)]
Check for
Updates

MLTL Multi-type: A Typed Logic for Cyber-Physical Systems

GOKUL HARIHARAN®, Iowa State University, Ames, United States

BRIAN KEMPA®, Iowa State University, Ames, United States

TICHAKORN WONGPIROMSARN, Iowa State University, Ames, United States

PHILLIP JONES, Electrical and Computer Engineering, lowa State University, Ames, United States
KRISTIN ROZIER, Towa State University, Ames, United States

Modern cyber-physical systems-of-systems (CPSoS) operate in complex systems-of-systems that must seamlessly work
together to control safety- or mission-critical functions. Linear Temporal Logic (LTL) and Mission-time Linear Temporal logic
(MLTL) intuitively express CPSoS requirements for automated system verification and validation. However, both LTL and
MLTL presume that all signals populating the variables in a formula are sampled over the same rate and type (e.g., time or
distance), and agree on a standard “time” step. Formal verification of cyber-physical systems-of-systems needs validate-able
requirements expressed over (sub-)system signals of different types, such as signals sampled at different timescales, distances,
or levels of abstraction, expressed in the same formula. Previous works developed more expressive logics to account for types
(e.g., timescales) by sacrificing the intuitive simplicity of LTL. However, a legible direct one-to-one correspondence between a
verbal and formal specification will ease validation, reduce bugs, increase productivity, and linearize the workflow from a
project’s conception to actualization. Validation includes both transparency for human interpretation, and tractability for
automated reasoning, as CPSoS often run on resource-limited embedded systems. To address these challenges, we introduced
Mission-time Linear Temporal Logic Multi-type (Hariharan et al., Numerical Software Verification Workshop, 2022), a logic
building on MLTL. MLTLM enables writing formal requirements over finite input signals (e.g., sensor signals and local
computations) of different types, while maintaining the same simplicity as LTL and MLTL. Furthermore, MLTLM maintains a
direct correspondence between a verbal requirement and its corresponding formal specification. Additionally, reasoning a
formal specification in the intended type (e.g., hourly for an hourly rate, and per second for a seconds rate) will use significantly
less memory in resource-constrained hardware. This article extends the previous work with (1) many illustrated examples
on types (e.g., time and space) expressed in the same specification, (2) proofs omitted for space in the workshop version, (3)
proofs of succinctness of MLTLM compared to MLTL, and (4) a minimal translation to MLTL of optimal length.

Additional Key Words and Phrases: Linear Temporal Logic, Mission-time Linear Temporal Logic, Runtime Verification,
Cyber-Physical Systems, Formula Succinctness

1 Introduction

Safety-critical systems, such as aircraft, spacecraft, robots, and autonomous vehicles, require precise, unambiguous
specifications for automated reasoning such as model checking, synthesis, requirements debugging, runtime
verification (RV), and checking for satisfiability, reachability, realizability, vacuity, and other important properties
of system requirements. Modern cyber-physical systems-of-systems present a unique challenge for specification,

“Both authors contributed equally to this research.

Authors’ Contact Information: Gokul Hariharan, Iowa State University, Ames, lowa, United States; e-mail: gokul@iastate.edu; Brian Kempa,
Iowa State University, Ames, lowa, United States; e-mail: bckempa@iastate.edu; Tichakorn Wongpiromsarn, Iowa State University, Ames,
Iowa, United States; e-mail: nok@iastate.edu; Phillip Jones, Electrical and Computer Engineering, Iowa State University, Ames, Iowa, United
States; e-mail: phjones@iastate.edu; Kristin Rozier, Iowa State University, Ames, Iowa, United States; e-mail: kyrozier@iastate.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 1558-3465/2024/11-ART

https://doi.org/10.1145/3704809

ACM Trans. Embedd. Comput. Syst.

2 « G.Hariharan et al.

and consequently for scalable verification and validation, due to their distributed and hierarchical nature. Auto-
mated reasoning for CPSoS needs seamless construction of global properties combining local phenomena and
coordinating requirements for numerical computations like intelligent sensor fusion and signal processing over
data and variables of different types (e.g., sampling frequencies).

LTL provides an intuitive way to precisely specify system requirements for timelines in operational concepts
of CPSoS [40]. The relative computational efficiency of automated reasoning (e.g., model checking, satisfiability
checking) adds to the appeal of LTL as a specification logic [36, 37]. Since CPSoS specifications most often need
to describe finite missions with referenceable time steps, variations of LTL over finite signals emerged with
intervals on the temporal operators. Variations of Metric Temporal Logic (MTL)[34], such as Signal Temporal
Logic (STL)[19] and Mission-time Linear Temporal Logic (MLTL)[30, 35] vary in the types of finite bounds they
introduce on LTL’s temporal operators, and the complexity of automated reasoning over these logics. MLTL is a
variant that has finite, closed, integer bounds on LTL’s temporal operators that provides a good balance between
expressivity and computational efficiency. MLTL has emerged as a popular specification logic for complex CPSoS
such as the NASA Lunar Gateway Vehicle System Manager [16], and a JAXA autonomous satellite mission
[33]; see [31] for a collection of MLTL patterns over a weather balloon, automated air traffic management
system, sounding rocket, and satellite. Furthermore, recent work has contributed very efficient, flight-certifiable,
encodings of MLTL for runtime verification in resource-limited embedded hardware [27].

Nonetheless, realistic requirements for CPSoS need to reason over signals of different types in the same
requirement; a requirement specified as an LTL/MLTL formula implicitly presumes that all input signals populating
its variables are of the same type (e.g., share a common notion of a time step). Therefore, describing a global
property of a system where sub-systems operate at different timescales, (or, more generally, over different types)
becomes tedious. For example, consider specifying global safety properties of a deep-space exploration craft.
One subsystem of the spacecraft may regulate monthly cycles to wake from hibernation and execute course
corrections, whereas another subsystem may operate on the nanosecond frequency to make hyper-sensitive
adjustments; it is not obvious how to correctly reason about these in the same formula. Expressing specifications
by assuming signals of the same type yields indiscernible specifications with poor correlation between the verbal
and logical specifications, and an unreasonably huge memory overhead (e.g., 3600 units of second-to-second
information is stored in excess, instead of only keeping the hourly data). Moreover, automated reasoning with
signals of different types is ubiquitous to CPSoS, and yet, to the best of our knowledge, there was no realizable
logic that accommodated multiple signal types in a single specification, until MLTLM [24].

Previous works provide some options for special cases of this problem, with significant complexity drawbacks.
These largely center on two philosophies: higher-order logics reasoning over sets of formulas (instead of one
formula combining different types), and annotations to deal with multiple time granularities across formula
variables, though not necessarily other combinations of different types. Examples of distributed sets of specifica-
tions count onlocally evaluating sub-system-level synchronous [7] or asynchronous [6, 32] signals; this set can
coordinate through a global formula evaluated over the local formulas [7]. For example, HyperLTL focuses on
specifications over sets of formulas over signals of the same type [12], oppositely from this work where we focus
on constructing single formulas that seamlessly reason over signals of different types. Table 1 collects related
work.

The particular instance of different types in the form of input signals over different time granularities that
comprise parts of the same, single temporal logic specification arises frequently in CPSoS; see [20] for a survey.
Most previous works focus on developing well expressible languages to define temporally distributed specifications
precisely. Again, this often comes with higher-order reasoning (see for example [21]) and complexity penalties;
e.g., [13] introduces the notion of temporal universes and uses a set-theory representation of different timescales
to abstract notions of time granularities. Propositional Interval Temporal Logic (PITL) adds chop (%;”) and project
operators to LTL to increase expressivity for time granularities over infinite signals; another variation adds

ACM Trans. Embedd. Comput. Syst.

