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Abstract
Inferences of adaptive events are important for learning about traits, such as human digestion of lactose after infancy 
and the rapid spread of viral variants. Early efforts toward identifying footprints of natural selection from genomic 
data involved development of summary statistic and likelihood methods. However, such techniques are grounded in 
simple patterns or theoretical models that limit the complexity of settings they can explore. Due to the renaissance in 
artificial intelligence, machine learning methods have taken center stage in recent efforts to detect natural selection, 
with strategies such as convolutional neural networks applied to images of haplotypes. Yet, limitations of such tech
niques include estimation of large numbers of model parameters under nonconvex settings and feature identifica
tion without regard to location within an image. An alternative approach is to use tensor decomposition to extract 
features from multidimensional data although preserving the latent structure of the data, and to feed these features 
to machine learning models. Here, we adopt this framework and present a novel approach termed T-REx, which ex
tracts features from images of haplotypes across sampled individuals using tensor decomposition, and then makes 
predictions from these features using classical machine learning methods. As a proof of concept, we explore the per
formance of T-REx on simulated neutral and selective sweep scenarios and find that it has high power and accuracy to 
discriminate sweeps from neutrality, robustness to common technical hurdles, and easy visualization of feature im
portance. Therefore, T-REx is a powerful addition to the toolkit for detecting adaptive processes from genomic data.
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Introduction
Natural selection refers to the evolutionary processes that 
differentially affect the number of offspring organisms may 
leave in the next generation based on the fitness of particular 
traits in an environment (Gillespie 2004). As traits will typic
ally have some genetic basis, changes in the frequencies of 
traits in the population will also influence frequencies of gen
etic variants, or alleles, that contribute to these traits. 
Specifically, positive natural selection is the process by which 
beneficial traits increase in frequency in a population, leading 
to increases in the frequencies of alleles coding for the traits 
they contribute to, and ultimately a decrease in genetic vari
ation at the locus under selection (Gillespie 2004). Because 
positive selection may cause particular alleles to rapidly 
rise in frequency in a population, through the process of gen
etic hitchhiking neutral genetic variants at sites nearby the 
selected locus will also rise to high frequency with it 
(Maynard Smith and Haigh 1974; Przeworski 2002; Kim 
and Nielsen 2004; Hermisson and Pennings 2017). This indir
ect influence of positive selection on neighboring sites causes 
a loss of neutral genetic variation, resulting in the phenom
enon coined as selective sweep (Hermisson and Pennings 
2005; Pennings and Hermisson 2006a, 2006b).

Inferences of such selective sweep events have been im
portant for learning about a number of traits, such as how 
some human populations have evolved to digest lactose 
after infancy due to the advent of agriculture (Tishkoff 
et al. 2007; Field et al. 2016; Ségurel and Bon 2017; Taliun 
et al. 2021), the ability of organisms to survive at extreme 
environments such as high altitudes (Beall et al. 2010; 
Bigham et al. 2010; Simonson et al. 2010; Yi et al. 2010; 
Peng et al. 2011; Wang et al. 2011; Xu et al. 2011; 
Huerta-Sánchez et al. 2013, 2014; Zhang et al. 2014; Wei 
et al. 2016; Lindo et al. 2018; Graham and McCracken 
2019; Liu et al. 2019; Szpiech et al. 2021; Zhang et al. 
2021), and the rapid spread of certain viral variants that re
quire societies to regularly generate new drugs and vac
cines (Rambaut et al. 2008; Bedford et al. 2011; Feder 
et al. 2016, 2021; Kim and Kim 2016; Kang et al. 2021). 
These important applications to human and other study 
systems have fueled significant interest in detecting 
sweeps among evolutionary, ecological, anthropological, 
and epidemiological researchers over the last several 
decades. Initial efforts toward identifying signatures of se
lective sweeps from genetic data were with summary sta
tistics, which classically explored deviations from expected 
genetic variation under simple models of neutrality. Such 

Mol. Biol. Evol. 40(10):msad216 https://doi.org/10.1093/molbev/msad216 Advance Access publication September 29, 2023 1

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/40/10/m
sad216/7286307 by guest on 03 January 2025

https://orcid.org/0000-0003-0827-5327
https://orcid.org/0000-0003-4908-7234
mailto:aminm2021@fau.edu
mailto:mdegiorg@fau.edu
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/


approaches have been expanded in recent years, to employ 
diverse forms of variation, such as haplotype diversity 
within and among populations to increase both power 
to detect sweeps and robustness against confounding fac
tors (Sabeti et al. 2002, 2007; Voight et al. 2006; Ferrer- 
Admetlla et al. 2014; Garud et al. 2015; Harris et al. 2018; 
Torres et al. 2018; Harris and DeGiorgio 2020b; Szpiech 
et al. 2021). However, with the growth in computational 
power and theoretical advances for modeling sweeps, 
complementary model-based approaches have become 
ever more common, as they provide a probabilistic ap
proach for detecting sweeps and typically exhibit greater 
power than summary statistic approaches, provided as
sumptions of the underlying model fits observed data 
well enough (Kim and Stephan 2002; Nielsen et al. 2005; 
Chen et al. 2010; Vy and Kim 2015; DeGiorgio et al. 2016; 
Huber et al. 2016; Racimo 2016; Lee and Coop 2017; 
Harris and DeGiorgio 2020a; Setter et al. 2020; DeGiorgio 
and Szpiech 2022). Yet, these approaches still suffer in 
that the complexity of scenarios they can model are lim
ited, as they are typically grounded in simple theoretical 
models for expected genomic variation.

Instead, due to a renaissance in artificial intelligence, ma
chine learning methods have been at the forefront of re
cent efforts for detecting natural selection events from 
patterns in genomic variation (Schrider and Kern 2018). 
A number of approaches employ multiple summary statis
tics as input features, and differ in the types of summary 
statistics and the way at which input features are modeled 
(Lin et al. 2011; Schrider and Kern 2016; Sheehan and Song 
2016; Kern and Schrider 2018; Sugden et al. 2018; Mughal 
and DeGiorgio 2019; Mughal et al. 2020; Lauterbur et al. 
2022; Arnab et al. 2023). Because the summary statistics tar
get different patterns of genetic variation, the ensemble of 
such statistics can be used to provide cumulative evidence 
for, or against, the probability of a selective sweep produ
cing the set of summary statistic values. Importantly 
though, these machine learning approaches require that 
hand-engineered summary statistics are chosen in advance, 
when they may not necessarily be the best features for dis
criminating among diverse evolutionary events. As a com
plementary strategy concurrent with the rise of deep 
learning (LeCun et al. 2015), convolutional neural networks 
(CNNs; LeCun et al. 1998) have been recently employed as a 
mechanism to automatically extract features and detect 
sweeps from raw genotypic variation (Chan et al. 2018; 
Flagel et al. 2019; Torada et al. 2019; Gower et al. 2021; 
Isildak et al. 2021). To use CNNs as a way to extract features 
and detect selective sweeps, the genomic region has to be 
represented as images, and such approaches have matched 
or outperformed other statistical frameworks (Kern and 
Schrider 2018; Flagel et al. 2019; Torada et al. 2019; Isildak 
et al. 2021).

CNNs are powerful tools that have proven useful in im
age classification and deep learning tasks (LeCun et al. 
1998; Gu et al. 2018). Despite their robustness, they may 
suffer some limitations for detecting sweeps. Because the 
majority of CNN architectures have at least one fully- 

connected dense hidden layer prior to the output layer, 
such models often have an enormous number of para
meters (Goodfellow et al. 2016). The increased number 
of parameters generally requires larger training sets to 
learn their parameters, and the computational complexity 
of finding the optimal parameters is often high. Moreover, 
CNN architectures are typically agnostic with respect to 
where in an input image an object to detect is located, 
thereby ignoring important information when detecting 
selective sweeps, as haplotype diversity should be altered 
nearby a selected locus (e.g. Hermisson and Pennings 
2005; Pennings and Hermisson 2006a, 2006b) and support 
for a sweep centered on a particular genomic location 
should change depending on whether the altered diversity 
is at the center or periphery of the image. Instead, it may 
be useful to employ techniques that automatically extract 
features from images whereas retaining the spatial location 
within the image of important features, and to then use 
these features as input to the many powerful linear and 
nonlinear machine learning methods that have been 
developed (Hastie et al. 2009). One such approach for ex
tracting features from image data is tensor decomposition 
(Kolda and Bader 2009).

Tensor decomposition is a class of dimensionality re
duction techniques that can be applied to extract import
ant features from data that has higher-order structure 
(Kolda and Bader 2009). Data with higher-order structure 
differs from typical data that is collected as a vector of fea
ture values, as the feature values are organized in a specific 
manner. For example, image data has higher-order struc
ture, as pixel (feature) values are organized into rows 
and columns, with pixels tending to have similar values if 
they have similar row-column coordinates. Traditional 
data analysis methods need higher-order data to be flat
tened into a vector for each observation before it can be 
analyzed. Moreover, this flattening procedure runs the 
risk of erasing information that might be encoded within 
the higher-order structure of the data. In situations where 
it is important to maintain the integrity of the structure of 
such higher-order structured data, tensor decomposition 
can be a useful tool for embedding this higher-order struc
tured data in a low-dimensional space although retaining 
the information encoded in the original data. Tensor de
composition when applied to higher-order data can ex
tract features, which in turn can be used for prediction 
tasks such as classification.

Additionally, working with high-dimensional data contain
ing enormous numbers of features comes with an increased 
computational cost for a predictive model, which sometimes 
is referred to as “curse of dimensionality” (Bellman 1966). 
Most nonlinear methods suffer more from this curse of 
dimensionality than linear methods, as nonlinear methods 
involve a large number of parameters (Verleysen and 
François 2005). To circumvent this curse of dimensionality is
sue, dimensionality reduction-based (Salem and Hussein 
2019) and ensemble-based methods (Sun et al. 2020) have 
been developed that operate on vector representations of 
data, whereas tensor decomposition-based dimensionality 
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reduction techniques are able to also retain the spatial infor
mation of features in data that have higher-order structure 
(Kolda and Bader 2009).

Feature extraction is one of the foremost steps for clas
sifying data, and tensor decomposition has emerged as an 
efficient approach to extract a small number of features 
from high-dimensional data. When extracting features 
from images of raw genomic data, the curse of dimension
ality emerges as a problem for which traditional dimen
sionality reduction approaches (e.g. principal component 
analysis) are unideal solutions as they do not retain the 
spatial structure of the images. Also, many classical ma
chine learning algorithms, such as support vector ma
chines (SVMs), take only feature vectors as input for 
image data (feature matrices) must be converted into first- 
order tensors (vectors), which not only compromises the 
spatial structure of the input data but is also prone to clas
sification errors (Liu 2021).

In this article, we introduce a set of methods termed 
T-REx (Tensor decomposition-based Robust feature 
Extraction and classification) that utilize tensor decom
position for automatic feature extraction and classification 
of genomic image data with an aim toward distinguishing 
sweep footprints from neutrality. We decompose genomic 
data obtained from images of haplotypes using 
CANDECOMP/PARAFAC (CP) decomposition (Carroll 
and Chang 1970; Harshman 1970), which is a popular mod
el for tensor decomposition. After decomposition, the ten
sor is expressed as an outer product of three factors, each 
of which are vectors, resulting in retention of spatial struc
ture. We feed these extracted features as input to classical 
linear and nonlinear classifiers to predict whether genomic 
regions represented as images show properties consistent 
with positive natural selection or neutrality. We also per
formed an empirical analysis using variant calls from 
whole-genomes of a central European (CEU) population 
curated from the 1000 Genomes Project (The 1000 
Genomes Project Consortium 2015), in which we found 
novel candidate sweep genes (e.g. MIR6874, ZNF815P, 
OCM, and SNHG17) as well as recapitulated prior findings 
from the literature (e.g. LCT, MCM6, SLC45A2, and EMC7). 
Finally, we implemented T-REx as open-source software, 
which is available at https://github.com/RuhAm/T-REx.

