
MLTL Multi-type: A Typed Logic for Cyber-Physical Systems

GOKUL HARIHARAN∗, Iowa State University, Ames, United States

BRIAN KEMPA∗, Iowa State University, Ames, United States

TICHAKORN WONGPIROMSARN, Iowa State University, Ames, United States

PHILLIP JONES, Electrical and Computer Engineering, Iowa State University, Ames, United States

KRISTIN ROZIER, Iowa State University, Ames, United States

Modern cyber-physical systems-of-systems (CPSoS) operate in complex systems-of-systems that must seamlessly work

together to control safety- or mission-critical functions. Linear Temporal Logic (LTL) and Mission-time Linear Temporal logic

(MLTL) intuitively express CPSoS requirements for automated system veriication and validation. However, both LTL and

MLTL presume that all signals populating the variables in a formula are sampled over the same rate and type (e.g., time or

distance), and agree on a standard łtimež step. Formal veriication of cyber-physical systems-of-systems needs validate-able

requirements expressed over (sub-)system signals of diferent types, such as signals sampled at diferent timescales, distances,

or levels of abstraction, expressed in the same formula. Previous works developed more expressive logics to account for types

(e.g., timescales) by sacriicing the intuitive simplicity of LTL. However, a legible direct one-to-one correspondence between a

verbal and formal speciication will ease validation, reduce bugs, increase productivity, and linearize the worklow from a

project’s conception to actualization. Validation includes both transparency for human interpretation, and tractability for

automated reasoning, as CPSoS often run on resource-limited embedded systems. To address these challenges, we introduced

Mission-time Linear Temporal Logic Multi-type (Hariharan et al., Numerical Software Veriication Workshop, 2022), a logic

building on MLTL. MLTLM enables writing formal requirements over inite input signals (e.g., sensor signals and local

computations) of diferent types, while maintaining the same simplicity as LTL and MLTL. Furthermore, MLTLM maintains a

direct correspondence between a verbal requirement and its corresponding formal speciication. Additionally, reasoning a

formal speciication in the intended type (e.g., hourly for an hourly rate, and per second for a seconds rate) will use signiicantly

less memory in resource-constrained hardware. This article extends the previous work with (1) many illustrated examples

on types (e.g., time and space) expressed in the same speciication, (2) proofs omitted for space in the workshop version, (3)

proofs of succinctness of MLTLM compared to MLTL, and (4) a minimal translation to MLTL of optimal length.

Additional Key Words and Phrases: Linear Temporal Logic, Mission-time Linear Temporal Logic, Runtime Veriication,

Cyber-Physical Systems, Formula Succinctness

1 Introduction

Safety-critical systems, such as aircraft, spacecraft, robots, and autonomous vehicles, require precise, unambiguous
speciications for automated reasoning such as model checking, synthesis, requirements debugging, runtime
veriication (RV), and checking for satisiability, reachability, realizability, vacuity, and other important properties
of system requirements. Modern cyber-physical systems-of-systems present a unique challenge for speciication,

∗Both authors contributed equally to this research.

Authors’ Contact Information: Gokul Hariharan, Iowa State University, Ames, Iowa, United States; e-mail: gokul@iastate.edu; Brian Kempa,

Iowa State University, Ames, Iowa, United States; e-mail: bckempa@iastate.edu; Tichakorn Wongpiromsarn, Iowa State University, Ames,

Iowa, United States; e-mail: nok@iastate.edu; Phillip Jones, Electrical and Computer Engineering, Iowa State University, Ames, Iowa, United

States; e-mail: phjones@iastate.edu; Kristin Rozier, Iowa State University, Ames, Iowa, United States; e-mail: kyrozier@iastate.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 1558-3465/2024/11-ART

https://doi.org/10.1145/3704809

ACM Trans. Embedd. Comput. Syst.

2 • G. Hariharan et al.

and consequently for scalable veriication and validation, due to their distributed and hierarchical nature. Auto-
mated reasoning for CPSoS needs seamless construction of global properties combining local phenomena and
coordinating requirements for numerical computations like intelligent sensor fusion and signal processing over
data and variables of diferent types (e.g., sampling frequencies).

LTL provides an intuitive way to precisely specify system requirements for timelines in operational concepts
of CPSoS [40]. The relative computational eiciency of automated reasoning (e.g., model checking, satisiability
checking) adds to the appeal of LTL as a speciication logic [36, 37]. Since CPSoS speciications most often need
to describe inite missions with referenceable time steps, variations of LTL over inite signals emerged with
intervals on the temporal operators. Variations of Metric Temporal Logic (MTL)[34], such as Signal Temporal
Logic (STL)[19] and Mission-time Linear Temporal Logic (MLTL)[30, 35] vary in the types of inite bounds they
introduce on LTL’s temporal operators, and the complexity of automated reasoning over these logics. MLTL is a
variant that has inite, closed, integer bounds on LTL’s temporal operators that provides a good balance between
expressivity and computational eiciency. MLTL has emerged as a popular speciication logic for complex CPSoS
such as the NASA Lunar Gateway Vehicle System Manager [16], and a JAXA autonomous satellite mission
[33]; see [31] for a collection of MLTL patterns over a weather balloon, automated air traic management
system, sounding rocket, and satellite. Furthermore, recent work has contributed very eicient, light-certiiable,
encodings of MLTL for runtime veriication in resource-limited embedded hardware [27].
Nonetheless, realistic requirements for CPSoS need to reason over signals of diferent types in the same

requirement; a requirement speciied as an LTL/MLTL formula implicitly presumes that all input signals populating
its variables are of the same type (e.g., share a common notion of a time step). Therefore, describing a global
property of a system where sub-systems operate at diferent timescales, (or, more generally, over diferent types)
becomes tedious. For example, consider specifying global safety properties of a deep-space exploration craft.
One subsystem of the spacecraft may regulate monthly cycles to wake from hibernation and execute course
corrections, whereas another subsystem may operate on the nanosecond frequency to make hyper-sensitive
adjustments; it is not obvious how to correctly reason about these in the same formula. Expressing speciications
by assuming signals of the same type yields indiscernible speciications with poor correlation between the verbal
and logical speciications, and an unreasonably huge memory overhead (e.g., 3600 units of second-to-second
information is stored in excess, instead of only keeping the hourly data). Moreover, automated reasoning with
signals of diferent types is ubiquitous to CPSoS, and yet, to the best of our knowledge, there was no realizable
logic that accommodated multiple signal types in a single speciication, until MLTLM [24].

Previous works provide some options for special cases of this problem, with signiicant complexity drawbacks.
These largely center on two philosophies: higher-order logics reasoning over sets of formulas (instead of one
formula combining diferent types), and annotations to deal with multiple time granularities across formula
variables, though not necessarily other combinations of diferent types. Examples of distributed sets of speciica-
tions count on locally evaluating sub-system-level synchronous [7] or asynchronous [6, 32] signals; this set can
coordinate through a global formula evaluated over the local formulas [7]. For example, HyperLTL focuses on
speciications over sets of formulas over signals of the same type [12], oppositely from this work where we focus
on constructing single formulas that seamlessly reason over signals of diferent types. Table 1 collects related
work.

The particular instance of diferent types in the form of input signals over diferent time granularities that
comprise parts of the same, single temporal logic speciication arises frequently in CPSoS; see [20] for a survey.
Most previous works focus on developingwell expressible languages to deine temporally distributed speciications
precisely. Again, this often comes with higher-order reasoning (see for example [21]) and complexity penalties;
e.g., [13] introduces the notion of temporal universes and uses a set-theory representation of diferent timescales
to abstract notions of time granularities. Propositional Interval Temporal Logic (PITL) adds chop (ł;ž) and project
operators to LTL to increase expressivity for time granularities over ininite signals; another variation adds

ACM Trans. Embedd. Comput. Syst.

MLTL Multi-type: A Typed Logic for Cyber-Physical Systems • 3

Time-granular logic Syntax elements Ref.