MLTL Multi-type: A Typed Logic for Cyber-Physical Systems « 3

Time-granular logic Syntax elements Ref.
PITL empty, proj, “;”, O, ¢ [11]
Non standard FOT V, <e¢) <, <1, 3 [4]
ITL <,m, O,s, f etc. [2]
Euzenate’s extension 6 X 6 table of operators [14]
Automata representation Automata [28, 29]
Spider diagrams Spider diagrams [10]
2D MTL internal eternal L;, L, etc. [5]
Monodic SOL Layered representation of FOT | [21]
Multiclock Esterel nothing, pause, exit, emit, etc. [9]

Table 1. Various time-granular specification languages and their syntax elements.

temporal relations like “just before” [14]. First-Order Theory (FOT) enables writing time-granular specifications to
account for continuous-in-time events and relate them to discretized-in-time representations [4]. Other methods
include using automata to represent time-granularity [28, 29] and using spider-diagram representations for
time-granular specifications [10], and a two-dimensional metric temporal logic that can be potentially used to
represent time granularities [5]. Multiclock Esterel, a language for hardware verification, also introduces many
syntactic elements that can potentially pose a higher learning curve for a transition from LTL to a multi-type
language for CPSoS. [9, 23]. More recently, the SCADE tool integrates different time-granular languages into a
single framework [8, 15], and has found good acceptance in the industrial community. SCADE is targetted to
developping correct software for embedded systems, however, it is also important to reason over properties on
a higher level regarding the functioning of the embedded system over signals of different types, for example,
consider the property, “Within 4 miles from the origin, the drone shouldn’t exceed a velocity of 12 mph.” Moreover,
while SCADE is suited for verification in the design phase of a system, realtime verification during functioning
of CPSoS calls for a completely different set of capabilities, like compacted (as little as possible) memory for
verification, non-invasive embedment of a verification engine, and a suitable language to reason over expressible
properties that is also accomodative in a low memory space and with a quick response time.

The existing solutions therefore precisely express time granularity, but at the cost of sacrificing the intuitive
simplicity of LTL and MLTL. A realizable logic with time granularities (or, more generally, types) for CPSoS needs
to maintain the simplicity of LTL/MLTL to easily write specifications that CPSoS designers can readily validate,
and more importantly, to have tractable computational complexity for automated reasoning (e.g., model checking
and runtime verification).

Therefore, we build upon the popular logic MLTL to create MLTLM [24]. The syntax of MLTLM matches that
of MLTL except for the addition of a single signal-type label on each temporal operator to signify the output
type of that operator. MLTLM has these advantages: (a) maintains the same specification simplicity as LTL and
MLTL, (b) reasons in the inherent type of the verbal specification, thereby providing a direct correspondence to
its respective formal specification, and (c) readily implementable in embedded systems.

Consider the following MLTLM specifications across types that illustrate these advantages! (Section 4 elaborates
these examples in more detail):

(1) “Within 4 miles from the origin, the drone shouldn’t exceed a velocity of 12 mph”

D[0,4,miles](0 < 12)

IThese examples assume some knowledge of MLTL (see Section 2 for details); Ol1bub] and O[7p,yp| denote the future and global operators
respectively, that a property holds at some and all instances inside the interval respectively.

ACM Trans. Embedd. Comput. Syst.

4 « G.Hariharan et al.

(2) “The car drives at a velocity less than 60mph for a distance of 10 miles, and then maintains 70mph for 60
minutes.”
O[o,10,miles] (U < 60) A O[10,10,miles] (D[O,6O,minutes] (U == 70))
(3) “The drone’s surveillance camera needs to be in on-state for 10 continuous minutes, every hour” (Assuming
a mission-time of 3 hours)

O0,3,hours] 3% [0,50,minutes] 0[0,10,minutes) CaIMera-on
(4) “The spacecraft maintenance cycle runs at least once a month over the five-year mission. ”

o [0,5,years] o [0,30,days] maintenance

(5) “Verify monthly that the thrusters did not burn more than 3 seconds at a time.”
I:|[0,12,month] (_'D [0,3,seconds] burn'thrUSters)

Notice from the examples a close correspondence between the verbal and respective formal specification. Formal
specifications in LTL or MLTL for these requirements would be hard to interpret, debug, and synthesize due to
the lack of types. Furthermore, it is more relaxing, less prone to bugs, and easier to maintain a set of specifications
that does not encode the information of types into the specification (e.g., logically expressing months in terms of
years), thus simplifying the workflow. Fig. 1 contrasts the workflow when using MLTLM versus MLTL: In MLTL,
the project manager gives a verbal specification, which is implemented by a specification designer in coordination
with the system engineer, however, the concrete specification may not conform with the project management’s
requirement, as verbal and logical specifications are often subject to misinterpretations. This would trigger a
cycle of iterations all the way from the management to the system designer. In contrast, in MLTL, the project
management provides a verbal specification that has a direct correspondence to an MLTLM specification. The
iterations are then confined to the concrete specification and the system engineer (note that we assume that the
management does not have fundamentally contradictory requirements, in which case both approaches would
have to cycle throughout).

This paper is organized as follows. Section 2 gives a prelude to the conventional single type temporal logic,
MLTL, and gives a background on R2U2 - an industry-used runtime verification engine for CPSoS that we build
upon to monitor MLTLM specifications. We contribute:

(1) (Section 3) the formal definition for the logic MLTLM (Mission-time Linear Temporal Logic Multi-type),

including syntax and semantics (carried forward from [24]);

(2) (Section 4) illustrated example specifications expressed in MLTLM with signals of different types (new in

this paper);
(3) (Section 5) Detailed translations from MLTLM to MLTL with proofs of succinctness between MLTLM and
MLTL (new in this paper);

(4) (Section 6) an open-source implementation of a runtime verification tool for MLTLM, built on top of
R2U2 [26, 27, 38], compared to translated MLTL (this includes a translator from MLTLM to MLTL that
produces provably optimally short MLTL formulas absent in [24]).

Section 7 discusses conclusions and future directions.

2 Preliminaries

2.1 Signals and Trajectories

Definition 2.1. (Signal) A signal o over an atomic proposition p is defined as a finite sequence o = ag, ay, . . ., aN
where o[i] = a; € {true, false} indicates whether p holds at the discrete time instance i. A subsequence of a
signal from position i is denoted by o[i..], i.e,, o[i..] = a;, ais1, .- ., an-

ACM Trans. Embedd. Comput. Syst.

MLTL Multi-type: A Typed Logic for Cyber-Physical Systems « 5

Requirements Syntax/semantics
. N s

T— =
Project E.g., DOORS,

management Lexical

“Verify that every day the plant is in
production for at least one hour”

Syst

Specification A de\frisni‘:?;n

[1
T—m - =

Spec. MLTL Sensor types, System
differential equations engineer

designer
(Not a straightforward spec. in
LTL/MLTL)
(a) Workflow when using LTL/MLTL
Requirements
L 1
tT— =
Project Ex. DOORS,
management Lexical
Top view “Verify that every day the plantis in System
specification production for at least one hour” definition
°
T —m N
Spec. Formal MLTLM spec. Sensor types, System
designer with rate differential equations engineer

Ojo.365,days] (0,24, hours) Plant-production
Concrete
specification

Automatlon Encode “at least” and
assistance 24 hrs = 1 day

(b) Envisioned workflow using MLTLM

Fig. 1. lteration workflow for CPSoS runtime verification of project requirements describing the system and specification
in simple lexical language. (a) Traditionally, modifications to the system or specification at any level restarts the cycle. (b)
We propose that project management first verify a top view specification in a simple syntax while iteration of the detailed
specification is contained to system engineering. The automated assistant may suggest suitable projections between types

Definition 2.2. (Signal Type) All signals have an associated type. We use superscript to denote the type of a
signal, i.e., o® denotes a signal of type A.

Definition 2.3. (Trajectory) A trajectory =« over atomic propositions py, ..., p, is a set of signals, i.e, 7 =
{0(‘;% 0 crf L. O'ﬁ "} where O'A is a signal over p;. & [Jj] refers to the jth value of the signal of type A; over atomic
proposition p; in .

ACM Trans. Embedd. Comput. Syst.

6 « G.Hariharan et al.

Related work in linear temporal logic use “traces” or “computations” [3, 12], which is typically described as a
sequence of sets of atomic propositions. In contrast, we generalize “traces” by allowing member signals to be of
different types and call them collectively as a trajectory.

Definition 2.4 (Projection). The projection function ij takes a signal o of type A and returns a signal of type B.

2.2 MLTL
MLTL is a variant of LTL [3] on finite signals with closed temporal bounds [35, 38] on natural numbers.

Definition 2.5. (MLTL Syntax [35]) The syntax of an MLTL formula ¢ over a set of atomic propositions AP is
recursively defined as:
@ = true|p| =1 | o1 A g2 | p1Ure:
where p € AP, ¢; and ¢, are MLTL formulas, I := [Ib, ub] is a closed interval bound, such that [b and ub are
natural numbers such that [b < ub.

