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Abstract

Robotic Information Gathering (RIG) is a foundational research topic that answers how a robot (team) collects informative
data to efficiently build an accurate model of an unknown target function under robot embodiment constraints. RIG has
many applications, including but not limited to autonomous exploration and mapping, 3D reconstruction or inspection,
search and rescue, and environmental monitoring. A RIG system relies on a probabilistic model s prediction uncertainty to
identify critical areas for informative data collection. Gaussian processes (GPs) with stationary kernels have been widely
adopted for spatial modeling. However, real-world spatial data is typically non-stationary—different locations do not have
the same degree of variability. As a result, the prediction uncertainty does not accurately reveal prediction error, limiting
the success of RIG algorithms. We propose a family of non-stationary kernels named Attentive Kernel (AK), which is simple
and robust and can extend any existing kernel to a non-stationary one. We evaluate the new kernel in elevation mapping
tasks, where AK provides better accuracy and uncertainty quantification over the commonly used stationary kernels and the
leading non-stationary kernels. The improved uncertainty quantification guides the downstream informative planner to
collect more valuable data around the high-error area, further increasing prediction accuracy. A field experiment
demonstrates that the proposed method can guide an Autonomous Surface Vehicle (ASV) to prioritize data collection in
locations with significant spatial variations, enabling the model to characterize salient environmental features.
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RIG system, which shows three major forces that drive the
progress of RIG: probabilistic models, objective functions,
and informative planners.

The defining element distinguishing other active infor-
mation acquisition problems and RIG is the robot embodi-
ment’s physical constraints (Taylor et al., 2021). In Active
Learning (Biyik et al., 2020) or Optimal Sensor Placement
(Krause et al., 2008), an agent can sample arbitrary data in a
given space. In RIG, however, a robot must collect data
sequentially along the motion trajectories. Consequently,
most existing work in RIG is dedicated to a sequential
decision-making problem called Informative (Path) Planning
(Binney et al., 2013; Hollinger and Sukhatme 2014; Lim

1. Introduction

Collecting informative data for effective modeling of an
unknown physical process or phenomenon has been
studied in different domains, for example, Optimal Ex-
perimental Design in Statistics (Atkinson 1996), Optimal
Sensor Placement in Wireless Sensor Networks (Krause
et al., 2008), Active Learning (Settles 2012), and
Bayesian Optimization (Snoek et al., 2012) in Machine
Learning.

In Robotics, this problem falls within the spectrum of
Robotic Information Gathering (RIG) (Thrun 2002). RIG
has recently received increasing attention due to its wide
applicability. Applications include environmental modeling
and monitoring (Dunbabin and Marques 2012), 3D re-
construction and inspection (Hollinger et al., 2013; Schmid
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et al., 2020), search and rescue (Meera et al., 2019), ex-
ploration and mapping (Jadidi et al., 2019), as well as active
System Identification (Buisson-Fenet et al., 2020).

A RIG system typically relies on a probabilistic model’s
prediction uncertainty to identify critical areas for infor-
mative data collection. Figure 1 illustrates the workflow of a
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Figure 1. Diagram of a Robotic Information Gathering system. The goal is to autonomously gather informative elevation measurements of
Mount St Helens to efficiently build a terrain map unknown a priori. The color indicates elevation, and black dots are collected samples.

et al., 2016; Choudhury et al., 2018; Jadidi et al., 2019; Best
et al., 2019). Specifically, Informative Planning seeks an
action sequence or a policy by optimizing an objective
function that guides the robot to collect informative data,
aiming to efficiently build an accurate model of the process
under the robot’s motion and sensing cost constraints (Chen
and Liu 2019; Popovic¢ et al., 2020b). The decisive objective
function is derived from the uncertainty of probabilistic
models such as Gaussian processes (GPs) (Ghaffari Jadidi
et al., 2018), Hilbert maps (Senanayake and Ramos 2017),
occupancy grid maps (Charrow et al., 2015a), and Gaussian
mixture models (Dhawale and Michael 2020). Since the
performance of a RIG system depends on not only planning
but also learning, as shown in the feedback loop of Figure 1, a
natural question is: how can we further boost the performance
by improving the probabilistic models? In this work, we
answer this question from the perspective of improving the
modeling flexibility and uncertainty quantification of GPs.
Gaussian process regression (GPR) is one of the most
prevalent methods for mapping continuous spatiotemporal
phenomena. GPR requires the specification of a kernel, and
stationary kernels, for example, the radial basis function
(RBF) kernel and the Matérn family, are commonly adopted
(Rasmussen and Williams 2005). However, real-world spatial
data typically does not satisfy stationary models which as-
sume different locations have the same degree of variability.
For instance, the environment in Figure 1 shows higher
spatial variability around the crater. Due to the mismatch
between the assumption and the ground-truth environment,
GPR with stationary kernels cannot portray the characteristic
environmental features in detail. Figure 2(a) shows the over-
smoothed prediction of the elevation map after training a
stationary GPR using the collected data shown in Figure 1.
The model also assigns low uncertainty to the high-error area,
c.f-, the circled regions in Figures 2(b) and (c), leading to
degraded performance when the model is used in RIG.
Non-stationary GPs, on the other hand, are of interest in
many applications, and the past few decades have witnessed
great advancement in this research field (Gibbs 1997;

