are not 2-connected), then

F f
sfe can be securely realized in a topology-hiding manner with respect to G,

tolerating a single semi-honest corruption, if and only if key agreement exists.

8.2. Characterization of 1-IT-THB on Small Graphs

We proceed to consider 1-THB. As indicated from previous sections, this case is more
complex since the lower bounds for 1-THAB (presented in Sect. 5) that were strong
enough to provide a clear-cut characterization in Sect. 8.1 do not carry over. In this
section, we present a characterization for small graphs (with at most four nodes).

Isomorphically closed classes of small graphs There are nine connected graphs on four
parties or fewer, up to isomorphism: the complete graph of size four ( ), the diamond
( ), the four-cycle ( ), the claw ( ), the paw ( ), the four-path ( ), the three-cycle ( ),
the three-path ( ), and the two-path ( ).
Rather than considering all graph classes, we only study those which are isomorphically
closed: If a network (defined here as a labeled graph) is in the class, then so must all
isomorphic networks be (where the label set is implicitly {1, 2, 3, 4}, corresponding to
players 1 , 2 , 3 , 4 ). In particular, there are 29−1 = 511 non-empty classes.

Definition 8.4. (Isomorphic Closure) Let n ∈ N. We say a graph class G comprised
of graphs with at most n vertices and labeled by a subset of {1 . . . n} is isomorphically
closed—if, for every graph G = (V, E) ∈ G and for every injective function p :
V → {1, . . . , n}, the graph H = (p(V ), EH ) is also in G, where EH is defined by
(u, v) ∈ E ⇔ (p(u), p(v)) ∈ EH .

In other words, if a graph is in an isomorphically closed class, then so must also be
all the graphs obtained by relabeling it using a subset of {1, . . . , n}.

Without this restriction, which allows for a purely graph-theoretic property-based
dichotomy, the theorems in this section do not characterize when 1-IT-THB and 1-
IT-THAB are possible on every single graph class. However, since our impossibility
results rely on only specific combinations of labeled graphs being in the class (which are
guaranteed to be there under an isomorphic closure hypothesis), they may be carefully
applied to more, albeit often less natural, graph classes on a case by case basis.

Note that the class Goriented-5-path from Sect. 4.1 is an example of a class which does
not have this closure property: The node labeled 1 is always the root of the directed
path.

Theorem 8.5. (Characterization of 1-IT-THB on small graphs) Let G be an isomor-
phically closed graph class containing only (connected) graphs of size at most four.
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Fig. 31. The six forbidden classes for 1-IT-THB .

Fig. 32. The four maximal forbidden-pattern-free classes for 1-IT-THB .

1. If the class is a superset of any of the six following sets, then 1-IT-THB on G is
infeasible: { }, { }, { , }, { , }, { , }, and { , }. Specifically, 1-THAB with
respect to such G implies key agreement.

2. Conversely, if the class is not a superset of any of the six aforementioned sets, then
1-IT-THB is possible. Note that these are the subsets of the following four maximal
sets: { , , , , }, { , , , }, { , , , }, and { , , , }.

The proof of Theorem 8.5 follows from Lemmas 8.6 and 8.7. In Lemma 8.6, we
identify the six minimal classes for which 1-THB implies KA. The main proof technique
employed is the phantom bridge argument (that was discussed in Remark 4.6). It follows
that 1-THB on a superclass of any of these six classes implies KA.
In Lemma 8.7, we show that on all other classes 1-IT-THB is possible. To that end, we
identify the maximal classes which are not superclasses of any of the six aforementioned
forbidden patterns: It suffices to show that 1-IT-THB is feasible on each of these four
classes.

8.2.1. Key-Agreement Implications

Lemma 8.6. 1-THB on each of the following classes implies key agreement:

1. { } (“The Path”)
2. { , } (“The Triangle”)
3. { } (“The Paw”)
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4. { , } (“The Full Claw”)
5. { , } (“The Diamond Claw”)
6. { , } (“The Diamond Path”)

Proof (sketch). We prove the lemma for each class separately.