Results
The objective of T-REx is to automatically extract features 
from high-dimensional genomic data using tensor decom
position (Kolda and Bader 2009), and to use these features 
to build a model to detect patterns of adaptation in gen
omes. To explore the efficacy of T-REx for detecting 
sweeps, we considered a diverse array of factors that can 
ultimately influence method power, accuracy, and robust
ness. We first evaluated how machine learning architec
ture affected accuracy and power, exploring both linear 
and nonlinear modeling frameworks (Hastie et al. 2009). 
We then considered how the confounding effects of back
ground selection, nonequilibrium demographic history, 

sweep completeness, mutation and recombination rate 
variability, allele polarization and mispolarization, and 
missing genomic segments alter relative classification abil
ity. We also directly compared T-REx with a leading sweep 
classifier, ImaGene (Torada et al. 2019), which also uses 
images of haplotype alignments as input. Finally, based 
on these simulation results, we apply the best strategy to 
whole-genome sequences from central European human 
individuals (The 1000 Genomes Project Consortium 
2015), and compare our findings with previously reported 
results from the literature.

Feature Extraction and Model Training
To generate training and testing data for T-REx, we created 
two datasets of varying degrees of constraint associated 
with them. These datasets are simulated under a constant 
population size demographic history of 10,000 diploid in
dividuals (Takahata 1993; Excoffier et al. 2013) with the co
alescent simulator discoal (Kern and Discoal 2016) 
using a uniform per-site per-generation mutation rate of 
1.25 × 10−8 (Scally and Durbin 2012) and per-site per- 
generation recombination rate of 10−8 (Payseur and 
Nachman 2000) drawn from an exponential distribution 
and truncated at three times the mean (Schrider and 
Kern 2016). The length of the sequences was set to 1.1 
megabases (Mb), and we sampled 200 haplotypes from 
each simulation under this setting.

In addition to these parameters, to simulate selective 
sweeps we introduced a beneficial mutation at the center 
of the simulated sequences and set the per-generation se
lection coefficient s ∈ [0.005, 0.5], which was sampled 
uniformly at random on a logarithmic scale. We set the ini
tial frequency of the beneficial allele at the time of selec
tion to be f ∈ [0.001, 0.1], which was also sampled 
uniformly at random on a logarithmic scale. This range 
for f allowed us to explore both hard and soft sweeps 
(Hermisson and Pennings 2017). The beneficial mutation 
became fixed t generations prior to sampling, and we cre
ated two datasets based on the distribution of t that are of 
varying difficulty to discriminate sweeps from neutrality. In 
the first dataset (denoted by constant_1), we set t = 0, 
and in the second more challenging dataset (denoted by 
constant_2), we draw t ∈ [0, 1200] uniformly at ran
dom, thereby permitting greater overlap between sweep 
and neutral classes. Using this protocol, we independently 
generated 10,000 training and 1,000 test observations per 
class for each dataset. We developed an approach for pro
cessing haplotype alignments that may make the structure 
of input images easier to discern by CP decomposition. Full 
details of this alignment processing strategy are provided 
in the Methods.

For each dataset (constant_1 or constant_2), 
using the rTensor package (Li et al. 2018), we performed 
a rank R CP tensor decomposition across a set of 20,000 
training observations (10,000 per class) to obtain a low- 
dimensional representation of the observations in 
R-dimensional space. Using Equation (3) in the Methods 
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section, we projected the 2,000 (1,000 per class) test 
observations of processed image alignments onto the 
R-dimensional subspace learned from the training set. 
The CP tensor decomposition subsection of the Methods 
provides a detailed overview of CP tensor decomposition, 
including learning the low-dimensional representation of 
the training set and projection of the test observations 
onto this subspace. Identifying an appropriate rank or 
number of components (R) is a key task for performing 
CP decomposition, yet an exact algorithm does not exist 
for finding the optimum R that gives the best approxima
tion to the original tensor (Kolda and Bader 2009). Because 
the performances of our classifiers vary greatly across 
different ranks, we evaluated different values of rank R ∈ 
{50, 100, 150, 200, 250, 300} until we identified a rank 
that yielded excellent power and accuracy whereas re
maining computationally efficient.

After extracting the factor matrices A, B, and C upon 
performing CP tensor decomposition, we fed the extracted 
features from the factor matrix A (details are provided in 
the Methods) into both classical linear (elastic net [EN] lo
gistic regression) and nonlinear (SVM with a radial basis 
kernel and random forest [RF]) models. We refer to these 
EN, SVM, and RF algorithms integrated within T-REx as 
T-REx(EN), T-REx(SVM), and T-REx(RF), respectively (de
tails on training each classifier in Methods section). The 
pipeline outlining the overall procedure, from feature ex
traction via CP tensor decomposition to classification of 
genomic regions as neutral or sweep, is illustrated in Fig. 1.

Power and Accuracy for Detecting Sweeps
We first evaluate the performance of T-REx under the 
constant_1 and constant_2 datasets (details are 
provided above in the Feature extraction and model 
training subsection of the Results) across different CP de
composition ranks R ∈ {50, 100, 150, 200, 250, 300}. We 
selected the model resulting from the best-performing 
rank for each of the methods based on the smallest cross- 
validation loss across the ranks (supplementary Figs. S1 
and S2, Supplementary Material online). We find that across 
different ranks, T-REx(EN) has the lowest error among the 
three methods and T-REx(RF) showed lower error than 
T-REx(SVM). For the constant_1 dataset, T-REx(EN) 
achieves an accuracy of 93.15% and maintains relatively ba
lanced classification rates across neutral and sweep settings, 
with a slight, yet conservative skew toward prediction of 
neutrality (Fig. 2). T-REx(SVM) and T-REx(RF) have lower ac
curacies (87.15 and 89.70%, respectively), with T-REx(SVM) 
reaching 98.2% accuracy on neutral settings (Fig. 2). For 
the more challenging constant_2 dataset, T-REx(EN) at
tains accuracy of 91.55% with high classification accuracies 
for both sweep and neutral scenarios, and with minimal 
misclassification of neutral regions as sweeps. Upon a closer 
look at the classification rates, we find that T-REx(SVM) has 
a high accuracy of 97.0% on neutral settings, but suffers 
from greater sweep misclassification than T-REx(EN) 
(Fig. 2). The high power displayed by the receiver operating 

characteristic (ROC) curves echos the high accuracy 
evidenced by the confusion matrices, showing that 
T-REx(EN) has high true positive rates for low false positive 
rates (Fig. 2).

By comparing our methods to the CNN-based classifier 
ImaGene (Torada et al. 2019), we find that T-REx(EN) 
surpasses ImaGene in terms of power, accuracy, and clas
sification balance on both datasets (Fig. 2). However, 
ImaGene outperforms T-REx(SVM) in terms of power, 
accuracy, and classification balance whereas T-REx(RF) 
has slightly more balanced classification rates than 
ImaGene. Though all methods of T-REx and ImaGene 
have a skew toward predicting neutrality, ImaGene mis
takes sweeps for neutrality more often than T-REx(EN) 
(Fig. 2), which drives the lower accuracy and power of 
ImaGene relative to T-REx(EN).

Robustness to Background Selection
We have shown that some of our T-REx models can accur
ately distinguish selective sweeps from neutrality through 
patterns of lost genomic diversity. However, a pervasive 
force acting in genomes is negative selection, which im
poses long-term selective constraint on functional genom
ic regions such as genes (Loewe 2008), and reduces genetic 
diversity at selected sites, much that like of positive selec
tion, by removing deleterious alleles from a population. 
Moreover, similar to positive selection, alleles at nearby 
neutral loci are also purged from the population in a man
ner akin to hitchhiking for sweeps through a process 
termed background selection (Charlesworth et al. 1995; 
Comeron 2014; Charlesworth and Jensen 2021). The effects 
of background selection on variation across the genome in 
diverse sets of lineages have been reported (e.g. McVicker 
et al. 2009; Comeron 2014), studies have shown that distri
butions of allelic diversity under background selection may 
resemble those of sweeps (Charlesworth et al. 1993, 1995, 
1997; Keinan and Reich 2010; Seger et al. 2010; Nicolaisen 
and Desai 2013; Huber et al. 2016), and some methods can 
mistake background selection for selective sweeps 
(DeGiorgio et al. 2016; Huber et al. 2016). However, 
more recent evidence suggests that sweeps and back
ground selection leave distinct footprints of genetic vari
ation (Schrider 2020) and that background selection is 
unlikely to be a problem when using haplotype data 
(Fagny et al. 2014; Schrider 2020; Lauterbur et al. 2022). 
Though T-REx employs images of haplotype variation as in
put and is therefore unlikely to be negatively swayed by 
background selection, it is nevertheless critical that we 
demonstrate that T-REx is robust to this common force af
fecting genomes.

To evaluate whether T-REx is misled by genetic variation 
deriving from background selection, we have simulated 
1,000 test replicates with background selection under a 
constant-size demographic history using the forward-time 
simulator SLiM (Haller and Messer 2019). Similarly to our 
training data, for each replicate we allowed the recombin
ation rate to be drawn from an exponential distribution 
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with mean r and truncated at 3r, but rather than using 
only r = 10−8 per site per generation as in our training re
plicates, we instead considered r = 10−8, 10−9, or 10−10 per 
site per generation so that we can evaluate background se
lection in low recombining regions as well as the recom
bination rates used to train T-REx. These low 
recombination rates are important to consider, as back
ground selection in such regions can create allele frequen
cies distributions at long physical distances that might 
mimic those of sweeps and potentially mislead sweep de
tectors (DeGiorgio et al. 2016; Huber et al. 2016). To ensure 
proper simulation burn-in, we allowed a constant-size 

population of Ne = 104 diploid individuals to evolve for 
12Ne generations, where 10Ne generations were devoted 
to burn-in and a sample of 200 haplotypes were drawn 
from each replicate after 12Ne generations, with mutation 
rate identical to that of the constant_1 and 
constant_2 datasets. Each simulation evolved se
quences of length 1.1 Mb and introduced deleterious mu
tations that are distributed at the center of the sequence 
within a 55 kb structure that mimics the architecture of a 
protein-coding gene. The protein-coding gene consists of 
50 exons each having length of 100 bases, 49 introns 
each having a length of 1,000 bases, and 5ifinmath and 

A

B

C

FIG. 1. A) CANDECOMP/PARAFAC (CP) decomposition of three-way training tensor X ∈ RI×J×K reduces the tensor into R rank-one compo
nents where ar ∈ RI , br ∈ RJ , and cr ∈ RK for r = 1, 2, . . . , R. B) Heatmaps illustrate mean images for sweep and neutral class simulations with 
haplotypes along rows and SNPs along columns, with mean taken across I/2 training observations for each class (I = Ntrain is the total number of 
training observations across classes). Each cell of the image is a minor allele frequency value ranging from zero (darker colors) to one (brighter 
colors) representing the mean number of copies of the minor allele for the haplotype on row j ∈ {1, 2, . . . , J} at SNP in column k ∈ {1, 2, . . . , K}, 
where the average is taken across overlapping windows during image processing (see Methods). Rows are sorted from top to bottom of the image 
with increasing L2-norm taken across the K columns. Therefore, haplotypes toward the top of the image have on average a greater number of 
SNPs with the major allele than haplotypes toward the bottom. This sorting demonstrates that near the center of the K columns (where se
lection occurs in sweep simulations), there is a greater number of haplotypes with the major allele (darker colors) at many SNPs. The right figure 
in panel B) illustrates the standardization process, where the mode-1 unfolded (matricized) data is centered and scaled along the columns and 
rows, respectively. C) Feature extraction from the training data and the testing data is based on factor matrix A from the CP decomposition. For 
training data, the matrix A is obtained from CP decomposition on the training tensor X train, whereas the corresponding Atest factor matrix for 
the test dataset is obtained by projecting the test observations onto this factor learned from the training dataset. This projection is accomplished 
using the displayed equation, where Xtest(1) is the mode-1 unfolding (matricization) of the tensor X test, the superscript T denotes transpose, the 
symbol * denotes the Khatri–Rao product, the ⊙ symbol denotes the Hadamard (element-wise) product, the superscript † denotes the Moore– 
Penrose pseudoinverse, and where Λ−1 represents the inverse of the diagonal matrix Λ ∈ RR×R of scaling terms λ1, λ2, …, λR . The extracted 
features are fed to a classifier, which outputs the class predictions.
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3ifinmath untranslated regions (UTRs), respectively, hav
ing lengths 200 and 800 bases, where these lengths ap
proximate the mean values derived from humans 
(Mignone et al. 2002; Sakharkar et al. 2004). Following 
Cheng et al. (2017), we set the percentage of deleterious 
mutations arising within elements of this gene to 75, 10, 
and 50% for exons, introns, and UTRs, respectively. We 
drew selection coefficients for deleterious mutations 
from a gamma distribution with mean of −0.0294 and 
shape parameter of 0.184 following Schrider and Kern 
(2017) who based their protocol on the empirical esti
mates from the African human model of Boyko et al. 
(2008).

