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Abstract

Inferences of adaptive events are important for learning about traits, such as human digestion of lactose after infancy
and the rapid spread of viral variants. Early efforts toward identifying footprints of natural selection from genomic
data involved development of summary statistic and likelihood methods. However, such techniques are grounded in
simple patterns or theoretical models that limit the complexity of settings they can explore. Due to the renaissance in
artificial intelligence, machine learning methods have taken center stage in recent efforts to detect natural selection,
with strategies such as convolutional neural networks applied to images of haplotypes. Yet, limitations of such tech-
niques include estimation of large numbers of model parameters under nonconvex settings and feature identifica-
tion without regard to location within an image. An alternative approach is to use tensor decomposition to extract
features from multidimensional data although preserving the latent structure of the data, and to feed these features
to machine learning models. Here, we adopt this framework and present a novel approach termed T-REx, which ex-
tracts features from images of haplotypes across sampled individuals using tensor decomposition, and then makes
predictions from these features using classical machine learning methods. As a proof of concept, we explore the per-
formance of T-REx on simulated neutral and selective sweep scenarios and find that it has high power and accuracy to
discriminate sweeps from neutrality, robustness to common technical hurdles, and easy visualization of feature im-
portance. Therefore, T-REx is a powerful addition to the toolkit for detecting adaptive processes from genomic data.
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Inferences of such selective sweep events have been im-
portant for learning about a number of traits, such as how
some human populations have evolved to digest lactose
after infancy due to the advent of agriculture (Tishkoff
et al. 2007; Field et al. 2016; Ségurel and Bon 2017; Taliun
et al. 2021), the ability of organisms to survive at extreme
environments such as high altitudes (Beall et al. 2010;
Bigham et al. 2010; Simonson et al. 2010; Yi et al. 2010;
Peng et al. 2011; Wang et al. 2011; Xu et al. 2017;

Introduction

Natural selection refers to the evolutionary processes that
differentially affect the number of offspring organisms may
leave in the next generation based on the fitness of particular
traits in an environment (Gillespie 2004). As traits will typic-
ally have some genetic basis, changes in the frequencies of
traits in the population will also influence frequencies of gen-
etic variants, or alleles, that contribute to these traits.

Specifically, positive natural selection is the process by which
beneficial traits increase in frequency in a population, leading
to increases in the frequencies of alleles coding for the traits
they contribute to, and ultimately a decrease in genetic vari-
ation at the locus under selection (Gillespie 2004). Because
positive selection may cause particular alleles to rapidly
rise in frequency in a population, through the process of gen-
etic hitchhiking neutral genetic variants at sites nearby the
selected locus will also rise to high frequency with it
(Maynard Smith and Haigh 1974; Przeworski 2002; Kim
and Nielsen 2004; Hermisson and Pennings 2017). This indir-
ectinfluence of positive selection on neighboring sites causes
a loss of neutral genetic variation, resulting in the phenom-
enon coined as selective sweep (Hermisson and Pennings
2005; Pennings and Hermisson 2006a, 2006b).
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Huerta-Sanchez et al. 2013, 2014; Zhang et al. 2014; Wei
et al. 2016; Lindo et al. 2018; Graham and McCracken
2019; Liu et al. 2019; Szpiech et al. 2021; Zhang et al.
2021), and the rapid spread of certain viral variants that re-
quire societies to regularly generate new drugs and vac-
cines (Rambaut et al. 2008; Bedford et al. 2011; Feder
et al. 2016, 2021; Kim and Kim 2016; Kang et al. 2021).
These important applications to human and other study
systems have fueled significant interest in detecting
sweeps among evolutionary, ecological, anthropological,
and epidemiological researchers over the last several
decades. Initial efforts toward identifying signatures of se-
lective sweeps from genetic data were with summary sta-
tistics, which classically explored deviations from expected
genetic variation under simple models of neutrality. Such
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approaches have been expanded in recent years, to employ
diverse forms of variation, such as haplotype diversity
within and among populations to increase both power
to detect sweeps and robustness against confounding fac-
tors (Sabeti et al. 2002, 2007; Voight et al. 2006; Ferrer-
Admetlla et al. 2014; Garud et al. 2015; Harris et al. 2018;
Torres et al. 2018; Harris and DeGiorgio 2020b; Szpiech
et al. 2021). However, with the growth in computational
power and theoretical advances for modeling sweeps,
complementary model-based approaches have become
ever more common, as they provide a probabilistic ap-
proach for detecting sweeps and typically exhibit greater
power than summary statistic approaches, provided as-
sumptions of the underlying model fits observed data
well enough (Kim and Stephan 2002; Nielsen et al. 2005;
Chen et al. 2010; Vy and Kim 2015; DeGiorgio et al. 2016;
Huber et al. 2016; Racimo 2016; Lee and Coop 2017;
Harris and DeGiorgio 2020a; Setter et al. 2020; DeGiorgio
and Szpiech 2022). Yet, these approaches still suffer in
that the complexity of scenarios they can model are lim-
ited, as they are typically grounded in simple theoretical
models for expected genomic variation.

Instead, due to a renaissance in artificial intelligence, ma-
chine learning methods have been at the forefront of re-
cent efforts for detecting natural selection events from
patterns in genomic variation (Schrider and Kern 2018).
A number of approaches employ multiple summary statis-
tics as input features, and differ in the types of summary
statistics and the way at which input features are modeled
(Lin et al. 2011; Schrider and Kern 2016; Sheehan and Song
2016; Kern and Schrider 2018; Sugden et al. 2018; Mughal
and DeGiorgio 2019; Mughal et al. 2020; Lauterbur et al.
2022; Arnab et al. 2023). Because the summary statistics tar-
get different patterns of genetic variation, the ensemble of
such statistics can be used to provide cumulative evidence
for, or against, the probability of a selective sweep produ-
cing the set of summary statistic values. Importantly
though, these machine learning approaches require that
hand-engineered summary statistics are chosen in advance,
when they may not necessarily be the best features for dis-
criminating among diverse evolutionary events. As a com-
plementary strategy concurrent with the rise of deep
learning (LeCun et al. 2015), convolutional neural networks
(CNNs; LeCun et al. 1998) have been recently employed as a
mechanism to automatically extract features and detect
sweeps from raw genotypic variation (Chan et al. 2018;
Flagel et al. 2019; Torada et al. 2019; Gower et al. 2021;
Isildak et al. 2021). To use CNNs as a way to extract features
and detect selective sweeps, the genomic region has to be
represented as images, and such approaches have matched
or outperformed other statistical frameworks (Kern and
Schrider 2018; Flagel et al. 2019; Torada et al. 2019; Isildak
et al. 2021).

CNNs are powerful tools that have proven useful in im-
age classification and deep learning tasks (LeCun et al.
1998; Gu et al. 2018). Despite their robustness, they may
suffer some limitations for detecting sweeps. Because the
majority of CNN architectures have at least one fully-
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connected dense hidden layer prior to the output layer,
such models often have an enormous number of para-
meters (Goodfellow et al. 2016). The increased number
of parameters generally requires larger training sets to
learn their parameters, and the computational complexity
of finding the optimal parameters is often high. Moreover,
CNN architectures are typically agnostic with respect to
where in an input image an object to detect is located,
thereby ignoring important information when detecting
selective sweeps, as haplotype diversity should be altered
nearby a selected locus (e.g. Hermisson and Pennings
2005; Pennings and Hermisson 2006a, 2006b) and support
for a sweep centered on a particular genomic location
should change depending on whether the altered diversity
is at the center or periphery of the image. Instead, it may
be useful to employ techniques that automatically extract
features from images whereas retaining the spatial location
within the image of important features, and to then use
these features as input to the many powerful linear and
nonlinear machine learning methods that have been
developed (Hastie et al. 2009). One such approach for ex-
tracting features from image data is tensor decomposition
(Kolda and Bader 2009).

Tensor decomposition is a class of dimensionality re-
duction techniques that can be applied to extract import-
ant features from data that has higher-order structure
(Kolda and Bader 2009). Data with higher-order structure
differs from typical data that is collected as a vector of fea-
ture values, as the feature values are organized in a specific
manner. For example, image data has higher-order struc-
ture, as pixel (feature) values are organized into rows
and columns, with pixels tending to have similar values if
they have similar row-column coordinates. Traditional
data analysis methods need higher-order data to be flat-
tened into a vector for each observation before it can be
analyzed. Moreover, this flattening procedure runs the
risk of erasing information that might be encoded within
the higher-order structure of the data. In situations where
it is important to maintain the integrity of the structure of
such higher-order structured data, tensor decomposition
can be a useful tool for embedding this higher-order struc-
tured data in a low-dimensional space although retaining
the information encoded in the original data. Tensor de-
composition when applied to higher-order data can ex-
tract features, which in turn can be used for prediction
tasks such as classification.

Additionally, working with high-dimensional data contain-
ing enormous numbers of features comes with an increased
computational cost for a predictive model, which sometimes
is referred to as “curse of dimensionality” (Bellman 1966).
Most nonlinear methods suffer more from this curse of
dimensionality than linear methods, as nonlinear methods
involve a large number of parameters (Verleysen and
Frangois 2005). To circumvent this curse of dimensionality is-
sue, dimensionality reduction-based (Salem and Hussein
2019) and ensemble-based methods (Sun et al. 2020) have
been developed that operate on vector representations of
data, whereas tensor decomposition-based dimensionality
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reduction techniques are able to also retain the spatial infor-
mation of features in data that have higher-order structure
(Kolda and Bader 2009).

Feature extraction is one of the foremost steps for clas-
sifying data, and tensor decomposition has emerged as an
efficient approach to extract a small number of features
from high-dimensional data. When extracting features
from images of raw genomic data, the curse of dimension-
ality emerges as a problem for which traditional dimen-
sionality reduction approaches (e.g. principal component
analysis) are unideal solutions as they do not retain the
spatial structure of the images. Also, many classical ma-
chine learning algorithms, such as support vector ma-
chines (SVMs), take only feature vectors as input for
image data (feature matrices) must be converted into first-
order tensors (vectors), which not only compromises the
spatial structure of the input data but is also prone to clas-
sification errors (Liu 2021).

In this article, we introduce a set of methods termed
T-REx (Tensor decomposition-based Robust feature
Extraction and classification) that utilize tensor decom-
position for automatic feature extraction and classification
of genomic image data with an aim toward distinguishing
sweep footprints from neutrality. We decompose genomic
data obtained from images of haplotypes using
CANDECOMP/PARAFAC (CP) decomposition (Carroll
and Chang 1970; Harshman 1970), which is a popular mod-
el for tensor decomposition. After decomposition, the ten-
sor is expressed as an outer product of three factors, each
of which are vectors, resulting in retention of spatial struc-
ture. We feed these extracted features as input to classical
linear and nonlinear classifiers to predict whether genomic
regions represented as images show properties consistent
with positive natural selection or neutrality. We also per-
formed an empirical analysis using variant calls from
whole-genomes of a central European (CEU) population
curated from the 1000 Genomes Project (The 1000
Genomes Project Consortium 2015), in which we found
novel candidate sweep genes (e.g. MIR6874, ZNF815P,
OCM, and SNHG17) as well as recapitulated prior findings
from the literature (e.g. LCT, MCM6, SLC45A2, and EMC7).
Finally, we implemented T-REx as open-source software,
which is available at https://github.com/RuhAm/T-REx.