PITL empty, proj, ł;ž, □, ^ [11]
Non standard FOT ∀, <� , <� , <1, ∃ [4]

ITL <,�, � , � , � etc. [2]
Euzenate’s extension 6 × 6 table of operators [14]

Automata representation Automata [28, 29]
Spider diagrams Spider diagrams [10]

2D MTL internal eternal �� , �� etc. [5]
Monodic SOL Layered representation of FOT [21]

Multiclock Esterel nothing, pause, exit, emit, etc. [9]

Table 1. Various time-granular specification languages and their syntax elements.

temporal relations like łjust beforež [14]. First-Order Theory (FOT) enables writing time-granular speciications to
account for continuous-in-time events and relate them to discretized-in-time representations [4]. Other methods
include using automata to represent time-granularity [28, 29] and using spider-diagram representations for
time-granular speciications [10], and a two-dimensional metric temporal logic that can be potentially used to
represent time granularities [5]. Multiclock Esterel, a language for hardware veriication, also introduces many
syntactic elements that can potentially pose a higher learning curve for a transition from LTL to a multi-type
language for CPSoS. [9, 23]. More recently, the SCADE tool integrates diferent time-granular languages into a
single framework [8, 15], and has found good acceptance in the industrial community. SCADE is targetted to
developping correct software for embedded systems, however, it is also important to reason over properties on
a higher level regarding the functioning of the embedded system over signals of diferent types, for example,
consider the property, łWithin 4 miles from the origin, the drone shouldn’t exceed a velocity of 12 mph.ž Moreover,
while SCADE is suited for veriication in the design phase of a system, realtime veriication during functioning
of CPSoS calls for a completely diferent set of capabilities, like compacted (as little as possible) memory for
veriication, non-invasive embedment of a veriication engine, and a suitable language to reason over expressible
properties that is also accomodative in a low memory space and with a quick response time.
The existing solutions therefore precisely express time granularity, but at the cost of sacriicing the intuitive

simplicity of LTL and MLTL. A realizable logic with time granularities (or, more generally, types) for CPSoS needs
to maintain the simplicity of LTL/MLTL to easily write speciications that CPSoS designers can readily validate,
and more importantly, to have tractable computational complexity for automated reasoning (e.g., model checking
and runtime veriication).

Therefore, we build upon the popular logic MLTL to create MLTLM [24]. The syntax of MLTLM matches that
of MLTL except for the addition of a single signal-type label on each temporal operator to signify the output
type of that operator. MLTLM has these advantages: (a) maintains the same speciication simplicity as LTL and
MLTL, (b) reasons in the inherent type of the verbal speciication, thereby providing a direct correspondence to
its respective formal speciication, and (c) readily implementable in embedded systems.

Consider the followingMLTLM speciications across types that illustrate these advantages1 (Section 4 elaborates
these examples in more detail):

(1) łWithin 4 miles from the origin, the drone shouldn’t exceed a velocity of 12 mph.ž

□[0,4,�����] (� < 12)

1These examples assume some knowledge of MLTL (see Section 2 for details); ^[��,��] and □[��,��] denote the future and global operators

respectively, that a property holds at some and all instances inside the interval respectively.

ACM Trans. Embedd. Comput. Syst.

4 • G. Hariharan et al.

(2) łThe car drives at a velocity less than 60mph for a distance of 10 miles, and then maintains 70mph for 60
minutes.ž

□[0,10,�����] (� < 60) ∧ □[10,10,�����] (□[0,60,�������] (� == 70))

(3) łThe drone’s surveillance camera needs to be in on-state for 10 continuous minutes, every hour.ž (Assuming
a mission-time of 3 hours)

□[0,3,ℎ����]^[0,50,�������]□[0,10,�������]camera-on

(4) łThe spacecraft maintenance cycle runs at least once a month over the ive-year mission. ž

□[0,5,�����]^[0,30,����]maintenance

(5) łVerify monthly that the thrusters did not burn more than 3 seconds at a time.ž

□[0,12,����ℎ] (¬□[0,3,�������]burn-thrusters)

Notice from the examples a close correspondence between the verbal and respective formal speciication. Formal
speciications in LTL or MLTL for these requirements would be hard to interpret, debug, and synthesize due to
the lack of types. Furthermore, it is more relaxing, less prone to bugs, and easier to maintain a set of speciications
that does not encode the information of types into the speciication (e.g., logically expressing months in terms of
years), thus simplifying the worklow. Fig. 1 contrasts the worklow when using MLTLM versus MLTL: In MLTL,
the project manager gives a verbal speciication, which is implemented by a speciication designer in coordination
with the system engineer, however, the concrete speciication may not conform with the project management’s
requirement, as verbal and logical speciications are often subject to misinterpretations. This would trigger a
cycle of iterations all the way from the management to the system designer. In contrast, in MLTL, the project
management provides a verbal speciication that has a direct correspondence to an MLTLM speciication. The
iterations are then conined to the concrete speciication and the system engineer (note that we assume that the
management does not have fundamentally contradictory requirements, in which case both approaches would
have to cycle throughout).
This paper is organized as follows. Section 2 gives a prelude to the conventional single type temporal logic,

MLTL, and gives a background on R2U2 ś an industry-used runtime veriication engine for CPSoS that we build
upon to monitor MLTLM speciications. We contribute:

(1) (Section 3) the formal deinition for the logic MLTLM (Mission-time Linear Temporal Logic Multi-type),
including syntax and semantics (carried forward from [24]);

(2) (Section 4) illustrated example speciications expressed in MLTLM with signals of diferent types (new in
this paper);

(3) (Section 5) Detailed translations from MLTLM to MLTL with proofs of succinctness between MLTLM and
MLTL (new in this paper);

(4) (Section 6) an open-source implementation of a runtime veriication tool for MLTLM, built on top of
R2U2 [26, 27, 38], compared to translated MLTL (this includes a translator from MLTLM to MLTL that
produces provably optimally short MLTL formulas absent in [24]).

Section 7 discusses conclusions and future directions.

2 Preliminaries

2.1 Signals and Trajectories

Deinition 2.1. (Signal) A signal � over an atomic proposition � is deined as a inite sequence � = �0, �1, . . . , ��
where � [�] = �� ∈ {true, false} indicates whether � holds at the discrete time instance � . A subsequence of a
signal from position � is denoted by � [� ..], i.e., � [� ..] = �� , ��+1, . . . , �� .

ACM Trans. Embedd. Comput. Syst.

MLTL Multi-type: A Typed Logic for Cyber-Physical Systems • 5

(a) Workflow when using LTL/MLTL

(b) Envisioned workflow using MLTLM

Fig. 1. Iteration workflow for CPSoS runtime verification of project requirements describing the system and specification

in simple lexical language. (a) Traditionally, modifications to the system or specification at any level restarts the cycle. (b)

We propose that project management first verify a top view specification in a simple syntax while iteration of the detailed

specification is contained to system engineering. The automated assistant may suggest suitable projections between types

Deinition 2.2. (Signal Type) All signals have an associated type. We use superscript to denote the type of a
signal, i.e., �A denotes a signal of type A.

Deinition 2.3. (Trajectory) A trajectory � over atomic propositions �0, ..., �� is a set of signals, i.e., � =

{�
A0

0 , �A1

1 , ..., �A�
� } where �A�

� is a signal over �� . �
A�
�� [�] refers to the � th value of the signal of type A� over atomic

proposition �� in � .

ACM Trans. Embedd. Comput. Syst.

6 • G. Hariharan et al.

Related work in linear temporal logic use łtracesž or łcomputationsž [3, 12], which is typically described as a
sequence of sets of atomic propositions. In contrast, we generalize łtracesž by allowing member signals to be of
diferent types and call them collectively as a trajectory.

Deinition 2.4 (Projection). The projection function �B

A
takes a signal � of type A and returns a signal of type B.

2.2 MLTL

MLTL is a variant of LTL [3] on inite signals with closed temporal bounds [35, 38] on natural numbers.

Deinition 2.5. (MLTL Syntax [35]) The syntax of an MLTL formula � over a set of atomic propositions AP is
recursively deined as:

� := true | � | ¬�1 | �1 ∧ �2 | �1U��2

where � ∈ AP, �1 and �2 are MLTL formulas, � := [��,��] is a closed interval bound, such that �� and �� are
natural numbers such that �� ≤ ��.

Abstract Syntax Tree (AST) The AST representation of an MLTL formula has nodes of logical operators and
leaves of atomic propositions connected to represent the recursive structure of the expression from Def. 2.5.

Deinition 2.6. (MLTL Semantics [35]) The evaluation of an MLTL formula � on a trajectory � where all signals
have uniform type produces a signal � , denoted by ((�, �) ↦→ �), deined recursively on the signals �1 and �2
representing the evaluation of its children subformulas �1 and �2 respectively as

� [�] :=





�� [�], if � = �, � ∈ AP,

¬�1 [�], if � = ¬�1,

�1 [�] ∧ �2 [�], if � = �1 ∧ �2,
true, if |�1 |, |�2 | > (� + ��), and ∃ � ∈ [� + ��, � + ��]

such that �2 [�] = true, and ∀� < � where

� ∈ [� + ��, � + ��], �1 [�] = true,

if � = �1U[��,��]�2 .