Paciorek and Schervish 2003; Lang et al., 2007; Plagemann
etal. 2008a, 2008b; Wilson et al., 2016; Calandra et al., 2016;
Heinonen et al., 2016; Remes et al., 2017, 2018). However,
prior work leaves room for improvement. The problem is that
many non-stationary models learn fine-grained variability at
every location, making the model too flexible to be trained
without advanced parameter initialization and regularization
techniques. We propose a family of non-stationary kernels
named Attentive Kernel (AK) to mitigate this issue. The main
idea of our AK is limiting the non-stationary model to
combine a fixed set of correlation scales, that is, primitive
length-scales, and mask out data across discontinuous jumps
by “soft” selection of relevant data. The correlation-scale
composition and data selection mechanisms are learned from
data. Figure 2(d) shows the prediction of GPR with the AK on
the same dataset used in Figure 2(a). As the arrows highlight,
the AK depicts the environment at a finer granularity. Figures
2(e) and (f) show that the AK allocates high uncertainty to the
high-error area; thus, sampling the high-uncertainty locations
can help the robot collect valuable data to decrease the
prediction error further.

1.1. Contributions

The main contribution of this paper is in designing the Attentive
Kernel (AK) and evaluating its suitability for Robotic Infor-
mation Gathering (RIG). We present an extensive evaluation to
compare the AK with existing non-stationary kernels and a
stationary baseline. The benchmarking task is elevation
mapping in several natural environments that exhibit a range of
non-stationary features. The results reveal a significant ad-
vantage of the AK when it is used in passive learning, active
learning, and RIG. We also conduct a field experiment to
demonstrate the behavior of the proposed method in a real-
world elevation mapping task, where the prediction uncertainty
of the AK guides an Autonomous Surface Vehicle (ASV) to
identify essential sampling locations and collect valuable data
rapidly. Last but not least, we release the code (github.com/
weizhe-chen/attentive kernels) for reproducing all the results.
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Figure 2. Comparison of Gaussian process regression with radial basis function kernel and Attentive Kernel.

This paper presents an extended and revised version of
previous work by Chen et al. (2022). The major modifications
include a comprehensive literature review on RIG to con-
textualize our work, additional evaluation, results, and dis-
cussion on the AK, and a substantially improved Python
library. Specifically, we provide the following contributions:

® We present a broader and deeper survey on related work
to highlight how our work fits into the existing literature
on RIG.

®  We add more results to the experiments and discuss them
in detail to provide further evidence for our conclusions.

®  We thoroughly evaluate the AK from various perspectives
and discuss its limitations and potential future work.

* We release a new Python library called PyPolo (pypo-
lo.readthedocs.io) for learning, researching, and
benchmarking RIG algorithms. This library is a sig-
nificant improvement and restructure compared to the
one presented in Chen et al. (2022).

2. Related work

In this section, we will first survey related work in RIG,
which mainly revolves around three pillars: probabilistic
models (Section 2.1.2), objective functions (Section 2.1.1),
and Informative Planning algorithms (Section 2.1.3). Also,
we discuss relevant RIG applications in Section 2.1.4. Then,
we categorize prior efforts on non-stationary GPs and how
the proposed method relates to the existing solutions
(Section 2.2). Finally, we describe the relationship between
RIG and some related research topics to locate our work
within the context of existing literature (Section 2.3)

2.1. Robotic Information Gathering

A RIG system has three essential components:

1. A model to approximate the unknown target function;

2. An objective function that can characterize the model’s
prediction error;

3. An informative planner that makes non-myopic deci-
sions by optimizing the objective function under the
robot’s embodiment constraints.