Results

The objective of T-REx is to automatically extract features
from high-dimensional genomic data using tensor decom-
position (Kolda and Bader 2009), and to use these features
to build a model to detect patterns of adaptation in gen-
omes. To explore the efficacy of T-REx for detecting
sweeps, we considered a diverse array of factors that can
ultimately influence method power, accuracy, and robust-
ness. We first evaluated how machine learning architec-
ture affected accuracy and power, exploring both linear
and nonlinear modeling frameworks (Hastie et al. 2009).
We then considered how the confounding effects of back-
ground selection, nonequilibrium demographic history,

sweep completeness, mutation and recombination rate
variability, allele polarization and mispolarization, and
missing genomic segments alter relative classification abil-
ity. We also directly compared T-REx with a leading sweep
classifier, ImaGene (Torada et al. 2019), which also uses
images of haplotype alignments as input. Finally, based
on these simulation results, we apply the best strategy to
whole-genome sequences from central European human
individuals (The 1000 Genomes Project Consortium
2015), and compare our findings with previously reported
results from the literature.

Feature Extraction and Model Training

To generate training and testing data for T-REx, we created
two datasets of varying degrees of constraint associated
with them. These datasets are simulated under a constant
population size demographic history of 10,000 diploid in-
dividuals (Takahata 1993; Excoffier et al. 2013) with the co-
alescent simulator discoal (Kern and Discoal 2016)
using a uniform per-site per-generation mutation rate of
1.25 % 1078 (Scally and Durbin 2012) and per-site per-
generation recombination rate of 1078 (Payseur and
Nachman 2000) drawn from an exponential distribution
and truncated at three times the mean (Schrider and
Kern 2016). The length of the sequences was set to 1.1
megabases (Mb), and we sampled 200 haplotypes from
each simulation under this setting.

In addition to these parameters, to simulate selective
sweeps we introduced a beneficial mutation at the center
of the simulated sequences and set the per-generation se-
lection coefficient s € [0.005, 0.5], which was sampled
uniformly at random on a logarithmic scale. We set the ini-
tial frequency of the beneficial allele at the time of selec-
tion to be f & [0.001,0.1], which was also sampled
uniformly at random on a logarithmic scale. This range
for f allowed us to explore both hard and soft sweeps
(Hermisson and Pennings 2017). The beneficial mutation
became fixed t generations prior to sampling, and we cre-
ated two datasets based on the distribution of t that are of
varying difficulty to discriminate sweeps from neutrality. In
the first dataset (denoted by constant_1), wesett=0,
and in the second more challenging dataset (denoted by
constant_2), we draw t € [0, 1200] uniformly at ran-
dom, thereby permitting greater overlap between sweep
and neutral classes. Using this protocol, we independently
generated 10,000 training and 1,000 test observations per
class for each dataset. We developed an approach for pro-
cessing haplotype alignments that may make the structure
of input images easier to discern by CP decomposition. Full
details of this alignment processing strategy are provided
in the Methods.

For each dataset (constant 1 or constant 2),
using the rTensoxr package (Li et al. 2018), we performed
a rank R CP tensor decomposition across a set of 20,000
training observations (10,000 per class) to obtain a low-
dimensional representation of the observations in
R-dimensional space. Using Equation (3) in the Methods
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section, we projected the 2,000 (1,000 per class) test
observations of processed image alignments onto the
R-dimensional subspace learned from the training set.
The CP tensor decomposition subsection of the Methods
provides a detailed overview of CP tensor decomposition,
including learning the low-dimensional representation of
the training set and projection of the test observations
onto this subspace. Identifying an appropriate rank or
number of components (R) is a key task for performing
CP decomposition, yet an exact algorithm does not exist
for finding the optimum R that gives the best approxima-
tion to the original tensor (Kolda and Bader 2009). Because
the performances of our classifiers vary greatly across
different ranks, we evaluated different values of rank R €
{50, 100, 150, 200, 250, 300} until we identified a rank
that yielded excellent power and accuracy whereas re-
maining computationally efficient.

After extracting the factor matrices A, B, and C upon
performing CP tensor decomposition, we fed the extracted
features from the factor matrix A (details are provided in
the Methods) into both classical linear (elastic net [EN] lo-
gistic regression) and nonlinear (SVM with a radial basis
kernel and random forest [RF]) models. We refer to these
EN, SVM, and RF algorithms integrated within T-REx as
T-REX(EN), T-REx(SVM), and T-REx(RF), respectively (de-
tails on training each classifier in Methods section). The
pipeline outlining the overall procedure, from feature ex-
traction via CP tensor decomposition to classification of
genomic regions as neutral or sweep, is illustrated in Fig. 1.

Power and Accuracy for Detecting Sweeps

We first evaluate the performance of T-REx under the
constant_1 and constant 2 datasets (details are
provided above in the Feature extraction and model
training subsection of the Results) across different CP de-
composition ranks R € {50, 100, 150, 200, 250, 300}. We
selected the model resulting from the best-performing
rank for each of the methods based on the smallest cross-
validation loss across the ranks (supplementary Figs. S1
and S2, Supplementary Material online). We find that across
different ranks, T-REx(EN) has the lowest error among the
three methods and T-REx(RF) showed lower error than
T-REX(SVM). For the constant 1 dataset, T-REx(EN)
achieves an accuracy of 93.15% and maintains relatively ba-
lanced classification rates across neutral and sweep settings,
with a slight, yet conservative skew toward prediction of
neutrality (Fig. 2). T-REx(SVM) and T-REx(RF) have lower ac-
curacies (87.15 and 89.70%, respectively), with T-REx(SVM)
reaching 98.2% accuracy on neutral settings (Fig. 2). For
the more challenging constant_2 dataset, T-REX(EN) at-
tains accuracy of 91.55% with high classification accuracies
for both sweep and neutral scenarios, and with minimal
misclassification of neutral regions as sweeps. Upon a closer
look at the classification rates, we find that T-REx(SVM) has
a high accuracy of 97.0% on neutral settings, but suffers
from greater sweep misclassification than T-REx(EN)
(Fig. 2). The high power displayed by the receiver operating

4

characteristic (ROC) curves echos the high accuracy
evidenced by the confusion matrices, showing that
T-REX(EN) has high true positive rates for low false positive
rates (Fig. 2).

By comparing our methods to the CNN-based classifier
ImaGene (Torada et al. 2019), we find that T-REx(EN)
surpasses ImaGene in terms of power, accuracy, and clas-
sification balance on both datasets (Fig. 2). However,
ImaGene outperforms T-REx(SVM) in terms of power,
accuracy, and classification balance whereas T-REx(RF)
has slightly more balanced classification rates than
ImaGene. Though all methods of T-REx and ImaGene
have a skew toward predicting neutrality, ImaGene mis-
takes sweeps for neutrality more often than T-REx(EN)
(Fig. 2), which drives the lower accuracy and power of
ImaGene relative to T-REx(EN).

Robustness to Background Selection

We have shown that some of our T-REx models can accur-
ately distinguish selective sweeps from neutrality through
patterns of lost genomic diversity. However, a pervasive
force acting in genomes is negative selection, which im-
poses long-term selective constraint on functional genom-
ic regions such as genes (Loewe 2008), and reduces genetic
diversity at selected sites, much that like of positive selec-
tion, by removing deleterious alleles from a population.
Moreover, similar to positive selection, alleles at nearby
neutral loci are also purged from the population in a man-
ner akin to hitchhiking for sweeps through a process
termed background selection (Charlesworth et al. 1995;
Comeron 2014; Charlesworth and Jensen 2021). The effects
of background selection on variation across the genome in
diverse sets of lineages have been reported (e.g. McVicker
et al. 2009; Comeron 2014), studies have shown that distri-
butions of allelic diversity under background selection may
resemble those of sweeps (Charlesworth et al. 1993, 1995,
1997; Keinan and Reich 2010; Seger et al. 2010; Nicolaisen
and Desai 2013; Huber et al. 2016), and some methods can
mistake background selection for selective sweeps
(DeGiorgio et al. 2016; Huber et al. 2016). However,
more recent evidence suggests that sweeps and back-
ground selection leave distinct footprints of genetic vari-
ation (Schrider 2020) and that background selection is
unlikely to be a problem when using haplotype data
(Fagny et al. 2014; Schrider 2020; Lauterbur et al. 2022).
Though T-REx employs images of haplotype variation as in-
put and is therefore unlikely to be negatively swayed by
background selection, it is nevertheless critical that we
demonstrate that T-REx is robust to this common force af-
fecting genomes.

To evaluate whether T-REx is misled by genetic variation
deriving from background selection, we have simulated
1,000 test replicates with background selection under a
constant-size demographic history using the forward-time
simulator SL.iM (Haller and Messer 2019). Similarly to our
training data, for each replicate we allowed the recombin-
ation rate to be drawn from an exponential distribution
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nents wherea, € R, b, € R, and ¢, € RAforr=1,2, ..., R. B) Heatmaps illustrate mean images for sweep and neutral class simulations with
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training observations across classes). Each cell of the image is a minor allele frequency value ranging from zero (darker colors) to one (brighter
colors) representing the mean number of copies of the minor allele for the haplotype onrowj € {1, 2, ..., J}atSNPincolumnk € {1, 2, ..., K},
where the average is taken across overlapping windows during image processing (see Methods). Rows are sorted from top to bottom of the image
with increasing L,-norm taken across the K columns. Therefore, haplotypes toward the top of the image have on average a greater number of
SNPs with the major allele than haplotypes toward the bottom. This sorting demonstrates that near the center of the K columns (where se-
lection occurs in sweep simulations), there is a greater number of haplotypes with the major allele (darker colors) at many SNPs. The right figure
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rows, respectively. C) Feature extraction from the training data and the testing data is based on factor matrix A from the CP decomposition. For
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using the displayed equation, where Xes(1) is the mode-1 unfolding (matricization) of the tensor X', the superscript T denotes transpose, the
symbol * denotes the Khatri-Rao product, the ® symbol denotes the Hadamard (element-wise) product, the superscript 1 denotes the Moore—
Penrose pseudoinverse, and where A™' represents the inverse of the diagonal matrix A € R®® of scaling terms 11, A, ..., Az. The extracted
features are fed to a classifier, which outputs the class predictions.

with mean r and truncated at 3r, but rather than using
only r = 1078 per site per generation as in our training re-
plicates, we instead considered r = 1078, 1072, or 10717 per
site per generation so that we can evaluate background se-
lection in low recombining regions as well as the recom-
bination rates used to train T-REx. These low
recombination rates are important to consider, as back-
ground selection in such regions can create allele frequen-
cies distributions at long physical distances that might
mimic those of sweeps and potentially mislead sweep de-
tectors (DeGiorgio et al. 2016; Huber et al. 2016). To ensure
proper simulation burn-in, we allowed a constant-size

population of N, = 10* diploid individuals to evolve for
12N, generations, where 10N, generations were devoted
to burn-in and a sample of 200 haplotypes were drawn
from each replicate after 12N, generations, with mutation
rate identical to that of the constant 1 and
constant 2 datasets. Each simulation evolved se-
quences of length 1.1 Mb and introduced deleterious mu-
tations that are distributed at the center of the sequence
within a 55 kb structure that mimics the architecture of a
protein-coding gene. The protein-coding gene consists of
50 exons each having length of 100 bases, 49 introns
each having a length of 1,000 bases, and 5ifinmath and
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fixed t generations prior to sampling, and the distribution of t was set as t = 0 for the constant_1 dataset (top row) and t € [0, 1200] for the
more difficult constant_2 dataset (bottom row). For each T-REx method, we selected the model resulting from the best-performing rank,
which was chosen as the rank with the smallest cross-validation loss across the ranks R € {50, 100, 150, 200, 250, 300}. For the constant 1
dataset, R = 300, 300, and 50 were chosen for T-REX(EN), T-REx(SVM), and T-xREx(RF), respectively, and for the constant_2 dataset, R = 300
was chosen for all T-REx methods. Powers to detect sweeps of all four methods are compared using ROC curves (first column) and ROC curves
zoomed into the upper left-hand corner with false positive rate less than 0.25 and true positive rate greater than 0.75 (second column).
Classification accuracy and rates of all four methods are depicted using confusion matrices in columns three through six for T-REx(EN),

T-REx(SVM), T-REX(RF), and ImaGene, respectively.