Other common operators are deined via equivalences, i.e., false ⇔ ¬true, future ^�� ⇔ trueU� � , globally
□�� ⇔ ¬(^�¬�), and next ⃝� ⇔ □[1,1]� .

2.3 R2U2

The Realizable, Responsive, Unobtrusive Unit2 (R2U2) is a runtime veriication (RV) engine to monitor MLTL
speciications for light mission systems [26, 35] used in robotics [27], NASA drone aircraft [22, 39], and is
being evaluated for use on the Lunar Gateway space station [16, 17]. R2U2 is Realizable: implemented on real
hardware, Responsive: reports speciication violation immediately, and Unobtrusive: uses existing data sources
instead of modifying the system to add instrumentation. R2U2 features speciication reconiguration and real-
time performance with guaranteed memory bounds to better support the needs of light systems. R2U2 is an
open-source RV engine with well-documented industrial use. We build an MLTLM RV engine upon R2U2 to
provide existing users a seamless transition to a multi-type logic. Our R2U2-based MLTLM RV engine upholds all
the existing guarantees of R2U2.

3 Mission-time Linear Temporal Logic Multi-type (MLTLM)

MLTLM is a lightweight extension to MLTL that enables temporal reasoning over system trajectories composed
of signals of diferent types.

2r2u2.temporallogic.org

ACM Trans. Embedd. Comput. Syst.

MLTL Multi-type: A Typed Logic for Cyber-Physical Systems • 7

Deinition 3.1. (MLTLM Syntax) The syntax of an MLTLM formula � over a set of atomic propositions AP,
and the set of types T is recursively deined as:

� := true | � | ¬� | �1 ∧ �2 | �1U��2

where � ∈ AP, A ∈ T , �1 and �2 are MLTLM formulas, and � := [��,��,A] is a inite interval bound such that
�� and �� are natural numbers, �� ≤ �� < ∞.

Notably, MLTLM syntax is MLTL syntax with signal types associated with temporal operators.

Deinition 3.2. (MLTLM Semi- Semantics) Given an arbitrary type A ∈ T , the evaluation of an MLTLM formula
� on a trajectory � produces a signal �A, denoted by (�, �) ↦→�A, deined recursively for any B,C,D ∈ T , where
(�, �1) ↦→�B

1 , (�, �2) ↦→�C

2 , as follows.

�A [�] :=





�A

A�
(�

A�

� �
) [�], if � = � � , � � ∈ AP, and �

A�

� ∈ �,

�A

B
(¬�B

1 [�]), if � = ¬�1,

�A

B
(�B

1 [�]) ∧�A

C
(�C

2 [�]), if � = �1 ∧ �2,

�A

D
(�D

B
(�B

1) [� ..] U[��,��]�
D

C
(�C

2) [� ..]), if � = �1U[��,��,D]�2,

where � [� ..] is the subsequence of signal � starting from discrete point � and all operators are evaluated according
to Def. 2.6.

Deinition 3.2 imposes that binary logical operators operate on signals of the same type. Note that when
evaluating the fourth case in Def. 3.2, the signal types produced by subformulas �1 and �2 must be projected
into signals of the type associated with the temporal operator. Additional common operators like implication,
disjunction, and globally are constructed by standard equivalence relations as in MLTL, with all derived temporal
operators inheriting the type speciier on their interval bounds.
Atomic propositions do not have a type (and is not needed) in our approach. Similarly formulas do not have

a type. Only signals have a type. For example, consider the atomic proposition � := (velocity > 10 mph). This
atomic proposition does not have a type. But one can sample verdicts for this proposition at every 10 s, every
minute or every hour, or every kilometer, each giving a diferent łtypež of signal.
We will examine several projection functions, however, writing MLTLM formulas requires only assurance

of their existence, not their deinition; this provides a separation of concerns we leverage to ease speciication
writing and linearizing the veriication worklow. Nevertheless, a formula can only be evaluated after projection
between types are speciied (and therefore, Semi- Semantics). For example, consider a formula � specifying that
�1 should hold every hour for 10 hours, and �2 should hold every second for 100 seconds. In MLTLM, � could be
written as □[0,10,hours]�1 ∧ □[0,100,seconds]�2. In MLTL, � would need to be written assuming a monitor rate, say
seconds, as □[0,0]�1 ∧ □[3600,3600]�1 ∧ □[7200,7200]�1 ∧ · · · and □[0,100]�2. The formula is longer and embeds the
relation between hours and seconds. If the speciication must be evaluated at a monitor rate of minutes instead,
the canonical encoding must be updated by the speciication author as discussed in more detail in Section 1
(Fig. 1). In contrast, in MLTLM, the top view speciication remains the same even in the face of implementation
details like evaluation rate.

3.1 Evaluation of an MLTLM Formula

Evaluation of an MLTLM formula on a trajectory requires signals for all atomic propositions. Evaluating an
MLTLM formula naming at most one type over a trajectory is equivalent to evaluating an MLTL formula over a
computation containing signals of that type.
With projection, a new signal of a diferent type can be derived from an existing signal in the trajectory. For

example, the return of a high-rate sensor can be down-sampled to match the type of a low rate sensor. This

ACM Trans. Embedd. Comput. Syst.

8 • G. Hariharan et al.

�B

2
□[1,2,B]

�B

1

�B

A

�A

2

□[2,4,A]

�A

1

�

(a)

�C

1 �C

B

�B

3
□[1,2,B]

�A

2

�B

2
�B

A

�A

1

□[2,4,A]

�A

B

�B

1
�

(b)

Fig. 2. Illustration of two possible evaluations of a formula □[1,2,B] (□[2,4,A]�)

.

łderived signalž evaluation is where all signals are irst projected to a common type before evaluation. Using
signals, types, and projection, we can evaluate a formula with mixed types by considering each subformula to
represent the signal of its own evaluation and projecting where necessary as explained further in the next section.
Critically, operator semantics are deined for any type, but only when the input(s) and output types match.

The inputs to the temporal logic operator must be projected to the written type in the operator’s bound if needed.
Fundamentally, MLTLM formulas represent a directed datalow graph between domains of MLTL connected by
projections.

Tutorial Example of an Application of the MLTLM Semantics (Def. 3.2). To clarify the semantics in Def. 3.2, consider
the formula □[1,2,B] (□[2,4,A]�). The global (□) operator is a common unary temporal operator derived from the
equivalence relation □[��,��,A]� ⇔ ¬(true U[��,��,A] ¬�). This is the same as adding the following case to the
MLTLM semantics:

�A [�] := true if �A

1 [�] = true ∀� ∈ [� + ��, � + ��],

if � = □[��,��,A]�1 .

Applying Def. 3.2, the evaluation of formula □[1,2,B] (□[2,4,A]�) depends on the type of any known signals for �

and the desired output type. Consider generating a signal of type B from the above formula, and that �A
� is known

for � . In Fig. 2a, the known signal for � , �A

1 , is input to □[2,4,A] whose satisfaction signal, �A

2 , is irst projected to

�B

A
(�A

2) = �B

1 to match types with □[1,2,B] , inally generating �B

2 which meets the required output of type B.
Fig. 2b considers another case with the same formula where we need an output signal of type C, and know

�B
� . In Fig. 2b, evaluating the subformula □[2,4,A]� requires a signal for � in type A, as per the semantics, but we

only know � in type B. This implies a projection �A

B
(�B

1) = �A

1 before the result is input to □[2,4,A] , generating

�A

2 . Another type incompatibility arises between �A

2 and □[1,2,B] , so it is again (implicitly) projected to a type B

through �B

A
(�A

2) = �B

2 . Since the desired output type is C, there is one last projection �C

B
(�B

3) = �C

1 .

4 Example Specifications with Projections over Diferent Types

E1 Type space

(a) The verbal speciication: łIn the region 4 miles from the origin, the drone shouldn’t exceed a velocity of
12 mph.ž

(b) The formal MLTLM speciication: □[0,4,�����] (� < 12)

ACM Trans. Embedd. Comput. Syst.