We applied the three T-REx classifiers to these simulated 
test datasets to ascertain what happens to the neutral clas
sification rate in comparison with the neutral classification 
rate derived from the constant_1 and constant_2 
test datasets having no background selection. Our results 
indicate that for models trained using the constant_1 
dataset, for test background selection replicates generated 
under mean recombination rate of 10−8 that matches our 
original simulation protocol, all T-REx classifiers show a 
negative proportional change that signifies increased neu
tral classification rate under background selection (supple
mentary Fig. S3, Supplementary Material online). For the 
same trained models, we find that decreasing the mean re
combination rate under background selection to either 
10−10 or 10−9 leads to a positive proportional change in 

neutral classification rate, which indicates decreased neu
tral classification rate under background selection— 
though this elevated misclassification is slight for 
T-REx(EN) and T-REx(SVM), with proportion of change 
in neutral classification rates ranging from 0.02 to 0.075 
(supplementary Fig. S3, Supplementary Material online). 
For classifiers trained using the constant_2 dataset, 
we find that T-REx(EN) under background selection with 
a mean recombination rate of 10−8 shows negative pro
portional change in neutral classification rate similar to 
what we observed using constant_1 dataset for the 
same mean recombination rate (supplementary Fig. S3, 
Supplementary Material online). In concordance with 
the results for constant_1, we also find that when 
we reduce the mean recombination rate to 10−10 or 
10−9, all methods exhibit decreased neutral classification 
rates under background selection, with T-REx(EN) and 
T-REx(SVM) having proportional changes slightly elevated 
compared with what was observed for the constant_1 
dataset (supplementary Fig. S3, Supplementary Material 
online), which likely stems from the fact that the sweep 
and neutral distributions used to train the T-REx 
models overlap more for the constant_2 dataset 
than for constant_1. In comparison to T-REx(EN) 
and T-REx(SVM), T-REx(RF) exhibits substantially de
creased neutral classification rates under background se
lection with low mean recombination rates, with 
proportion of change in neutral classification rate as 

FIG. 2. Powers and accuracies to detect sweeps for the linear T-REx(EN) and nonlinear T-REx(SVM) and T-REx(RF) classifiers in comparison with 
the CNN-based classifier ImaGene under a constant-size demographic history using two datasets (constant_1 and constant_2) of 
varying difficulty. For training and testing purposes, the number of observations used for each class was 10,000 and 1,000, respectively. 
Selective sweeps were simulated using a per-generation selection coefficient s ∈ [0.005, 0.5] and an initial frequency of beneficial allele at 
the time of selection f ∈ [0.001, 0.1], where both s and f were sampled uniformly at random on a logarithmic. The beneficial mutation became 
fixed t generations prior to sampling, and the distribution of t was set as t = 0 for the constant_1 dataset (top row) and t ∈ [0, 1200] for the 
more difficult constant_2 dataset (bottom row). For each T-REx method, we selected the model resulting from the best-performing rank, 
which was chosen as the rank with the smallest cross-validation loss across the ranks R ∈ {50, 100, 150, 200, 250, 300}. For the constant_1 
dataset, R = 300, 300, and 50 were chosen for T-REx(EN), T-REx(SVM), and T-xREx(RF), respectively, and for the constant_2 dataset, R = 300 
was chosen for all T-REx methods. Powers to detect sweeps of all four methods are compared using ROC curves (first column) and ROC curves 
zoomed into the upper left-hand corner with false positive rate less than 0.25 and true positive rate greater than 0.75 (second column). 
Classification accuracy and rates of all four methods are depicted using confusion matrices in columns three through six for T-REx(EN), 
T-REx(SVM), T-REx(RF), and ImaGene, respectively.
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high as 0.20 and 0.27 for the constant_1 and 
constant_2 datasets, respectively (supplementary 
Fig. S3, Supplementary Material online). These results high
light that some of our T-REx classifiers are robust against 
background selection, even under settings of recombin
ation rates that fall outside the domain for which T-REx 
models were trained. We revisit these results in light of 
neutral simulations under low mean recombination rates 
within the Robustness to recombination rate variation 
subsection.

Performance under Population Size Changes
The constant-size demographic history underlying the 
constant_1 and constant_2 datasets is an idealis
tic model and does not capture the fluctuations in popu
lation size often experienced by real populations 
(Beichman et al. 2018). In particular, demographic scen
arios, such as strong and recent population bottlenecks, 
which lead to an overall loss of haplotypic diversity across 
the genome as well as an increase in the variance of coales
cence times, have been shown to generate false signatures 
of sweeps as well as reduce the power of sweep detection 
(Jensen et al. 2005). Therefore, to investigate the perform
ance of T-REx on a nonequilibrium setting with population 
size fluctuations and a strong, recent population bottle
neck, we simulated data under a demographic history in
ferred (Terhorst et al. 2017) from the central European 
(CEU) human individuals of the 1000 Genomes Project da
taset (The 1000 Genomes Project Consortium 2015).

The distributions that selection parameters were drawn 
from and the number of simulated replicates per class 
were identical to the constant-size setting (details regard
ing the constant-size setting are provided in the Feature ex
traction and model training subsection of the Results). 
Analogous to the two constant-size models, we generated 
a dataset (denoted by CEU_1) where we set t = 0 as well 
as a second dataset (denoted by CEU_2) representing a 
more complicated setting where we draw t ∈ [0, 1200]. 
For each dataset, we consider an array of ranks R ∈ 
{50, 100, 150, 200, 250, 300} and compared T-REx with 
the CNN-based sweep classifier ImaGene.

Similar to the evaluation of the two constant-size data
sets, we chose the best model through cross-validation, 
and T-REx(EN) generally showed the lowest error, followed 
by T-REx(RF) and T-REx(SVM) across different ranks. 
Among all the methods considered, we find that 
T-REx(EN) generally has the highest accuracy and power 
on both the CEU_1 and CEU_2 datasets (Fig. 3). 
Additionally, T-REx(EN) showed the lowest error in general 
among the three models selected from their optimal ranks. 
On either dataset, T-REx(EN) generally exhibits an increase 
in accuracy with the increase in R, whereas the opposite 
tendency holds for T-REx(SVM) and T-REx(RF) in which 
their highest accuracies were attained with a small R value 
(supplementary Figs. S4 and S5, Supplementary Material 
online). This trend in the accuracy of T-REx(EN) with in
creasing R appears to be primarily driven by decreases in 
the rate of misclassifying sweeps as neutral, leading to 

FIG. 3. Powers and accuracies to detect sweeps for the linear T-REx(EN) and nonlinear T-REx(SVM) and T-REx(RF) classifiers in comparison with 
the CNN-based classifier ImaGene under a demographic history inferred from the CEU human population (Terhorst et al. 2017) history using 
two datasets (CEU_1 and CEU_2) of varying difficulty. For training and testing purposes, the number of observations used for each class was 
10,000 and 1,000, respectively. Selective sweeps were simulated using a per-generation selection coefficient s ∈ [0.005, 0.5] and an initial fre
quency of beneficial allele at the time of selection f ∈ [0.001, 0.1], where both s and f were sampled uniformly at random on a logarithmic. 
The beneficial mutation became fixed t generations prior to sampling, and the distribution of t was set as t = 0 for the CEU_1 dataset (top 
row) and t ∈ [0, 1200] for the more difficult CEU_2 dataset (bottom row). For each T-REx method, we selected the model resulting from 
the best-performing rank, which was chosen as the rank with the smallest cross-validation loss across the ranks 
R ∈ {50, 100, 150, 200, 250, 300}. For both the CEU_1 and CEU_2 dataset, R = 250, 50, and 50 were chosen for T-REx(EN), T-REx(SVM), 
and T-REx(RF), respectively. Powers to detect sweeps of all four methods are compared using ROC curves (first column) and ROC curves zoomed 
in to the upper left-hand corner with false positive rate less than 0.25 and true positive rate greater than 0.75 (second column). Classification 
accuracy and rates of all four methods are depicted using confusion matrices in columns three through six for T-REx(EN), T-REx(SVM), T-REx(RF), 
and ImaGene, respectively.
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more balanced classification rates. However, T-REx(EN) 
also achieves higher accuracy on neutral settings with in
creasing R, which is desirable as it limits false discovery 
of sweeps. Finally, we find, as expected, that accuracies 
for all methods tend to be lower for the more complex 
CEU_2 dataset compared with CEU_1 (Fig. 3).

In general, T-REx(EN) and T-REx(RF) outperform 
ImaGene for both the CEU_1 and CEU_2 datasets in 
terms of power and accuracy, and T-REx(SVM) has similar 
(on CEU_2) or worse (on CEU_1) accuracy compared 
with ImaGene due to it incurring higher misclassification 
rates of sweeps (Fig. 3). Moreover, though ImaGene has a 
low misclassification rate for neutral regions, its overall ac
curacy suffers due to the high misclassification rate of 
sweeps as neutral, similar to T-REx(SVM). These imbal
ances in classification rates, however, are conservative as 
ImaGene and T-REx(SVM) are not prone to false discov
ery of sweeps. These results reiterate the strength of CP de
composition to extract features from images, even when 
prediction is made with a linear model (i.e. T-REx(EN)).

The high power of T-REx(EN) on the two datasets re
flects its strong accuracy evidenced by the confusion ma
trices, with high true positive rates for low false positive 
rates (see ROC curves in Fig. 3). We note that ImaGene 
displays a spike in power at a false positive rate of about 
15% for both datasets (Fig. 3), which is due to approxi
mately 19% of the predicted sweep probabilities for 
ImaGene being exactly one. The excellent classification 
performance of T-REx(EN) on a complex bottleneck set
ting (the CEU_2 dataset) is promising, and so we will ap
ply it to whole-genome data from individuals derived from 
the same population to scan for sweeps as a proof of con
cept of our prediction framework (see Application to hu
man genome variation subsection of the Results).

Feature Maps for Model Interpretability
In addition to its capacity to extract features for prediction 
problems, CP tensor decomposition provides a low-rank 
representation of the original tensor, thereby allowing a 
mechanism for visualizing the spatial components of the 
images we have collected within our training tensor 
through factor matrices. These feature maps provide a de
piction of the image characteristics that are then fed to 
classification models. We generated feature maps for R = 
250 components under the CEU_2 dataset and these fea
ture maps reveal part of the latent structure of the tensor, 
with the rows and columns of these feature maps repre
senting haplotypes and loci, respectively. Close examin
ation of each of the components (supplementary Figs. 
S6–S10, Supplementary Material online) reveals gradients 
in each of the individual feature matrices that represent 
the separation of features characterized by clusters of simi
lar colors. Though some of the components show gradi
ents in each of the individual feature matrices and 
clusters of similar colors where we might expect there to 
be signal in the haplotype alignments to discriminate be
tween sweeps and neutrality, creating a lucid picture of 
the underlying features is difficult from the set of R = 
250 images. Moreover, these feature maps only convey in
formation about what characteristics of images were used 
to separate out observations from the training set, and 
therefore are not guaranteed to be informative about 
what characteristics are important for prediction.