Abstract Syntax Tree (AST) The AST representation of an MLTL formula has nodes of logical operators and
leaves of atomic propositions connected to represent the recursive structure of the expression from Def. 2.5.

Definition 2.6. (MLTL Semantics [35]) The evaluation of an MLTL formula ¢ on a trajectory 7 where all signals
have uniform type produces a signal o, denoted by ((r, ¢) — 0), defined recursively on the signals o; and o3
representing the evaluation of its children subformulas ¢; and ¢, respectively as

7p 1], ifo=p, pe AP,
-o[i], if o ==y,

oli] = | olil A ouli], . A\ 2 if o =1 A g2
true, iff |oq|, |os| > (i +1b), and 3j € [i+1b, i+ ub]
such that o3[j] = true, and Vk < j where if ¢ = 01 Ujibup) 02
k € [i+1b,i+ub], o1[k] = true,

Other common operators are defined via equivalences, i.e., false & —true, future G1¢ & true Ur ¢, globally
Or¢ < —(01—¢), and next Q¢ < Opy1]¢.

2.3 R2U2

The Realizable, Responsive, Unobtrusive Unit? (R2U2) is a runtime verification (RV) engine to monitor MLTL
specifications for flight mission systems [26, 35] used in robotics [27], NASA drone aircraft [22, 39], and is
being evaluated for use on the Lunar Gateway space station [16, 17]. R2U2 is Realizable: implemented on real
hardware, Responsive: reports specification violation immediately, and Unobtrusive: uses existing data sources
instead of modifying the system to add instrumentation. R2U2 features specification reconfiguration and real-
time performance with guaranteed memory bounds to better support the needs of flight systems. R2U2 is an
open-source RV engine with well-documented industrial use. We build an MLTLM RV engine upon R2U2 to
provide existing users a seamless transition to a multi-type logic. Our R2U2-based MLTLM RV engine upholds all
the existing guarantees of R2U2.

3 Mission-time Linear Temporal Logic Multi-type (MLTLM)

MLTLM is a lightweight extension to MLTL that enables temporal reasoning over system trajectories composed
of signals of different types.

2r2u2.temporallogic.org

ACM Trans. Embedd. Comput. Syst.

MLTL Multi-type: A Typed Logic for Cyber-Physical Systems « 7

Definition 3.1. (MLTLM Syntax) The syntax of an MLTLM formula ¢ over a set of atomic propositions AP,
and the set of types 7 is recursively defined as:
¢ = true|p|-¢ o Aga| iU,
where p € AP, A € T, o1 and ¢, are MLTLM formulas, and J := [Ib, ub, A] is a finite interval bound such that
Ib and ub are natural numbers, Ib < ub < oo.

Notably, MLTLM syntax is MLTL syntax with signal types associated with temporal operators.

Definition 3.2. (MLTLM Semi- Semantics) Given an arbitrary type A € 7, the evaluation of an MLTLM formula
¢ on a trajectory 7 produces a signal 0, denoted by (7, p)>c*, defined recursively for any B,C,D € 7, where
(m, <p1)i—>0£3, (7, <p2)»—>0';c, as follows.

Ajir. . A;
T/Q.(”pj’)[l], ifo=pj, pj € AP, and oj’ € 7,
oA i] = 4 (or L, if g = =g1,
T4 (oy [i]) A TE (o5 i), if ¢ =1 A @,

TA(TF (o)) [i.] Uppun T2 (0)[11), if @ = 1U i ubp 02,

where o[i..] is the subsequence of signal o starting from discrete point i and all operators are evaluated according
to Def. 2.6.

Definition 3.2 imposes that binary logical operators operate on signals of the same type. Note that when
evaluating the fourth case in Def. 3.2, the signal types produced by subformulas ¢; and ¢, must be projected
into signals of the type associated with the temporal operator. Additional common operators like implication,
disjunction, and globally are constructed by standard equivalence relations as in MLTL, with all derived temporal
operators inheriting the type specifier on their interval bounds.

Atomic propositions do not have a type (and is not needed) in our approach. Similarly formulas do not have
a type. Only signals have a type. For example, consider the atomic proposition p := (velocity > 10 mph). This
atomic proposition does not have a type. But one can sample verdicts for this proposition at every 10 s, every
minute or every hour, or every kilometer, each giving a different “type” of signal.

We will examine several projection functions, however, writing MLTLM formulas requires only assurance
of their existence, not their definition; this provides a separation of concerns we leverage to ease specification
writing and linearizing the verification workflow. Nevertheless, a formula can only be evaluated after projection
between types are specified (and therefore, Semi- Semantics). For example, consider a formula ¢ specifying that
¢1 should hold every hour for 10 hours, and ¢, should hold every second for 100 seconds. In MLTLM, ¢ could be
written as O[o 10 hours] @1 A O[0,100,seconds] @2- In MLTL, ¢ would need to be written assuming a monitor rate, say
seconds, as O[go1¢1 A O[36003600]¢1 A O[7200,72001®1 A - -+ and O[g 100]¢2- The formula is longer and embeds the
relation between hours and seconds. If the specification must be evaluated at a monitor rate of minutes instead,
the canonical encoding must be updated by the specification author as discussed in more detail in Section 1
(Fig. 1). In contrast, in MLTLM, the top view specification remains the same even in the face of implementation
details like evaluation rate.

3.1 Evaluation of an MLTLM Formula

Evaluation of an MLTLM formula on a trajectory requires signals for all atomic propositions. Evaluating an
MLTLM formula naming at most one type over a trajectory is equivalent to evaluating an MLTL formula over a
computation containing signals of that type.

With projection, a new signal of a different type can be derived from an existing signal in the trajectory. For
example, the return of a high-rate sensor can be down-sampled to match the type of a low rate sensor. This

ACM Trans. Embedd. Comput. Syst.

8 « G.Hariharan et al.

B
o3 «—{Ba] = [E e [
A s
7
I A1
A
o

o

() (b)

Fig. 2. lllustration of two possible evaluations of a formula Oy 5 g} (O[2,441P)

“derived signal” evaluation is where all signals are first projected to a common type before evaluation. Using
signals, types, and projection, we can evaluate a formula with mixed types by considering each subformula to
represent the signal of its own evaluation and projecting where necessary as explained further in the next section.

Critically, operator semantics are defined for any type, but only when the input(s) and output types match.
The inputs to the temporal logic operator must be projected to the written type in the operator’s bound if needed.
Fundamentally, MLTLM formulas represent a directed dataflow graph between domains of MLTL connected by
projections.

Tutorial Example of an Application of the MLTLM Semantics (Def. 3.2). To clarify the semantics in Def. 3.2, consider
the formula Oy 251 (0(2,4,41p)- The global (O) operator is a common unary temporal operator derived from the
equivalence relation Oy up 419 < —(true Uppup] —¢). This is the same as adding the following case to the
MLTLM semantics:

o®[i] = true iff o2*[j] = true Vj € [i + Ib, i + ub),
if ¢ = Op1p.ub,a101-

Applying Def. 3.2, the evaluation of formula Oy ;8] (0[244]p) depends on the type of any known signals for p
and the desired output type. Consider generating a signal of type B from the above formula, and that ﬂﬁ is known
for p. In Fig. 2a, the known signal for p, o‘ﬁ, is input to Oz 4 4] Whose satisfaction signal, crg\ is first projected to
Tg (JZA) = oiBg to match types with 0Oy 5 g, finally generating GQE which meets the required output of type B.

Fig. 2b considers another case with the same formula where we need an output signal of type C, and know
HE. In Fig. 2b, evaluating the subformula Oz 4 4)p requires a signal for p in type A, as per the semantics, but we

only know p in type B. This implies a projection Tﬁ(o?) = af& before the result is input to Oy 4 4], generating
4. Another type incompatibility arises between o' and O 2], so it is again (implicitly) projected to a type B
through TE (Gf) = 07 Since the desired output type is C, there is one last projection Téj(agg) = O'(IC.

4 Example Specifications with Projections over Different Types

E1 Type space
(a) The verbal specification: “In the region 4 miles from the origin, the drone shouldn’t exceed a velocity of
12 mph”
(b) The formal MLTLM specification: O[o 4 miles] (v < 12)

ACM Trans. Embedd. Comput. Syst.