We discuss these three aspects in this section.

2.1.1. Objective functions. RIG can be the main goal of
some tasks, such as infrastructure inspection (Bircher et al.,
2018), or serve as an auxiliary task for achieving other
goals, for example, seeking the biological hotspots in an
unknown environment (McCammon and Hollinger 2018).
In the former cases, the objective function is purely
“information-driven” (Ferrari and Wettergren 2021; Bai
et al.,, 2021), while in the latter scenarios, the objective
function balances exploration and exploitation (Marchant
and Ramos 2012, 2014; Bai et al., 2016). The objective
function can be further extended to multi-objective cases
(Chen and Liu 2019; Ren et al., 2022; Dang 2020).

Many objective functions have been proposed, inspired by
Information Theory and Optimal Experimental Design
(Charrow et al., 2015a; Zhang et al., 2020; Carrillo et al.,
2015). Information-theoretic objective functions include
Shannon’s and Rényi’s entropy, mutual information, and
Kullback—Leibler divergence between the prior and posterior
predictive distributions. In the case of multivariate Gaussian
distributions, these information measures are all related to the
logarithmic determinant of the posterior covariance matrix,
which can be intuitively viewed as computing the “size” of the
posterior covariance matrix. Optimal design theory directly
measures the size by computing the matrix determinant, trace,
or eigenvalues. Computing the matrix determinant and ei-
genvalue is known to be computationally expensive. There-
fore, many existing works on objective functions are dedicated
to alleviating the computational bottleneck (Charrow et al.
2015b, 2015a; Zhang et al., 2020; Zhang and Scaramuzza
2020; Gupta et al., 2021; Xu et al., 2021).
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Most objective functions are summary statistics of the
predictive (co)variance given by a probabilistic model. Only
when the predictive (co)variance captures modeling error
well, optimizing these objective functions can guide the
robot to collect informative data that effectively improve the
model’s accuracy. From this perspective, improving the
uncertainty-quantification capability of probabilistic models
can broadly benefit future work based on these objective
functions. This aspect is what we strive to improve in this
work. As can be seen in the next section, this problem is
understudied.

2.1.2. Probabilistic models. Many probabilistic models have
been applied to RIG, for example, Gaussian processes
(Stachniss et al., 2009; Marchant and Ramos 2012, 2014;
Ouyang et al., 2014; Ma et al., 2017; Luo and Sycara 2018;
Jang et al., 2020; Popovic¢ et al., 2020a; Lee et al., 2022), Hilbert
maps (Ramos and Ott 2016; Senanayake and Ramos 2017;
Guizilini and Ramos 2019), occupancy grid maps (Popovi¢
etal., 2017, 2020b; Saroya et al., 2021), and Gaussian mixture
models (O’Meadhra et al., 2018; Tabib et al., 2019). GPs are
widely adopted due to their excellent uncertainty quantification
feature, which is decisive to RIG. However, the vanilla GP
models need to be more computationally efficient to be suitable
for real-time applications and multi-robot scenarios. Therefore,
related work in RIG mainly discusses GPs in the context of
improving computational efficiency and coordinating multiple
robots. Jang et al. (2020) apply the distributed GPs (Deisenroth
and Ng 2015) to decentralized multi-robot online Active
Sensing. Ma et al. (2017) and Stachniss et al. (2009) use sparse
GPs to alleviate the computational burden. The mixture of GP
experts (Rasmussen and Ghahramani 2001) has been applied to
divide the workspace into smaller parts for multiple robots to
model an environment simultaneously (Luo and Sycara 2018;
Ouyang et al., 2014).

The early work by Krause and Guestrin (2007) is highly
related to our work. They use a spatially varying linear
combination of localized stationary processes to model the
non-stationary pH values in a river. The weight of each local
GP is the normalized predictive variance at the test location.
This idea is similar to the length-scale selection idea in
Section 4.1.1. The main difference is that they manually
partition the workspace while our model learns a weighting
function from data. To the best of our knowledge, our work
is the first to discuss the influence of the probabilistic
models’ uncertainty quantification on RIG performance.