To address this issue, we created model-informed fea
ture maps for both datasets through a linear combination 
of the R feature maps, weighing each map by its compo
nent’s regression coefficient in the trained T-REx(EN) mod
el (Fig. 4). Displaying the feature maps in this fashion 
enables visualization of the characteristics of haplotype 
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FIG. 4. Model-informed feature maps illustrating emphasis put on different genomic regions of interest by the T-REx(EN) classifier trained to 
differentiate sweeps from neutrality under a demographic history inferred from CEU humans (Terhorst et al. 2017). Model-informed feature 
maps were generated through a linear combination of the R feature maps (created using factor matrices B and C) from the training set, where 
feature map r, r = 1, 2, . . . , R, is weighted by the regression coefficient of component r (βr) from a trained logistic regression model with EN 
penalty. The number of components (R) was selected as in Fig. 3 for the T-REx(EN) classifier, with R = 250 for both CEU_1 (left panel) and 
CEU_2 dataset (right panel).
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alignments the trained T-REx(EN) models place most em
phasis. The pronounced red region around the center of 
the SNPs alludes to the expected location of lost diversity 
in sweeps, which the models use to distinguish sweeps 
from neutrality (Fig. 4). A closer look at the heatmaps sug
gests that the models place negative weight on these fea
tures near the center of the alignment. In contrast, there is 
also a large dark blue region at the bottom of each heat
map, in which the models place positive emphasis to dis
tinguish sweeps from neutrality. Differences between 
sweeps and neutrality in this region are expected to be 
due to the most recent, strongest, and hardest sweeps in 
our training sets (based on the procedure that we used 
to process haplotype alignments; see Methods). Another 
interesting observation we can discern from Fig. 4 is the 
white, light blue, and light red shading surrounding the 
dark red region, signifying that T-REx(EN) puts little em
phasis on these areas. This lack of emphasis suggests that 
diversity in this region provides little extra information 
for discriminating between sweeps and neutrality in the 
T-REx(EN) model.

Ability to Detect Incomplete Sweeps
We have demonstrated the accuracy and power of T-REx 
under settings where the training and testing were 
performed on complete sweeps for which the beneficial 
mutation reached fixation at the time of sampling. 
However, most realistic scenarios encountered when ana
lyzing empirical data would likely not involve sweeps for 
which the beneficial allele reached fixation (Burke 2012; 
Kelly et al. 2013; Ferrer-Admetlla et al. 2014; Vy and Kim 
2015; Xue et al. 2021), which can result from a variety of 
reasons including diminished selective advantage (Pritchard 
et al. 2010). It is therefore critical that we assess the efficacy 
of T-REx in detecting incomplete sweeps under settings in 
which the models were trained with complete sweeps.

To evaluate whether our T-REx models trained on com
plete sweeps have sufficient capacity to detect incomplete 
sweeps, we simulated an additional 1,000 sweep test repli
cates with discoal (Kern and Discoal 2016) using iden
tical protocols for each of the constant_1, 
constant_2, CEU_1, and CEU_2 datasets with the 
difference that the beneficial mutation at the time of sam
pling has frequency 0.5, 0.6, 0.7, 0.8, or 0.9 rather than a fre
quency of one. As expected, for all four datasets and for 
each of the three T-REx models, we find that accuracies 
of detecting incomplete sweeps have an upward trend 
with increasing frequency of the beneficial mutation at 
sampling (supplementary Fig. S11, Supplementary 
Material online). We generally find that T-REx(EN) and 
T-REx(RF) have higher accuracies than T-REx(SVM) on all 
four datasets for each frequency of beneficial mutation 
considered at the time of sampling, with T-REx(EN) show
ing an edge over T-REx(RF) for all settings aside from when 
the beneficial allele frequency at the time of sampling is 
0.5, which is difficult for all methods considered. 
Moreover, when the frequency of the beneficial mutation 

is 0.9, T-REx(EN) shows the highest accuracy among the 
three T-REx models for all datasets, with values ranging 
from 90 to 97%.

We also considered the power (true positive rate) of 
T-REx models to detect incomplete sweeps at a 5% false 
positive rate. Our results show that T-REx(EN) exhibits a 
similar upward trend in terms of power for all datasets, 
reaching power in the range from 0.90 to 0.97 across data
sets for sweeps to a frequency of 0.9 (supplementary Fig. 
S12, Supplementary Material online). T-REx(SVM) also de
monstrates an upward trend in terms of power for all da
tasets, reaching values as high as 0.95 (supplementary Fig. 
S12C, Supplementary Material online) when the beneficial 
allele frequency at sampling is 0.9. In contrast to the find
ings regarding accuracy (supplementary Fig. S11, 
Supplementary Material online), T-REx(RF) lags in power 
when compared with T-REx(EN) and T-REx(SVM) with 
the values reaching only as high as 0.80 (supplementary 
Fig. S12D, Supplementary Material online). Overall, T-REx 
models, especially T-REx(EN), hold excellent power to de
tect incomplete sweeps at moderately high frequencies, 
even though they were trained to only detect complete 
sweeps. Training T-REx models with incomplete sweep re
plicates would likely further improve their accuracies and 
powers under such settings.

Performance under Mutation Rate Variation
Mutation rate varies across chromosomes and taxa, lead
ing to a variable landscape of genetic diversity within gen
omes across the tree of life (Bromham 2011; Bromham 
et al. 2015; Harpak et al. 2016; Bergeron et al. 2023; 
Danovi 2023). Reductions in polymorphic sites within gen
omes due to low mutation rates can result in lower haplo
type variation, which may mimic signatures of adaptive 
processes such as selective sweeps. On the other hand, 
elevated mutation rates can erode footprints of past selective 
sweeps, making such events more difficult to detect. Thus, it 
is important to evaluate whether sweep detectors are 
adversely affected by mutation rate variation.

To evaluate the performance of T-REx under mutation 
rate variation, we simulated 1000 neutral and 1000 sweep 
test replicates with discoal (Kern and Discoal 2016) 
using identical protocols for each of the constant_1, 
constant_2, CEU_1, and CEU_2 datasets with the 
difference that mutation rate for a given replicate was 
drawn uniformly at random within the interval [μ/2, 2μ], 
where μ = 1.25 × 10−8 per site per generation, instead of 
a fixed value of μ = 1.25 × 10−8 per site per generation 
used to train the T-REx classifiers. When applied to these 
test data, all T-REx methods have excellent power and ac
curacy to detect sweeps, with T-REx(EN) outperforming 
T-REx(SVM), and T-REx(RF) in terms of accuracy and 
power (supplementary Fig. S13, Supplementary Material 
online) as observed from prior experiments.

In terms of correctly classifying neutrally evolving regions, 
T-REx(SVM) has higher accuracy (98.1–99.1%) than 
T-REx(EN) (93.3–98.1%) and T-REx(RF) (84.8–95.3%), but 
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T-REx(EN) has highest overall accuracy on this setting com
pared with the other two approaches (supplementary Fig. 
S13, Supplementary Material online). This increased overall 
accuracy for T-REx(EN) is driven by its low misclassification 
rate of sweeps (6.3–14.6%) compared with that of 
T-REx(SVM) (24.1–33.4%) and T-REx(RF) (12.2–21%) (sup
plementary Fig. S13, Supplementary Material online). 
Consistent with its overall high accuracy under mutation 
rate variation, T-REx(EN) also has substantially higher power 
than T-REx(SVM) and T-REx(RF) at low false positive rates, 
exhibiting a quicker ascent to the upper left-hand corner 
of the ROC curve (supplementary Fig. S13, Supplementary 
Material online). Thus, we find that our T-REx models, par
ticularly T-REx(EN), showcase both high power to detect 
sweeps and robustness to false detection of sweeps under 
mutation rate variation.

Robustness to Recombination Rate Variation
Recombination rate varies within and between the gen
omes of different species, and this variable recombination 
landscape influences patterns of haplotype diversity across 
genomes (Smukowski and Noor 2011; Cutter and Payseur 
2013; Singhal et al. 2015). For instance, genomic regions 
with low recombination rates may be associated with 
low haplotype diversity, and thus the observed haplotypic 
variation may masquerade as sweep signature. In contrast, 
high recombination rate regions can more quickly elimin
ate the footprint of lost haplotype diversity, which is char
acteristic of past selective sweeps, similar to the effects of 
high mutation. Furthermore, a variety of organisms harbor 
regions with extreme levels of recombination, which may 
lead to localized coldspots and hotspots of recombination 
(Hey 2004; Myers et al. 2005; Galetto et al. 2006; Baudat 
et al. 2010; Singhal et al. 2015; Booker et al. 2020; 
Lauterbur et al. 2023). Given the challenges associated 
with detection of sweeps under recombination rate vari
ation, it is important that we evaluate the relative robust
ness of our T-REx models to scenarios involving 
recombination rate variation and to settings with recom
bination hotspots and coldspots.

To explore the performance of T-REx under recombin
ation rate variation for low recombination regions, we si
mulated 1,000 neutral test replicates with discoal 
(Kern and Discoal 2016) using identical protocols for 
each of the constant_1, constant_2, CEU_1, 
and CEU_2 datasets with the difference that recombin
ation rate (r) for a given replicate was drawn from an ex
ponential distribution with mean of 10−10 or 10−9 and 
truncated at three times the mean. Moreover, to simulate 
recombination coldspots and hotspots, we also simulated 
1,000 neutral test replicates with the coalescent-based 
simulator msHOT (Hellenthal and Stephens 2007) using 
identical protocols for each of the constant_1, 
constant_2, CEU_1, and CEU_2 datasets with the 
exception that recombination rate r for a replicate was 
drawn from an exponential distribution with mean of 
10−8 per site per generation and truncated at three times 

the mean but with a central 100 kb region of the sequence 
evolving as r/10 (coldspot) or 10r (hotspot). For each set
ting, we compared the proportional change in neutral clas
sification rates of T-REx models under recombination rate 
variation with respect to those under the usual protocols 
for each of the constant_1, constant_2, CEU_1, 
and CEU_2 neutral test datasets.

We observe that for recombination rate variation with 
mean rates at one or two orders of magnitude below 
what T-REx models were trained under, T-REx(EN) and 
T-REx(SVM) exhibited up to an approximately 10% in
crease in misclassification of such regions relative to the 
setting on which the models were trained (supplementary 
Fig. S14, Supplementary Material online). However, 
T-REx(RF) performs comparatively poorly on this setting, 
with an increase in misclassification error by up to 30% 
in some cases (supplementary Fig. S14, Supplementary 
Material online). Notably, for these same mean recombin
ation rates, the methods performed similarly under back
ground selection (supplementary Fig. S3, Supplementary 
Material online), which highlights that the altered neutral 
detection rate within regions of low mean recombination 
rate is likely driven by recombination reducing the diver
sity of haplotypes rather than a significant influence of 
background selection in such regions.

For the case of recombination hotspots and coldspots 
in neutrally evolving regions, the neutral classification rates 
for all T-REx models are close to those found under test 
neutral replicates without hotspots or coldspots (supple
mentary Fig. S15, Supplementary Material online, small 
magnitude proportional changes). Moreover, all T-REx 
models actually have improved neutral classification rates 
under recombination hotspots (supplementary Fig. S15, 
Supplementary Material online, negative proportional 
changes). Thus, we find that when our T-REx models are 
applied to recombination rates of orders of magnitude dif
ferent from what they were trained, their performance is 
dependent on the size of the region of altered recombin
ation rate, with smaller regions (e.g. 100 kb) leading to 
coldspots and hotspots having minimal impact, whereas 
large regions (e.g. over a megabase) leading to slight 
changes in robustness of T-REx(EN) and T-REx(SVM) and 
generally comparatively poorer performance for T-REx(RF).

Effect of Ancestral Allele Polarization and 
Mispolarization
Knowledge of the ancestral and derived allele at SNPs can 
often be helpful in detecting natural selection, as these 
states encode more information than simply assigning al
leles as major or minor (Vitti et al. 2015; Bitarello et al. 
2023). To perform this polarization of alleles as ancestral 
and derived in practice, one or more outgroup species is 
used to establish the likely ancestral and derived (mutant) 
allelic states. However, incorrect assignment of the ances
tral and derived alleles can lead to false signatures of nat
ural selection, and such allele mispolarization becomes 
more common as more distant outgroups are used to de
cide on the allelic states (Hernandez et al. 2007). It is 
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therefore useful to evaluate whether coding alleles as an
cestral and derived provides T-REx with significant per
formance gains, whereas also exploring the robustness of 
such polarization when it is misspecified.