MLTL Multi-type: A Typed Logic for Cyber-Physical Systems « 9

The formal specification says that the drone’s speed should not exceed 12 mph 4 miles from the origin.
The atomic proposition (v < 12) may be sampled by a sensor say every mile, every feet, or every second.
Correspondingly, the signal is projected to the type miles and then the temporal operator is evaluated as
per the MLTL semantics. To illustrate different sampling frequencies, consider these scenarios:
Case 1 (Fig. 3) Assume that the proposition (v < 12) is sampled every mile (Recall that atomic propositions
and formulas do not have a type, only signals have a type, see Section 3). In this case, a projection is
not needed as the atomic proposition is evaluated in the same type as its parent operator.

|U <12 H D[0,4,miles] H O.;niles

miles
91

Fig. 3. Example E1, Case 1, when (v < 12) is sampled every mile

Case 2 (Fig. 4) Assume that (v < 12) is sampled every feet. In this case we project feet to miles. 1 mile is

miles R i
T Sioimes] |—> a1

eet miles
o o

Fig. 4. Example E1, Case 2, when (v < 12) is sampled every feet
5280 feet. Thus we need to convert every 5280 signal values into one signal value using a projection.
Consider the following projection candidates:

Definition 4.1. (Modulo-Reduction Function) Let ¢ and ¢ denote the set of all signals of types A and

B respectively. The function f; : ¢ 8 implements the projection TE (¢*) by modulo-reduction
with positive integer stride s when:

fi(6®) = 6" such that ¢° [i] = o”[i-s] (1)

— 0

The modulo-reduction function outputs every sth value from the input signal.

A B

Definition 4.2. (Majority-Reduction Function) The function g; : 07" — ¢, implements the projection

TE by majority-reduction with positive integer stride s when:

gs(c™) =6” such that
A - {true, if No({j € [ivs, (i +1)-5) : (c2[j] = true)}) > |s/2],

false, otherwise,
where Ny (+) is the set cardinality.

The majority-reduction function outputs the majority value of every s values of the input signal.

B8

Definition 4.3. (Anyone Function) The function 3 : 0¥ — ¢, implements the Anyone projection T}E

with positive integer stride s when:
3,(c™) =o®such that

aB[i = true, if 3j € [i-s, (i +1)-s), o™ [j] = true,
false, otherwise.

ACM Trans. Embedd. Comput. Syst.

10 « G. Hariharan et al.

Definition 4.4. (All Function) The function V, : 0 — &%, implements the All projection Tg with
positive integer stride s when:

Vs(c”) =" such that

By true, ifVje [i-s, (i+1)-s), o®[j] = true,
o [i] =
false, otherwise.

The Anyone function projects to a true value from a stride of length s if at least one element in the
stride is true. Similarly, the All function projects to true when all values in the stride is true.
We may use any of these projections in Defs. 4.1-4.4 with s = 5280, or some other projection that
converts every 5280 signal values to a single value in the resultant signal. The choice of the projection
determines the output signal, i.e., different projections may result in different signal outputs for the
same formula.

Case 3 (Fig. 5) Assume that (v < 12) is sampled every minute. We need to project a minute-type signal to a
mile-type signal.

miles O . miles
Tminutes [0.4,miles] 03

O.{ninutes O-zmiles

Fig. 5. Example E1, Case 3, when (v < 12) is sampled every minute

As an example projection, consider the following:

Definition 4.5. (Time-to-Space projection) Let v : Z — R* be the speed time series, let At be the
sampling rate of the signal o/, and let 9(i) = ;;(1) 0(j)/i be the average speed up to the ith instant.
Consider a function f : N — N, such that f(i) = (|d(i) At i]). The Time-to-Space projection is such
that for each i > 0, the kth value of 0°%°¢ is assigned as

oPace k] = olime [i], Vk € [f(i), f(i+1)).

The Time-to-Space projection models the distance as the average speed times the time converted into
an integer using the floor function. The truth value at a distance x not covered by the floor function is
assigned the value at (x — 1). Depending on the use-case, one may consider more complex, creative,
and realistic relationships, e.g., include acceleration, use a differential equation or a machine learning
model to relate signals sampled at a time rate to a signal sampled at a spatial rate.
E2 Types space and time
(a) The verbal specification: “The car drives at a velocity less than 60mph for a distance of 10 miles, and then
maintains 70mph for 60 minutes”
(b) The formal MLTLM specification:

Ofo,10,miles] (U < 60) A O[10,10,miles| (D[O,()O,minutes] (Z) == 70)) (2)

The left-hand side of the conjunction in Eq. (2) expresses that the car drives at a velocity less than 60
mph for 10 miles, and the right-hand side expresses that the velocity is maintained at 70 mph for the
next 60 minutes. Consider different scenarios based on how velocity is sampled:
Case 1 (Fig. 6a) The velocity is sampled every minute. For this, follow the same steps as in Case 3 of the
previous example.
Case 2 (Fig. 6b) The velocity v is sampled every mile (e.g., by a GPS tracking device). Follow the same steps as
Case 3 of the previous example.

ACM Trans. Embedd. Comput. Syst.

MLTL Multi-type: A Typed Logic for Cyber-Physical Systems « 11

O, O_énlles
ﬁ/\ ﬁ
miles miles
oy Oy mzles O.mlles

| Oo,10,miles]

| O[10,10,miles]

| O[0,10,miles] | | O[10,10,miles] |

miles N _miles
(o O3 O.{mles A O.;nmutes
miles miles
Tmmutes Tmmutes |U < 60 | | O[0,60,minutes] |
: minutes
O.lmlnutes o, O.;mnutes
| v <60 | | O[0,60,minutes] | Tminutes
miles
A gminutes —iles
2 0'2
=]
(a) Case 1 (b) Case 2

Fig. 6. Example E2, (a) Case 1 and (b) Case 2 where velocity v is sampled every minute and mile respectively

E3 Types of different time scales I
(a) The verbal specification: “The drone’s surveillance camera needs to be in on state for 10 continuous
minutes, every hour” (Assuming a mission-time of 3 hours)
(b) The formal MLTLM specification:

O0,3,hours] < [0,50,minutes] [0,10,minutes] CaIMera-on

_ O : . hours hours
camera on | [0,10,minutes] H O[O,50,mtnutes] I» Tminutes [0,3,hours] (e}

O.;nmutes o.émnutes Ggmnutes o.{lours

Fig. 7. Example E3, where camera-on is sampled every minute

Consider a signal of length 300 for “camera-on” in Fig. 7. A sample evaluation is as follows (we represent
the signal as a (time-stamp,verdict) tuple for illustration purposes in this example; a signal is a boolean
vector in the rest of this paper)

Glminutes = [(0, true), (1, true),..., (299, true)],

oinutes — (0, true), (1, true), ..., (290, true)],

Ugninutes = [(0, true), (1, true),..., (240, true)],
ahours = [(0, true), (1, true), (2, true), (3, true)],
ohours = (0, true)].

Here, Gm’"“t“ is generated by a sensor at a minute rate. This passes through the Ojg 10, minures] Operator,

and generates a verdict for every 10 minutes, i.e., 0-10, 1-11, 2-12, ..., 290-300. Thus cfg”""“tes has 291

ACM Trans. Embedd. Comput. Syst.

12 « G. Hariharan et al.

verdicts. Then, ag"i"”tes passes through ©g50,minuzes], and generates a verdict for every 50 minutes, i.e.,
0-50, 1-51, 2-52, ..., 240-290. Hence, cré"i””‘es has 241 verdicts. Next, the minute-wise signal is projected
into an hour-wise signal by going over T°“"$ _ This projection can be anyone of the reduction functions
(Defs. 4.1-4.4) with a stride of s = 60. As there are only 4 strides (s = 60) in a signal of length 240, the
length of U{’O”’ § is 4. Next, the O[3 pours] evaluates cr{w'” * to produce og"”” %, yielding a signal of length 1.

E4 Types of different time scales II
(a) The verbal specification: “The spacecraft maintenance cycle runs at least once a month over the five-year
mission”

(b) The formal MLTLM specification:
O0,5,years] < [0,30,days] Maintenance

The evaluation of this specification is similar to Example E3.
E5 Types of different time scales III
(a) The verbal specification: “Verify monthly that the thrusters did not burn more than 3 seconds at a time”

(b) The formal MLTLM specification:

O0,12,month] (_‘D [0,3,seconds] burn'thIUSterS)

The evaluation of this specification is similar to Example E3.