MLTL Multi-type: A Typed Logic for Cyber-Physical Systems • 9

The formal speciication says that the drone’s speed should not exceed 12 mph 4 miles from the origin.
The atomic proposition (� < 12) may be sampled by a sensor say every mile, every feet, or every second.
Correspondingly, the signal is projected to the type����� and then the temporal operator is evaluated as
per the MLTL semantics. To illustrate diferent sampling frequencies, consider these scenarios:

Case 1 (Fig. 3) Assume that the proposition (� < 12) is sampled every mile (Recall that atomic propositions
and formulas do not have a type, only signals have a type, see Section 3). In this case, a projection is
not needed as the atomic proposition is evaluated in the same type as its parent operator.

������
2

□[0,4,�����]

������
1

� < 12

Fig. 3. Example E1, Case 1, when (� < 12) is sampled every mile

Case 2 (Fig. 4) Assume that (� < 12) is sampled every feet. In this case we project feet to miles. 1 mile is

������
2

□[0,4,�����]� �����
� ���

�
� ���
1

������
2

� < 12

Fig. 4. Example E1, Case 2, when (� < 12) is sampled every feet

5280 feet. Thus we need to convert every 5280 signal values into one signal value using a projection.
Consider the following projection candidates:

Deinition 4.1. (Modulo-Reduction Function) Let �A and �B denote the set of all signals of types A and
B respectively. The function �� : �

A → �B implements the projection �B

A
(�A) by modulo-reduction

with positive integer stride � when:

�� (�
A) = �B such that �B [�] = �A [� ·�] (1)

The modulo-reduction function outputs every �th value from the input signal.

Deinition 4.2. (Majority-Reduction Function) The function �� : �
A → �B , implements the projection

�B

A
by majority-reduction with positive integer stride � when:

�� (�
A) =�B such that

�B [�] =

{
true, if N0 ({ � ∈ [� ·�, (� + 1) ·�) : (�A [�] = true)}) ≥ ⌊�/2⌋,

false, otherwise,

where N0 (·) is the set cardinality.

The majority-reduction function outputs the majority value of every � values of the input signal.

Deinition 4.3. (Anyone Function) The function ∃� : �
A → �B , implements the Anyone projection �B

A

with positive integer stride � when:

∃� (�
A) =�Bsuch that

�B [�] =

{
true, if ∃ � ∈ [� ·�, (� + 1) ·�), �A [�] = true,

false, otherwise.

ACM Trans. Embedd. Comput. Syst.

10 • G. Hariharan et al.

Deinition 4.4. (All Function) The function ∀� : �A → �B , implements the All projection �B

A
with

positive integer stride � when:

∀� (�
A) =�Bsuch that

�B [�] =

{
true, if ∀� ∈ [� ·�, (� + 1) ·�), �A [�] = true,

false, otherwise.

The Anyone function projects to a true value from a stride of length � if at least one element in the
stride is true. Similarly, the All function projects to true when all values in the stride is true.
We may use any of these projections in Defs. 4.1-4.4 with � = 5280, or some other projection that
converts every 5280 signal values to a single value in the resultant signal. The choice of the projection
determines the output signal, i.e., diferent projections may result in diferent signal outputs for the
same formula.

Case 3 (Fig. 5) Assume that (� < 12) is sampled every minute. We need to project a minute-type signal to a
mile-type signal.

������
3

□[0,4,�����]� �����
�������

��������
1

������
2

� < 12

Fig. 5. Example E1, Case 3, when (� < 12) is sampled every minute

As an example projection, consider the following:

Deinition 4.5. (Time-to-Space projection) Let � : Z → R
+ be the speed time series, let Δ� be the

sampling rate of the signal ����� , and let �̄ (�) =
∑�−1

�=0 � (�)/� be the average speed up to the �th instant.
Consider a function � : N → N, such that � (�) = (⌊�̄ (�) Δ� �⌋). The Time-to-Space projection is such
that for each � ≥ 0, the �th value of ������ is assigned as

������ [�] = ����� [�], ∀� ∈ [� (�), � (� + 1)) .

The Time-to-Space projection models the distance as the average speed times the time converted into
an integer using the loor function. The truth value at a distance � not covered by the loor function is
assigned the value at (� − 1). Depending on the use-case, one may consider more complex, creative,
and realistic relationships, e.g., include acceleration, use a diferential equation or a machine learning
model to relate signals sampled at a time rate to a signal sampled at a spatial rate.

E2 Types space and time

(a) The verbal speciication: łThe car drives at a velocity less than 60mph for a distance of 10 miles, and then
maintains 70mph for 60 minutes.ž

(b) The formal MLTLM speciication:

□[0,10,�����] (� < 60) ∧ □[10,10,�����] (□[0,60,�������] (� == 70)) (2)

The left-hand side of the conjunction in Eq. (2) expresses that the car drives at a velocity less than 60
mph for 10 miles, and the right-hand side expresses that the velocity is maintained at 70 mph for the
next 60 minutes. Consider diferent scenarios based on how velocity is sampled:

Case 1 (Fig. 6a) The velocity is sampled every minute. For this, follow the same steps as in Case 3 of the
previous example.

Case 2 (Fig. 6b) The velocity � is sampled every mile (e.g., by a GPS tracking device). Follow the same steps as
Case 3 of the previous example.

ACM Trans. Embedd. Comput. Syst.

MLTL Multi-type: A Typed Logic for Cyber-Physical Systems • 11

������
6

∧

□[0,10,�����] □[10,10,�����]

� �����
������� � �����

�������

□[0,60,�������]

��������
1

������
1

��������
2

��������
3

������
3

������
4 ������

5

� == 70

� < 60

(a) Case 1

������
6

∧

□[0,10,�����] □[10,10,�����]

� < 60 □[0,60,�������]

��������
�����

� == 70

������
1

��������
2

������
2

��������
3

������
4 ������

5

(b) Case 2

Fig. 6. Example E2, (a) Case 1 and (b) Case 2 where velocity � is sampled every minute and mile respectively

E3 Types of diferent time scales I

(a) The verbal speciication: łThe drone’s surveillance camera needs to be in on state for 10 continuous
minutes, every hour.ž (Assuming a mission-time of 3 hours)

(b) The formal MLTLM speciication:

□[0,3,ℎ����]^[0,50,�������]□[0,10,�������]camera-on

�ℎ����2
□[0,3,ℎ����]

�ℎ����1

�ℎ����
�������

��������
3

^[0,50,�������]

��������
2

□[0,10,�������]

��������
1

camera-on

Fig. 7. Example E3, where camera-on is sampled every minute

Consider a signal of length 300 for łcamera-onž in Fig. 7. A sample evaluation is as follows (we represent
the signal as a (time-stamp,verdict) tuple for illustration purposes in this example; a signal is a boolean
vector in the rest of this paper)

��������
1 = [(0, true), (1, true), . . . , (299, true)],

��������
2 = [(0, true), (1, true), . . . , (290, true)],

��������
3 = [(0, true), (1, true), . . . , (240, true)],

�ℎ����1 = [(0, true), (1, true), (2, true), (3, true)],

�ℎ����2 = [(0, true)] .

Here, ��������
1 is generated by a sensor at a minute rate. This passes through the □[0,10,�������] operator,

and generates a verdict for every 10 minutes, i.e., 0-10, 1-11, 2-12, . . ., 290-300. Thus ��������
2 has 291

ACM Trans. Embedd. Comput. Syst.

12 • G. Hariharan et al.

verdicts. Then, ��������
2 passes through ^[0,50,�������] , and generates a verdict for every 50 minutes, i.e.,

0-50, 1-51, 2-52, . . ., 240-290. Hence, ��������
3 has 241 verdicts. Next, the minute-wise signal is projected

into an hour-wise signal by going over�ℎ����
������� . This projection can be anyone of the reduction functions

(Defs. 4.1-4.4) with a stride of � = 60. As there are only 4 strides (� = 60) in a signal of length 240, the
length of �ℎ����1 is 4. Next, the □[0,3,ℎ����] evaluates �

ℎ����
1 to produce �ℎ����2 , yielding a signal of length 1.

E4 Types of diferent time scales II

(a) The verbal speciication: łThe spacecraft maintenance cycle runs at least once a month over the ive-year
mission.ž

(b) The formal MLTLM speciication:

□[0,5,�����]^[0,30,����]maintenance

The evaluation of this speciication is similar to Example E3.
E5 Types of diferent time scales III

(a) The verbal speciication: łVerify monthly that the thrusters did not burn more than 3 seconds at a timež
(b) The formal MLTLM speciication:

□[0,12,����ℎ] (¬□[0,3,�������]burn-thrusters)

The evaluation of this speciication is similar to Example E3.