3ifinmath untranslated regions (UTRs), respectively, hav-
ing lengths 200 and 800 bases, where these lengths ap-
proximate the mean values derived from humans
(Mignone et al. 2002; Sakharkar et al. 2004). Following
Cheng et al. (2017), we set the percentage of deleterious
mutations arising within elements of this gene to 75, 10,
and 50% for exons, introns, and UTRs, respectively. We
drew selection coefficients for deleterious mutations
from a gamma distribution with mean of —0.0294 and
shape parameter of 0.184 following Schrider and Kern
(2017) who based their protocol on the empirical esti-
mates from the African human model of Boyko et al.
(2008).

We applied the three T-REx classifiers to these simulated
test datasets to ascertain what happens to the neutral clas-
sification rate in comparison with the neutral classification
rate derived from the constant 1 and constant 2
test datasets having no background selection. Our results
indicate that for models trained using the constant 1
dataset, for test background selection replicates generated
under mean recombination rate of 1078 that matches our
original simulation protocol, all T-REx classifiers show a
negative proportional change that signifies increased neu-
tral classification rate under background selection (supple-
mentary Fig. S3, Supplementary Material online). For the
same trained models, we find that decreasing the mean re-
combination rate under background selection to either
107" or 107 leads to a positive proportional change in
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neutral classification rate, which indicates decreased neu-
tral classification rate under background selection—
though this elevated misclassification is slight for
T-REx(EN) and T-REx(SVM), with proportion of change
in neutral classification rates ranging from 0.02 to 0.075
(supplementary Fig. S3, Supplementary Material online).
For classifiers trained using the constant 2 dataset,
we find that T-REx(EN) under background selection with
a mean recombination rate of 107® shows negative pro-
portional change in neutral classification rate similar to
what we observed using constant 1 dataset for the
same mean recombination rate (supplementary Fig. S3,
Supplementary Material online). In concordance with
the results for constant 1, we also find that when
we reduce the mean recombination rate to 107" or
107?, all methods exhibit decreased neutral classification
rates under background selection, with T-REx(EN) and
T-REx(SVM) having proportional changes slightly elevated
compared with what was observed for the constant 1
dataset (supplementary Fig. S3, Supplementary Material
online), which likely stems from the fact that the sweep
and neutral distributions used to train the T-REx
models overlap more for the constant 2 dataset
than for constant 1. In comparison to T-REx(EN)
and T-REx(SVM), T-REx(RF) exhibits substantially de-
creased neutral classification rates under background se-
lection with low mean recombination rates, with
proportion of change in neutral classification rate as
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high as 020 and 027 for the constant 1 and
constant 2 datasets, respectively (supplementary
Fig. S3, Supplementary Material online). These results high-
light that some of our T-REx classifiers are robust against
background selection, even under settings of recombin-
ation rates that fall outside the domain for which T-REx
models were trained. We revisit these results in light of
neutral simulations under low mean recombination rates
within the Robustness to recombination rate variation
subsection.

Performance under Population Size Changes

The constant-size demographic history underlying the
constant 1 and constant_2 datasets is an idealis-
tic model and does not capture the fluctuations in popu-
lation size often experienced by real populations
(Beichman et al. 2018). In particular, demographic scen-
arios, such as strong and recent population bottlenecks,
which lead to an overall loss of haplotypic diversity across
the genome as well as an increase in the variance of coales-
cence times, have been shown to generate false signatures
of sweeps as well as reduce the power of sweep detection
(Jensen et al. 2005). Therefore, to investigate the perform-
ance of T-REx on a nonequilibrium setting with population
size fluctuations and a strong, recent population bottle-
neck, we simulated data under a demographic history in-
ferred (Terhorst et al. 2017) from the central European
(CEU) human individuals of the 1000 Genomes Project da-
taset (The 1000 Genomes Project Consortium 2015).

ROC ROC: Zoomed-in
100 , st 1.004
[ I 95 2
E 0,754 0 . 9.4
2 0.90- | g
2 0.504 T-REX(EN) ; S
g T-REx(SVM) 0.85- | 3
© T-REx(RF) i =
2 0.254 ImaGene - ! =
E 0.80 i g 97.5
0.00+ 0.757

000 025 050 075 1.00 01000.050.100.150.200.25

The distributions that selection parameters were drawn
from and the number of simulated replicates per class
were identical to the constant-size setting (details regard-
ing the constant-size setting are provided in the Feature ex-
traction and model training subsection of the Results).
Analogous to the two constant-size models, we generated
a dataset (denoted by CEU_1) where we set t = 0 as well
as a second dataset (denoted by CEU_2) representing a
more complicated setting where we draw t € [0, 1200].
For each dataset, we consider an array of ranks R €
{50, 100, 150, 200, 250, 300} and compared T-REx with
the CNN-based sweep classifier ImaGene.

Similar to the evaluation of the two constant-size data-
sets, we chose the best model through cross-validation,
and T-REx(EN) generally showed the lowest error, followed
by T-REx(RF) and T-REx(SVM) across different ranks.
Among all the methods considered, we find that
T-REx(EN) generally has the highest accuracy and power
on both the CEU 1 and CEU_2 datasets (Fig. 3).
Additionally, T-REx(EN) showed the lowest error in general
among the three models selected from their optimal ranks.
On either dataset, T-REx(EN) generally exhibits an increase
in accuracy with the increase in R, whereas the opposite
tendency holds for T-REx(SVM) and T-REx(RF) in which
their highest accuracies were attained with a small R value
(supplementary Figs. S4 and S5, Supplementary Material
online). This trend in the accuracy of T-REx(EN) with in-
creasing R appears to be primarily driven by decreases in
the rate of misclassifying sweeps as neutral, leading to
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Fic. 3. Powers and accuracies to detect sweeps for the linear T-REx(EN) and nonlinear T-REx(SVM) and T-REx(RF) classifiers in comparison with
the CNN-based classifier ImaGene under a demographic history inferred from the CEU human population (Terhorst et al. 2017) history using
two datasets (CEU_1 and CEU_2) of varying difficulty. For training and testing purposes, the number of observations used for each class was
10,000 and 1,000, respectively. Selective sweeps were simulated using a per-generation selection coefficient s € [0.005, 0.5] and an initial fre-
quency of beneficial allele at the time of selection f € [0.001, 0.1], where both s and f were sampled uniformly at random on a logarithmic.
The beneficial mutation became fixed t generations prior to sampling, and the distribution of t was set as t = 0 for the CEU_1 dataset (top
row) and t € [0, 1200] for the more difficult CEU_2 dataset (bottom row). For each T-REx method, we selected the model resulting from
the best-performing rank, which was chosen as the rank with the smallest cross-validation loss across the ranks
R € {50, 100, 150, 200, 250, 300}. For both the CEU_1 and CEU_2 dataset, R =250, 50, and 50 were chosen for T-REX(EN), T-REX(SVM),
and T-REx(RF), respectively. Powers to detect sweeps of all four methods are compared using ROC curves (first column) and ROC curves zoomed
in to the upper left-hand corner with false positive rate less than 0.25 and true positive rate greater than 0.75 (second column). Classification
accuracy and rates of all four methods are depicted using confusion matrices in columns three through six for T-REx(EN), T-REx(SVM), T-REx(RF),
and ImaGene, respectively.
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more balanced classification rates. However, T-REx(EN)
also achieves higher accuracy on neutral settings with in-
creasing R, which is desirable as it limits false discovery
of sweeps. Finally, we find, as expected, that accuracies
for all methods tend to be lower for the more complex
CEU_2 dataset compared with CEU_1 (Fig. 3).

In general, T-REx(EN) and T-REx(RF) outperform
ImaGene for both the CEU_1 and CEU_2 datasets in
terms of power and accuracy, and T-REx(SVM) has similar
(on CEU_2) or worse (on CEU_1) accuracy compared
with ImaGene due to it incurring higher misclassification
rates of sweeps (Fig. 3). Moreover, though ImaGene has a
low misclassification rate for neutral regions, its overall ac-
curacy suffers due to the high misclassification rate of
sweeps as neutral, similar to T-REx(SVM). These imbal-
ances in classification rates, however, are conservative as
ImaGene and T-REx(SVM) are not prone to false discov-
ery of sweeps. These results reiterate the strength of CP de-
composition to extract features from images, even when
prediction is made with a linear model (i.e. T-REx(EN)).

The high power of T-REX(EN) on the two datasets re-
flects its strong accuracy evidenced by the confusion ma-
trices, with high true positive rates for low false positive
rates (see ROC curves in Fig. 3). We note that ImaGene
displays a spike in power at a false positive rate of about
15% for both datasets (Fig. 3), which is due to approxi-
mately 19% of the predicted sweep probabilities for
ImaGene being exactly one. The excellent classification
performance of T-REx(EN) on a complex bottleneck set-
ting (the CEU_2 dataset) is promising, and so we will ap-
ply it to whole-genome data from individuals derived from
the same population to scan for sweeps as a proof of con-
cept of our prediction framework (see Application to hu-
man genome variation subsection of the Results).
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Feature Maps for Model Interpretability

In addition to its capacity to extract features for prediction
problems, CP tensor decomposition provides a low-rank
representation of the original tensor, thereby allowing a
mechanism for visualizing the spatial components of the
images we have collected within our training tensor
through factor matrices. These feature maps provide a de-
piction of the image characteristics that are then fed to
classification models. We generated feature maps for R =
250 components under the CEU_2 dataset and these fea-
ture maps reveal part of the latent structure of the tensor,
with the rows and columns of these feature maps repre-
senting haplotypes and loci, respectively. Close examin-
ation of each of the components (supplementary Figs.
S6-510, Supplementary Material online) reveals gradients
in each of the individual feature matrices that represent
the separation of features characterized by clusters of simi-
lar colors. Though some of the components show gradi-
ents in each of the individual feature matrices and
clusters of similar colors where we might expect there to
be signal in the haplotype alignments to discriminate be-
tween sweeps and neutrality, creating a lucid picture of
the underlying features is difficult from the set of R =
250 images. Moreover, these feature maps only convey in-
formation about what characteristics of images were used
to separate out observations from the training set, and
therefore are not guaranteed to be informative about
what characteristics are important for prediction.