To this end, under the CEU_2 dataset, we performed an 
experiment in which we coded ancestral alleles as zero and 
derived alleles as one in place of our original coding of major 
and minor alleles, and performed all other haplotype align
ment processing as in our original experiments. We trained 
the T-REx(EN) classifier on these new alignments (10,000 
observations per class) estimating the two EN hyperpara
meters and the number of components of tensor decom
position (R = 250) through cross-validation. We then 
applied this trained model to test data (1,000 observations 
per class) when the haplotype alignments were processed in 
an identical manner, and when 5% of SNPs were chosen uni
formly at random to be mispolarized (i.e. ancestral and de
rived alleles swapped).

We find out that T-REx(EN) has excellent power and ac
curacy in identifying sweep signatures when ancestral and 
derived alleles are used in place of our original coding of 
major and minor alleles (supplementary Fig. S16A, 
Supplementary Material online). In particular, T-REx(EN) 
is able to correctly classify 97.6 and 88.6% of neutral and 
sweep observations, respectively (supplementary Fig. 
S16A, Supplementary Material online). These results re
flect a slight improvement in classification of neutrality al
though reduced accuracy on sweeps, relative to our 
original coding as major and minor allele (Fig. 3). To under
stand how allele mispolarization influences classification 
accuracy when employing derived and ancestral allele in
formation, we compared the proportional change in neu
tral and sweep classification rates of T-REx(EN) under allele 
mispolarization with respect to those under correct polar
ization. We find that T-REx(EN) exhibits an approximate 
44% reduction in correct classification of neutrally evolv
ing regions relative to the setting on which the models 
were trained (supplementary Fig. S16B, Supplementary 
Material online). In contrast, we observe a roughly 10% in
crease in correct classification of sweeps (supplementary 
Fig. S16B, Supplementary Material online). These results 
point to allelic mispolarization leading to a skew in more 
often predicting sweeps, regardless of the true class label, 
relative to correct polarization. We therefore warrant cau
tion when using ancestral and derived alleles over major 
and minor alleles within T-REx, as allelic mispolarization 
may have deleterious effects on model performance.

Robustness to Missing Data
Many genomic regions contain segments with missing 
SNPs, which may arise due to artifacts in the data, mapping 
and alignment problems, and sequencing errors. An issue 
that missing genomic segments poses to methods for de
tecting sweeps is the problem of false discovery, in which a 
method erroneously detects a neutrally evolving region as 
a sweep (Mallick et al. 2009; Mughal and DeGiorgio 2019). 
These false signals result from the loss of SNPs in missing 

segments decreasing haplotypic diversity (see schematic 
in Fig. 5), which has been shown to mislead some machine 
learning classifiers to call such neutral regions with confi
dence as sweeps if such data issues are not accounted 
for during model training (e.g. Kern and Schrider 2018; 
Mughal and DeGiorgio 2019). Thus, it is important to dem
onstrate that T-REx not only has high accuracy and power 
to detect sweeps on idealistic data, but is robust also to 
common technical artifacts posed by the presence of miss
ing genomic segments.

The haplotype images used for training and testing sets 
so far have assumed no missing data, and so we seek to 
examine the effectiveness of our methods when test data 
have missing segments that may ultimately reduce observed 
haplotypic variation. To this end, we followed the protocol 
in Mughal and DeGiorgio (2019) by removing 30% of the 
SNPs from each test replicate to evaluate the impact of 
missing data on method accuracy, power, and robustness. 
The removal of 30% of the SNPs is accomplished in 10 non
intersecting chunks, each accounting for roughly three per
cent of the total SNPs in the replicate, and with starting 
position of each chunk chosen uniformly at random. In 
cases of overlap with previously drawn missing chunks, a 
new starting location for the current chunk is redrawn.

Using T-REx models trained with nonmissing data and 
assuming the rank R of CP decomposition that gave 
each method (T-REx(EN), T-REx(SVM), and T-REx(RF)) 
their smallest cross-validation loss, we find that on both 
the CEU_1 and CEU_2 datasets T-REx(EN) continues 
to show greater power and accuracy compared with com
peting approaches (center and bottom rows in Fig. 5). 
Specifically, for both the CEU_1 and CEU_2 datasets, 
T-REx(EN) outperforms ImaGene with a margin of 
around 6% in terms of accuracy (center and bottom 
rows in Fig. 5). Moreover, under both datasets, 
ImaGene is more prone to false discovery of sweeps 
than T-REx(EN), as it displays a skew toward falsely classi
fying neutrally evolving regions as sweeps. In the case of 
the CEU_1 dataset, T-REx(RF) marginally outperforms 
ImaGene in terms of accuracy. However, the accuracy 
of T-REx(SVM) suffers, as 26.4% of sweeps are misclassified 
(center row in Fig. 5). In contrast, on the CEU_2 dataset, 
ImaGene outperforms both T-REx(SVM) and T-REx(RF) 
in terms of accuracy, but falsely classifies 22.5% of the neu
tral observations as sweeps. This result illustrates that 
when presented with data containing missing genomic 
segments, the CNN-based classifier ImaGene may mis
take the reduced haplotypic diversity as a sweep footprint. 
We expand upon this issue in the Discussion section, and 
detail procedures that can be taken to alleviate the issue 
of missing segments (e.g. Kern and Schrider 2018).

To further evaluate whether T-REx is robust to false dis
covery of sweeps in neutral regions with missing data, we 
compute the proportion of false signals, based on the dis
tribution of sweep probabilities of neutral replicates with 
missing segments, as a function of false positive rate, based 
on the distribution of sweep probabilities of neutral repli
cates without missing segments. For this purpose, we 
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generated an additional 1,000 neutral replicates each hav
ing 30% missing SNPs so that these two distributions were 
generated from independent neutral replicates. Sweep 
classifiers that are robust to neutral missing segments 
will have the curve relating the proportion of false signals 
(on the y-axis) as a function of the false positive rate (on 
the x-axis) fall on or below the y = x line. Our results 
show that for both variations of the simulated CEU data
set, curves for all tested methods fall on the y = x line, con
sidering relevant false positive rates between 0 and 5% (top 
row in Fig. 5). We therefore conclude that all methods con
sidered here are robust to false discovery of sweeps due to 
missing data when conditioning on reasonable false posi
tive rates.

Application to Human Genome Variation
In addition to evaluating the performance of T-REx under 
simulated scenarios, we also embarked on an empirical ap
plication to whole-genome variant calls from a European 

human population as a proof of concept (details regarding 
processing of the empirical data are provided in the 
Application to empirical data subsection of the Methods). 
Using the identical protocol as in our assessment of model 
performance, we trained T-REx(EN) on 10,000 simulated 
replicates per class with parameters identical to those 
that generated the CEU_2 dataset, with the exception 
of sampling 198 haplotypes per simulation to match the 
99 diploid individuals sampled for the CEU population of 
the 1,000 Genomes Project dataset (The 1000 Genomes 
Project Consortium 2015). We opted to apply T-REx(EN) 
for our empirical analysis, as it emerged as the best- 
performing model among the three T-REx methods evalu
ated across a range of simulated settings.

To uncover candidate genes that show evidence of 
sweep signatures, we evaluated whether each gene har
bored a high predicted sweep probability and a sweep 
probability peak, observed by computing a moving average 
computed as the mean of sweep probabilities at 11 
contiguous genomic windows. This 11-window mean 

FIG. 5. Powers, accuracies, and robustness to detect sweeps when faced with missing data for the linear T-REx(EN) and nonlinear T-REx(SVM) and 
T-REx(RF) classifiers in comparison with the CNN-based classifier ImaGene under a demographic history inferred from the CEU human popu
lation (Terhorst et al. 2017) history using two datasets (CEU_1 and CEU_2) of varying difficulty. For training and testing purposes, the number 
of observations used for each class was 10,000 and 1,000, respectively where 30% of the total SNPs from each test observation were removed 
using protocol in Mughal and DeGiorgio (2019). (Top row) Performance of T-REx in comparison with ImaGene under missing data to ascertain 
whether the classifiers are robust against false discovery of sweeps, that is, erroneously detecting neutrally evolving regions as sweeps. First and 
second panel shows probability of false discovery of sweeps when classifying neutral genomic regions containing missing data on the CEU_1 and 
CEU_2 datasets, respectively. Third panel shows how missing genomic segment can masquerade as sweep due to apparent lack of haplotype 
diversity. (Middle and bottom rows) Powers to detect sweeps of all four methods are compared using receiver operating characteristic (ROC) 
curves (first column) and ROC curves zoomed in to the upper left-hand corner with false positive rate less than 0.25 and true positive rate greater 
than 0.75 (second column). Classification accuracy and rates of all four methods are depicted using confusion matrices in columns three through 
six for T-REx(EN), T-REx(SVM), T-REx(RF), and ImaGene, respectively. For both the CEU_1 and CEU_2 dataset, R = 250, 50, and 50 were cho
sen for T-REx(EN), T-REx(SVM), and T-REx(RF), respectively, as these ranks yielded the small validation loss on nonmissing data.
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approach provides a smoothed representation of the 
probabilities and helps us observe the underlying trend 
of probability as a function of genomic position. We iden
tified 17 regions from eight autosomes displaying pro
nounced peaks in predicted sweep probability, which we 
list together with associated genes in Table 1 and depict 
within supplementary Figs. S17 and S18, Supplementary 
Material online. In particular, we found candidate genes 
that have been supported by previous studies (e.g. LCT, 
MCM6, SLC45A2, and EMC7; Bersaglieri et al. 2004; 
Oleksyk et al. 2010; López et al. 2014; Racimo 2016) as 
well as novel candidates (e.g. MIR6874, ZNF815P, OCM, 
and SNHG17).

Sweep Candidates Supported by the Literature
On chromosome 2, we find a peak surrounding the region 
containing the genes LCT and MCM6 (Fig. 6A). In particu
lar, we see a clear peak that reaches an 11-window mean 
sweep probability close to one near LCT and MCM6 and 
decays in value with distance from these genes. This trend 
of reduction in sweep probability with distance from a pu
tative adaptive locus is consistent with the footprint of a 
selective sweep, and is due to the action of recombination 
breaking down linkage disequilibrium and shaping haplo
typic diversity across the chromosome (Slatkin 2008). 
LCT encodes the enzyme lactase that aids in lactose diges
tion in humans, and is a strong selection candidate, espe
cially across European populations as the ability to digest 
lactose persists into adulthood within individuals of 
European ancestry (Scrimshaw and Murray 1988). This lac
tose tolerance is an outcome of positive selection owing to 
the advent of farming that resulted in an infusion of milk as 
part of regular consumption within particular cultures in 
the last 1,000 years (Sabeti et al. 2006). Moreover, near 
LCT, we also detect the gene MCM6 with high confidence, 
which has been hypothesized to have undergone positive 
selection by previous studies (e.g. Shatin 1968; Bersaglieri 

et al. 2004; Nielsen et al. 2005; Harris and Meyer 2006; 
Sabeti et al. 2007; Tishkoff et al. 2007; Ingram et al. 2009; 
Itan et al. 2009; Schlebusch et al. 2012; Fan et al. 2016; 
Cheng et al. 2017). MCM6 contains two introns, one of 
which harbors an enhancer that acts as a regulatory mech
anism for LCT and therefore may contribute to lactase per
sistence and have been positively selected in the past 
(Anguita-Ruiz et al. 2020).