5 Equivalent Formula in MLTL and Succinctness of MLTLM

We develop a theory to derive equivalent MLTL formula for an MLTLM formula with a class of logical projec-
tions. Next, we develop translators based on it with the modulo-reduction projection (Def. 4.1). We then prove
succinctness of MLTLM formulas compared to translated equivalent MLTL formulas with the modulo-reduction
projection. We only focus on the modulo-reduction projection as the theory can be readily extended to other
projections.

5.1 Equivalent MLTLM Formula for Every MLTL Formula

For a formula naming at most one type, all properties that hold in MLTL hold in MLTLM, i.e., ^[��,��,A]� ⇔

trueU[��,��,A] � , □[��,��,A]� ⇔ ¬(^[��,��,A]¬�) and so on. The following lemma expresses that formulas express-
ible in MLTL form a subset of formulas expressible in MLTLM. The lemma attests that there is no loss in using
MLTLM compared to MLTL. The transformation is simple, and the formula is, at worst, the same length.

Lemma 5.1. An equivalent MLTLM formula of the same length exists for every MLTL formula, and this translation

is possible in constant time.

Proof. We can represent any MLTL formula as an MLTLM formula by appending a signal type to the interval
bound of every temporal operator. This follows from the deinition of MLTLM. The formula length, being the
total number of operators plus atomic propositions, is not afected by appending a type name to the temporal
operators. Hence the resultant MLTLM formula is of the same length as the MLTL formula. □

5.2 Equivalent MLTL Formulas for MLTLM Formulas with Logical Projections

Lemma 5.2 (Adeqate set of MLTL). The operators ¬, ∧ and □ form an adequate set, i.e., any MLTL formula

can be equivalently expressed exclusively with these operators.

Proof. In propositional logic the adequate set is {¬,∧}, and this extends directly to temporal logic as well.
Therefore, it suices to show that any formula �1U[��,��]�2 can be equivalently expressed in MLTL using only

ACM Trans. Embedd. Comput. Syst.

MLTL Multi-type: A Typed Logic for Cyber-Physical Systems • 13

the □ operator. The deinition of the until operator can be equivalently expanded as,

�1U[��,��]�2 = □[��,��]�2

∨ (□[��,��]�1 ∧ □[��+1,��+1]�2)

∨ (□[��,��+1]�1 ∧ □[��+2,��+2]�2)

∨ (□[��,��+2]�1 ∧ □[��+3,��+3]�2)

...

∨ (□[��,��−1]�1 ∧ □[��,��]�2),

= ¬(¬□[��,��]�2

∧ ¬(□[��,��]�1 ∧ □[��+1,��+1]�2)

∧ ¬(□[��,��+1]�1 ∧ □[��+2,��+2]�2)

∧ ¬(□[��,��+2]�1 ∧ □[��+3,��+3]�2)

...

∧ ¬(□[��,��−1]�1 ∧ □[��,��]�2))

□

Deinition 5.3 (Logical Projection). Let Φ be the set of MLTLM formulas. Consider a formula � = □[��,��,D]�1

where (�, �1) ↦→ �� , where � ∈ {A,B, . . . } and � ≠ D. Let �D
� project �� to a signal of type D. The projection is

called a logical projection if there exists a function � : Φ → Φ such that ((�,�(�)) ↦→ ��) ⇔ ((�, �) ↦→ �D).

Theorem 5.4 (Expressive Eqivalence of MLTL and MLTLMwith Logical Projections). Let all the atomic

propositions of an MLTLM formula � generate signals of the same type, A. Furthermore, for every type � in � , let

there exist a chain of logical projections from � to A. Then, there exists an MLTLM formula� , such that the signal

generated by � is equivalent to a signal of type A generated by� .

Proof. Recollect that the translation is from a multi-type logic, MLTLM, to a single type logic, MLTL. Because
we translate to a single-type logic, it is pre-requisite that the class of MLTLM formulas that have a translation to
MLTL, have atomic propositions that generate signals of the same type. MLTLM formulas that don’t satisfy this
assumption cannot be translated to MLTL. We prove that

((�, �) ↦→ �D) ⇔ ((�,�) ↦→ �A).

The proof can be succinctly expressed as a recursive function ℎ,

ℎ(�) :=





�, if � has only one type, A, in the entire formula,

�(□[��,��,�]ℎ(�1)), if � = □[��,��,�]�1 and � ≠ A,

□[��,��,A]ℎ(�1), if � = □[��,��,A]�1,

¬ℎ(�1), if � = ¬�1,

ℎ(�1) ∧ ℎ(�2), if � = �1 ∧ �2,

(3)

where we use an abuse of notation for the function � to represent any of the diferent, but respective functions of
corresponding logical projections. □

ACM Trans. Embedd. Comput. Syst.

14 • G. Hariharan et al.

For clarity, we derive the logical projection function for the modulo-reduction projection (Def. 4.1) as an
example. Let, � = □[��,��,B]�1 and (�, �) ↦→ �B and let (�, �1) ↦→ �A, we have

�B [�] = □[��,��,B]�
B

1 [� ..],

⇔ �B [�] = true if ∀� ∈ [� + ��, � + ��], �B

1 [�] = true,

⇔ �B [�] = true if ∀� ∈ [� + ��, � + ��], �A [� �] = true,

⇔ �B [�] = true if ∀� ′ ∈ [(� + ��) �, (� + ��) �, �], �A [� ′] = true, (where � ′ = � �)

⇔ �A [�′] = □[�� �,�� �] (�
A [�′] ∧ □[�,�]�

A [�′] ∧ □[2�,2�]�
A [�′] ∧ · · · ∧ □[(��−��)�,(��−��)�]�

A [�′]), (where �′ = � �)

where [��,��, �] represents a set starting from ��, ending at ��, with a stride of length � . Using the formula
notation, we have that ((�,�(�)) ↦→ �A) ⇔ ((�, �) ↦→ �B) where

�(�) = □[�� �,�� �,A] (�1 ∧ □[�,�,A]�1 ∧ □[2�,2�,A]�1 ∧ · · ·

∧ □[(��−��)�,(��−��)�,A]�1).

5.3 Translations from MLTLM to MLTL for Formulas with the Modulo-Reduction Projection

We developed four translators from MLTLM to MLTL based on the recursive formula Eq. 3. The four translators
vary in their expansions of the Until operator as follows. For a formula � U[1,4,B]�, where � and � generate
signals of type A the four translators expand as the following equivalent MLTL formulas assuming that � = 2 in
the modulo-reduction projection (Eq. (1)):

(1) Translator 1:

((□[2,2] (�))

∨ (□[2,2] (�) ∧ □[4,4] (�))

∨ (□[2,2] (�) ∧ □[4,4] (�) ∧ □[6,6] (�))

∨ (□[2,2] (�) ∧ □[4,4] (�) ∧ □[6,6] (�) ∧ □[8,8] (�)))

This translation is the most expanded form. This version is a raw expansion of the until operator (Def. 3.2).
(2) Translator 2:

□[2,2] (�

∨ (� ∧ □[2,2] (�))

∨ (� ∧ □[2,2] (�) ∧ □[4,4] (�))

∨ (� ∧ □[2,2] (�) ∧ □[4,4] (�) ∧ □[6,6] (�)));

This translation factors out a global operator from the rest of the formula.
(3) Translator 3: The same as Translator 2, but with the addition that common global operators over conjunctions

and disjunctions are taken out, e.g., the formula □[2,2]� ∧ □[4,6]� is translated to □[2,2] (� ∧ □[2,4]�).
(4) Translator 4:

□[2,2] (� ∨ □[2,2] (� ∧ (� ∨ □[2,2] (� ∧ (� ∨ □[2,2] (� ∧ □[2,2] (�)))))));

Translator 4 expands from the next normal form of an Until expression. We prove that this is the shortest
expansion of the until operator in MLTLM to an equivalent MLTL formula when using the modulo-reduction
projection, yielding succinctness results of MLTL vs MLTLM. We recall that we proved that every MLTL formula
can be expressed in MLTLM with the same formula length (Lemma 5.1). We now prove that an equivalent formula

ACM Trans. Embedd. Comput. Syst.

MLTL Multi-type: A Typed Logic for Cyber-Physical Systems • 15

to � U[��,��,B]� in MLTL is at least (�� − ��) long. We irst consider succinctness of LTL and MLTL. We derive
results based on the Θ operator as has been the standard in other succinctness proofs in literature [1, 25]

Lemma 5.5. (Succinctness of MLTL vs LTL) The property expressed as �U[��,��]� where �, � ∈ AP, cannot be

expressed in an LTL formula of size less than ��.