1. By Ball et al. [[4], Thm. 3.1], 1-THB on { } implies KA.
2. By Theorem 4.4, 1-THB on { , } implies KA.
3. We prove that 1-THB on { } implies KA via the phantom bridge argument, and

using a similar construction to Fig. 17 in Sect. 4.2. The following proof sketch lists
the points which need to be adapt the construction to { }:
• If Alice’s coin cA is 1, she simulates parties 1 , 2 , and 4 (fully pairwise

connected); if her coin is 0, she only simulates party 2 .
• If Bob’s coin cB is 1, he simulates parties 1 , 3 , and 4 (fully pairwise con-

nected); if his coin is 0, he only simulates party 3 .
• In the event Alice and Bob toss different coins, the topology is either one of

the two paws where 2 and 3 are connected, and where either { 1 , 2 , 4 }
or { 1 , 3 , 4 } are fully connected. The reason why an eavesdropper between
Alice and Bob (having access only to communication between nodes 2 and 3)
cannot determine whether cA = 1 − cB = 1 or cA = 1 − cB = 0 with more
than negligible probability follows from a standard hybrid argument (similar
to the one used in the proof of Theorem 4.4) and is sketched in the following
diagram:

4. We prove that 1-THB on { , } implies KA via the phantom bridge argument. We
list the differences needed to adapt Fig. 17 to this case:

• If Alice’s coin cA is 1, she simulates parties 1 , 2 , and 4 ; if her coin is 0, she
only simulates party 2 .

• If Bob’s coin cB is 1, he simulates parties 1 , 3 , and 4 ; if his coin is 0, he
only simulates party 3 .

• In the event Alice and Bob toss different coins, the topology is either (1, 4)-2-3
or 2-3-(1, 4). The proof follows from a similar hybrid argument, as depicted in
the diagram below.
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5. We prove that 1-THB on { , } implies KA via the phantom bridge argument. We
list the differences needed to adapt Fig. 17 to this case:

• If Alice’s coin cA is 1, she simulates parties 1 , 2 , and 4 ; if her coin is 0, she
only simulates party 2 .

• If Bob’s coin cB is 1, he simulates parties 1 , 3 , and 4 ; if his coin is 0, he
only simulates party 3 .

• In the event Alice and Bob toss different coins, the topology is either the claw
(1, 4)-2-3 or the claw 2-3-(1, 4). The proof follows from a similar hybrid argu-
ment, as depicted in the diagram below.

6. We prove that 1-THB on { , } implies KA via the phantom bridge argument. We
list the differences needed to adapt Fig. 17 to this case:

• If Alice’s coin cA is 1, she simulates both parties 1 and 2; if her coin is 0, she only
simulates party 2.

• If Bob’s coin cB is 1, he simulates both parties 1 and 3; if his coin is 0, he only
simulates party 3.

• In the event Alice and Bob toss different coins, the topology is either 1-2-3 or 2-3-1.
The proof follows from a similar hybrid argument, as depicted in the diagram below.

This concludes the proof of Lemma 8.6. �

8.2.2. Information-Theoretic Feasibility Results

The proof of Lemma 8.7 is of little technical interest as the techniques are unlikely to
extend to graph classes far beyond those considered here. In fact the lemma itself is of
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little intrinsic value and is only considered because it presents an upper bound to match
the lower bound of Lemma 8.6.

Lemma 8.7. Let G be an isomorphically closed graph class containing only (con-
nected) graphs of size at most four. If G satisfies one of the two equivalent conditions,
then 1-IT-THB is possible:

1. The class is not a superset of any of the six following sets, { }, { }, { , }, { , },
{ , }, and { , };

2. The class is a subset of the following fourmaximal sets: { , , , , }, { , , , },
{ , , , }, and { , , , }.

Proof. We now show that there is an 1-IT-THB protocol for each of the four maximal
sets: { , , , , }, { , , , }, { , , , }, and { , , , }.

1. 1-IT-THB is possible on { , , , , }: First of all, note that all parties can locally
identify if the topology is isomorphic to the 2-path (if they have degree one).
Therefore, it suffices to provide a protocol for the class { , , , }. Consider the
following protocol; without loss of generality we consider the broadcaster to be
1 .

• In the first round, party 1 sends the output bit to each of its neighbors.
Notice that the following holds: Since 1 has at least two neighbors, there is at most one of
the three nodes 2 , 3 , 4 which does not hold the bit at this point. If 1 has degree only
two, then either that means there is no party which is not a neighbor of 1 (topology )
or that there is (topology or ), but in the latter case it must hold that 1 and that party
have exactly the same neighborhood.

• In the second round (could be done unambiguously in the first round instead), 1 sends
to each of its neighbors two messages: each one tagged with the ID ( 2 , 3 , or 4 ) of one
of the two remaining potential parties (e.g., 1 sends messages tagged “ 2 ” and “ 4 ”
to party 3 ). The messages tagged with the ID of a party which is a neighbor of 1 are
random and those tagged with the ID of a non-neighbor of 1 are additive secret-shares
of the broadcast bit (i.e., the broadcast bit is reconstructed by XOR-ing all the messages
tagged “P j” if P j /∈ NG( 1 )).