The region surrounding LCT and MCM6 represents a 
positive control, as we expect most sweep detection meth
ods to uncover this region with high confidence. We next 
went on to probe for other well-studied candidates of nat
ural selection, and found evidence for sweeps in the major 
histocompatibility complex (MHC) region on chromo
some 6 (supplementary Fig. S17E, Supplementary 
Material online). Specifically, T-REx identified high sweep 
support for the genes HLA-H, HCG4B, HLA-A, and HCG9, 
which had 11-window mean sweep probabilities close to 
one. Other candidate genes with moderate support in 
the region include HLA-F, HLA-F-AS1, IFITM4P, HCG4, 
HLA-V, and HLA-G, with 11-window mean sweep probabil
ities ranging from 0.65 to 0.81. Many genes located in the 
MHC region code for proteins that aid in pathogen im
mune defense through peptide binding (Mladkova and 
Kiryluk 2017). Loci in such genes tend to be highly poly
morphic, and have long been hypothesized as evolving un
der balancing selection, likely due to the evolution of the 
host in the face of pathogens and parasites (Lederberg 
1999; Bernatchez and Landry 2003). The high structural 
variation coupled with extreme polymorphism in this re
gion makes variant calling difficult (Stipoljev et al. 2020), 
and potentially poor genotype calls may have contributed 
toward the ambiguity in detecting sweeps in this region. 
Though often having different genomic footprints to posi
tive selection, balancing selection is a clear deviation from 
neutrality and T-REx was able to identify the lack of neu
trality at the MHC region. The classification of this region 

Table 1. Autosomal regions showing high predicted sweep probability in the CEU population as predicted by T-REx(EN)

Chromosome Start Stop Genes

1 115,397,483 116,311,335 SYCP1,CASQ2
1 37,940,044 38,422,646 SF3A3, MIR4255
2 136,545,419 136,634,013 LCT, MCM6
5 33,936,490 33,984,798 SLC45A2
6 29,640,259 30,594,169 HLA-F, HLA-F-AS1, IFITM4P, HCG4, HLA-V, HLA-G, HLA-H, HCG4B, HLA-A, HCG9
7 5,751,470 6,369,041 MIR6874, ZNF815P, OCM, CCZ1, RSPH10B
7 27,132,611 27,287,449 HOXA1, HOXA2, HOXA3, HOXA9, HOXA10, HOXA-AS2, HOXA-AS3
10 15,253,641 15,761,921 FAM171A1, ITGA8
15 76,507,693 77,474,268 ETFA, TISL2, TYRO3P, SCAPER, RCN2, MIR3713, TSPAN3
15 34,376,217 34,649,936 EMC7, PGBD4, KANTBL1, EMC4, SLC12A6, NUTM1
15 38,988,798 41,248,710 LINC02694, C15orf54, RMDN3, GCHFR, DNAJC17, C15orf62, ZFYVE19, PPP1R14D, SPIT1-AS1, SPIT1, 

VPS18, LOC105370943, DLL4, CHAC1
17 29,861,900 29,902,540 MIR4724, MIR193A, MIR4725, MIR365B
17 41,453,295 41,864,988 LINC00910, ARL4D, MIR2117HG, DHX8, MEOX1, SOST, DUSP3, CFAP97D1
20 37,230,451 37,401,163 ARHGAP40, SLC32A1, ACTR5
20 50,700,549 51,266,965 ZFP64, LINC01524
20 37,049,234 37,358,015 SNHG17, SNORA71B, SNORA71C, SNORA71D, SNORA71E, SNORA60, RALGAPB, ADIG, ARHGAP40, 

SLC32A1
22 40,139,048 40,439,538 ENTHD1, GRAP2, FAM83F
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as positive selection by T-REx may be partially due to its 
extreme levels of linkage disequilibrium (Stipoljev et al. 
2020), consistent with expectations of sweeps. However, 
our results are also consistent with prior studies, which 
have found evidence for sweep-like signals at the MHC re
gion in humans (e.g. Campbell et al. 2019).

The gene SLC45A2 (supplementary Fig. S17D, 
Supplementary Material online) on chromosome 5 has 
moderate sweep support with 11-window mean sweep 
probabilities around 0.75. This gene encodes a protein 
that plays a crucial role in melanin synthesis that affects 
skin pigmentation in humans (López et al. 2014). The fre
quencies of alleles in this gene that are associated with pig
mentation in Europeans demonstrate a latitudinal cline 
across Europe, resulting in lighter skin pigmentation in nor
thern Europe (Norton et al. 2007). Patterns of variation 
mimicking footprints of positive selection near SLC45A2 
in European humans are supported by numerous studies 
(e.g. Hider et al. 2013; Laayouni et al. 2014; López et al. 
2014; Wilde et al. 2014; Goodwin and de Guzman Strong 
2017). A number of the candidate genes identified by 
T-REx have also been uncovered using ancient DNA studies, 
which employ additional temporal information on allele 
frequency trajectories. These candidate genes include LCT 
(Souilmi et al. 2022), SLC45A2 (Mathieson et al. 2015), 
and MCM6 (Skoglund and Mathieson 2018).

Further investigation into the regions with high sweep 
support revealed EMC7 (supplementary Fig. S18B, 
Supplementary Material online), which codes for a protein 
that is an important part of the endoplasmic reticulum 
membrane and acts as a molecular tether enabling 
the transport of viruses between different cellular 

compartments (Bagchi et al. 2020). T-REx detects EMC7 
with an 11-window mean sweep probability of 0.86, which 
has prior support for positive selection (Racimo 2016). 
Moreover, with 11-window mean sweep probabilities ran
ging from 0.95 to 0.99, T-REx captured the genomic region 
containing the protein-coding gene SF3A3 (supplementary 
Fig. S17B, Supplementary Material online) on chromosome 
1. García-Cárdenas et al. (2022) demonstrated a possible 
connection between SF3A3 and breast cancer and a 
network of cancer-driving genes. Though potentially asso
ciated with the harmful disorder of cancer in contempor
ary environments, Racimo et al. (2014) also suggested that 
SF3A3 may have been subjected to past positive selection.

Novel Sweep Candidates
In addition to these previously identified sweep candi
dates, we uncovered a number of novel candidates. On 
chromosome 1, we found SYCP1 (supplementary Fig. 
S17A, Supplementary Material online) as a possible sweep 
candidate with 11-window mean sweep probabilities 
reaching 0.88. This protein-coding gene is part of the syn
aptonemal complex, which is a protein structure that 
forms between homologous chromosomes (Seo et al. 
2016). Hosoya and Miyagawa (2021) highlight that some 
of the proteins coded by SYCP1 are abnormally expressed 
in 13 different cancer tissues, including breast and stomach 
cancer, and acute myelogenous lukemia. Moreover, muta
tions in SYCP1 have been associated with male infertility 
(Nabi et al. 2022).

On chromosome 7, we found candidate genes belong
ing to the HOXA-family that exhibit high sweep support 
with 11-window mean sweep probabilities ranging from 
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FIG. 6. Detection of two example genomic regions containing sweep signatures within the CEU population of the 1,000 Genomes Project dataset. 
T-REx(EN) predicted sweep probabilities as a function of chromosomal position surrounding the LCT and MCM6 regions on chromosome 2 
panel A) and the FAM171A1 region on chromosome 10 panel B). The probabilities are calculated as 11-window moving averages, computed 
with five windows before and five windows after a given central window. The genomic intervals containing each gene are shaded using colors 
in accordance with the order of their appearance in the labels.
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0.80 to 0.95 (supplementary Fig. S17H, Supplementary 
Material online). HOXA genes are part of the homeobox 
cluster, which encode proteins that play an important 
part in early development of humans by performing em
bryo segmentation (Shah and Sukumar 2010), and it has 
been suggested that HOXA-family genes are involved in 
the inception and development of human cancers (Ge et al. 
2021). Specifically, HOXA9 (supplementary Fig. S17H, 
Supplementary Material online) is responsible for the patho
genesis of acute myelogenous leukemia, which is a cancer of 
the bloods and bones (Chen et al. 2019).

Additionally, SHNG17 on chromosome 20 (supplemen
tary Fig. S18H, Supplementary Material online) has high 
sweep support with 11-window mean sweep probabilities 
reaching 0.95. SHNG17 is known to be an important factor 
behind gastric cancer in humans, as it is upregulated in gas
tric cancer tissues (Zhang et al. 2019). Furthermore, on 
chromosome 10, we identified a strong peak with high 
sweep support at the protein-coding gene FAM171A1 
(supplementary Fig. S17I, Supplementary Material online), 
which is also associated with breast cancer survival and 
plays an important role in immune system regulation 
(Parada et al. 2017). Among our highlighted novel candi
dates, as well as those that are previously identified 
(SF3A3), there is an intriguing connection between these 
sweep candidates and cancer proliferation and suppres
sion. This pattern of selective sweeps at genes related to 
cancer was also found by other studies that developed ma
chine learning approaches for detecting sweep (e.g. Lou 
et al. 2014; Schrider and Kern 2017, 2018; Mughal et al. 
2020; Arnab et al. 2023). Detection of cancer-related genes 
by T-REx as well as methods from previous studies, pro
vides an interesting pattern that many past positively se
lected genes may drive current carcinogenesis in humans.

Discussion
In this article, we have introduced a tensor decomposition- 
based feature extraction and classification method termed 
T-REx that is able to differentiate sweeps from neutrality 
with a high degree of power and accuracy. Specifically, 
we found that our linear model (T-REx(EN)) demonstrated 
overall superior performance to the nonlinear models 
(T-REx(SVM) and T-REx(RF)) across an array of different 
settings, including demographic history, positive selection 
regime, and technical artifacts due to missing genomic seg
ments (Figs. 2, 3, and 5). Moreover, in addition to its high 
power and accuracy to detect sweeps, this modeling 
framework facilitated easy interpretation of the fitted 
model by providing feature maps for visualization, which 
convey the particular location in the haplotype alignments 
that the models place emphasis when discriminating 
sweeps from neutrality (Fig. 4).

From our experiments, an unexpected observation was 
that the linear T-REx(EN) model had higher power and ac
curacy than the nonlinear T-REx(SVM) and T-REx(RF) 
models (Figs. 2 and 3). It is possible that the linear model 
performs better here because it yields a better decision 

boundary between the neutral and sweep classes. 
However, it is more likely that other factors have played 
a more critical role in leading T-REx(EN) to have the best 
performance. First, the R components resulting from the 
CP tensor decomposition are not required to be independ
ent, and may, in fact, be highly correlated (Kolda and Bader 
2009). The EN regularization employed by T-REx(EN) has 
both L1- and L2-norm penalties, which are both meant 
to handle correlated features (Hastie et al. 2009). In par
ticular, the L2-norm penalty reduces the effective number 
of features in the model, but encourages a dense model by 
ensuring that all features remain included in the fitted 
model (Hastie et al. 2009). In contrast, the L1-norm penalty 
encourages a sparse model by emphasizing fewer features 
and selecting out those that are redundant or irrelevant 
for prediction (Hastie et al. 2009). Therefore, the 
L1-norm penalty employed by T-REx(EN) method is par
ticularly useful in reducing the overall dimension of the in
put data by removing irrelevant and redundant features. 
This hypothesis is supported by the fact that T-REx(EN) 
tends to have nondecreasing power and accuracy with in
creasing R (supplementary Figs. S4 and S5, Supplementary 
Material online). Second, though T-REx(SVM) also has an 
L2-norm penalty (Hastie et al. 2009), this penalty does 
not encourage sparsity in the set of input features like 
the L1-norm penalty. Moreover, we employ the radial basis 
kernel within the T-REx(SVM) classifier, which requires a 
distance be taken between observations, and distances in 
high-dimensional space may not behave well due to the 
curse of dimensionality (Verleysen and François 2005). 
This hypothesis related to the curse of dimensionality is 
supported by power and accuracy of T-REx(SVM) tending 
to diminish with increasing R, and hence has decreasing 
performance with increasing numbers of input features 
(supplementary Figs. S4 and S5, Supplementary Material 
online).

To put forth a better perspective on the utility of the 
haplotype alignment processing method T-REx uses, we ex
perimented with another protocol for processing haplo
type alignments, which is similar to that of Torada et al. 
(2019). As in Torada et al. (2019), we sorted the haplotypes 
along the entire 1.1 Mb genomic region, which is in con
trast to the alignment processing method employed by 
T-REx, where haplotypes were sorted in a sliding window. 
This key difference between these two protocols may be 
an important factor behind the decreased false discovery 
of sweeps by T-REx(EN) (compare supplementary Figs. 
S19 to S1 and supplementary Figs. S20 to S2, 
Supplementary Material online). Overall, our experiments 
under the constant-size demographic history across differ
ent ranks (compare supplementary Figs. S19 to S1 and sup
plementary Figs. S20 to S2, Supplementary Material online) 
show that our unique alignment processing method has a 
distinct advantage in terms of downstream classification 
accuracy and power over another contemporary approach 
for processing haplotype alignments. If ImaGene 
adopted this local alignment processing approach, then 
it would have potentially resulted in performance that is 
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more close to that exhibited by T-REx. Another factor that 
has likely impacted the performance of ImaGene in our 
study is that it is CNN-based, and CNNs typically require 
large training sets to achieve optimal performance (Luo 
et al. 2018). In the original ImaGene article, Torada 
et al. (2019) employed 50,000 observations per class for 
training. In contrast, we used 10,000 observations per class 
for comparison purposes with T-REx, which may have in
fluenced the results shown by ImaGene. Moreover, a 
key distinction between ImaGene and T-REx is that 
ImaGene uses larger resized 128 × 128-dimensional 
images as input, which have the potential for reduced ro
bustness to noise compared with T-REx, as more noise is 
averaged out with its smaller 64 × 64-dimensional input 
images.