Proof. The adequate set of operators for an LTL formula is {¬, ∧, U, ⃝} [3]. The formula � U[��,��]� says
that the property � holds until there exists a state such that � holds inside the inite interval [��,��]. Therefore,
an equivalent LTL formula must equivalently express that the property � holds in at least one state in the range
[��,��]. However, the until operator in LTL reasons over ininite states, and cannot by itself reason over a inite
set of states in an interval. Propositional operators (¬,∧) cannot reason across states. Therefore, expressing that
� holds in at least one of the states inside [��,��] needs the next operator in LTL (⃝). The number of ⃝ in
the equivalent LTL formula is at least �� to reason up to the last state in � U[��,��]�. Therefore, the size of the
equivalent LTL formula is at least ��. □

We note that the next normal form of an Until expression � U[��,��]� is expanded as:

□[��,��] (� U[0,��−��]�)

=□[��,��] (� ∨ (� ∧ □[1,1] (� U[0,��−��−1]�)))

=□[��,��] (� ∨ (� ∧ □[1,1] (� ∨ (� ∧ □[1,1] (� U[0,��−��−2]�)))))

Looking from the irst equation in the above set of equivalent formulas, this can be expanded � times until
�� − �� − � becomes zero. The equivalent formula for the above in LTL is

⃝�� (� ∨ (� ∧ ⃝(� ∨ (� ∧ ⃝(� ∨ . . .))))),

where ⃝� is a shorthand notation for ⃝ repeated � times. There are �� next operators outside, and �� − �� next
operators inside the outermost brackets, thus there are Θ(��) operators in this expansion, and therefore this is
an optimal expansion of the Until operator from MLTL to LTL.

Lemma 5.6. (Succinctness of MLTLM vs MLTL with the Modulo-Reduction Function) Let �, � ∈ AP generate

signals of type A. Let B be a type such that the projection from type A to B is a modulo-reduction function with

a stride of length � > 1. Then, the property expressed as � U[��,��,B]� cannot be expressed as an MLTL formula of

length less than (�� − ��).

Proof. According to the until semantics, the property � needs to hold at least in one state between [�� �,�� �, �],
i.e., between �� � and �� � with a stride of length � > 1. Therefore the equivalent MLTL formula must express
that � holds in one of every �th state in the interval [�� �,�� �]. The until operator of MLTL reasons in the full
interval, and not for every �th state in the interval. The �th state is shortest referred by □[�,�] (this uses a single
operator). Referring to the next 2�th state from the current state may be done using □[2�,2�] from the current state,
or □[�,�] from the �th state, in either case using a single operator. This caries on till the end of the interval. Thus,
referring to every �th state needs at least (�� � − �� �)/� operators. This is reminiscent of the argument for the
expressive limitation of LTL [41, Corollary 4.2] □

Translator 4 uses an expansion based on the next normal form, and thus for each until operator U[��,��,B] ,
it produces an MLTL formula of length Θ(�� − ��), and is optimally short. The four translators were used to
translate 70 randomly generated MLTLM formulas, and the resultant MLTL formulas were set as speciications
to the R2U2 RV engine [26, 27]. All four translators, and our MLTLM monitor extension produced consistent
output signals for 53 diferent input signals, each of length 4000, conirming the theory presented in this section.

ACM Trans. Embedd. Comput. Syst.

16 • G. Hariharan et al.

6 An Implementation of an MLTLM Monitor with the Modulo-Reduction Projection

6.1 Implementation Details

We now illustrate space and time optimization possibilities by implementing an MLTLM RV engine. The generic
syntax and semantics of MLTLM separates the speciication from the signal type, i.e., the speciication remains
the same irrespective of the signal type. It is apparent from the semantics (Def. 3.2) that the output signal type is
determined only in the fourth case with the temporal operator. For example, the formula � ∧� represents multiple
output signal types depending on the trajectory types used for � and �, whereas the formula □[0,0,A] (� ∧ �) has a
single output type A irrespective of the trajectory types used for � and �. Our implementation needs a single
output type, and hence considers a subset of MLTLM formulas that have a temporal operator at the root of their
ASTs, and assumes that the type on the root temporal operator is the desired output type (we call this the root
node type imposition). Formulas without a temporal operator as their ASTs’ root are assigned a default output
type, D.

Furthermore, to make the evaluation of an MLTLM formula complete, two more ingredients are essential, (a)
the placement of projections in the AST of an MLTLM formula and (b) deined projections between type signals.
Consider the MLTLM formula, □[0,0,A] (� ∧�). Let us assume that only a signal of type B is available from � and a
signal of type C from �, as denoted in Fig. 8a. From the semantics Def. 3.2, it is clear that a conjunction is allowed
only between signals of the same type, which implies that there are implicit projections to match signal types in
the conjunction as shown in Fig. 8b.
We have two (out of many) options here to match types, (a) to project to a common signal type D at the

conjunction, and then to a type A to match type in □[0,0,A] (Fig. 8b), and (b) place a projection to type A at the
conjunction, then a second projection is not needed to match types in □[0,0,A] (Fig. 8c). While the former option
is of interest in the broader scope of applications with MLTLM like signal processing, the latter is the situation
with the minimal number of projections. The generalization for this minimal projection placement is to impose that

signals are projected to the type of the closest ancestor node with a type (the closest ancestor type imposition).
All nodes in the unique path connecting a node to the root of the AST are ancestor nodes of the node (the node
inclusive). In this example, the closest ancestor of the conjunction is □[0,0,A] whose type is A. We further assume
that all such projections exist to evaluate a formula. We emphasize that the root-node imposition is only used to
showcase a preliminary MLTLM monitor so that projection to types can become automated.

Our MLTLM RV engine currently only implements the modulo-reduction projection (see Def. 4.1). The MLTLM
engine has added projection operators (see Def. 2.4) at appropriate places according to the semantics of MLTLM
(Def. 3.2) respecting the closest ancestor type imposition. The modulo-reduction projection operator drops the
appropriate signal values not needed in evaluating a formula and reports the output signal type corresponding to
the type in the root of the AST of the formula.

6.2 Optimization Results with Random Formulas

We randomly draw MLTLM formulas using the procedure in [18] and plot the length of MLTL translations. The
randomly drawn formulas are parametrized by the probability of drawing a temporal operator (�), the maximum
diference between the lower and upper bounds (�), and the maximum signal length (�). We ix� = � = 6 in
our study here. Furthermore, the memory and time also depend on stride, � of the modulo-reduction function (see
Eq. (1)). In real systems, speciications may reason over say, seconds, minutes, hours and days, which correspond
to � = 60, and 24. We conservatively consider four signal types, which we call A, B, C and D, where (see Eq. (1)
for �� (�)), with

�2 (�
A) = �B, �3 (�

B) = �C, �4 (�
C) = �D,

ACM Trans. Embedd. Comput. Syst.

MLTL Multi-type: A Typed Logic for Cyber-Physical Systems • 17

□[0,0,A]

∧

�B

�

�C

�

(a)

□[0,0,A]

�A

�A

D

�D

∧
�D �D

�D

B

�B �C

�

�D

C

�

(b)

□[0,0,A]

�A

∧
�A �A

�A

B

�B �C

�

�A

C

�

(c)

Fig. 8. The evaluation of an MLTLM formula depends on the placement of projections to match types in binary operators

(a) (b)

Fig. 9. (a) Cumulative formula length with the number of randomly drawn formulas with � = 0.5, and (b) mean formula

length against the probability of choosing a temporal operator

with stride lengths � = 2, 3, 4. Note that the memory savings will be much larger with a stride like � = 60 (e.g.,
from second to minute).
Fig. 9a shows the cumulative formula length with randomly drawn formulas. At � = 0.5, the four translators

produce MLTL formulas of nearly the same length. Among the translators, Translator 4 performs better due to
being optimally short (Lemma 5.6). In contrast, the formula lengths of the MLTLM formulas are substantially
smaller. Note that the plots are on log-scale; the diference between Translator 4 and the rest is about 200,000
units. Hence, there is no loss in using MLTLM in comparison to MLTL (see Section 3), but using MLTLM will
result in much smaller and more intuitive formulas depending on the projection function.
Fig. 9b shows the mean formula length (averaged over 60 random formulas) by varying the probability of

choosing a temporal operator. � = 0 corresponds to no temporal operators, and in that case, the translators and
the MLTLM formula perform nearly equally well. This is expected ś if a formula contains mere propositional

ACM Trans. Embedd. Comput. Syst.