• In the third round, each neighbor of 1 passes on the messages received in the previous
round according to the ID tags (i.e., sends the message tagged “P j” to P j if they are
neighbors). If there is a party which is not a neighbor of 1 , it sends a random message
to each of its neighbors instead.

Each party can now compute the sum of the messages received in this third round:
neighbors of 1 get a random bit, and if there is a party which is not a neighbor of 1 , it
gets the broadcast bit now.

Claim 8.8. The protocol is 1-IT-THB.

Proof (sketch). To prove security of the protocol, we provide a sketch of the simulator:

• If the corrupt party is 1 , it gets no messages;
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• If the corrupt party is a neighbor of 1 , it gets the broadcast bit “from 1” in the
first round, random messages appropriately tagged in the second round, and then
random messages “from” each of its neighbors;

• If the corrupt party is neither 1 nor one of its neighbors, then in the third round it
gets secret shares (i.e., a pair of messages which XOR to the broadcast bit) of the
broadcast bit from its neighbors. �

2. 1-IT-THB is possible on { , , , }: First of all, if the topology is of type , then
all parties have degree three. Since this is the only topology in the class in which
any of the parties have degree three, all parties already know the topology and
since there is only one network isomorphic to , there is nothing to hide about the
topology. We therefore only need to consider the class { , , } (see below).

3. 1-IT-THB is possible on { , , }, { , , , }, and { , , , }: On these classes,
the flooding protocol is already topology hiding. Recall that each party learns from
the flooding protocol the distance of each of its neighbors to the broadcaster. One
can check that in these classes this information is already contained in the local
view of each party:

• For the broadcaster 1 , the distance of each of its neighbors is one.
• For a neighbor of 1 , the distance of its neighbors except 1 is two.
• Otherwise (for a node that is not 1 and is not a neighbor of 1 ), the distance of

each of its neighbors is one.
This concludes the proof of Lemma 8.7. �
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Appendix A: UC Framework

We present a highly informal overview of the UC framework and refer the reader to [10]
for further details. The framework is based on the real/ideal paradigm for arguing about
the security of a protocol.

The real model An execution of a protocol π in the real model consists of n ppt in-
teractive Turing machines (ITMs) P1, . . . ,Pn representing the parties, along with two
additional ITMs: an adversary A, describing the behavior of the corrupted parties and
an environment Z , representing the external network environment in which the protocol
operates. The environment gives inputs to the honest parties, receives their outputs, and
can communicate with the adversary at any point during the execution. It is known that
security against the dummy adversary (that forwards every message it sees to the envi-
ronment and acts according to the environment’s instructions) is sufficient to achieve
security against arbitrary adversaries. Throughout, we consider synchronous protocols
that proceeds in rounds (this can be formally modeled using theFsync functionality [10],
or using the synchronous framework of [23]) and semi-honest (passive) security (where
corrupted parties continue following the protocol, but reveal their internal state to the
adversary). We will consider both static corruptions (where A chooses the corrupted
parties at the onset of the protocol) and adaptive corruptions (where A can dynamically
corrupt parties based on information gathered during the computation), and will explic-
itly mention at any section which type of corruptions are considered. An t-adversary can
corrupt up to t parties during the protocol.

The idealmodelA computation in the ideal model consists ofn dummy parties P̃1, . . . , P̃n ,
an ideal-model adversary (simulator) Sim, an environment Z , and an ideal functionality
F. As in the real model, the environment gives inputs to the honest (dummy) parties,
receives their outputs, and can communicate with the ideal-model adversary at any point
during the execution. The dummy parties act as channels between the environment and
the ideal functionality, meaning that they send the inputs received from Z to F and
vice versa. The ideal functionality F defines the desired behavior of the computation. F
receives the inputs from the dummy parties, executes the desired computation, and sends
the output to the parties. The ideal-model adversary does not see the communication be-
tween the parties and the ideal functionality; however, Sim can corrupt dummy parties
(statically or dynamically) and may communicate with F according to its specification.