When analyzing modern genomic data, it is common to 
encounter regions with missing segments due to artifacts 
or sequence alignment problems, making it critical that 
machine learning tools remain robust to the challenge 
such missing data poses. In our tests with missing seg
ments, we found that T-REx(EN) was fairly robust, but 
ImaGene was deleteriously affected by an increase in 
the misclassification rate of neutral regions—though for 
reasonable false positive rates, ImaGene was also robust 
(Fig. 5). An avenue to alleviate this problem is to train clas
sifiers with missing random segments (Kern and Schrider 
2018), which allows classifiers to learn the underlying pat
terns associated with missing data. Randomly removing 
chunks from alignments in non-overlapping windows 
from the training data before training classifiers has been 
shown to offset the deleterious effects of such missing 
data (Mughal and DeGiorgio 2019; Mughal et al. 2020). 
Also, filling in missing values in test data through genotype 
imputation (e.g. Li et al. 2010; Moritz and Bartz-Beielstein 
2017; Browning et al. 2021; Davies et al. 2021) may be an
other direction to combat the problem of missing data. 
Classifiers that are fed test data after imputing the missing 
values tend to be robust when faced with missing data in 
genomes and may achieve better prediction accuracy 
(Sarkar et al. 2021).

We have implemented T-REx as a binary classifier to dif
ferentiate sweeps from neutrality, but this modeling strat
egy can also be employed for broader classification 
problems in evolutionary genomics. For example, using 
multiclass extensions to the machine learning models dis
cussed here, the T-REx framework could accommodate 
classifiers for jointly discriminating among other evolu
tionary processes, such as balancing selection and adaptive 
introgression, in addition to neutrality and sweeps from de 
novo mutations or standing variation. To illustrate, two- 
dimensional representations of genomic data have been 
employed in multiclass models for robustly determining 
whether a genomic region is neutrally-evolving or has 
undergone a hard or soft sweep (Kern and Schrider 
2018), as well as been shown to improve discrimination 
of adaptive introgression from sweeps and neutrality 
(Mughal et al. 2020). Moreover, Gower et al. (2021) em
ployed images of sorted haplotype alignments as input 

to a CNN with the aim to detect adaptive introgression 
—a setting that Mughal et al. (2020) still had trouble 
with based on two-dimensional images derived from 
hand-engineered population-genetic summary statistics. 
Indeed, Isildak et al. (2021) showed that CNNs applied to 
extract features from images of haplotype alignments out
performed feed-forward neural networks applied to 
hand-engineered population-genetic features in discrimin
ating between recent balancing selection and incomplete 
sweeps, which are two evolutionary settings that can yield 
similar distributions of haplotype variation and are thus 
difficult to tease apart. These examples highlight the 
promise that automatic feature extraction from image re
presentations of haplotypic variation has for probing gen
omes for diverse forms of natural selection.

Throughout this article, we have explored the problem 
of identifying natural selection as a classification task. 
However, the machine learning models employed by 
T-REx are flexible, and changing from a qualitative to a 
quantitative output would shift the problem from a clas
sification to a regression problem. By using a regression 
framework, T-REx could predict underlying sweep para
meters, such as selection strength, frequency of the se
lected allele when it became beneficial, and time at 
which a sweep completed (Mughal and DeGiorgio 2019). 
Moreover, as in Flagel et al. (2019), framing the prediction 
problem as regression would allow for estimation of key 
demographic quantities, such as the timing and magni
tude of population size changes, as well as genetic para
meters, such as recombination rate. Hence, tensor 
decomposition represents a complementary tool for tack
ling an array of inference problems within population gen
omics that CNNs have already been demonstrated to be 
highly effective.

Another interesting avenue that can be explored and 
could potentially increase the accuracy and robustness of 
T-REx is the incorporation of ancient DNA data. Because in
formation on temporal trajectories of genetic variation can 
be exploited when using ancient DNA, such additional data 
could enhance the detection and characterization of adap
tive footprints. Indeed, recent studies have incorporated 
genetic variation from ancient samples to detect adaptive 
loci (e.g. Mathieson and McVean 2013a, 2013b; Field et al. 
2016; Dehasque et al. 2020; Mathieson 2020; Rees et al. 
2020; Whitehouse and Schrider 2023), and these studies 
have highlighted that use of such temporal data can aid 
in better detection of adaptive events. Our T-REx framework 
is amenable to direct incorporation of ancient DNA data 
sampled across time by including images of haplotype vari
ation consecutively ordered across sampled time points 
along a fourth dimension of the tensor structure prior to ap
plying tensor decomposition to perform feature extraction. 
Because this tensor decomposition will naturally preserve 
the autocovariation in diversity not only expected spatially 
in the genome, but also temporally through the addition of 
the fourth dimension, we believe this is a viable avenue for 
future exploration to boost the performance and scope of 
T-REx models.
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Important limitations of T-REx are the runtime and 
memory-usage associated with larger training sets (N) 
and higher ranks (R). In our experiments, we found that 
tensor decomposition took substantially greater time and 
memory even for modest increases in R. Downsampling 
each observation to a 64 × 64-dimensional matrix helped 
in reducing the complexity, and also likely aided in robust
ness of our models by averaging some of the noise in the 
input images. Moreover, we have been concerned with 
three-way tensors only, but if we were to consider increas
ing the number of dimensions, it would render the process 
computationally costlier than a three-way case, as the 
number of elements in the tensor would increase exponen
tially with each added dimension (Kruppa 2017). Also, the 
alternating least squares algorithm (see Methods section) 
for learning the factors matrices for CP tensor decompos
ition will need to find the factor matrices associated with 
each added dimension. For example, if we were to include 
ancient DNA data sampled over time as the fourth dimen
sion in our existing pipeline, then it would be a four-way 
tensor where we would have an extra factor matrix D, 
which the ALS algorithm has to estimate through iteration 
and will incur greater runtime before reaching 
convergence.

We have focused on CP tensor decomposition 
(Hitchcock 1927; Harshman 1970). However, other algo
rithms for decomposing tensors exist, each with their 
own advantages and disadvantages relative to CP decom
position. Examples are multilinear principal component 
analysis (MPCA) (Lu et al. 2008), Tucker decomposition 
(Tucker 1966), higher-order singular value decomposition 
(HOSVD) (Lathauwer et al. 2000), and tensor train (TT) de
composition (Oseledets 2011), which are widely used alter
native approaches for performing tensor decomposition 
(e.g. Sidiropoulos et al. 2017; Yuwang et al. 2019). 
Methods such as CP decomposition, MPCA, HOSVD, 
and TT are closely related to Tucker decomposition 
(Zare et al. 2018; Yuwang et al. 2019) in their working pro
cedures, which is based on finding the linear combination 
of outer products of vectors. Among these different tech
niques, Tucker decomposition (Tucker 1966) is the most 
similar in operation to CP decomposition, as it also hinges 
on the idea of using alternating least squares to estimate a 
core tensor and factor matrices, though the core tensor 
produced by Tucker decomposition is not necessarily diag
onal like the one CP decomposition outputs (Yuwang et al. 
2019) and the ranks of the factor matrices are not con
strained to be identical. Despite their similarities, CP de
composition is able to produce unique solutions unlike 
Tucker decomposition, where factor matrices change as 
the core tensor is changed (Kim et al. 2014; Zare et al. 
2018). Also, the rank-one factors generated by Tucker de
composition are orthonormal, which is not the case for CP 
tensor decomposition (Kim et al. 2014).

The T-REx methodology introduced here represents 
complementary approach to CNNs for automatic feature 
extraction of haplotype alignment images. This framework 
is flexible, as it permits learned features to be used in both 

linear and advanced nonlinear models, and can be ex
tended into multiclass and quantitative prediction pro
blems within evolutionary genomics. Moreover, we 
demonstrated that T-REx has an edge over a current lead
ing CNN-based architecture in terms of power and accur
acy, partially due to its unique alignment processing 
strategy for easier feature detection. Moreover, T-REx iden
tified previously hypothesized and novel candidate sweeps 
in our empirical application, highlighting its efficacy in 
practice. Despite the promising performance metrics of 
T-REx, computation time of T-REx increases with increas
ingly higher ranks and sample sizes. However, excellent 
power and accuracy were achieved for modest numbers 
of features and training set sizes, and so we do not see 
this as a major hurdle for T-REx. Given the rapidly changing 
landscape of computational approaches for learning about 
and uncovering evolutionary mechanisms, T-REx provides 
a bridge between modern methodologies for feature ex
traction and well-established classical machine learning 
prediction techniques.

Methods
CP Tensor Decomposition
Consider a tensor X ∈ RI×J×K of order three, where the 
first dimension will collect I observations of two- 
dimensional images each with J × K pixel values. The 
idea behind CP tensor decomposition is to express such 
a tensor as a sum of R tensors, where each of these tensors 
is expressed as the outer product of three rank one tensors. 
That is, we wish to estimate X as

􏽢X =
􏽘R

r=1

ar ◦ br ◦ cr , 

where the symbol ° denotes the outer product and where 
ar ∈ RI, br ∈ RJ, and cr ∈ RK such that X ≈ 􏽢X . For our 
setting, I will represent the number of training observa
tions, J a proxy for the number of haplotypes, and K a proxy 
for the number of loci (see Alignment processing subsec
tion of the Methods for details). Because we are working 
with tensors of order three, which is a higher-order tensor, 
we have column, row, and tube Fibers, which are, respect
ively, termed mode-1, mode-2, and mode-3 of the tensor.

Preprocessing Tensors
Prior to application of CP decomposition, we need to pre
process the input tensors through centering and scaling 
operations. Because the data are represented as a three- 
way tensor, preprocessing is different from conventional 
methods (Kolda and Bader 2009). Let value xijk denote ele
ments i, j, and k, respectively, for the first, second, and third 
dimensions of the tensor X ∈ RI×J×K . This tensor is cen
tered as

xcentered
ijk = xijk − xjk (1) 
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where

xjk =
1
I

􏽘I

i=1

xijk 

is the sample mean across the I training observations. 
Here the index i is related to the first mode, so it runs 
from 1 to I. Similarly index j runs from 1 to J and index 
k runs from 1 to K. This kind of centering is called single 
centering across the first mode (Bro 1997), and causes the 
mean of each pixel of an image to be zero across the train
ing samples. We could have centered on multiple modes 
simultaneously, which is called double or triple centering 
depending on the number of modes on which to simul
taneously center. However, centering one mode at a 
time is appropriate for CP decomposition, as any other 
kind of centering would destroy the multilinear proper
ties of the data (Bro 1997)

In addition to centering, scaling should be performed on 
only one mode at a time, and we have chosen to scale in 
the first mode for our application (Kolda and Bader 
2009). Scaling is performed as

xscaled
ijk =

xijk

si
(2) 

where

si =

������������
􏽘J

j=1

􏽘K

k=1

x2
ijk

􏽶
􏽵
􏽵
􏽴 .

This kind of scaling ensures that the overall intensity of va
lues across pixels in an image are identical for each training 
sample. The order of scaling and centering is not arbitrary, 
as the operations are not commutative (Kolda and Bader 
2009). Centering across a particular mode after scaling dis
turbs scaling across all modes. On the other hand, scaling 
across a particular mode after centering destroys centering 
across that mode. For these reasons, the order of centering 
and scaling is important. Centering is performed after scal
ing so that the scaled mode variance is not exactly one, but 
any large differences across the mode are mostly equalized 
(Kolda and Bader 2009). Centering is then performed, 
which ensures that the mode to be centered has a mean 
of zero.