2.1.3. Informative Planning. The problem of seeking an
action sequence or policy that yields informative data is
known as Informative Path Planning due to historical
reasons (Singh et al., 2007; Meliou et al., 2007). However,
the problem is not restricted to path planning. For example,
recent work has discussed informative motion planning
(Teng et al., 2021), informative view planning (Lauri et al.,
2020), and exploratory grasping (Danielczuk et al., 2021).
Hence, we adopt the generic term Informative Planning to
unify different branches of the same problem.

Early works on Informative Planning propose various
recursive greedy algorithms that provide performance
guarantee by exploiting the submodularity property of the
objective function (Singh et al., 2007; Meliou et al., 2007;
Binney et al., 2013). Note that the performance guarantee is
on uncertainty reduction rather than modeling accuracy.
Planners based on dynamic programming (Low et al., 2009;
Cao et al., 2013) and mixed integer quadratic programming
(Yu et al.,, 2014) lift the assumption on the objective
function at the expense of higher computational complexity.
These methods solve combinatorial optimization problems
in discrete domains, thus scaling poorly in problem size. To
develop efficient planners in continuous space with motion
constraints, Hollinger and Sukhatme (2014) introduce
sampling-based informative motion planning, which is
further developed to online variants (Schmid et al., 2020;
Jadidi et al., 2019). Monte Carlo Tree Search (MCTS)
methods are conceptually similar to sampling-based in-
formative planners (Kantaros et al., 2021; Schlotfeldt et al.,
2018) and have recently garnered great attention (Arora
etal., 2019; Best et al., 2019; Morere et al., 2017; Chen and
Liu 2019; Flaspohler et al., 2019). Trajectory optimization
is a solid competitor to sampling-based planners. Bayesian
Optimization (Marchant and Ramos 2012; Bai et al., 2016;
Di Caro and Yousaf 2021) and Evolutionary Strategy
(Popovic et al., 2017, 2020b; Hitz et al., 2017) are the two
dominating methods in this realm. New frameworks of RIG,
for example, Imitation Learning (Choudhury et al., 2018),
are emerging. Communication constraints (Lauri et al.,
2017) and adversarial attacks (Schlotfeldt et al., 2021)
have also been discussed.

2.1.4. Relevant applications. Mobile robots can be con-
sidered as autonomous data-gathering tools, enabling sci-
entific research in remote and hazardous environments (Li
2020; Bai et al., 2021). RIG has been successfully applied to
environmental mapping and monitoring (Dunbabin and
Marques 2012). An underwater robot with a profiling so-
nar can inspect a ship hull autonomously (Hollinger et al.,
2013). In Girdhar et al. (2014), the underwater robot per-
forms semantic exploration with online topic modeling,
which can group corals belonging to the same species or
rocks of similar types. Flaspohler et al. (2019) deploy an
ASV for localizing and collecting samples at the most
exposed coral head. Hitz et al. (2017) monitor algal bloom
using an ASV, which can provide early warning to envi-
ronmental managers to conduct water treatment in a more
appropriate time frame. Manjanna et al. (2018) show that a
robot team can help scientists collect plankton-rich water
samples via in situ mapping of chlorophyll density.
Fernandez et al. (2022) propose delineating the sampling
locations that correspond to the quantile values of the
phenomenon of interest, which helps the scientists to collect
valuable data for later analysis. Active lakebed mapping,
where the static ground truth is available, can serve as a
testbed for ocean bathymetric mapping (Ma et al., 2018).
RIG can also be applied to the 3D reconstruction of large



Chen et al.

409

scenes (Kompis et al., 2021) and object surfaces (Zhu et al.,
2021). In addition to geometric mapping, semantic mapping
is also explored in Atanasov et al. (2014), where a PR2 robot
with an RGB-D camera attached to the wrist leverages non-
myopic view planning for active object classification and
pose estimation. Meera et al. (2019) present a realistic
simulation of a search-and-rescue scenario in which In-
formative Planning maximizes search efficiency under the
Unmanned Aerial Vehicle (UAV) flight time constraints.
Fixed-wing UAVs use aerodynamics akin to aircraft, so it
has a much longer flight time than multi-rotors. Moon et al.
(2022) simulate a fixed-wing UAV with a forward-facing
camera to search for multiple objects of interest in a large
search space.