To address this issue, we created model-informed fea-
ture maps for both datasets through a linear combination
of the R feature maps, weighing each map by its compo-
nent’s regression coefficient in the trained T-REx(EN) mod-
el (Fig. 4). Displaying the feature maps in this fashion
enables visualization of the characteristics of haplotype
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Fic. 4. Model-informed feature maps illustrating emphasis put on different genomic regions of interest by the T-REx(EN) classifier trained to
differentiate sweeps from neutrality under a demographic history inferred from CEU humans (Terhorst et al. 2017). Model-informed feature
maps were generated through a linear combination of the R feature maps (created using factor matrices B and C) from the training set, where
feature mapr,r=1,2, ..., R, is weighted by the regression coefficient of component r (f3,) from a trained logistic regression model with EN
penalty. The number of components (R) was selected as in Fig. 3 for the T-REX(EN) classifier, with R =250 for both CEU_1 (left panel) and

CEU_2 dataset (right panel).
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alignments the trained T-REx(EN) models place most em-
phasis. The pronounced red region around the center of
the SNPs alludes to the expected location of lost diversity
in sweeps, which the models use to distinguish sweeps
from neutrality (Fig. 4). A closer look at the heatmaps sug-
gests that the models place negative weight on these fea-
tures near the center of the alignment. In contrast, there is
also a large dark blue region at the bottom of each heat-
map, in which the models place positive emphasis to dis-
tinguish sweeps from neutrality. Differences between
sweeps and neutrality in this region are expected to be
due to the most recent, strongest, and hardest sweeps in
our training sets (based on the procedure that we used
to process haplotype alignments; see Methods). Another
interesting observation we can discern from Fig. 4 is the
white, light blue, and light red shading surrounding the
dark red region, signifying that T-REx(EN) puts little em-
phasis on these areas. This lack of emphasis suggests that
diversity in this region provides little extra information
for discriminating between sweeps and neutrality in the
T-REx(EN) model.

Ability to Detect Incomplete Sweeps

We have demonstrated the accuracy and power of T-REx
under settings where the training and testing were
performed on complete sweeps for which the beneficial
mutation reached fixation at the time of sampling.
However, most realistic scenarios encountered when ana-
lyzing empirical data would likely not involve sweeps for
which the beneficial allele reached fixation (Burke 2012;
Kelly et al. 2013; Ferrer-Admetlla et al. 2014; Vy and Kim
2015; Xue et al. 2021), which can result from a variety of
reasons including diminished selective advantage (Pritchard
et al. 2010). It is therefore critical that we assess the efficacy
of T-REx in detecting incomplete sweeps under settings in
which the models were trained with complete sweeps.

To evaluate whether our T-REx models trained on com-
plete sweeps have sufficient capacity to detect incomplete
sweeps, we simulated an additional 1,000 sweep test repli-
cates with discoal (Kern and Discoal 2016) using iden-
tical protocols for each of the constant 1,
constant 2, CEU_1, and CEU_2 datasets with the
difference that the beneficial mutation at the time of sam-
pling has frequency 0.5, 0.6, 0.7, 0.8, or 0.9 rather than a fre-
quency of one. As expected, for all four datasets and for
each of the three T-REx models, we find that accuracies
of detecting incomplete sweeps have an upward trend
with increasing frequency of the beneficial mutation at
sampling (supplementary Fig. S11, Supplementary
Material online). We generally find that T-REx(EN) and
T-REx(RF) have higher accuracies than T-REx(SVM) on all
four datasets for each frequency of beneficial mutation
considered at the time of sampling, with T-REx(EN) show-
ing an edge over T-REx(RF) for all settings aside from when
the beneficial allele frequency at the time of sampling is
0.5, which is difficult for all methods considered.
Moreover, when the frequency of the beneficial mutation

is 0.9, T-REX(EN) shows the highest accuracy among the
three T-REx models for all datasets, with values ranging
from 90 to 97%.

We also considered the power (true positive rate) of
T-REx models to detect incomplete sweeps at a 5% false
positive rate. Our results show that T-REx(EN) exhibits a
similar upward trend in terms of power for all datasets,
reaching power in the range from 0.90 to 0.97 across data-
sets for sweeps to a frequency of 0.9 (supplementary Fig.
S12, Supplementary Material online). T-REx(SVM) also de-
monstrates an upward trend in terms of power for all da-
tasets, reaching values as high as 0.95 (supplementary Fig.
S12C, Supplementary Material online) when the beneficial
allele frequency at sampling is 0.9. In contrast to the find-
ings regarding accuracy (supplementary Fig. S11,
Supplementary Material online), T-REx(RF) lags in power
when compared with T-REX(EN) and T-REx(SVM) with
the values reaching only as high as 0.80 (supplementary
Fig. S12D, Supplementary Material online). Overall, T-REx
models, especially T-REx(EN), hold excellent power to de-
tect incomplete sweeps at moderately high frequencies,
even though they were trained to only detect complete
sweeps. Training T-REx models with incomplete sweep re-
plicates would likely further improve their accuracies and
powers under such settings.

Performance under Mutation Rate Variation
Mutation rate varies across chromosomes and taxa, lead-
ing to a variable landscape of genetic diversity within gen-
omes across the tree of life (Bromham 2011; Bromham
et al. 2015; Harpak et al. 2016; Bergeron et al. 2023;
Danovi 2023). Reductions in polymorphic sites within gen-
omes due to low mutation rates can result in lower haplo-
type variation, which may mimic signatures of adaptive
processes such as selective sweeps. On the other hand,
elevated mutation rates can erode footprints of past selective
sweeps, making such events more difficult to detect. Thus, it
is important to evaluate whether sweep detectors are
adversely affected by mutation rate variation.

To evaluate the performance of T-REx under mutation
rate variation, we simulated 1000 neutral and 1000 sweep
test replicates with discoal (Kern and Discoal 2016)
using identical protocols for each of the constant 1,
constant 2, CEU_1, and CEU_2 datasets with the
difference that mutation rate for a given replicate was
drawn uniformly at random within the interval [u/2, 2u],
where 1 = 1.25 X 1078 per site per generation, instead of
a fixed value of y=1.25x 1078 per site per generation
used to train the T-REx classifiers. When applied to these
test data, all T-REx methods have excellent power and ac-
curacy to detect sweeps, with T-REX(EN) outperforming
T-REx(SVM), and T-REx(RF) in terms of accuracy and
power (supplementary Fig. S13, Supplementary Material
online) as observed from prior experiments.

In terms of correctly classifying neutrally evolving regions,
T-REx(SVM) has higher accuracy (98.1-99.1%) than
T-REX(EN) (93.3-98.1%) and T-REx(RF) (84.8-95.3%), but
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T-REX(EN) has highest overall accuracy on this setting com-
pared with the other two approaches (supplementary Fig.
S$13, Supplementary Material online). This increased overall
accuracy for T-REx(EN) is driven by its low misclassification
rate of sweeps (6.3-14.6%) compared with that of
T-REx(SVM) (24.1-33.4%) and T-REx(RF) (12.2-21%) (sup-
plementary Fig. S13, Supplementary Material online).
Consistent with its overall high accuracy under mutation
rate variation, T-REx(EN) also has substantially higher power
than T-REx(SVM) and T-REx(RF) at low false positive rates,
exhibiting a quicker ascent to the upper left-hand corner
of the ROC curve (supplementary Fig. S13, Supplementary
Material online). Thus, we find that our T-REx models, par-
ticularly T-REx(EN), showcase both high power to detect
sweeps and robustness to false detection of sweeps under
mutation rate variation.

Robustness to Recombination Rate Variation
Recombination rate varies within and between the gen-
omes of different species, and this variable recombination
landscape influences patterns of haplotype diversity across
genomes (Smukowski and Noor 2011; Cutter and Payseur
2013; Singhal et al. 2015). For instance, genomic regions
with low recombination rates may be associated with
low haplotype diversity, and thus the observed haplotypic
variation may masquerade as sweep signature. In contrast,
high recombination rate regions can more quickly elimin-
ate the footprint of lost haplotype diversity, which is char-
acteristic of past selective sweeps, similar to the effects of
high mutation. Furthermore, a variety of organisms harbor
regions with extreme levels of recombination, which may
lead to localized coldspots and hotspots of recombination
(Hey 2004; Myers et al. 2005; Galetto et al. 2006; Baudat
et al. 2010; Singhal et al. 2015 Booker et al. 2020;
Lauterbur et al. 2023). Given the challenges associated
with detection of sweeps under recombination rate vari-
ation, it is important that we evaluate the relative robust-
ness of our T-REx models to scenarios involving
recombination rate variation and to settings with recom-
bination hotspots and coldspots.

To explore the performance of T-REx under recombin-
ation rate variation for low recombination regions, we si-
mulated 1,000 neutral test replicates with discoal
(Kern and Discoal 2016) using identical protocols for
each of the constant 1, constant 2, CEU_l,
and CEU_2 datasets with the difference that recombin-
ation rate (r) for a given replicate was drawn from an ex-
ponential distribution with mean of 107" or 10~ and
truncated at three times the mean. Moreover, to simulate
recombination coldspots and hotspots, we also simulated
1,000 neutral test replicates with the coalescent-based
simulator msHOT (Hellenthal and Stephens 2007) using
identical protocols for each of the constant 1,
constant_ 2, CEU_1, and CEU_2 datasets with the
exception that recombination rate r for a replicate was
drawn from an exponential distribution with mean of
1078 per site per generation and truncated at three times
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the mean but with a central 100 kb region of the sequence
evolving as r/10 (coldspot) or 10r (hotspot). For each set-
ting, we compared the proportional change in neutral clas-
sification rates of T-REx models under recombination rate
variation with respect to those under the usual protocols
for each of the constant_1, constant 2, CEU 1,
and CEU_2 neutral test datasets.

We observe that for recombination rate variation with
mean rates at one or two orders of magnitude below
what T-REx models were trained under, T-REx(EN) and
T-REx(SVM) exhibited up to an approximately 10% in-
crease in misclassification of such regions relative to the
setting on which the models were trained (supplementary
Fig. S14, Supplementary Material online). However,
T-REx(RF) performs comparatively poorly on this setting,
with an increase in misclassification error by up to 30%
in some cases (supplementary Fig. S14, Supplementary
Material online). Notably, for these same mean recombin-
ation rates, the methods performed similarly under back-
ground selection (supplementary Fig. S3, Supplementary
Material online), which highlights that the altered neutral
detection rate within regions of low mean recombination
rate is likely driven by recombination reducing the diver-
sity of haplotypes rather than a significant influence of
background selection in such regions.

For the case of recombination hotspots and coldspots
in neutrally evolving regions, the neutral classification rates
for all T-REx models are close to those found under test
neutral replicates without hotspots or coldspots (supple-
mentary Fig. S15, Supplementary Material online, small
magnitude proportional changes). Moreover, all T-REx
models actually have improved neutral classification rates
under recombination hotspots (supplementary Fig. S15,
Supplementary Material online, negative proportional
changes). Thus, we find that when our T-REx models are
applied to recombination rates of orders of magnitude dif-
ferent from what they were trained, their performance is
dependent on the size of the region of altered recombin-
ation rate, with smaller regions (e.g. 100 kb) leading to
coldspots and hotspots having minimal impact, whereas
large regions (e.g. over a megabase) leading to slight
changes in robustness of T-REx(EN) and T-REx(SVM) and
generally comparatively poorer performance for T-REx(RF).

Effect of Ancestral Allele Polarization and
Mispolarization

Knowledge of the ancestral and derived allele at SNPs can
often be helpful in detecting natural selection, as these
states encode more information than simply assigning al-
leles as major or minor (Vitti et al. 2015; Bitarello et al.
2023). To perform this polarization of alleles as ancestral
and derived in practice, one or more outgroup species is
used to establish the likely ancestral and derived (mutant)
allelic states. However, incorrect assignment of the ances-
tral and derived alleles can lead to false signatures of nat-
ural selection, and such allele mispolarization becomes
more common as more distant outgroups are used to de-
cide on the allelic states (Hernandez et al. 2007). It is
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therefore useful to evaluate whether coding alleles as an-
cestral and derived provides T-REx with significant per-
formance gains, whereas also exploring the robustness of
such polarization when it is misspecified.