5 Equivalent Formula in MLTL and Succinctness of MLTLM

We develop a theory to derive equivalent MLTL formula for an MLTLM formula with a class of logical projec-
tions. Next, we develop translators based on it with the modulo-reduction projection (Def. 4.1). We then prove
succinctness of MLTLM formulas compared to translated equivalent MLTL formulas with the modulo-reduction
projection. We only focus on the modulo-reduction projection as the theory can be readily extended to other
projections.

5.1 Equivalent MLTLM Formula for Every MLTL Formula

For a formula naming at most one type, all properties that hold in MLTL hold in MLTLM, i.e., O[ipupa]¢ <
true Upipub.a] @5 Oipuba]@ © = (O[bub,a]—¢) and so on. The following lemma expresses that formulas express-
ible in MLTL form a subset of formulas expressible in MLTLM. The lemma attests that there is no loss in using
MLTLM compared to MLTL. The transformation is simple, and the formula is, at worst, the same length.

LEmMMA 5.1. An equivalent MLTLM formula of the same length exists for every MLTL formula, and this translation
is possible in constant time.

Proor. We can represent any MLTL formula as an MLTLM formula by appending a signal type to the interval
bound of every temporal operator. This follows from the definition of MLTLM. The formula length, being the
total number of operators plus atomic propositions, is not affected by appending a type name to the temporal
operators. Hence the resultant MLTLM formula is of the same length as the MLTL formula.]

5.2 Equivalent MLTL Formulas for MLTLM Formulas with Logical Projections

LEMMA 5.2 (ADEQUATE SET OF MLTL). The operators -, A and O form an adequate set, i.e., any MLTL formula
can be equivalently expressed exclusively with these operators.

Proor. In propositional logic the adequate set is {—,A}, and this extends directly to temporal logic as well.
Therefore, it suffices to show that any formula ¢ U|;p 192 can be equivalently expressed in MLTL using only

ACM Trans. Embedd. Comput. Syst.

MLTL Multi-type: A Typed Logic for Cyber-Physical Systems « 13

the O operator. The definition of the until operator can be equivalently expanded as,

o1 Ulibup1 92 = O, 1p1 92
V (Op,06] 91 A O[1b41,16+1] 92)
V (Opp,1+1191 A O[ibs2,1b+2]02)
V (O[1p,6+2) 91 A O[1b43,143]02)

V (O[1b,ub-1101 AN Ofubub]92)s

= —'(ﬂD[zb,lb]ﬁl’z
A =(O[1b,161 91 A O[lb+1,16+1]P2)
A =(O[1b,1b+1]91 A O[1b+2,1b+2]02)
A =(O[1b,1b+2] 01 A O[1b+3,16+3]P2)

A = (O1bub-1191 A Ofubub] P2))

O

Definition 5.3 (Logical Projection). Let ® be the set of MLTLM formulas. Consider a formula ¢ = Op,45,p] 01
where (7, ;) — o, where t € {A,B,...} and t # D. Let T,” project ¢’ to a signal of type D. The projection is
called a logical projection if there exists a function g+ ® — ® such that ((r,g(¢)) = ') & ((1,¢) — o°).

THEOREM 5.4 (EXPRESSIVE EQUIVALENCE OF MLTL AND MLTLM WiITH LOGICAL PROJECTIONS). Let all the atomic
propositions of an MLTLM formula ¢ generate signals of the same type, A. Furthermore, for every typet in ¢, let
there exist a chain of logical projections from t to A. Then, there exists an MLTLM formula , such that the signal
generated by ¢ is equivalent to a signal of type A generated by .

Proor. Recollect that the translation is from a multi-type logic, MLTLM, to a single type logic, MLTL. Because
we translate to a single-type logic, it is pre-requisite that the class of MLTLM formulas that have a translation to
MLTL, have atomic propositions that generate signals of the same type. MLTLM formulas that don’t satisfy this
assumption cannot be translated to MLTL. We prove that

((m.9) = 0°) & (1) = ™).

The proof can be succinctly expressed as a recursive function A,

®, if ¢ has only one type, A, in the entire formula,
9(Oppup.)h(@1)), i ¢ = Oppuprj@rand t # A,

h(@) = { Oppub.ah(e1), if 9 = Op1pub,a1 @1, ®3)
—h(¢1), if g = -y,
h(g1) A h(g2), if o = @1 A g,

where we use an abuse of notation for the function g to represent any of the different, but respective functions of
corresponding logical projections. m]

ACM Trans. Embedd. Comput. Syst.

14 « G. Hariharan et al.

For clarity, we derive the logical projection function for the modulo-reduction projection (Def. 4.1) as an
example. Let, ¢ = O[;pp.8]¢1 and (7, @) — o® and let (7, ¢;) > 0®, we have

o”[i] = Oppupe) oy [i-,
& o°[i] = true iff Vj € [i +1b, i +ub], cr]lB[j] = true,
& o [i] =true iff Vj € [i +1b,i +ub], o*[js] = true,
& oo [i] =true iff Vj € [(i+1b)s, (i +ub) s, s], ™*[j'] = true, (where j' = js)
& o™ [i'] = Oppsips) (0“1 A Opss) ™[] A D210 [T A <+ A D[(ub1b)s,ub-1p)s10" [']), (where i’ = i)

where [Ib, ub,s] represents a set starting from [b, ending at ub, with a stride of length s. Using the formula
notation, we have that ((r,g(¢)) — 0*) & ((, ¢) — ¢°) where
9(@) = Opsipsa)(@1 AOssa)@r A Qa5 a]@1 A -0
A O (ub—1b)s,(ub—1b)s,A] P1)-

5.3 Translations from MLTLM to MLTL for Formulas with the Modulo-Reduction Projection

We developed four translators from MLTLM to MLTL based on the recursive formula Eq. 3. The four translators
vary in their expansions of the Until operator as follows. For a formula p U[;4519, where p and g generate
signals of type A the four translators expand as the following equivalent MLTL formulas assuming that s = 2 in
the modulo-reduction projection (Eq. (1)):

(1) Translator 1:

((Or221(9)

V (Op2.21(p) A Opaa1(q)

V (Op2,21(P) A Opa,a1(p) A Bps61(q))

V (Op2,21(p) A Bpaap(p) A Opee1(p) A Opss1(q)))

This translation is the most expanded form. This version is a raw expansion of the until operator (Def. 3.2).
(2) Translator 2:

O[2:2] (q
V(p A Dp221(9))
V (p A Op21(p) A Oaa1(q)
V(P A D221 (P) A Dpaa)(p) A Dpes1(9)));
This translation factors out a global operator from the rest of the formula.
(3) Translator 3: The same as Translator 2, but with the addition that common global operators over conjunctions

and disjunctions are taken out, e.g., the formula Oy 2)p A O[46]q is translated to Ojz2)(p A O[24]9).
(4) Translator 4:

Op221(q V Opz21(p A (g V Opa21(p A (@ V Opa21 (P A Op2,21(9)))))))s

Translator 4 expands from the next normal form of an Until expression. We prove that this is the shortest
expansion of the until operator in MLTLM to an equivalent MLTL formula when using the modulo-reduction
projection, yielding succinctness results of MLTL vs MLTLM. We recall that we proved that every MLTL formula
can be expressed in MLTLM with the same formula length (Lemma 5.1). We now prove that an equivalent formula

ACM Trans. Embedd. Comput. Syst.

MLTL Multi-type: A Typed Logic for Cyber-Physical Systems « 15

to p Ujipupp1q in MLTL is at least (ub — Ib) long. We first consider succinctness of LTL and MLTL. We derive
results based on the © operator as has been the standard in other succinctness proofs in literature [1, 25]

LEMMA 5.5. (Succinctness of MLTL vs LTL) The property expressed as p U|p.p)q where p,q € AP, cannot be
expressed in an LTL formula of size less than ub.