Security definition We present the definition for static and semi-honest adversaries.
We say that a protocol π UC-realizes (with computational security) an ideal func-
tionality F in the presence of static semi-honest t-adversaries, if for any ppt static
semi-honest t-adversary A and any ppt environment Z , there exists a ppt ideal-model
t-adversary Sim such that the output distribution of Z in the ideal-model computation
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of F with Sim is computationally indistinguishable from its output distribution in the
real-model execution of π with A.
We say that a protocol π UC-realizes (with information-theoretic security) an ideal
functionality F if the above holds even for computationally unbounded A, Z , and Sim.
In that case, the requirement is for the output distribution of Z in the ideal-model
computation to be statistically close to its output distribution in the real-model execution.
If the environment’s outputs are identically distributed, we say that π UC-realizesF with
perfect security.

The hybrid model The F-hybrid model is a combination of the real and ideal models, it
extends the real model with an ideal functionality F. The parties communicate with each
other in exactly the same way as in the real model; however, they can also interact with
F as in the ideal model. An important property of the UC framework is that the ideal
functionality F in an F-hybrid model can be replaced with a protocol that UC-realizes
F. The composition theorem of Canetti [10] states the following.

Theorem A.1. ([10], informal) Let ρ be a protocol that UC-realizesF in the presence
of adaptive semi-honest t-adversaries, and let π be a protocol that UC-realizes G in
the F-hybrid model in the presence of adaptive semi-honest t-adversaries. Then, for
any ppt adaptive semi-honest t-adversaryA and any ppt environment Z , there exists a
ppt adaptive semi-honest t-adversary Sim in the F-hybrid model such that the output
distribution of Z when interacting with the protocol π and Sim is computationally
indistinguishable from its output distribution when interacting with the protocol πρ

(where every call to F is replaced by an execution of ρ) and A in the real model.

Appendix B: DC-Nets are Topology-Hiding: From THB to THAB

In this section, we show that t-THB implies t-THAB with respect to classes of n-node
graphs that are (t+1)-connected. Recall that in Sects. 5.1 and 6.2 we showed a separation
between t-THB and t-THAB over non-(t + 1)-connected graphs.
Our starting point is the Dining-Cryptographers Network that was introduced by Chaum
[12] with the aim of transforming a broadcast primitive into an anonymous broadcast
channel, secure in the semi-honest setting. The procedure works as follows on a (public,
connected) incomplete network of point-to-point secure channels, where an anonymous
party holds as input a bit bBC to be broadcast and all other parties hold a dummy input
bit set to zero. Each party starts by sending a random message to each of its neighbors
and keeps the sum of all these outgoing messages. Each party then adds to this sum
the messages it received in the previous round, one per neighbor. This new sum is now
used as a one-time pad to mask the party’s input; we call this ciphertext the party’s
randomized input. These randomized inputs sum to the broadcast bit. Note that the
key observation is that so long as a passive adversary cannot corrupt a vertex-cut of
the graph, the adversary learns nothing (other than the value of bBC) about the honest
parties’ inputs, even if additionally given the list of randomized inputs. It is therefore
safe for the parties to broadcast their randomized inputs to reconstruct the output bBC.
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Correctness follows by inspection. Let us recall the high-level idea of why the broadcaster
is anonymous. Consider any non-empty proper subset of the vertices S ⊂ V such that
the union of their closed neighborhoods NG [S] ..= ∪v∈SNG[v] is connected. At the end
of the input randomization phase, the partial sum of the inputs in S (i.e., the indicator
of the event “the broadcaster is in S”) is secret shared among the randomized inputs of
S and the shares the parties in S sent to the parties in V \ S. Therefore to learn anything
about the partial sum of the inputs in S, the adversary has to corrupt the set Z of vertices
at the frontier of S, i.e., the vertices in V \ S which are neighbors of S. Given any set Z
of at most t corruptions, the adversary can isolate the set of players S = V \ Z , but no
other one because the graph is (t + 1)-connected. For this specific set, the adversary is
not learning anything he should not as he knows if the broadcaster is corrupted or not,
i.e., in Z or in S.
We make the simple observation that if the underlying broadcast primitive is topology
hiding, and if the number and identity of the parties participating in the protocol is
publicly known (so they have a way of knowing in which order they can broadcast the
randomized inputs), then the anonymous broadcast protocol is topology hiding. Indeed,
the input randomization phase is purely information local and cannot leak the topology
of the graph, while the reconstruction phase inherits the topology-hiding properties of
the broadcast primitive used.
Recall that for n ∈ N we denote by Gn = {G connected graph : V (G) = [n]} the class
of connected graphs with exactly n nodes.

Theorem B.1. Let n ∈ N, and let G ⊆ Gn be a class of (t + 1)-connected graphs.
Then, the existence of a t-THB protocol with respect to G implies a t-THAB protocol
with respect to G.