To this end, under the CEU_2 dataset, we performed an
experiment in which we coded ancestral alleles as zero and
derived alleles as one in place of our original coding of major
and minor alleles, and performed all other haplotype align-
ment processing as in our original experiments. We trained
the T-REx(EN) classifier on these new alignments (10,000
observations per class) estimating the two EN hyperpara-
meters and the number of components of tensor decom-
position (R =250) through cross-validation. We then
applied this trained model to test data (1,000 observations
per class) when the haplotype alignments were processed in
an identical manner, and when 5% of SNPs were chosen uni-
formly at random to be mispolarized (i.e. ancestral and de-
rived alleles swapped).

We find out that T-REx(EN) has excellent power and ac-
curacy in identifying sweep signatures when ancestral and
derived alleles are used in place of our original coding of
major and minor alleles (supplementary Fig. S16A,
Supplementary Material online). In particular, T-REx(EN)
is able to correctly classify 97.6 and 88.6% of neutral and
sweep observations, respectively (supplementary Fig.
S16A, Supplementary Material online). These results re-
flect a slight improvement in classification of neutrality al-
though reduced accuracy on sweeps, relative to our
original coding as major and minor allele (Fig. 3). To under-
stand how allele mispolarization influences classification
accuracy when employing derived and ancestral allele in-
formation, we compared the proportional change in neu-
tral and sweep classification rates of T-REx(EN) under allele
mispolarization with respect to those under correct polar-
ization. We find that T-REx(EN) exhibits an approximate
44% reduction in correct classification of neutrally evolv-
ing regions relative to the setting on which the models
were trained (supplementary Fig. S16B, Supplementary
Material online). In contrast, we observe a roughly 10% in-
crease in correct classification of sweeps (supplementary
Fig. S16B, Supplementary Material online). These results
point to allelic mispolarization leading to a skew in more
often predicting sweeps, regardless of the true class label,
relative to correct polarization. We therefore warrant cau-
tion when using ancestral and derived alleles over major
and minor alleles within T-REx, as allelic mispolarization
may have deleterious effects on model performance.

Robustness to Missing Data

Many genomic regions contain segments with missing
SNPs, which may arise due to artifacts in the data, mapping
and alignment problems, and sequencing errors. An issue
that missing genomic segments poses to methods for de-
tecting sweeps is the problem of false discovery, in which a
method erroneously detects a neutrally evolving region as
a sweep (Mallick et al. 2009; Mughal and DeGiorgio 2019).
These false signals result from the loss of SNPs in missing

segments decreasing haplotypic diversity (see schematic
in Fig. 5), which has been shown to mislead some machine
learning classifiers to call such neutral regions with confi-
dence as sweeps if such data issues are not accounted
for during model training (e.g. Kern and Schrider 2018;
Mughal and DeGiorgio 2019). Thus, it is important to dem-
onstrate that T-REx not only has high accuracy and power
to detect sweeps on idealistic data, but is robust also to
common technical artifacts posed by the presence of miss-
ing genomic segments.

The haplotype images used for training and testing sets
so far have assumed no missing data, and so we seek to
examine the effectiveness of our methods when test data
have missing segments that may ultimately reduce observed
haplotypic variation. To this end, we followed the protocol
in Mughal and DeGiorgio (2019) by removing 30% of the
SNPs from each test replicate to evaluate the impact of
missing data on method accuracy, power, and robustness.
The removal of 30% of the SNPs is accomplished in 10 non-
intersecting chunks, each accounting for roughly three per-
cent of the total SNPs in the replicate, and with starting
position of each chunk chosen uniformly at random. In
cases of overlap with previously drawn missing chunks, a
new starting location for the current chunk is redrawn.

Using T-REx models trained with nonmissing data and
assuming the rank R of CP decomposition that gave
each method (T-REx(EN), T-REx(SVM), and T-REx(RF))
their smallest cross-validation loss, we find that on both
the CEU_1 and CEU_2 datasets T-REX(EN) continues
to show greater power and accuracy compared with com-
peting approaches (center and bottom rows in Fig. 5).
Specifically, for both the CEU_1 and CEU_2 datasets,
T-REX(EN) outperforms ImaGene with a margin of
around 6% in terms of accuracy (center and bottom
rows in Fig. 5). Moreover, under both datasets,
ImaGene is more prone to false discovery of sweeps
than T-REx(EN), as it displays a skew toward falsely classi-
fying neutrally evolving regions as sweeps. In the case of
the CEU_1 dataset, T-REx(RF) marginally outperforms
ImaGene in terms of accuracy. However, the accuracy
of T-REx(SVM) suffers, as 26.4% of sweeps are misclassified
(center row in Fig. 5). In contrast, on the CEU_2 dataset,
ImaGene outperforms both T-REx(SVM) and T-REx(RF)
in terms of accuracy, but falsely classifies 22.5% of the neu-
tral observations as sweeps. This result illustrates that
when presented with data containing missing genomic
segments, the CNN-based classifier ImaGene may mis-
take the reduced haplotypic diversity as a sweep footprint.
We expand upon this issue in the Discussion section, and
detail procedures that can be taken to alleviate the issue
of missing segments (e.g. Kern and Schrider 2018).

To further evaluate whether T-REx is robust to false dis-
covery of sweeps in neutral regions with missing data, we
compute the proportion of false signals, based on the dis-
tribution of sweep probabilities of neutral replicates with
missing segments, as a function of false positive rate, based
on the distribution of sweep probabilities of neutral repli-
cates without missing segments. For this purpose, we
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Fic. 5. Powers, accuracies, and robustness to detect sweeps when faced with missing data for the linear T-REx(EN) and nonlinear T-REx(SVM) and
T-REX(RF) classifiers in comparison with the CNN-based classifier ImaGene under a demographic history inferred from the CEU human popu-
lation (Terhorst et al. 2017) history using two datasets (CEU_1 and CEU_2) of varying difficulty. For training and testing purposes, the number
of observations used for each class was 10,000 and 1,000, respectively where 30% of the total SNPs from each test observation were removed
using protocol in Mughal and DeGiorgio (2019). (Top row) Performance of T-REx in comparison with ImaGene under missing data to ascertain
whether the classifiers are robust against false discovery of sweeps, that is, erroneously detecting neutrally evolving regions as sweeps. First and
second panel shows probability of false discovery of sweeps when classifying neutral genomic regions containing missing data on the CEU_1 and
CEU_2 datasets, respectively. Third panel shows how missing genomic segment can masquerade as sweep due to apparent lack of haplotype
diversity. (Middle and bottom rows) Powers to detect sweeps of all four methods are compared using receiver operating characteristic (ROC)
curves (first column) and ROC curves zoomed in to the upper left-hand corner with false positive rate less than 0.25 and true positive rate greater
than 0.75 (second column). Classification accuracy and rates of all four methods are depicted using confusion matrices in columns three through
six for T-REx(EN), T-REx(SVM), T-REx(RF), and ImaGene, respectively. For both the CEU 1 and CEU 2 dataset, R = 250, 50, and 50 were cho-

sen for T-REX(EN), T-REx(SVM), and T-REx(RF), respectively, as these ranks yielded the small validation loss on nonmissing data.

generated an additional 1,000 neutral replicates each hav-
ing 30% missing SNPs so that these two distributions were
generated from independent neutral replicates. Sweep
classifiers that are robust to neutral missing segments
will have the curve relating the proportion of false signals
(on the y-axis) as a function of the false positive rate (on
the x-axis) fall on or below the y =x line. Our results
show that for both variations of the simulated CEU data-
set, curves for all tested methods fall on the y = x line, con-
sidering relevant false positive rates between 0 and 5% (top
row in Fig. 5). We therefore conclude that all methods con-
sidered here are robust to false discovery of sweeps due to
missing data when conditioning on reasonable false posi-
tive rates.

Application to Human Genome Variation

In addition to evaluating the performance of T-REx under
simulated scenarios, we also embarked on an empirical ap-
plication to whole-genome variant calls from a European
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human population as a proof of concept (details regarding
processing of the empirical data are provided in the
Application to empirical data subsection of the Methods).
Using the identical protocol as in our assessment of model
performance, we trained T-REx(EN) on 10,000 simulated
replicates per class with parameters identical to those
that generated the CEU_2 dataset, with the exception
of sampling 198 haplotypes per simulation to match the
99 diploid individuals sampled for the CEU population of
the 1,000 Genomes Project dataset (The 1000 Genomes
Project Consortium 2015). We opted to apply T-REx(EN)
for our empirical analysis, as it emerged as the best-
performing model among the three T-REx methods evalu-
ated across a range of simulated settings.

To uncover candidate genes that show evidence of
sweep signatures, we evaluated whether each gene har-
bored a high predicted sweep probability and a sweep
probability peak, observed by computing a moving average
computed as the mean of sweep probabilities at 11
contiguous genomic windows. This 11-window mean
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Table 1. Autosomal regions showing high predicted sweep probability in the CEU population as predicted by T-REx(EN)

Chromosome Start Stop Genes

1 115,397,483 116,311,335 SYCP1,CASQ2

1 37,940,044 38,422,646  SF3A3, MIR4255

2 136,545,419 136,634,013 LCT, MCMé6

5 33,936,490 33,984,798 SLC45A2

6 29,640,259 30,594,169 HLA-F, HLA-F-AS1, IFITM4P, HCG4, HLA-V, HLA-G, HLA-H, HCG4B, HLA-A, HCGY

7 5,751,470 6,369,041  MIR6874, ZNF815P, OCM, CCZ1, RSPH10B

7 27,132,611 27,287,449 HOXA1, HOXA2, HOXA3, HOXA9, HOXA10, HOXA-AS2, HOXA-AS3

10 15,253,641 15,761,921 FAM171A1, ITGA8

15 76,507,693 77,474,268 ETFA, TISL2, TYRO3P, SCAPER, RCN2, MIR3713, TSPAN3

15 34,376,217 34,649,936 EMC7, PGBD4, KANTBL1, EMC4, SLC12A6, NUTM1

15 38,988,798 41,248,710  LINC02694, C150rf54, RMDN3, GCHFR, DNAJC17, C150rf62, ZFYVE19, PPP1R14D, SPIT1-AS1, SPIT1,
VPS18, LOC105370943, DLL4, CHAC1

17 29,861,900 29,902,540 MIR4724, MIR193A, MIR4725, MIR365B

17 41,453,295 41,864,988 LINC00910, ARL4D, MIR2117HG, DHX8, MEOX1, SOST, DUSP3, CFAP97D1

20 37,230,451 37,401,163 ARHGAP40, SLC32A1, ACTR5S

20 50,700,549 51,266,965 ZFP64, LINC01524

20 37,049,234 37,358,015 SNHG17, SNORA71B, SNORA71C, SNORA71D, SNORA71E, SNORA6O, RALGAPB, ADIG, ARHGAP40,
SLC32A1

22 40,139,048 40,439,538 ENTHD1, GRAP2, FAM83F

approach provides a smoothed representation of the
probabilities and helps us observe the underlying trend
of probability as a function of genomic position. We iden-
tified 17 regions from eight autosomes displaying pro-
nounced peaks in predicted sweep probability, which we
list together with associated genes in Table 1 and depict
within supplementary Figs. S17 and S18, Supplementary
Material online. In particular, we found candidate genes
that have been supported by previous studies (e.g. LCT,
MCM6, SLC45A2, and EMC7; Bersaglieri et al. 2004
Oleksyk et al. 2010; Lopez et al. 2014; Racimo 2016) as
well as novel candidates (e.g. MIR6874, ZNF815P, OCM,
and SNHG17).