Proor. The adequate set of operators for an LTL formula is {-, A, U, O} [3]. The formula p Uy s |9 says
that the property p holds until there exists a state such that g holds inside the finite interval [Ib, ub]. Therefore,
an equivalent LTL formula must equivalently express that the property g holds in at least one state in the range
[Ib, ub]. However, the until operator in LTL reasons over infinite states, and cannot by itself reason over a finite
set of states in an interval. Propositional operators (—, A) cannot reason across states. Therefore, expressing that
q holds in at least one of the states inside [Ib, ub] needs the next operator in LTL (O). The number of O in
the equivalent LTL formula is at least ub to reason up to the last state in p Uspp1q. Therefore, the size of the
equivalent LTL formula is at least ub. O

We note that the next normal form of an Until expression p U[;s.1q is expanded as:

Opb,161 (P Upoup-1619)
=O161(q V (P A Op111(p Upoub—-16-119)))
=0ba6)(q V (P A O11(q V (P A D1 (P Uloub-10-219)))))

Looking from the first equation in the above set of equivalent formulas, this can be expanded n times until
ub — Ib — n becomes zero. The equivalent formula for the above in LTL is

O"(gV (p A OV (pAO(gV ..))),

where O° is a shorthand notation for O repeated s times. There are Ib next operators outside, and ub — Ib next
operators inside the outermost brackets, thus there are ©(ub) operators in this expansion, and therefore this is
an optimal expansion of the Until operator from MLTL to LTL.

LEMMA 5.6. (Succinctness of MLTLM vs MLTL with the Modulo-Reduction Function) Let p,q € AP generate
signals of type A. Let B be a type such that the projection from type A to B is a modulo-reduction function with
a stride of length s > 1. Then, the property expressed as p Uy up 519 cannot be expressed as an MLTL formula of
length less than (ub — 1b).

ProOF. According to the until semantics, the property g needs to hold at least in one state between [Ib s, ub s, s],
i.e., between Ib s and ub s with a stride of length s > 1. Therefore the equivalent MLTL formula must express
that ¢ holds in one of every sth state in the interval [[b s, ub s]. The until operator of MLTL reasons in the full
interval, and not for every sth state in the interval. The sth state is shortest referred by O,) (this uses a single
operator). Referring to the next 2sth state from the current state may be done using Ojy; 2] from the current state,
or O[] from the sth state, in either case using a single operator. This caries on till the end of the interval. Thus,
referring to every sth state needs at least (ub s — [b s) /s operators. This is reminiscent of the argument for the
expressive limitation of LTL [41, Corollary 4.2] O

Translator 4 uses an expansion based on the next normal form, and thus for each until operator U up 1],
it produces an MLTL formula of length ®@(ub — Ib), and is optimally short. The four translators were used to
translate 70 randomly generated MLTLM formulas, and the resultant MLTL formulas were set as specifications
to the R2U2 RV engine [26, 27]. All four translators, and our MLTLM monitor extension produced consistent
output signals for 53 different input signals, each of length 4000, confirming the theory presented in this section.

ACM Trans. Embedd. Comput. Syst.

16 « G. Hariharan et al.

6 An Implementation of an MLTLM Monitor with the Modulo-Reduction Projection
6.1 Implementation Details

We now illustrate space and time optimization possibilities by implementing an MLTLM RV engine. The generic
syntax and semantics of MLTLM separates the specification from the signal type, i.e., the specification remains
the same irrespective of the signal type. It is apparent from the semantics (Def. 3.2) that the output signal type is
determined only in the fourth case with the temporal operator. For example, the formula p A g represents multiple
output signal types depending on the trajectory types used for p and g, whereas the formula Ojg041(p A q) has a
single output type A irrespective of the trajectory types used for p and g. Our implementation needs a single
output type, and hence considers a subset of MLTLM formulas that have a temporal operator at the root of their
ASTs, and assumes that the type on the root temporal operator is the desired output type (we call this the root
node type imposition). Formulas without a temporal operator as their ASTs’ root are assigned a default output
type, D.

Furthermore, to make the evaluation of an MLTLM formula complete, two more ingredients are essential, (a)
the placement of projections in the AST of an MLTLM formula and (b) defined projections between type signals.
Consider the MLTLM formula, Qo] (p A g). Let us assume that only a signal of type B is available from p and a
signal of type C from g, as denoted in Fig. 8a. From the semantics Def. 3.2, it is clear that a conjunction is allowed
only between signals of the same type, which implies that there are implicit projections to match signal types in
the conjunction as shown in Fig. 8b.

We have two (out of many) options here to match types, (a) to project to a common signal type D at the
conjunction, and then to a type A to match type in O 4] (Fig. 8b), and (b) place a projection to type A at the
conjunction, then a second projection is not needed to match types in Ojg | (Fig. 8c). While the former option
is of interest in the broader scope of applications with MLTLM like signal processing, the latter is the situation
with the minimal number of projections. The generalization for this minimal projection placement is to impose that
signals are projected to the type of the closest ancestor node with a type (the closest ancestor type imposition).
All nodes in the unique path connecting a node to the root of the AST are ancestor nodes of the node (the node
inclusive). In this example, the closest ancestor of the conjunction is Oy] Whose type is A. We further assume
that all such projections exist to evaluate a formula. We emphasize that the root-node imposition is only used to
showcase a preliminary MLTLM monitor so that projection to types can become automated.

Our MLTLM RV engine currently only implements the modulo-reduction projection (see Def. 4.1). The MLTLM
engine has added projection operators (see Def. 2.4) at appropriate places according to the semantics of MLTLM
(Def. 3.2) respecting the closest ancestor type imposition. The modulo-reduction projection operator drops the
appropriate signal values not needed in evaluating a formula and reports the output signal type corresponding to
the type in the root of the AST of the formula.

6.2 Optimization Results with Random Formulas

We randomly draw MLTLM formulas using the procedure in [18] and plot the length of MLTL translations. The
randomly drawn formulas are parametrized by the probability of drawing a temporal operator (P), the maximum
difference between the lower and upper bounds (M), and the maximum signal length (T). We fix M =T = 6 in
our study here. Furthermore, the memory and time also depend on stride, s of the modulo-reduction function (see
Eq. (1)). In real systems, specifications may reason over say, seconds, minutes, hours and days, which correspond
to s = 60, and 24. We conservatively consider four signal types, which we call A, B, C and D, where (see Eq. (1)
for f;(0)), with

fi(d®) = o, fi(0®) =~ fi(d®) = ",

ACM Trans. Embedd. Comput. Syst.

MLTL Multi-type: A Typed Logic for Cyber-Physical Systems « 17

oP
e G
of o© oB -C oB 5C
(a) (b) (@)

Fig. 8. The evaluation of an MLTLM formula depends on the placement of projections to match types in binary operators

109 4
= 3 £ 0 e Q4 Translator 1
. ;
2107 4 oy | V=== Translator 2
< e 10
’f £ <= Translator 3
2 10* 4 = —— Translator 4
= s s
= = 10° MLTLM
B = 2
5 <
= i : =10
= 1074 y - |---- Translator 1 —— Translator 4 &
E J Translator 2 —— MITLM ~
o 10 4 Translator 3 104
0 10 20 30 40 50 G0 0.0 0.2 0.4 0.6 0.8 10
Number of Formulas Probability of Choosing a Temporal Operator
(a) (b)

Fig. 9. (a) Cumulative formula length with the number of randomly drawn formulas with P = 0.5, and (b) mean formula
length against the probability of choosing a temporal operator

with stride lengths s = 2,3, 4. Note that the memory savings will be much larger with a stride like s = 60 (e.g.,
from second to minute).

Fig. 9a shows the cumulative formula length with randomly drawn formulas. At P = 0.5, the four translators
produce MLTL formulas of nearly the same length. Among the translators, Translator 4 performs better due to
being optimally short (Lemma 5.6). In contrast, the formula lengths of the MLTLM formulas are substantially
smaller. Note that the plots are on log-scale; the difference between Translator 4 and the rest is about 200,000
units. Hence, there is no loss in using MLTLM in comparison to MLTL (see Section 3), but using MLTLM will
result in much smaller and more intuitive formulas depending on the projection function.

Fig. 9b shows the mean formula length (averaged over 60 random formulas) by varying the probability of
choosing a temporal operator. P = 0 corresponds to no temporal operators, and in that case, the translators and
the MLTLM formula perform nearly equally well. This is expected — if a formula contains mere propositional

ACM Trans. Embedd. Comput. Syst.

18 « G. Hariharan et al.