Computing the CP Decomposition
After performing tensor decomposition on the training 
tensor X ∈ RI×J×K to obtain a rank R CP decomposition, 
we obtain the three-factor matrices

A = [a1 a2 · · · aR] ∈ RI×R

B = [b1 b2 · · · bR] ∈ RJ×R

C = [c1 c2 · · · cR] ∈ RK×R 

which yield an approximation of the tensor through the 
outer product

􏽢X =
􏽘R

r=1

λrar ◦ br ◦ cr , 

where λr , r = 1, 2, . . . , R, scales the rth tensor to have unit 
norm. From the factor matrices B and C, we can depict the 
features extracted by component r of the CP model from 
the training data with the expression br ◦ cr ∈ RJ×R 

(Papastergiou et al. 2018).
The key algorithm behind computing the CP decom

position is alternating least squares (Carroll and Chang 
1970), which is a minimization algorithm. For a tensor of 
order three, given a rank R to approximate the training 
tensor (X ), alternating least-squares fixes two of the factor 
matrices, whereas solving for the remaining factor matrix 
that minimizes the sum of the squared differences in the 
elements of the estimated tensor (􏽢X ) and the training ten
sor. For example, if factor matrices B and C are fixed, then 
we seek to find A that has this minimal sum of squared 
errors.

Denote the best factor matrices A, B, and C at iteration 
t ∈ {0, 1, 2, . . . } of the alternating least-squares algorithm 
by A(t), B(t), and C(t), respectively. Given these factor matri
ces, let the current estimate of the training tensor be

􏽢X (t) =
􏽘R

r=1

a(t)
r ◦ b(t)

r ◦ c(t)
r .

Define the element-wise squared difference between two 
order-three tensors X ∈ RI×J×K and Y ∈ RI×J×K as

D2(X , Y) =
􏽘I

i=1

􏽘J

j=1

􏽘K

k=1

(X ijk − Y ijk)2.

Alternating least squares on this tensor of order three is gi
ven by the following three steps: 

1) Step 1: fix A(t) and B(t) and solve for C(t+1)

C(t+1) = arg min
C=[c1 c2 ··· cR]

D2 X ,
􏽘R

r=1

a(t)
r ◦ b(t)

r ◦ cr

􏼠 􏼡

2) Step 2: fix A(t) and C(t) and solve for B(t+1)

B(t+1) = arg min
B=[b1 b2 ··· bR]

D2 X ,
􏽘R

r=1

a(t)
r ◦ br ◦ c(t)

r

􏼠 􏼡

3) Step 3: fix B(t) and C(t) and solve for A(t+1)

A(t+1) = arg min
A=[a1 a2 ··· aR]

D2 X ,
􏽘R

r=1

ar ◦ b(t)
r ◦ c(t)

r

􏼠 􏼡
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Steps 1 to 3 are repeated until convergence, and final esti
mated factor matrices are identical to those from the final 
iteration—i.e. A = A(t+1), B = B(t+1), and C = C(t+1). At 
each step, we incorporate the values for λr , r = 
1, 2, . . . , R into the estimated tensor.

Projecting Test Observations onto Identified Factor Matrices
Given a new test tensor X test ∈ RItest ,J,K of Itest test observa
tions, we can project the test observations onto the learn
ed factor A so that it falls within the subspace learned by 
decomposing the training tensor X . However, before 
doing so, we must ensure that the test dataset lies in the 
same input space as the training set. Thus, we preprocess 
the test dataset by applying Equations (1) and (2) for cen
tering and scaling. It is important to note that Equation (1) 
refers to centering with respect to the training set (i.e. sub
tracting ̅x jk), and so the test set must be centered with the 
mean training pixel value x̅jk and not a similar quantity for 
the test set. Thus, the centering values for the training set 
must be retained so that the test set is centered with iden
tical values. Assuming X test has now been properly prepro
cessed, we can project the test data onto the learned 
features representing each input image by Kolda and 
Bader (2009)

Atest = Xtest(1)(C∗B)(CTC ⊙ BTB)†Λ−1, (3) 

where Xtest(1) is the mode-1 unfolding (matricization) of 
the tensor X test, the superscript T denotes transpose, the 
symbol * denotes the Khatri–Rao product, the ⊙ symbol 
denotes the Hadamard (element-wise) product, the super
script † denotes the Moore–Penrose pseudoinverse, and 
Λ−1 represents the inverse of the diagonal matrix Λ ∈ 
RR×R of scaling terms λ1, λ2, …, λR.

Alignment Processing
We used a novel approach for processing the haplotype 
alignments in a way that helps the classifiers detect the 
footprint of a selective sweep. For each simulated 1.1 Mb 
region, we locally sorted haplotypes in windows of 100 
single-nucleotide polymorphisms (SNPs), moving the win
dow along the region with a stride of 10 SNPs, where values 
at SNPs were averaged for all windows that overlapped 
them. This method of alignment processing can help clas
sifiers identify signals of lost haplotypic diversity if sweeps 
are weak or old, whereas also retaining power for strong 
and recent sweeps. To reduce the complexity of the tensor 
decomposition and noise in the sorted haplotype align
ments, we downsampled the alignment images to 
64 × 64-dimensional matrices using the scikit- 
image library (Pedregosa et al. 2011), where Gaussian 
smoothing was employed to preserve the spatial relation
ships of pixels within the images and to avoid aliasing arti
facts. We highlight the advantage of our alignment 
processing approach by pitting the results obtained after 
employing our unique alignment processing strategy 
against those of an alignment processing approach that 

is similar to that used by ImaGene (Torada et al. 2019) 
(compare supplementary Figs. S19 to S1 and supplemen
tary Figs. S20 to S2, Supplementary Material online).

T-REx Model Training and Hyperparameter Tuning
We have implemented three classical linear and nonlinear 
machine learning models with different R packages into our 
T-REx framework. For performing tensor decomposition, 
we used the R package rTensor (Li et al. 2018). 
Additionally, we employed the R packages glmnet 
(Friedman et al. 2010), liquidsvm (Steinwart and 
Thomann 2017), and ranger (Wright and Ziegler 2017) 
for implementing T-REx(EN), T-REx(SVM), and T-REx(RF), 
respectively. During the training of each classifier, we 
have 104 observations in each class, with each observation 
consisting of sorted haplotype alignments (details provided 
in the Alignment processing subsection of the Methods). We 
then applied a rank R tensor decomposition (see CP tensor 
decomposition subsection of the Methods for details) to ob
tain a set of R derived features for each observation in each 
class to be used as input for our T-REx classifiers.

Before the testing phase commences, we tuned hyper
parameters, which control certain components of the 
model training process, of each model by selecting optimal 
hyperparameters through the cross-validation procedure. 
Hyperparameter tuning is a way of selecting suitable hy
perparameter values from a range of possible values. 
Specifically, we performed 10-fold cross-validation such 
that on each of the 10-folds we selected 10% of the sam
ples (1,000 observations per class) from the dataset to be 
reserved for model validation and the remaining 90% of 
the samples (9,000 observations per class) to be employed 
for model training. This procedure allowed us to evaluate 
how well the model would perform on unseen data (from 
the validation set) for a given set of hyperparameter values. 
For each of the classifiers, we chose the model structure 
that yielded the smallest cross-validation error after per
forming hyperparameter tuning.

For hyperparameter tuning of T-REx(EN), we explored a 
grid of values α ∈ {0, 0.1, . . . , 1.0}, where α denotes the 
proportion of the model for which the parameters are pe
nalized with an L2-norm penalty, whereas 1 − α is the pro
portion penalized with an L1-norm penalty (Hastie et al. 
2009). In addition to α, we tuned another hyperparameter 
λ ≥ 0, which modulates the complexity of the fitted model 
by controlling the influence of the L1- and L2-norm penal
ties during model training. By tuning both λ and α, we are 
controlling the complexity of the fitted model, whereas 
simultaneously performing feature selection by inclusion 
of the L1-norm penalty (Hastie et al. 2009). We find the op
timal λ and α combination that gives the minimum 10-fold 
cross-validation error. For implementing T-REx(SVM), we 
used the radial basis kernel for nonlinear modeling, which 
has a hyperparameter γ that is inversely proportional to 
the variance (width) of the radial basis kernel, which has 
a shape similar to a Gaussian function (Hastie et al. 
2009). To implement T-REx(RF), we chose a large number 
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(5,000) of random trees to use in the RF ensemble, as test er
ror stabilizes with enough trees in the forest (Hastie et al. 
2009), and used the default number of 10 random splits with
in ranger for growing each decision tree within the RF.

Finally, regardless of machine learning method, another 
important hyperparameter is the rank R of the tensor decom
position. For each value of R ∈ {50, 100, 150, 200, 250, 300}, 
we computed the 10-fold cross-validation error for T-REx(EN) 
and T-REx(SVM) and the out-of-bag error for T-REx(RF) 
(Hastie et al. 2009). We chose the (R, λ, α) triple that resulted 
in the smallest 10-fold cross-validation error for T-REx(EN), 
the (R, γ) pair that results in the smallest 10-fold cross- 
validation for T-REx(SVM), and the value of R that results 
in the smallest out-of-bag error for T-REx(RF). After selecting 
the set of optimal hyperparameters of each method, the 
three T-REx models were each trained on the full dataset of 
104 training observations per class conditional on their opti
mal hyperparameters, and these models were deployed on 
further testing data.

Training and Evaluating ImaGene
To fully evaluate the performance T-REx, we compared it 
with the CNN-based sweep classifier ImaGene (details 
are provided in the Results). Although both T-REx and 
ImaGene use haplotype alignments in the form of 
images, there are differences in the procedure used to pro
cess the images and perform model training.

For training, ImaGene employs a “simulation-on-the- 
fly” approach of using newly generated data at each 
training epoch (iteration of gradient descent). This 
simulation-on-the-fly approach prevents ImaGene from 
overfitting. For consistency and fairness in comparison be
tween T-REx and ImaGene, we deviated from this default 
setting of ImaGene so that it is pitted against T-REx on 
identical simulation data. Specifically, we used the same 
104 training observations per class when training 
ImaGene as we employed for training T-REx for each 
simulation setting (details regarding the simulation proto
col are provided in the Results). To prevent overfitting, we 
employed early stopping (Goodfellow et al. 2016), by set
ting the number of epochs to train ImaGene as the point 
at which the validation loss starts to rise, which suggests 
overfitting, where the validation loss was computed across 
1,000 observations per class that were held out for valid
ation. supplementary Figure S21, Supplementary Material 
online displays the validation and training loss curves 
over 200 training epochs, showing that the validation 
curve begins to increase at approximately 25 epochs. We 
therefore retrained the ImaGene model on the full data
set of 104 observations per class for 25 epochs.

Application to Empirical Data
With the aim of detecting novel candidate genes that may 
be subject to positive natural selection and previously hy
pothesized candidates of positive natural selection, we 
used empirical data of the CEU human population from 
the 1000 Genomes Project dataset (The 1000 Genomes 

Project Consortium 2015). We first filtered variant calls 
to include biallelic SNPs. Second, we removed SNPs with 
minor allele count less than three, as Mughal et al. 
(2020) demonstrated the frequencies of singleton and 
doubleton SNPs in the CEU population from the 1000 
Genomes Project dataset differed from those predicted 
by the inferred demographic model (Terhorst et al. 
2017) that we used to train our classifiers. Moreover, be
cause regions of the genome that are harder to map and 
align may lead to technical artifacts affecting observed 
genomic variation (Derrien et al. 2012), we removed sites 
that could have problematic mapping or alignability to cir
cumvent such potential artifacts. Specifically, we used the 
CRG score to measure mappability and alignability of a 
genomic region and removed sites falling within 100 kb 
windows for which the mean CRG100 score within the 
window was less than 0.9 (Mughal et al. 2020). We then ap
plied our unique alignment processing approach to further 
process the data before supplying it to T-REx.

Supplementary Material
Supplementary material is available at Molecular Biology 
and Evolution online.
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