Sweep Candidates Supported by the Literature

On chromosome 2, we find a peak surrounding the region
containing the genes LCT and MCM6 (Fig. 6A). In particu-
lar, we see a clear peak that reaches an 11-window mean
sweep probability close to one near LCT and MCM6 and
decays in value with distance from these genes. This trend
of reduction in sweep probability with distance from a pu-
tative adaptive locus is consistent with the footprint of a
selective sweep, and is due to the action of recombination
breaking down linkage disequilibrium and shaping haplo-
typic diversity across the chromosome (Slatkin 2008).
LCT encodes the enzyme lactase that aids in lactose diges-
tion in humans, and is a strong selection candidate, espe-
cially across European populations as the ability to digest
lactose persists into adulthood within individuals of
European ancestry (Scrimshaw and Murray 1988). This lac-
tose tolerance is an outcome of positive selection owing to
the advent of farming that resulted in an infusion of milk as
part of regular consumption within particular cultures in
the last 1,000 years (Sabeti et al. 2006). Moreover, near
LCT, we also detect the gene MCM6 with high confidence,
which has been hypothesized to have undergone positive
selection by previous studies (e.g. Shatin 1968; Bersaglieri

et al. 2004; Nielsen et al. 2005; Harris and Meyer 2006;
Sabeti et al. 2007; Tishkoff et al. 2007; Ingram et al. 2009;
Itan et al. 2009; Schlebusch et al. 2012; Fan et al. 2016;
Cheng et al. 2017). MCM6 contains two introns, one of
which harbors an enhancer that acts as a regulatory mech-
anism for LCT and therefore may contribute to lactase per-
sistence and have been positively selected in the past
(Anguita-Ruiz et al. 2020).

The region surrounding LCT and MCM6 represents a
positive control, as we expect most sweep detection meth-
ods to uncover this region with high confidence. We next
went on to probe for other well-studied candidates of nat-
ural selection, and found evidence for sweeps in the major
histocompatibility complex (MHC) region on chromo-
some 6 (supplementary Fig. S17E, Supplementary
Material online). Specifically, T-REx identified high sweep
support for the genes HLA-H, HCG4B, HLA-A, and HCG9,
which had 11-window mean sweep probabilities close to
one. Other candidate genes with moderate support in
the region include HLA-F, HLA-F-AS1, IFITM4P, HCG4,
HLA-V, and HLA-G, with 11-window mean sweep probabil-
ities ranging from 0.65 to 0.81. Many genes located in the
MHC region code for proteins that aid in pathogen im-
mune defense through peptide binding (Mladkova and
Kiryluk 2017). Loci in such genes tend to be highly poly-
morphic, and have long been hypothesized as evolving un-
der balancing selection, likely due to the evolution of the
host in the face of pathogens and parasites (Lederberg
1999; Bernatchez and Landry 2003). The high structural
variation coupled with extreme polymorphism in this re-
gion makes variant calling difficult (Stipoljev et al. 2020),
and potentially poor genotype calls may have contributed
toward the ambiguity in detecting sweeps in this region.
Though often having different genomic footprints to posi-
tive selection, balancing selection is a clear deviation from
neutrality and T-REx was able to identify the lack of neu-
trality at the MHC region. The classification of this region
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as positive selection by T-REx may be partially due to its
extreme levels of linkage disequilibrium (Stipoljev et al.
2020), consistent with expectations of sweeps. However,
our results are also consistent with prior studies, which
have found evidence for sweep-like signals at the MHC re-
gion in humans (e.g. Campbell et al. 2019).

The gene SLC45A2 (supplementary Fig. S17D,
Supplementary Material online) on chromosome 5 has
moderate sweep support with 11-window mean sweep
probabilities around 0.75. This gene encodes a protein
that plays a crucial role in melanin synthesis that affects
skin pigmentation in humans (Lépez et al. 2014). The fre-
quencies of alleles in this gene that are associated with pig-
mentation in Europeans demonstrate a latitudinal cline
across Europe, resulting in lighter skin pigmentation in nor-
thern Europe (Norton et al. 2007). Patterns of variation
mimicking footprints of positive selection near SLC45A2
in European humans are supported by numerous studies
(e.g. Hider et al. 2013; Laayouni et al. 2014; Lopez et al.
2014; Wilde et al. 2014; Goodwin and de Guzman Strong
2017). A number of the candidate genes identified by
T-REx have also been uncovered using ancient DNA studies,
which employ additional temporal information on allele
frequency trajectories. These candidate genes include LCT
(Souilmi et al. 2022), SLC45A2 (Mathieson et al. 2015),
and MCM6 (Skoglund and Mathieson 2018).

Further investigation into the regions with high sweep
support revealed EMC7 (supplementary Fig. S18B,
Supplementary Material online), which codes for a protein
that is an important part of the endoplasmic reticulum
membrane and acts as a molecular tether enabling
the transport of viruses between different cellular
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compartments (Bagchi et al. 2020). T-REx detects EMC7
with an 11-window mean sweep probability of 0.86, which
has prior support for positive selection (Racimo 2016).
Moreover, with 11-window mean sweep probabilities ran-
ging from 0.95 to 0.99, T-REx captured the genomic region
containing the protein-coding gene SF3A3 (supplementary
Fig. S17B, Supplementary Material online) on chromosome
1. Garcia-Cardenas et al. (2022) demonstrated a possible
connection between SF3A3 and breast cancer and a
network of cancer-driving genes. Though potentially asso-
ciated with the harmful disorder of cancer in contempor-
ary environments, Racimo et al. (2014) also suggested that
SF3A3 may have been subjected to past positive selection.

Novel Sweep Candidates
In addition to these previously identified sweep candi-
dates, we uncovered a number of novel candidates. On
chromosome 1, we found SYCP71 (supplementary Fig.
S17A, Supplementary Material online) as a possible sweep
candidate with 11-window mean sweep probabilities
reaching 0.88. This protein-coding gene is part of the syn-
aptonemal complex, which is a protein structure that
forms between homologous chromosomes (Seo et al.
2016). Hosoya and Miyagawa (2021) highlight that some
of the proteins coded by SYCPT are abnormally expressed
in 13 different cancer tissues, including breast and stomach
cancer, and acute myelogenous lukemia. Moreover, muta-
tions in SYCPT have been associated with male infertility
(Nabi et al. 2022).

On chromosome 7, we found candidate genes belong-
ing to the HOXA-family that exhibit high sweep support
with 11-window mean sweep probabilities ranging from
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0.80 to 0.95 (supplementary Fig. S17H, Supplementary
Material online). HOXA genes are part of the homeobox
cluster, which encode proteins that play an important
part in early development of humans by performing em-
bryo segmentation (Shah and Sukumar 2010), and it has
been suggested that HOXA-family genes are involved in
the inception and development of human cancers (Ge et al.
2021). Specifically, HOXA9 (supplementary Fig. S17H,
Supplementary Material online) is responsible for the patho-
genesis of acute myelogenous leukemia, which is a cancer of
the bloods and bones (Chen et al. 2019).

Additionally, SHNG17 on chromosome 20 (supplemen-
tary Fig. S18H, Supplementary Material online) has high
sweep support with 11-window mean sweep probabilities
reaching 0.95. SHNG17 is known to be an important factor
behind gastric cancer in humans, as it is upregulated in gas-
tric cancer tissues (Zhang et al. 2019). Furthermore, on
chromosome 10, we identified a strong peak with high
sweep support at the protein-coding gene FAM171A1
(supplementary Fig. S171, Supplementary Material online),
which is also associated with breast cancer survival and
plays an important role in immune system regulation
(Parada et al. 2017). Among our highlighted novel candi-
dates, as well as those that are previously identified
(SF3A3), there is an intriguing connection between these
sweep candidates and cancer proliferation and suppres-
sion. This pattern of selective sweeps at genes related to
cancer was also found by other studies that developed ma-
chine learning approaches for detecting sweep (e.g. Lou
et al. 2014; Schrider and Kern 2017, 2018; Mughal et al.
2020; Arnab et al. 2023). Detection of cancer-related genes
by T-REx as well as methods from previous studies, pro-
vides an interesting pattern that many past positively se-
lected genes may drive current carcinogenesis in humans.

Discussion

In this article, we have introduced a tensor decomposition-
based feature extraction and classification method termed
T-REx that is able to differentiate sweeps from neutrality
with a high degree of power and accuracy. Specifically,
we found that our linear model (T-REx(EN)) demonstrated
overall superior performance to the nonlinear models
(T-REX(SVM) and T-REx(RF)) across an array of different
settings, including demographic history, positive selection
regime, and technical artifacts due to missing genomic seg-
ments (Figs. 2, 3, and 5). Moreover, in addition to its high
power and accuracy to detect sweeps, this modeling
framework facilitated easy interpretation of the fitted
model by providing feature maps for visualization, which
convey the particular location in the haplotype alignments
that the models place emphasis when discriminating
sweeps from neutrality (Fig. 4).

From our experiments, an unexpected observation was
that the linear T-REx(EN) model had higher power and ac-
curacy than the nonlinear T-REx(SVM) and T-REx(RF)
models (Figs. 2 and 3). It is possible that the linear model
performs better here because it yields a better decision

boundary between the neutral and sweep classes.
However, it is more likely that other factors have played
a more critical role in leading T-REx(EN) to have the best
performance. First, the R components resulting from the
CP tensor decomposition are not required to be independ-
ent, and may, in fact, be highly correlated (Kolda and Bader
2009). The EN regularization employed by T-REx(EN) has
both L;- and L;-norm penalties, which are both meant
to handle correlated features (Hastie et al. 2009). In par-
ticular, the L,-norm penalty reduces the effective number
of features in the model, but encourages a dense model by
ensuring that all features remain included in the fitted
model (Hastie et al. 2009). In contrast, the L;-norm penalty
encourages a sparse model by emphasizing fewer features
and selecting out those that are redundant or irrelevant
for prediction (Hastie et al. 2009). Therefore, the
Li-norm penalty employed by T-REx(EN) method is par-
ticularly useful in reducing the overall dimension of the in-
put data by removing irrelevant and redundant features.
This hypothesis is supported by the fact that T-REx(EN)
tends to have nondecreasing power and accuracy with in-
creasing R (supplementary Figs. S4 and S5, Supplementary
Material online). Second, though T-REx(SVM) also has an
L,-norm penalty (Hastie et al. 2009), this penalty does
not encourage sparsity in the set of input features like
the L;-norm penalty. Moreover, we employ the radial basis
kernel within the T-REx(SVM) classifier, which requires a
distance be taken between observations, and distances in
high-dimensional space may not behave well due to the
curse of dimensionality (Verleysen and Francois 2005).
This hypothesis related to the curse of dimensionality is
supported by power and accuracy of T-REx(SVM) tending
to diminish with increasing R, and hence has decreasing
performance with increasing numbers of input features
(supplementary Figs. S4 and S5, Supplementary Material
online).