2.2. Non-stationary Gaussian processes

GPs suffer from two significant limitations (Rasmussen and
Ghahramani 2001). The first one is the notorious cubic
computational complexity of a vanilla implementation.
Recent years have witnessed remarkable progress in solving
this problem based on sparse GPs (Quinonero-Candela and
Rasmussen 2005; Titsias 2009; Hoang et al., 2015; Sheth
et al., 2015; Bui et al., 2017; Wei et al., 2021). The second
drawback is that the covariance function is commonly as-
sumed to be stationary, limiting the modeling flexibility.
Developing non-stationary GP models that are easy to train
is still an active open research problem. Ideas of handling
non-stationarity can be roughly grouped into three cate-
gories: input-dependent length-scale (Gibbs 1997; Paciorek
and Schervish 2003; Lang et al., 2007; Plagemann et al.
2008b, 2008a; Heinonen et al., 2016; Remes et al., 2017),
input warping (Sampson and Guttorp 1992; Snoek et al.,
2014; Calandra et al., 2016; Wilson et al., 2016; Tompkins
et al., 2020a; Salimbeni and Deisenroth 2017), and the
mixture of experts (Rasmussen and Ghahramani 2001;
Trapp et al., 2020).

Input-dependent length-scale provides excellent flexi-
bility to learn different correlation scales at different input
locations. Gibbs (1997) and Paciorek and Schervish (2003)
have shown how one can construct a valid kernel with input-
dependent length-scales, namely, a length-scale function.
The standard approach uses another GP to model the length-
scale function, which is then used in the kernel of a GP,
yielding a hierarchical Bayesian model. Several papers have
developed inference techniques for such models and
demonstrated their use in some applications (Lang et al.,
2007; Plagemann et al. 2008b, 2008a; Heinonen et al., 2016;
Remes et al., 2017). Recently, Remes et al. (2018) show that
modeling the length-scale function using a neural network
improves performance. Note, however, that learning a
length-scale function is nontrivial (Wang et al., 2020).

Input warping is more widely applicable because it
endows any stationary kernel with the ability to model non-
stationarity by mapping the input locations to a distorted
space and assuming stationarity holds in the new space. This
approach has a tricky requirement: the mapping must be

injective to avoid undesirable folding of the space (Sampson
and Guttorp 1992; Snoek et al.,, 2014; Salimbeni and
Deisenroth 2017).

A mixture of GP experts (MoGPE) uses a gating network
to allocate each data to a local GP that learns its hyper-
parameters from the assigned data. It typically requires
Gibbs sampling (Rasmussen and Ghahramani 2001), which
can be slow. Hence, one might need to develop a faster
approximation (Nguyen-Tuong et al., 2008). We view
MoGPE as an orthogonal direction to other non-stationary
GPs or kernels because any GP model can be treated as the
expert so that one can have a mixture of non-stationary GPs.

The AK lies at the intersection of these three categories.
Section 4.1.1 presents an input-dependent length-scale idea
by weighting base kernels with different fixed length-scales
at each location. Composing base kernels reduces the dif-
ficulty of learning a length-scale function from scratch and
makes our method compatible with any base kernel. In
Section 4.1.2, we augment the input with extra dimensions.
We can view the augmentation as warping the input space to
a higher-dimensional space, ensuring injectivity by design.
Combining these two ideas gives a conceptually similar
model to MoGPE (Rasmussen and Ghahramani 2001) in
that they both divide the space into multiple regions and
learn localized hyper-parameters. The idea of augmenting
the input dimensions has been discussed by Pfingsten et al.
(2006). However, they treat the augmented vector as a latent
variable and resort to Markov chain Monte Carlo for in-
ference. The AK treats the augmentation vector as the
output of a deterministic function of the input, resulting in a
more straightforward inference procedure. Also, the AK can
be used in MoGPE to build more flexible models.

In robotic mapping, another line of notable work on
probabilistic models is the family of Hilbert maps (Ramos
and Ott 2016; Senanayake and Ramos 2017; Guizilini and
Ramos 2019), which aims to alleviate the computational
bottleneck of GPs (O’Callaghan and Ramos 2012) by
projecting the data to another feature space and applying a
logistic regression classifier in the new space. Since Hilbert
maps are typically used for occupancy mapping (Doherty
et al., 2016) and reconstruction tasks (Guizilini and Ramos
2017), related work also considers non-stationarity for
better prediction (Senanayake et al., 2018; Tompkins et al.,
2020Db).