18 • G. Hariharan et al.

(a) (b)

Fig. 10. Cumulative (a) memory and (b) time needed to verify random MLTLM formulas vs translated equivalent MLTL

formulas

logic, its length should be independent of the temporal speciication language. However, on close observation,
the MLTLM formula at � = 0 is slightly longer. This is because in MLTL there is only one signal type, hence there
is no need for a output signal type speciier, whereas in MLTLM, a proposition (say, � ∧ �, �, � ∈ AP) represents
a family of outputs of diferent types. As per the root node imposition (Section 6.1), we always use a temporal
operator at the start of any formula (as in □[0,0,B] (� ∧ �) in the place of � ∧ �), and this adds to excess length of
an MLTLM formula compared to an MLTL formula with propositions. However, propositions like � ∧ � are valid
MLTLM formulas, but our implementation needs an output-type identiier.
On increasing the probability of choosing a temporal operator, the equivalent formulas in MLTL become

signiicantly longer owing to the expansion to the base type as discussed in Section 5. Fig. 10 shows the estimated
resource and time requirements on hardware. The memory to evaluate a formula is statically assigned in R2U2 [27]
as dynamic memory is often not permitted in light software. Hence, we compare the amount of static memory
that needs to be assigned for equivalent formulas in MLTLM and (translated) MLTL (Fig. 10a). Similarly, the time
taken for formula evaluation is directly proportional to the number of nodes created in the AST. We call the
nodes in the AST as observers (as seen in the Y axis labels of Fig. 10b). We see that equivalent formula require
much less memory in MLTLM than MLTL (Fig. 10a). Similarly, the evaluation time is faster for MLTLM as it
needs many fewer observers (Fig. 10b).

6.3 Optimization Results with Real Formulas

We now consider the real formula examples, E3, E4 and E5 from Section 4. We use the modulo-reduction function
as the projection between types. Recall that the formulas are

E1 □[0,3,ℎ����]^[0,50,�������]□[0,10,�������]camera-on
E2 □[0,5,�����]^[0,30,����]maintenance
E3 □[0,12,����ℎ] (¬□[0,3,�������]burn-thrusters)

For E1, the stride length is 60 for an hour to minute conversion. For E2, the stride length assumed 365, for
a conversion from day to year. For E3, the stride length is 2592000, assuming that a month is 30 days. The
corresponding MLTL formulas are obtained using the most succinct translator, Translator 4 in Section 5.3.
Fig. 11a shows that in all cases, MLTLM (dark) uses much less memory compared to MLTL. In speciic, for

large stride lengths, the savings is much greater, as in E5. This is expected as MLTLM compacts data using the

ACM Trans. Embedd. Comput. Syst.

MLTL Multi-type: A Typed Logic for Cyber-Physical Systems • 19

(a) (b)

Fig. 11. (a) Memory and (b) time needed to verify real MLTLM formulas from Section 4, E3, E4, and E5, vs translated

equivalent (most succinct) MLTL formulas

projection, whereas the MLTL monitor would store that same data in memory until a verdict can be ascertained.
This demonstrates that MLTLM is potentially useful in resource constrained hardware, allowing monitoring a
broader spectrum of speciications that would be nearly impossible using MLTL. Fig. 11b shows the length of
instructions needed in hardware (denotes the speed of evaluating a speciication) using MLTLM and MLTL. In all
cases, MLTLM has a smaller instruction length, i.e., a greater speed of evaluation.
We end this section with a few remarks. Results show that there is great opportunity to have short intuitive

formulas that encode timescales directly in the formula to simplify the worklow (Fig. 1), and in addition, an
optimally conigured RV engine for MLTLM is likely to have profound memory savings making it more suitable
for resource constrained hardware.

7 Conclusion

Writing speciications naturally needs reasoning across multiple signal types, be it signals coming from diferent
sensors at diferent rates, or belonging to observers in parallel universes (distributed systems). We developed
a multi-type logic to express such speciications, and then explored succinctness and memory savings when
considering the modulo-reduction projection. As discussed, this serves multiple purposes: 1) for the user, spec-
iications are easy to write, 2) the theoretical satisfaction in diferent types is deined unambiguously, and 3)
implementations can better utilize resources when compared with a single signal-type logic. Moreover, we expect
that MLTLM will simplify the worklow by keeping the syntax simple and accessible, and postponing the nuances
into the projection function. More importantly, MLTLM separates the speciication from signal type. For example,
let us suppose that a pressure sensor is changed in the Lunar Gateway, and it generates data in a diferent rate
than the old sensor, or perhaps in a diferent unit like Pascals in the place of atmospheric pressure. Speciications
for a single type logic would have to be changed to account for the signal type. MLTLM side-steps this process:
The signal type will not afect the speciication in any manner. In the future, we plan to have an automated
assistant, that will allow a user to choose diferent projections in diferent contexts of speciications, (like łat
leastž, łat mostž, łonly oncež etc.), and will also inform the user about the amount of memory he will need to
dedicate/save on the hardware (the memory needed may vary based on the type of projection). This will allow the
industrial veriication community to seamlessly move to a multi-type logic. We will also consider more human

ACM Trans. Embedd. Comput. Syst.

20 • G. Hariharan et al.

authored MLTLM speciications on real systems to get a better perspective on optimization opportunities. Lastly,
the MLTLM monitor built upon R2U2 was validated across a regression suite of speciications and trajectories,
but the current implementation can be improved to have tighter bounds on memory usage, which needs further
investigation.

References

[1] Micah Adler and Neil Immerman. 2003. An n! lower bound on formula size. ACM Transactions on Computational Logic (TOCL) 4, 3

(2003), 296ś314.

[2] James F. Allen and Patrick J. Hayes. 1985. A Common-Sense Theory of Time. In Proceedings of the 9th International Joint Conference

on Artiicial Intelligence - Volume 1 (Los Angeles, California) (IJCAI’85). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

528ś531.

[3] Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT press.

[4] Philippe Balbiani. 2008. Time Representation and Temporal Reasoning from the Perspective of Non-Standard Analysis. In Proceedings of

the Eleventh International Conference on Principles of Knowledge Representation and Reasoning (Sydney, Australia) (KR’08). AAAI Press,

695ś704.

[5] Stefano Baratella and Andrea Masini. 2020. A two-dimensional metric temporal logic. Mathematical Logic Quarterly 66, 1 (2020), 7ś19.

https://doi.org/10.1002/malq.201700036

[6] Omar Bataineh, David S. Rosenblum, and Mark Reynolds. 2019. Eicient Decentralized LTL Monitoring Framework Using Tableau

Technique. 18, 5s, Article 87 (2019), 21 pages.

[7] Andreas Bauer and Yliès Falcone. 2012. Decentralised LTL Monitoring. In FM 2012: Formal Methods, Dimitra Giannakopoulou and

Dominique Méry (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 85ś100.

[8] A. Benveniste, P. Caspi, S.A. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone. 2003. The synchronous languages 12 years later.

Proc. IEEE 91, 1 (2003), 64ś83. https://doi.org/10.1109/JPROC.2002.805826

[9] Gérard Berry and Ellen Sentovich. 2001. Multiclock esterel. In Advanced Research Working Conference on Correct Hardware Design and

Veriication Methods. Springer, 110ś125.

[10] Paolo Bottoni and Andrew Fish. 2011. Policy speciications with Timed Spider Diagrams. In 2011 IEEE Symposium on Visual Languages

and Human-Centric Computing (VL/HCC). 95ś98. https://doi.org/10.1109/VLHCC.2011.6070385

[11] Howard Bowman and Simon Thompson. 2003. A Decision Procedure and Complete Axiomatization of Finite Interval Temporal Logic

with Projection. Journal of Logic and Computation 13, 2 (2003), 195ś239. https://doi.org/10.1093/logcom/13.2.195

[12] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez. 2014. Temporal

Logics for Hyperproperties. In Principles of Security and Trust, Martín Abadi and Steve Kremer (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 265ś284.

[13] James Cliford and Ahobala Rao. 1986. A simple, general structure for temporal domains. (1986).

[14] Quentin Cohen-Solal, Maroua Bouzid, and Alexandre Niveau. 2015. An Algebra of Granular Temporal Relations for Qualitative Reasoning.

In Proceedings of the 24th International Conference on Artiicial Intelligence (Buenos Aires, Argentina) (IJCAI’15). AAAI Press, 2869ś2875.