To put forth a better perspective on the utility of the
haplotype alignment processing method T-REx uses, we ex-
perimented with another protocol for processing haplo-
type alignments, which is similar to that of Torada et al.
(2019). As in Torada et al. (2019), we sorted the haplotypes
along the entire 1.1 Mb genomic region, which is in con-
trast to the alignment processing method employed by
T-REx, where haplotypes were sorted in a sliding window.
This key difference between these two protocols may be
an important factor behind the decreased false discovery
of sweeps by T-REx(EN) (compare supplementary Figs.
S19 to S1 and supplementary Figs. S20 to S2,
Supplementary Material online). Overall, our experiments
under the constant-size demographic history across differ-
ent ranks (compare supplementary Figs. 519 to S1 and sup-
plementary Figs. S20 to S2, Supplementary Material online)
show that our unique alignment processing method has a
distinct advantage in terms of downstream classification
accuracy and power over another contemporary approach
for processing haplotype alignments. If ImaGene
adopted this local alignment processing approach, then
it would have potentially resulted in performance that is
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more close to that exhibited by T-REx. Another factor that
has likely impacted the performance of ImaGene in our
study is that it is CNN-based, and CNNs typically require
large training sets to achieve optimal performance (Luo
et al. 2018). In the original ImaGene article, Torada
et al. (2019) employed 50,000 observations per class for
training. In contrast, we used 10,000 observations per class
for comparison purposes with T-REx, which may have in-
fluenced the results shown by ImaGene. Moreover, a
key distinction between ImaGene and T-REx is that
ImaGene uses larger resized 128 X 128-dimensional
images as input, which have the potential for reduced ro-
bustness to noise compared with T-REx, as more noise is
averaged out with its smaller 64 X 64-dimensional input
images.

When analyzing modern genomic data, it is common to
encounter regions with missing segments due to artifacts
or sequence alignment problems, making it critical that
machine learning tools remain robust to the challenge
such missing data poses. In our tests with missing seg-
ments, we found that T-REx(EN) was fairly robust, but
ImaGene was deleteriously affected by an increase in
the misclassification rate of neutral regions—though for
reasonable false positive rates, ImaGene was also robust
(Fig. 5). An avenue to alleviate this problem is to train clas-
sifiers with missing random segments (Kern and Schrider
2018), which allows classifiers to learn the underlying pat-
terns associated with missing data. Randomly removing
chunks from alignments in non-overlapping windows
from the training data before training classifiers has been
shown to offset the deleterious effects of such missing
data (Mughal and DeGiorgio 2019; Mughal et al. 2020).
Also, filling in missing values in test data through genotype
imputation (e.g. Li et al. 2010; Moritz and Bartz-Beielstein
2017; Browning et al. 2021; Davies et al. 2021) may be an-
other direction to combat the problem of missing data.
Classifiers that are fed test data after imputing the missing
values tend to be robust when faced with missing data in
genomes and may achieve better prediction accuracy
(Sarkar et al. 2021).

We have implemented T-REx as a binary classifier to dif-
ferentiate sweeps from neutrality, but this modeling strat-
egy can also be employed for broader classification
problems in evolutionary genomics. For example, using
multiclass extensions to the machine learning models dis-
cussed here, the T-REx framework could accommodate
classifiers for jointly discriminating among other evolu-
tionary processes, such as balancing selection and adaptive
introgression, in addition to neutrality and sweeps from de
novo mutations or standing variation. To illustrate, two-
dimensional representations of genomic data have been
employed in multiclass models for robustly determining
whether a genomic region is neutrally-evolving or has
undergone a hard or soft sweep (Kern and Schrider
2018), as well as been shown to improve discrimination
of adaptive introgression from sweeps and neutrality
(Mughal et al. 2020). Moreover, Gower et al. (2021) em-
ployed images of sorted haplotype alignments as input
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to a CNN with the aim to detect adaptive introgression
—a setting that Mughal et al. (2020) still had trouble
with based on two-dimensional images derived from
hand-engineered population-genetic summary statistics.
Indeed, Isildak et al. (2021) showed that CNNs applied to
extract features from images of haplotype alignments out-
performed feed-forward neural networks applied to
hand-engineered population-genetic features in discrimin-
ating between recent balancing selection and incomplete
sweeps, which are two evolutionary settings that can yield
similar distributions of haplotype variation and are thus
difficult to tease apart. These examples highlight the
promise that automatic feature extraction from image re-
presentations of haplotypic variation has for probing gen-
omes for diverse forms of natural selection.

Throughout this article, we have explored the problem
of identifying natural selection as a classification task.
However, the machine learning models employed by
T-REx are flexible, and changing from a qualitative to a
quantitative output would shift the problem from a clas-
sification to a regression problem. By using a regression
framework, T-REx could predict underlying sweep para-
meters, such as selection strength, frequency of the se-
lected allele when it became beneficial, and time at
which a sweep completed (Mughal and DeGiorgio 2019).
Moreover, as in Flagel et al. (2019), framing the prediction
problem as regression would allow for estimation of key
demographic quantities, such as the timing and magni-
tude of population size changes, as well as genetic para-
meters, such as recombination rate. Hence, tensor
decomposition represents a complementary tool for tack-
ling an array of inference problems within population gen-
omics that CNNs have already been demonstrated to be
highly effective.

Another interesting avenue that can be explored and
could potentially increase the accuracy and robustness of
T-REx is the incorporation of ancient DNA data. Because in-
formation on temporal trajectories of genetic variation can
be exploited when using ancient DNA, such additional data
could enhance the detection and characterization of adap-
tive footprints. Indeed, recent studies have incorporated
genetic variation from ancient samples to detect adaptive
loci (e.g. Mathieson and McVean 2013a, 2013b; Field et al.
2016; Dehasque et al. 2020; Mathieson 2020; Rees et al.
2020; Whitehouse and Schrider 2023), and these studies
have highlighted that use of such temporal data can aid
in better detection of adaptive events. Our T-REx framework
is amenable to direct incorporation of ancient DNA data
sampled across time by including images of haplotype vari-
ation consecutively ordered across sampled time points
along a fourth dimension of the tensor structure prior to ap-
plying tensor decomposition to perform feature extraction.
Because this tensor decomposition will naturally preserve
the autocovariation in diversity not only expected spatially
in the genome, but also temporally through the addition of
the fourth dimension, we believe this is a viable avenue for
future exploration to boost the performance and scope of
T-REx models.
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Important limitations of T-REx are the runtime and
memory-usage associated with larger training sets (N)
and higher ranks (R). In our experiments, we found that
tensor decomposition took substantially greater time and
memory even for modest increases in R. Downsampling
each observation to a 64 X 64-dimensional matrix helped
in reducing the complexity, and also likely aided in robust-
ness of our models by averaging some of the noise in the
input images. Moreover, we have been concerned with
three-way tensors only, but if we were to consider increas-
ing the number of dimensions, it would render the process
computationally costlier than a three-way case, as the
number of elements in the tensor would increase exponen-
tially with each added dimension (Kruppa 2017). Also, the
alternating least squares algorithm (see Methods section)
for learning the factors matrices for CP tensor decompos-
ition will need to find the factor matrices associated with
each added dimension. For example, if we were to include
ancient DNA data sampled over time as the fourth dimen-
sion in our existing pipeline, then it would be a four-way
tensor where we would have an extra factor matrix D,
which the ALS algorithm has to estimate through iteration
and will incur greater runtime before reaching
convergence.

We have focused on CP tensor decomposition
(Hitchcock 1927; Harshman 1970). However, other algo-
rithms for decomposing tensors exist, each with their
own advantages and disadvantages relative to CP decom-
position. Examples are multilinear principal component
analysis (MPCA) (Lu et al. 2008), Tucker decomposition
(Tucker 1966), higher-order singular value decomposition
(HOSVD) (Lathauwer et al. 2000), and tensor train (TT) de-
composition (Oseledets 2011), which are widely used alter-
native approaches for performing tensor decomposition
(e.g. Sidiropoulos et al. 2017; Yuwang et al. 2019).
Methods such as CP decomposition, MPCA, HOSVD,
and TT are closely related to Tucker decomposition
(Zare et al. 2018; Yuwang et al. 2019) in their working pro-
cedures, which is based on finding the linear combination
of outer products of vectors. Among these different tech-
niques, Tucker decomposition (Tucker 1966) is the most
similar in operation to CP decomposition, as it also hinges
on the idea of using alternating least squares to estimate a
core tensor and factor matrices, though the core tensor
produced by Tucker decomposition is not necessarily diag-
onal like the one CP decomposition outputs (Yuwang et al.
2019) and the ranks of the factor matrices are not con-
strained to be identical. Despite their similarities, CP de-
composition is able to produce unique solutions unlike
Tucker decomposition, where factor matrices change as
the core tensor is changed (Kim et al. 2014; Zare et al.
2018). Also, the rank-one factors generated by Tucker de-
composition are orthonormal, which is not the case for CP
tensor decomposition (Kim et al. 2014).

The T-REx methodology introduced here represents
complementary approach to CNNs for automatic feature
extraction of haplotype alignment images. This framework
is flexible, as it permits learned features to be used in both

linear and advanced nonlinear models, and can be ex-
tended into multiclass and quantitative prediction pro-
blems within evolutionary genomics. Moreover, we
demonstrated that T-REx has an edge over a current lead-
ing CNN-based architecture in terms of power and accur-
acy, partially due to its unique alignment processing
strategy for easier feature detection. Moreover, T-REx iden-
tified previously hypothesized and novel candidate sweeps
in our empirical application, highlighting its efficacy in
practice. Despite the promising performance metrics of
T-REx, computation time of T-REx increases with increas-
ingly higher ranks and sample sizes. However, excellent
power and accuracy were achieved for modest numbers
of features and training set sizes, and so we do not see
this as a major hurdle for T-REx. Given the rapidly changing
landscape of computational approaches for learning about
and uncovering evolutionary mechanisms, T-REx provides
a bridge between modern methodologies for feature ex-
traction and well-established classical machine learning
prediction techniques.

Methods

CP Tensor Decomposition

Consider a tensor X € R™K of order three, where the
first dimension will collect | observations of two-
dimensional images each with J X K pixel values. The
idea behind CP tensor decomposition is to express such
a tensor as a sum of R tensors, where each of these tensors
is expressed as the outer product of three rank one tensors.
That is, we wish to estimate X as

R
X = E a,ob,oc,

r=1

where the symbol ° denotes the outer product and where

a, €eR, b, € R, and ¢, € R such that X ~ X. For our
setting, | will represent the number of training observa-
tions, ] a proxy for the number of haplotypes, and K a proxy
for the number of loci (see Alignment processing subsec-
tion of the Methods for details). Because we are working
with tensors of order three, which is a higher-order tensor,
we have column, row, and tube Fibers, which are, respect-
ively, termed mode-1, mode-2, and mode-3 of the tensor.

Preprocessing Tensors

Prior to application of CP decomposition, we need to pre-
process the input tensors through centering and scaling
operations. Because the data are represented as a three-
way tensor, preprocessing is different from conventional
methods (Kolda and Bader 2009). Let value x; denote ele-
ments i, j, and k, respectively, for the first, second, and third
dimensions of the tensor X € R, This tensor is cen-
tered as

centered __ =
Xijk = Xjk — Xjk (1
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where

I
Xjk=7§ ik
i=1

is the sample mean across the | training observations.
Here the index i is related to the first mode, so it runs
from 1 to I. Similarly index j runs from 1 to J and index
k runs from 1 to K. This kind of centering is called single
centering across the first mode (Bro 1997), and causes the
mean of each pixel of an image to be zero across the train-
ing samples. We could have centered on multiple modes
simultaneously, which is called double or triple centering
depending on the number of modes on which to simul-
taneously center. However, centering one mode at a
time is appropriate for CP decomposition, as any other
kind of centering would destroy the multilinear proper-
ties of the data (Bro 1997)

In addition to centering, scaling should be performed on
only one mode at a time, and we have chosen to scale in
the first mode for our application (Kolda and Bader
2009). Scaling is performed as

Xiik

scaled ]

== 2
. 2)

ko

where

This kind of scaling ensures that the overall intensity of va-
lues across pixels in an image are identical for each training
sample. The order of scaling and centering is not arbitrary,
as the operations are not commutative (Kolda and Bader
2009). Centering across a particular mode after scaling dis-
turbs scaling across all modes. On the other hand, scaling
across a particular mode after centering destroys centering
across that mode. For these reasons, the order of centering
and scaling is important. Centering is performed after scal-
ing so that the scaled mode variance is not exactly one, but
any large differences across the mode are mostly equalized
(Kolda and Bader 2009). Centering is then performed,
which ensures that the mode to be centered has a mean
of zero.