2.3. Relationship to other research topics

RIG is a fundamental research problem seeking an answer
to the following question:

How does a robot (team) collect informative data to
efficiently build an accurate model of an unknown function
under robot embodiment constraints?

Depending on how we define dafa and what the un-
known target function is, RIG appears in the form of Active
Dynamics Learning, Active Mapping, Active Localization,
and Active Simultaneous Localization and Mapping
(SLAM). Figure 3 shows a Venn diagram of these topics.
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Figure 3. Research topics related to RIG.

Although we evaluate the AK in Active Mapping tasks,
other related problems, for example, Active Dynamics
Learning, can also benefit from the proposed method if the
target function is modeled by a GP. On top of that, guiding
the data collection process by minimizing well-calibrated
uncertainty estimates applies to all these related topics
(Rodriguez-Arévalo et al., 2018).

2.3.1. Active dynamics learning. Control synthesis typi-
cally depends on the system dynamics. Due to the complex
interaction between the robot and the environment, for
example, a quadruped running at high speed over rough
terrain, mechanical wear and tear, and actuator faults, it may
be infeasible to build an accurate dynamics model a priori
(Cully et al., 2015). In these cases, the robot must take safe
actions and observe its dynamics to explore different be-
havioral regimes sample-efficiently (Abraham and Murphey
2019). When the robot collects dynamics information to
infer the unknown transition function, the RIG problem is
known as Active Dynamics Learning or System Identifi-
cation (Taylor et al., 2021). In this context, informative data
refers to the state-action-state pairs or the full state-action
trajectories that help efficiently learn an accurate model of
the unknown system dynamics or transition function. The
system dynamics can be modeled as fixed-form equations
(Jegorova et al., 2020), data-driven models, including
parametric models (Chua et al., 2018), non-parametric
models (Calandra et al., 2016), and semi-parametric
models (Romeres et al., 2019), and the combination of
the analytical models and data-driven models (Heiden et al.,
2021b). GPs have arguably become the de facto standard in
collecting informative data that minimizes the predictive
uncertainty of data-driven models to achieve sample-
efficient dynamics learning (Rezaei-Shoshtari et al.,
2019; Buisson-Fenet et al., 2020; Capone et al., 2020; Lew
et al., 2022; Yu et al., 2021). With the rise of Automatic
Differentiation (Paszke et al., 2017), a large body of recent
work tend to estimate the physical parameters inside dif-
ferentiable Rigid-Body Dynamics models (Sutanto et al.,

2020; Lutter et al., 2021; De Avila Belbute-Peres et al.,
2018) or differentiable robotics simulators (Hu et al., 2019;
Freeman et al., 2021; Werling et al., 2021). The literature
emphasizes that calibrating the simulation (Mehta et al.,
2021) is essential for both Reinforcement Learning with
domain randomization (Ramos et al., 2019; Muratore et al.,
2022) or trajectory optimization (Du et al., 2021; Heiden
etal., 2021a). In this context, we can consider RIG as Active
Simulation Calibration since the robot collects informative
trajectories to efficiently learn an accurate model of the
unknown simulation parameters under the kinodynamic
constraints. Active Simulation Calibration can also directly
optimize the task-specific reward. For instance, Muratore
et al. (2021) model the policy return as a GP and use
Bayesian Optimization to tune the simulation parameters.
Liang et al. (2020) learn a task-oriented exploration policy
to collect informative data for calibrating task-relevant
simulation parameters.

2.3.2. Active perception. When the robot collects data from
the environment rather than its dynamics, RIG becomes
Active Perception—an agent (e.g., camera or robot) changes
its angle of view or position to perceive the surrounding
environment better (Bajcsy 1988; Aloimonos et al., 1988;
Bajcsy et al., 2018). If the agent actively perceives the
environment to reduce the localization uncertainty, the
problem is referred to as Active Localization (Fox et al.,
1998; Borghi and Caglioti 1998). If the goal is to build the
best possible representation of an environment, the problem
essentially becomes Active Mapping (Lluvia et al., 2021).