[15] Jean-Louis Colaço, Bruno Pagano, Cédric Pasteur, and Marc Pouzet. 2018. Scade 6: From a kahn semantics to a kahn implementation for

multicore. In 2018 Forum on Speciication & Design Languages (FDL). IEEE, New York, 5ś16.

[16] James B Dabney, Julia M Badger, and Pavan Rajagopal. 2021. Adding a Veriication View for an Autonomous Real-Time System

Architecture. In AIAA Scitech 2021 Forum. 0566.

[17] James B. Dabney, Julia M. Badger, and Pavan Rajagopal. 2023. Trustworthy Autonomy for Gateway Vehicle System Manager. In 2023

IEEE Space Computing Conference (SCC). 57ś62. https://doi.org/10.1109/SCC57168.2023.00018

[18] Marco Daniele, Fausto Giunchiglia, and Moshe Y Vardi. 1999. Improved automata generation for linear temporal logic. In International

Conference on Computer Aided Veriication. Springer, 249ś260.

[19] Alexandre Donzé. 2013. On Signal Temporal Logic. In Runtime Veriication, Axel Legay and Saddek Bensalem (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 382ś383.

[20] Jerome Euzenat and Angelo Montanari. 2005. Time granularity. Handbook of Temporal Reasoning in Artiicial Intelligence (January 2005).

[21] Massimo Franceschet, Angelo Montanari, Adriano Peron, and Guido Sciavicco. 2006. Deinability and decidability of binary predicates

for time granularity. Journal of Applied Logic 4, 2 (June 2006), 168ś191. https://doi.org/10.1016/j.jal.2005.06.004

[22] Johannes Geist, Kristin Yvonne Rozier, and Johann Schumann. 2014. Runtime Observer Pairs and Bayesian Network Reasoners On-board

FPGAs: Flight-Certiiable System Health Management for Embedded Systems. In Proceedings of the 14th International Conference on

Runtime Veriication (RV14), Vol. 8734. Springer-Verlag, 215ś230.

[23] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. 1991. The synchronous data low programming language LUSTRE.

Proc. IEEE 79, 9 (1991), 1305ś1320.

ACM Trans. Embedd. Comput. Syst.

MLTL Multi-type: A Typed Logic for Cyber-Physical Systems • 21

[24] Gokul Hariharan, Brian Kempa, Tichakorn Wongpiromsarn, Phillip H. Jones, and Kristin Y. Rozier. 2022. MLTL Multi-type (MLTLM): A

Logic for Reasoning About Signals of Diferent Types. In Software Veriication and Formal Methods for ML-Enabled Autonomous Systems,

Omri Isac, Radoslav Ivanov, Guy Katz, Nina Narodytska, and Laura Nenzi (Eds.). Springer International Publishing, 187ś204.

[25] Neil Immerman. 2012. Descriptive complexity. Springer Science & Business Media.

[26] Chris Johannsen, Phillip Jones, Brian Kempa, Kristin Yvonne Rozier, and Pei Zhang. 2023. R2U2 Version 3.0: Re-Imagining a Toolchain

for Speciication, Resource Estimation, and Optimized Observer Generation for Runtime Veriication in Hardware and Software. In

Computer Aided Veriication, Constantin Enea and Akash Lal (Eds.). Springer Nature Switzerland, 483ś497.

[27] Brian Kempa, Pei Zhang, Phillip H. Jones, Joseph Zambreno, and Kristin Yvonne Rozier. 2020. Embedding Online Runtime Veriication

for Fault Disambiguation on Robonaut2. In Proceedings of the 18th International Conference on Formal Modeling and Analysis of Timed

Systems (FORMATS) (Lecture Notes in Computer Science (LNCS), Vol. 12288). Springer, Vienna, Austria, 196ś214.

[28] Ugo Dal Lago, Angelo Montanari, and Gabriele Puppis. 2007. Compact and tractable automaton-based representations of time

granularities. Theoretical Computer Science 373, 1 (2007), 115ś141. https://doi.org/10.1016/j.tcs.2006.12.014

[29] Ugo Dal Lago, Angelo Montanari, and Gabriele Puppis. 2007. On the Equivalence of Automaton-Based Representations of Time

Granularities. In 14th International Symposium on Temporal Representation and Reasoning (TIME’07). 82ś93. https://doi.org/10.1109/

TIME.2007.56

[30] Jianwen Li, Moshe Y. Vardi, and Kristin Y. Rozier. 2019. Satisiability Checking for Mission-Time LTL. In Proceedings of 31st International

Conference on Computer Aided Veriication (CAV) (LNCS, Vol. 11562). Springer, New York, NY, USA, 3ś22.

[31] Zachary Luppen, Michael Jacks, Nathan Baughman, Benjamin Hertz, James Cutler, Dae Young Lee, and Kristin Yvonne Rozier. 2022.

Elucidation and Analysis of Speciication Patterns in Aerospace System Telemetry. In Proceedings of the 14th NASA Formal Methods

Symposium (NFM 2022) (Lecture Notes in Computer Science (LNCS), Vol. 13260). Springer, Cham, Caltech, California, USA.

[32] Menna Mostafa and Borzoo Bonakdarpour. 2015. Decentralized Runtime Veriication of LTL Speciications in Distributed Systems. In

2015 IEEE International Parallel and Distributed Processing Symposium. 494ś503.

[33] Naoko Okubo. 2020. Using R2U2 in JAXA program. Electronic correspondence. Series of emails and zoom call from JAXA to PI with

technical questions about embedding R2U2 into an autonomous satellite mission with a provable memory bound of 200KB.

[34] J. Ouaknine and J. Worrell. 2008. Some Recent Results in Metric Temporal Logic. In Formal Modeling and Analysis of Timed Systems,

Franck Cassez and Claude Jard (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1ś13.

[35] Thomas Reinbacher, Kristin Y. Rozier, and Johann Schumann. 2014. Temporal-Logic Based Runtime Observer Pairs for System Health

Management of Real-Time Systems. In Proceedings of the 20th International Conference on Tools and Algorithms for the Construction and

Analysis of Systems (TACAS) (Lecture Notes in Computer Science (LNCS), Vol. 8413). Springer-Verlag, 357ś372.

[36] K.Y. Rozier and M.Y. Vardi. 2010. LTL Satisiability Checking. International Journal on Software Tools for Technology Transfer (STTT) 12, 2

(March 2010), 123 ś 137. https://doi.org/DOI10.1007/s10009-010-0140-3

[37] Kristin Y. Rozier. 2011. Linear Temporal Logic Symbolic Model Checking. Computer Science Review 5, 2 (2011), 163ś203. https:

//doi.org/10.1016/j.cosrev.2010.06.002

[38] Kristin Yvonne Rozier and Johann Schumann. 2017. R2U2: Tool Overview. In Proceedings of International Workshop on Competitions,

Usability, Benchmarks, Evaluation, and Standardisation for Runtime Veriication Tools (RV-CUBES), Vol. 3. Kalpa Publications, Seattle, WA,

USA, 138ś156.

[39] Johann Schumann, Patrick Moosbrugger, and Kristin Y. Rozier. 2016. Runtime Analysis with R2U2: A Tool Exhibition Report. In

Proceedings of the 16th International Conference on Runtime Veriication (RV15). Springer-Verlag, Madrid, Spain.

[40] Moshe Y. Vardi. 2001. Branching vs. Linear Time: Final Showdown. In Tools and Algorithms for the Construction and Analysis of Systems,

Tiziana Margaria and Wang Yi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1ś22.

[41] Pierre Wolper. 1983. Temporal logic can be more expressive. Information and Control 56, 1 (1983), 72ś99.

Received 28 December 2023; revised 11 August 2024; accepted 18 October 2024

ACM Trans. Embedd. Comput. Syst.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Signals and Trajectories
	2.2 MLTL
	2.3 R2U2

	3 Mission-time Linear Temporal Logic Multi-type (MLTLM)
	3.1 Evaluation of an MLTLM Formula

	4 Example Specifications with Projections over Different Types
	5 Equivalent Formula in MLTL and Succinctness of MLTLM
	5.1 Equivalent MLTLM Formula for Every MLTL Formula
	5.2 Equivalent MLTL Formulas for MLTLM Formulas with Logical Projections
	5.3 Translations from MLTLM to MLTL for Formulas with the Modulo-Reduction Projection

	6 An Implementation of an MLTLM Monitor with the Modulo-Reduction Projection
	6.1 Implementation Details
	6.2 Optimization Results with Random Formulas
	6.3 Optimization Results with Real Formulas

	7 Conclusion
	References