Remark B.2. Note that Theorem B.1 can be strengthened in two ways. Firstly, if a
slight variation on the DC-net protocol is run on an arbitrary class of (t + 1)-connected
graphs (where the set of players/vertices is not known a priori), then correctness and
privacy of input are still guaranteed and the only leakage30 about the topology is the
set of players participating in the protocol. In fact it can be strengthened, so only the
number of players participating in the protocol is leaked. Secondly, if the parties set
their input arbitrarily (rather than all non-broadcasters setting theirs to 0), the DC-net
protocol actually constructs a t-secure sum protocol from a broadcast primitive, which
is also topology-hiding.

Appendix C: Statistically Secure, Round-Inefficient THB on Oriented-5-Path

In this appendix, we justify our remark that the class Goriented-5-path from Sect. 4.1
admits an unconditionally ε-statistically 1-secure 1/ε-round topology-hiding broadcast
protocol, via a more general lemma. In particular, we observe that the following delayed-
flooding protocol is ε-statistically secure for any graph class for which the flooding

30See Ball et al. [3] for a more in-depth definition of leakage in the context of topology-hiding computation.
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Fig. 33. ε-Delayed Flooding Protocol: A simple, inefficient, distance-hiding broadcast protocol.

protocol can be simulated given distance (i.e., only distance need be hidden).31 The
core idea is quite straightforward: If the usual flooding protocol only leaks distance (via
the round in which the broadcast bit is received), then by simply having the broadcaster
delay flooding for a random number of rounds, this leakage is diluted.

Lemma C.1. Let 0 < ε ≤ 1. Let G be a class of graphs such that each node can
always deduce a unique neighbor through which they are connected to the broadcaster
1 and let d be an upper bound on distance of any node from 1 .32

Then, the ε-Delayed Flooding Protocol (defined in Fig.33) is an ε-statistically 1-secure
topology-hiding broadcast protocol with round complexity d(1 + 1/ε).

Proof. Let � = d/ε be the upper bound on the random delay, and let R = d/ε + d be
the upper bound on round complexity, as defined in Fig. 33.
We begin by observing that the ε-Delayed Flooding Protocol will deliver the broadcast
message to all nodes because for any choice of delay r ∈ [�], since r + d ≤ R. (Recall
d is an upper bound on the distance from the broadcaster.) So, the protocol is, in fact,
perfectly correct.
It remains to show ε-statistical security. Let v be the corrupt node with neighborhood
N (v). By the properties of G, this means that there exists a fixed u ∈ N (v) such that u
is a bridge to 1 in all graphs G ∈ G such that NG(v) = N (v).
Because the protocol follows the same message pattern as the naïve flooding protocol
and G consists of trees, we can represent the distribution of the view of v on any graph
G ∈ G as the tuple p(G) = (p1(G), . . . , pR(G)) where pi is the probability v receives
the broadcast message in round i (for i ∈ [R]) and p⊥ is the probability v sees nothing.
Observe that if v is distance dv from 1 in any graph G ∈ G, the view of v in G is simply
the broadcast message at round rv = r + dv , where r is a random variable distributed
uniformly over [�]. Thus, we have that p1(G) = · · · = pdv (G) = p�−(d−dv)+1(G) =
· · · = p�(G) = 0, and that pdv+1(G) = · · · = pR(G) = 1/(� − (d − dv)).

31We actually show a slightly restricted case for simplicity, but the result can easily be extended.
32In other words, G is a set of trees on some potential vertex set V such that for every v ∈ V , dG (v, 1) ≤ d

if v ∈ V (G) (for all G ∈ G) and if NG (v) = NH (v) for H,G ∈ G, then there exists a (unique) u ∈ NG (v) =
NH (v) that disconnects 1 and v in both G and H .
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The simulator Sim works by sampling r ← [�] and sending the broadcast message m
in round r + d/2 from the neighbor u, specified above. We can write the distribution
of the simulated view as the tuple p̃ = ( p̃1, . . . , p̃R, p̃⊥) where p̃1 = · · · = p̃d/2 =
p̃R−d/2+1 = · · · = p̃R = 0 and p̃d/2+1 = · · · = p̃R−d/2 = 1/�.
Thus, we can explicitly compute the statistical difference as |d/2−dv |

�
≤ d/2

�
≤ ε/2. We

can therefore deduce that under the simulation notion we have security ε/2 and under
the indistinguishability-based definition (Definition 2.4), we have statistical security ε.

�
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