Computing the CP Decomposition

After performing tensor decomposition on the training
tensor X € RPXK to obtain a rank R CP decomposition,
we obtain the three-factor matrices

A=[a; a, --- ag] € RR
B=[b; b, --- by] € R*®
C=[c ¢ - ] € ROR
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which yield an approximation of the tensor through the
outer product

X = XR:lraro b, oc,

r=1

where A, r =1,2, ..., R, scales the rth tensor to have unit
norm. From the factor matrices B and C, we can depict the
features extracted by component r of the CP model from
the training data with the expression b, oc, € R*®
(Papastergiou et al. 2018).

The key algorithm behind computing the CP decom-
position is alternating least squares (Carroll and Chang
1970), which is a minimization algorithm. For a tensor of
order three, given a rank R to approximate the training
tensor (X)), alternating least-squares fixes two of the factor
matrices, whereas solving for the remaining factor matrix
that minimizes the sum of the squared differences in the
elements of the estimated tensor (}) and the training ten-
sor. For example, if factor matrices B and C are fixed, then
we seek to find A that has this minimal sum of squared
errors.

Denote the best factor matrices A, B, and C at iteration
t € {0, 1,2, ...} of the alternating least-squares algorithm
by A®, B®, and €, respectively. Given these factor matri-
ces, let the current estimate of the training tensor be

R
RO =3 a0 b0 o,
r=1

Define the element-wise squared difference between two
order-three tensors X € RPK and ) € R™*K 55

|

DX, V)= ) > (Xje— Vi)

) K
i=1 j=1 k=1

Alternating least squares on this tensor of order three is gi-
ven by the following three steps:

1) Step 1: fix A® and B® and solve for C**+"
R

c"V= argmin D’[ X, Za(t) obPoc,

r
C=[c1 ¢ - €] r=1

2) Step 2: fix A® and C® and solve for B+

R

B = argmin D’[X, Zagt) ob,oc?
B=[b; b, - bg] r=1

3) Step 3: fix BY and € and solve for At+"

R
A®Y = arg min  D*| &, Z a, o b o

A=[a; a - ag] r=1
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Steps 1 to 3 are repeated until convergence, and final esti-
mated factor matrices are identical to those from the final
iteration—i.e. A=A, B=Bt*), and C=C*V, At
each step, we incorporate the values for A, r=
1,2, ..., Rinto the estimated tensor.

Projecting Test Observations onto Identified Factor Matrices
Given a new test tensor Xese € R of | o, test observa-
tions, we can project the test observations onto the learn-
ed factor A so that it falls within the subspace learned by
decomposing the training tensor X. However, before
doing so, we must ensure that the test dataset lies in the
same input space as the training set. Thus, we preprocess
the test dataset by applying Equations (1) and (2) for cen-
tering and scaling. It is important to note that Equation (1)
refers to centering with respect to the training set (i.e. sub-
tracting X i), and so the test set must be centered with the
mean training pixel value X and not a similar quantity for
the test set. Thus, the centering values for the training set
must be retained so that the test set is centered with iden-
tical values. Assuming X' .. has now been properly prepro-
cessed, we can project the test data onto the learned
features representing each input image by Kolda and
Bader (2009)

Atest = Xtest(1)(c*B)(cTc O] BTB)TA_1: (3)

where Xcese(1) is the mode-1 unfolding (matricization) of
the tensor X', the superscript T denotes transpose, the
symbol * denotes the Khatri—Rao product, the ® symbol
denotes the Hadamard (element-wise) product, the super-
script T denotes the Moore—Penrose pseudoinverse, and
A" represents the inverse of the diagonal matrix A €
RRR of scaling terms Ay, Ay, .., Ag.

Alignment Processing

We used a novel approach for processing the haplotype
alignments in a way that helps the classifiers detect the
footprint of a selective sweep. For each simulated 1.1 Mb
region, we locally sorted haplotypes in windows of 100
single-nucleotide polymorphisms (SNPs), moving the win-
dow along the region with a stride of 10 SNPs, where values
at SNPs were averaged for all windows that overlapped
them. This method of alignment processing can help clas-
sifiers identify signals of lost haplotypic diversity if sweeps
are weak or old, whereas also retaining power for strong
and recent sweeps. To reduce the complexity of the tensor
decomposition and noise in the sorted haplotype align-
ments, we downsampled the alignment images to
64 X 64-dimensional matrices using the scikit-
image library (Pedregosa et al. 2011), where Gaussian
smoothing was employed to preserve the spatial relation-
ships of pixels within the images and to avoid aliasing arti-
facts. We highlight the advantage of our alignment
processing approach by pitting the results obtained after
employing our unique alignment processing strategy
against those of an alignment processing approach that

is similar to that used by ImaGene (Torada et al. 2019)
(compare supplementary Figs. S19 to S1 and supplemen-
tary Figs. S20 to S2, Supplementary Material online).

T-REx Model Training and Hyperparameter Tuning
We have implemented three classical linear and nonlinear
machine learning models with different R packages into our
T-REx framework. For performing tensor decomposition,
we used the R package rTensor (Li et al. 2018).
Additionally, we employed the R packages glmnet
(Friedman et al. 2010), 1iquidsvm (Steinwart and
Thomann 2017), and ranger (Wright and Ziegler 2017)
for implementing T-REx(EN), T-REx(SVM), and T-REx(RF),
respectively. During the training of each classifier, we
have 10* observations in each class, with each observation
consisting of sorted haplotype alignments (details provided
in the Alignment processing subsection of the Methods). We
then applied a rank R tensor decomposition (see CP tensor
decomposition subsection of the Methods for details) to ob-
tain a set of R derived features for each observation in each
class to be used as input for our T-REx classifiers.

Before the testing phase commences, we tuned hyper-
parameters, which control certain components of the
model training process, of each model by selecting optimal
hyperparameters through the cross-validation procedure.
Hyperparameter tuning is a way of selecting suitable hy-
perparameter values from a range of possible values.
Specifically, we performed 10-fold cross-validation such
that on each of the 10-folds we selected 10% of the sam-
ples (1,000 observations per class) from the dataset to be
reserved for model validation and the remaining 90% of
the samples (9,000 observations per class) to be employed
for model training. This procedure allowed us to evaluate
how well the model would perform on unseen data (from
the validation set) for a given set of hyperparameter values.
For each of the classifiers, we chose the model structure
that yielded the smallest cross-validation error after per-
forming hyperparameter tuning.

For hyperparameter tuning of T-REx(EN), we explored a
grid of values a € {0, 0.1, ..., 1.0}, where a denotes the
proportion of the model for which the parameters are pe-
nalized with an L,-norm penalty, whereas 1 — a is the pro-
portion penalized with an L{-norm penalty (Hastie et al.
2009). In addition to a, we tuned another hyperparameter
A > 0, which modulates the complexity of the fitted model
by controlling the influence of the Ly- and L,-norm penal-
ties during model training. By tuning both 4 and o, we are
controlling the complexity of the fitted model, whereas
simultaneously performing feature selection by inclusion
of the L;-norm penalty (Hastie et al. 2009). We find the op-
timal 4 and & combination that gives the minimum 10-fold
cross-validation error. For implementing T-REx(SVM), we
used the radial basis kernel for nonlinear modeling, which
has a hyperparameter y that is inversely proportional to
the variance (width) of the radial basis kernel, which has
a shape similar to a Gaussian function (Hastie et al.
2009). To implement T-REx(RF), we chose a large number
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(5,000) of random trees to use in the RF ensemble, as test er-
ror stabilizes with enough trees in the forest (Hastie et al.
2009), and used the default number of 10 random splits with-
in ranger for growing each decision tree within the RF.

Finally, regardless of machine learning method, another
important hyperparameter is the rank R of the tensor decom-
position. For each value of R € {50, 100, 150, 200, 250, 300},
we computed the 10-fold cross-validation error for T-REx(EN)
and T-REx(SVM) and the out-of-bag error for T-REx(RF)
(Hastie et al. 2009). We chose the (R, 4, ) triple that resulted
in the smallest 10-fold cross-validation error for T-REx(EN),
the (R, ) pair that results in the smallest 10-fold cross-
validation for T-REx(SVM), and the value of R that results
in the smallest out-of-bag error for T-REx(RF). After selecting
the set of optimal hyperparameters of each method, the
three T-REx models were each trained on the full dataset of
10% training observations per class conditional on their opti-
mal hyperparameters, and these models were deployed on
further testing data.

Training and Evaluating ImaGene

To fully evaluate the performance T-REx, we compared it
with the CNN-based sweep classifier ImaGene (details
are provided in the Results). Although both T-REx and
ImaGene use haplotype alignments in the form of
images, there are differences in the procedure used to pro-
cess the images and perform model training.

For training, ImaGene employs a “simulation-on-the-
fly” approach of using newly generated data at each
training epoch (iteration of gradient descent). This
simulation-on-the-fly approach prevents TmaGene from
overfitting. For consistency and fairness in comparison be-
tween T-REx and ImaGene, we deviated from this default
setting of ImaGene so that it is pitted against T-REx on
identical simulation data. Specifically, we used the same
10% training observations per class when training
ImaGene as we employed for training T-REx for each
simulation setting (details regarding the simulation proto-
col are provided in the Results). To prevent overfitting, we
employed early stopping (Goodfellow et al. 2016), by set-
ting the number of epochs to train ImaGene as the point
at which the validation loss starts to rise, which suggests
overfitting, where the validation loss was computed across
1,000 observations per class that were held out for valid-
ation. supplementary Figure S21, Supplementary Material
online displays the validation and training loss curves
over 200 training epochs, showing that the validation
curve begins to increase at approximately 25 epochs. We
therefore retrained the ImaGene model on the full data-
set of 10* observations per class for 25 epoches.

Application to Empirical Data

With the aim of detecting novel candidate genes that may
be subject to positive natural selection and previously hy-
pothesized candidates of positive natural selection, we
used empirical data of the CEU human population from
the 1000 Genomes Project dataset (The 1000 Genomes
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Project Consortium 2015). We first filtered variant calls
to include biallelic SNPs. Second, we removed SNPs with
minor allele count less than three, as Mughal et al.
(2020) demonstrated the frequencies of singleton and
doubleton SNPs in the CEU population from the 1000
Genomes Project dataset differed from those predicted
by the inferred demographic model (Terhorst et al.
2017) that we used to train our classifiers. Moreover, be-
cause regions of the genome that are harder to map and
align may lead to technical artifacts affecting observed
genomic variation (Derrien et al. 2012), we removed sites
that could have problematic mapping or alignability to cir-
cumvent such potential artifacts. Specifically, we used the
CRG score to measure mappability and alignability of a
genomic region and removed sites falling within 100 kb
windows for which the mean CRG100 score within the
window was less than 0.9 (Mughal et al. 2020). We then ap-
plied our unique alignment processing approach to further
process the data before supplying it to T-REx.

Supplementary Material

Supplementary material is available at Molecular Biology
and Evolution online.
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