—
=

10* 4

Cumulative Number of Slots

Cumulative Number of Observers

10° 4 10?
----- Translator 1 —— Translator 4 -==+- Translator 1 —— Translator 4
5 Translator 2 —— MLTLM Translator 2 —— MLTLM
10 Translator 3 Translator 3
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Number of Formulas Number of Formulas
(@) (b)

Fig. 10. Cumulative (a) memory and (b) time needed to verify random MLTLM formulas vs translated equivalent MLTL
formulas

logic, its length should be independent of the temporal specification language. However, on close observation,
the MLTLM formula at P = 0 is slightly longer. This is because in MLTL there is only one signal type, hence there
is no need for a output signal type specifier, whereas in MLTLM, a proposition (say, p A g, p, ¢ € AP) represents
a family of outputs of different types. As per the root node imposition (Section 6.1), we always use a temporal
operator at the start of any formula (as in Oj¢ | (p A g) in the place of p A g), and this adds to excess length of
an MLTLM formula compared to an MLTL formula with propositions. However, propositions like p A g are valid
MLTLM formulas, but our implementation needs an output-type identifier.

On increasing the probability of choosing a temporal operator, the equivalent formulas in MLTL become
significantly longer owing to the expansion to the base type as discussed in Section 5. Fig. 10 shows the estimated
resource and time requirements on hardware. The memory to evaluate a formula is statically assigned in R2U2 [27]
as dynamic memory is often not permitted in flight software. Hence, we compare the amount of static memory
that needs to be assigned for equivalent formulas in MLTLM and (translated) MLTL (Fig. 10a). Similarly, the time
taken for formula evaluation is directly proportional to the number of nodes created in the AST. We call the
nodes in the AST as observers (as seen in the Y axis labels of Fig. 10b). We see that equivalent formula require
much less memory in MLTLM than MLTL (Fig. 10a). Similarly, the evaluation time is faster for MLTLM as it
needs many fewer observers (Fig. 10b).

6.3 Optimization Results with Real Formulas

We now consider the real formula examples, E3, E4 and E5 from Section 4. We use the modulo-reduction function
as the projection between types. Recall that the formulas are

E1l I:l[O,'.’),hours] 0[O,SO,minut‘es] Ij[O,lO,minut‘esJ camera-on

E2 Ojo,5,years] <0,30,days| maintenance

E3 O[0,12,month] (_‘D[0,3,seconds]burn'thruSters)
For E1, the stride length is 60 for an hour to minute conversion. For E2, the stride length assumed 365, for
a conversion from day to year. For E3, the stride length is 2592000, assuming that a month is 30 days. The
corresponding MLTL formulas are obtained using the most succinct translator, Translator 4 in Section 5.3.

Fig. 11a shows that in all cases, MLTLM (dark) uses much less memory compared to MLTL. In specific, for
large stride lengths, the savings is much greater, as in E5. This is expected as MLTLM compacts data using the

ACM Trans. Embedd. Comput. Syst.

MLTL Multi-type: A Typed Logic for Cyber-Physical Systems + 19

TO352610, 30 4 -
BN \LTLM B MLTL BN MLTLM B MLTL
105-,
1074 @
z <
kS 2
7 1004 E
S
= =}
B 10° =
5 1044 é
= 2198 =
. 1239 .
10)
213
N 112
102 4 m

E3 E4 E5

(@) (b)

Fig. 11. (a) Memory and (b) time needed to verify real MLTLM formulas from Section 4, E3, E4, and E5, vs translated
equivalent (most succinct) MLTL formulas

projection, whereas the MLTL monitor would store that same data in memory until a verdict can be ascertained.
This demonstrates that MLTLM is potentially useful in resource constrained hardware, allowing monitoring a
broader spectrum of specifications that would be nearly impossible using MLTL. Fig. 11b shows the length of
instructions needed in hardware (denotes the speed of evaluating a specification) using MLTLM and MLTL. In all
cases, MLTLM has a smaller instruction length, i.e., a greater speed of evaluation.

We end this section with a few remarks. Results show that there is great opportunity to have short intuitive
formulas that encode timescales directly in the formula to simplify the workflow (Fig. 1), and in addition, an
optimally configured RV engine for MLTLM is likely to have profound memory savings making it more suitable
for resource constrained hardware.

7 Conclusion

Writing specifications naturally needs reasoning across multiple signal types, be it signals coming from different
sensors at different rates, or belonging to observers in parallel universes (distributed systems). We developed
a multi-type logic to express such specifications, and then explored succinctness and memory savings when
considering the modulo-reduction projection. As discussed, this serves multiple purposes: 1) for the user, spec-
ifications are easy to write, 2) the theoretical satisfaction in different types is defined unambiguously, and 3)
implementations can better utilize resources when compared with a single signal-type logic. Moreover, we expect
that MLTLM will simplify the workflow by keeping the syntax simple and accessible, and postponing the nuances
into the projection function. More importantly, MLTLM separates the specification from signal type. For example,
let us suppose that a pressure sensor is changed in the Lunar Gateway, and it generates data in a different rate
than the old sensor, or perhaps in a different unit like Pascals in the place of atmospheric pressure. Specifications
for a single type logic would have to be changed to account for the signal type. MLTLM side-steps this process:
The signal type will not affect the specification in any manner. In the future, we plan to have an automated
assistant, that will allow a user to choose different projections in different contexts of specifications, (like “at
least”, “at most”, “only once” etc.), and will also inform the user about the amount of memory he will need to
dedicate/save on the hardware (the memory needed may vary based on the type of projection). This will allow the
industrial verification community to seamlessly move to a multi-type logic. We will also consider more human

ACM Trans. Embedd. Comput. Syst.

20 « G. Hariharan et al.

authored MLTLM specifications on real systems to get a better perspective on optimization opportunities. Lastly,
the MLTLM monitor built upon R2U2 was validated across a regression suite of specifications and trajectories,
but the current implementation can be improved to have tighter bounds on memory usage, which needs further
investigation.

References

[1] Micah Adler and Neil Immerman. 2003. An n! lower bound on formula size. ACM Transactions on Computational Logic (TOCL) 4, 3
(2003), 296-314.

[2] James F. Allen and Patrick J. Hayes. 1985. A Common-Sense Theory of Time. In Proceedings of the 9th International Joint Conference
on Artificial Intelligence - Volume 1 (Los Angeles, California) (IJCAI’85). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
528-531.

[3] Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT press.

[4] Philippe Balbiani. 2008. Time Representation and Temporal Reasoning from the Perspective of Non-Standard Analysis. In Proceedings of
the Eleventh International Conference on Principles of Knowledge Representation and Reasoning (Sydney, Australia) (KR’08). AAAI Press,
695-704.

[5] Stefano Baratella and Andrea Masini. 2020. A two-dimensional metric temporal logic. Mathematical Logic Quarterly 66, 1 (2020), 7-19.
https://doi.org/10.1002/malq.201700036

[6] Omar Bataineh, David S. Rosenblum, and Mark Reynolds. 2019. Efficient Decentralized LTL Monitoring Framework Using Tableau
Technique. 18, 5s, Article 87 (2019), 21 pages.

[7] Andreas Bauer and Yliés Falcone. 2012. Decentralised LTL Monitoring. In FM 2012: Formal Methods, Dimitra Giannakopoulou and
Dominique Méry (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 85-100.

[8] A.Benveniste, P. Caspi, S.A. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone. 2003. The synchronous languages 12 years later.
Proc. IEEE 91, 1 (2003), 64-83. https://doi.org/10.1109/JPROC.2002.805826

[9] Gérard Berry and Ellen Sentovich. 2001. Multiclock esterel. In Advanced Research Working Conference on Correct Hardware Design and
Verification Methods. Springer, 110-125.

[10] Paolo Bottoni and Andrew Fish. 2011. Policy specifications with Timed Spider Diagrams. In 2011 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). 95-98. https://doi.org/10.1109/VLHCC.2011.6070385

[11] Howard Bowman and Simon Thompson. 2003. A Decision Procedure and Complete Axiomatization of Finite Interval Temporal Logic
with Projection. Journal of Logic and Computation 13, 2 (2003), 195-239. https://doi.org/10.1093/logcom/13.2.195

[12] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sanchez. 2014. Temporal
Logics for Hyperproperties. In Principles of Security and Trust, Martin Abadi and Steve Kremer (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 265-284.

[13] James Clifford and Ahobala Rao. 1986. A simple, general structure for temporal domains. (1986).

[14] Quentin Cohen-Solal, Maroua Bouzid, and Alexandre Niveau. 2015. An Algebra of Granular Temporal Relations for Qualitative Reasoning.
In Proceedings of the 24th International Conference on Artificial Intelligence (Buenos Aires, Argentina) (IJCAI’15). AAAI Press, 2869-2875.

[15] Jean-Louis Colaco, Bruno Pagano, Cédric Pasteur, and Marc Pouzet. 2018. Scade 6: From a kahn semantics to a kahn implementation for
multicore. In 2018 Forum on Specification & Design Languages (FDL). IEEE, New York, 5-16.

[16] James B Dabney, Julia M Badger, and Pavan Rajagopal. 2021. Adding a Verification View for an Autonomous Real-Time System
Architecture. In AIAA Scitech 2021 Forum. 0566.

[17] James B. Dabney, Julia M. Badger, and Pavan Rajagopal. 2023. Trustworthy Autonomy for Gateway Vehicle System Manager. In 2023
IEEE Space Computing Conference (SCC). 57-62. https://doi.org/10.1109/SCC57168.2023.00018

[18] Marco Daniele, Fausto Giunchiglia, and Moshe Y Vardi. 1999. Improved automata generation for linear temporal logic. In International
Conference on Computer Aided Verification. Springer, 249-260.

[19] Alexandre Donzé. 2013. On Signal Temporal Logic. In Runtime Verification, Axel Legay and Saddek Bensalem (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 382-383.

[20] Jerome Euzenat and Angelo Montanari. 2005. Time granularity. Handbook of Temporal Reasoning in Artificial Intelligence (January 2005).

[21] Massimo Franceschet, Angelo Montanari, Adriano Peron, and Guido Sciavicco. 2006. Definability and decidability of binary predicates
for time granularity. Journal of Applied Logic 4, 2 (June 2006), 168-191. https://doi.org/10.1016/.jal.2005.06.004

[22] Johannes Geist, Kristin Yvonne Rozier, and Johann Schumann. 2014. Runtime Observer Pairs and Bayesian Network Reasoners On-board
FPGAs: Flight-Certifiable System Health Management for Embedded Systems. In Proceedings of the 14th International Conference on
Runtime Verification (RV14), Vol. 8734. Springer-Verlag, 215-230.

[23] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. 1991. The synchronous data flow programming language LUSTRE.
Proc. IEEE 79, 9 (1991), 1305-1320.

[l

ACM Trans. Embedd. Comput. Syst.

[24]

[25]
[26]

[27]

(28]

[29]

MLTL Multi-type: A Typed Logic for Cyber-Physical Systems « 21

Gokul Hariharan, Brian Kempa, Tichakorn Wongpiromsarn, Phillip H. Jones, and Kristin Y. Rozier. 2022. MLTL Multi-type (MLTLM): A
Logic for Reasoning About Signals of Different Types. In Software Verification and Formal Methods for ML-Enabled Autonomous Systems,
Omri Isac, Radoslav Ivanov, Guy Katz, Nina Narodytska, and Laura Nenzi (Eds.). Springer International Publishing, 187-204.

Neil Immerman. 2012. Descriptive complexity. Springer Science & Business Media.

Chris Johannsen, Phillip Jones, Brian Kempa, Kristin Yvonne Rozier, and Pei Zhang. 2023. R2U2 Version 3.0: Re-Imagining a Toolchain
for Specification, Resource Estimation, and Optimized Observer Generation for Runtime Verification in Hardware and Software. In
Computer Aided Verification, Constantin Enea and Akash Lal (Eds.). Springer Nature Switzerland, 483-497.

Brian Kempa, Pei Zhang, Phillip H. Jones, Joseph Zambreno, and Kristin Yvonne Rozier. 2020. Embedding Online Runtime Verification
for Fault Disambiguation on Robonaut2. In Proceedings of the 18th International Conference on Formal Modeling and Analysis of Timed
Systems (FORMATS) (Lecture Notes in Computer Science (LNCS), Vol. 12288). Springer, Vienna, Austria, 196-214.

Ugo Dal Lago, Angelo Montanari, and Gabriele Puppis. 2007. Compact and tractable automaton-based representations of time
granularities. Theoretical Computer Science 373, 1 (2007), 115-141. https://doi.org/10.1016/j.tcs.2006.12.014

Ugo Dal Lago, Angelo Montanari, and Gabriele Puppis. 2007. On the Equivalence of Automaton-Based Representations of Time
Granularities. In 14th International Symposium on Temporal Representation and Reasoning (TIME’07). 82-93. https://doi.org/10.1109/
TIME.2007.56

[30] Jianwen Li, Moshe Y. Vardi, and Kristin Y. Rozier. 2019. Satisfiability Checking for Mission-Time LTL. In Proceedings of 31st International

(31]

(32]

(33]

Conference on Computer Aided Verification (CAV) (LNCS, Vol. 11562). Springer, New York, NY, USA, 3-22.

Zachary Luppen, Michael Jacks, Nathan Baughman, Benjamin Hertz, James Cutler, Dae Young Lee, and Kristin Yvonne Rozier. 2022.
Elucidation and Analysis of Specification Patterns in Aerospace System Telemetry. In Proceedings of the 14th NASA Formal Methods
Symposium (NFM 2022) (Lecture Notes in Computer Science (LNCS), Vol. 13260). Springer, Cham, Caltech, California, USA.

Menna Mostafa and Borzoo Bonakdarpour. 2015. Decentralized Runtime Verification of LTL Specifications in Distributed Systems. In
2015 IEEE International Parallel and Distributed Processing Symposium. 494-503.

Naoko Okubo. 2020. Using R2U2 in JAXA program. Electronic correspondence. Series of emails and zoom call from JAXA to PI with
technical questions about embedding R2U2 into an autonomous satellite mission with a provable memory bound of 200KB.

[34] J. Ouaknine and J. Worrell. 2008. Some Recent Results in Metric Temporal Logic. In Formal Modeling and Analysis of Timed Systems,

(35]

(36]
(37]

(38]

(39]
(40]

[41]

Franck Cassez and Claude Jard (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1-13.

Thomas Reinbacher, Kristin Y. Rozier, and Johann Schumann. 2014. Temporal-Logic Based Runtime Observer Pairs for System Health
Management of Real-Time Systems. In Proceedings of the 20th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS) (Lecture Notes in Computer Science (LNCS), Vol. 8413). Springer-Verlag, 357-372.

KY. Rozier and M.Y. Vardi. 2010. LTL Satisfiability Checking. International Journal on Software Tools for Technology Transfer (STTT) 12, 2
(March 2010), 123 - 137. https://doi.org/DOI10.1007/s10009-010-0140-3

Kristin Y. Rozier. 2011. Linear Temporal Logic Symbolic Model Checking. Computer Science Review 5, 2 (2011), 163-203. https:
//doi.org/10.1016/j.cosrev.2010.06.002

Kristin Yvonne Rozier and Johann Schumann. 2017. R2U2: Tool Overview. In Proceedings of International Workshop on Competitions,
Usability, Benchmarks, Evaluation, and Standardisation for Runtime Verification Tools (RV-CUBES), Vol. 3. Kalpa Publications, Seattle, WA,
USA, 138-156.

Johann Schumann, Patrick Moosbrugger, and Kristin Y. Rozier. 2016. Runtime Analysis with R2U2: A Tool Exhibition Report. In
Proceedings of the 16th International Conference on Runtime Verification (RV15). Springer-Verlag, Madrid, Spain.

Moshe Y. Vardi. 2001. Branching vs. Linear Time: Final Showdown. In Tools and Algorithms for the Construction and Analysis of Systems,
Tiziana Margaria and Wang Yi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1-22.

Pierre Wolper. 1983. Temporal logic can be more expressive. Information and Control 56, 1 (1983), 72-99.

Received 28 December 2023; revised 11 August 2024; accepted 18 October 2024

ACM Trans. Embedd. Comput. Syst.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Signals and Trajectories
	2.2 MLTL
	2.3 R2U2

	3 Mission-time Linear Temporal Logic Multi-type (MLTLM)
	3.1 Evaluation of an MLTLM Formula

	4 Example Specifications with Projections over Different Types
	5 Equivalent Formula in MLTL and Succinctness of MLTLM
	5.1 Equivalent MLTLM Formula for Every MLTL Formula
	5.2 Equivalent MLTL Formulas for MLTLM Formulas with Logical Projections
	5.3 Translations from MLTLM to MLTL for Formulas with the Modulo-Reduction Projection

	6 An Implementation of an MLTLM Monitor with the Modulo-Reduction Projection
	6.1 Implementation Details
	6.2 Optimization Results with Random Formulas
	6.3 Optimization Results with Real Formulas

	7 Conclusion
	References