2.3.3. Active localization. Localization uncertainty can arise
from perceptual degradation (Ebadi et al., 2020), noisy actu-
ation (Thrun 2002), and inaccurate modeling (Roy et al., 1999).
Decision-making or planning under uncertainty (LaValle 2006;
Bry and Roy 2011; Preston et al., 2022) provides an elegant
framework to formulate these problems using partially ob-
servable Markov decision processes (POMDPs) (Kaelbling
et al., 1998; Cai et al., 2021; Lauri et al., 2022). A principled
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approach to address these problems is to plan in the belief

space (Kaelbling and Lozano-Pérez 2013; Nishimura and
Schwager 2021). Information gathering is a natural behav-
ior generated by Belief-Space Planning (Platt et al., 2010).
Computing optimal policy in belief space is computationally
intensive, but useful heuristics enable efficient computation of
high-quality solutions (Kim et al., 2019; Prentice and Roy
2009; Zheng et al., 2022). Although the localization uncer-
tainty can come from different sources, in perceptually de-
graded environments such as subterranean, perception
uncertainty outweighs the others. A dedicated topic for this
case is perception-aware planning (Zhang 2020). Note that
localization is not necessarily positioning a mobile robot on a
map (Chaplot et al., 2018); it can also be locating and tracking
an object in the workspace of a manipulator with force—torque
sensor measurements (Wirnshofer et al., 2020; Schneider et al.,
2022).

2.3.4. Active sensing and mapping. Suppose that the data
refers to the robot’s observations, for example, camera
images or LiDAR point clouds, and the unknown target
function is the ground-truth representation of the envi-
ronment. In that case, RIG can be considered an Active
Mapping problem (Placed et al., 2022). Mapping uncer-
tainty can come from aleatoric uncertainty inherent in
measurement noise and epistemic uncertainty due to un-
known model parameters and data scarcity (Krause and
Guestrin 2007). Active Mapping efficiently builds an ac-
curate model of the environment by minimizing epistemic
uncertainty, which is often termed Active Sensing when
focusing on the active acquisition of sensor measurements
for better prediction rather than model learning (Cao et al.,
2013; MacDonald and Smith 2019; Schlotfeldt et al., 2019;
Riickin et al., 2022). When mapping a 3D environment
using a sensor with a limited field-of-view, this is known as
the Next-Best View problem (Connolly 1985; Bircher et al.,
2016; Palomeras et al., 2019; Lauri et al., 2020). Auton-
omous Exploration is sometimes used interchangeably with
Active Mapping (Lluvia et al., 2021). However, the nu-
ances of the assumptions and evaluation metrics of the two
domains yield significantly different solutions and robot
behaviors. Specifically, Active Mapping typically assumes
ideal localization (Popovi¢ et al., 2020a) and aims at
building an accurate environment map using noisy and
sparse observations; thus, the performance is evaluated by
reconstruction error against the ground truth. The robot
might revisit some complex regions to collect more data if
the model prediction is not accurate enough. For example,
when performing Active Mapping of a ship hull, the robot
should collect more data around the propeller (Hollinger
et al.,, 2013). Autonomous Exploration emphasizes ob-
taining the global structure of a vast unknown environment,
implying that the robot (team) should avoid duplicate
coverage; thus, the evaluation criterion is the explored
volume (Cao et al., 2021). In contrast to Active Mapping,
unreliable localization is one of the major challenges in
Autonomous Exploration that should be addressed

(Tranzatto et al., 2022; Papachristos et al., 2019). In this
work, our application belongs to the Active Mapping
problem, where the better uncertainty quantification of the
proposed non-stationary GPR guides the robot to collect
more informative data for rapid learning of an
accurate map.

2.3.5. Active SLAM. Controlling a robot performing SLAM
to reduce both the localization and mapping uncertainty is
called active SLAM (Placed et al., 2022). Active Locali-
zation and Active Mapping are two conflicting objectives.
The former asks the robot to revisit explored areas for po-
tential loop closure (Stachniss et al., 2004), while the latter
guides the robot to expand frontiers for efficient map
building (Yamauchi 1997). We refer the interested reader to
the corresponding survey papers (Lluvia et al., 2021; Placed
et al., 2022).

3. Problem statement

Consider deploying a robot to efficiently build a map of an
unknown environment using only sparse sensing mea-
surements of onboard sensors. For instance, when re-
constructing a pollution distribution map, the
environmental sensors can only measure the pollutant
concentration in a point-wise sampling manner, yielding
sparse measurements along the trajectory. Another sce-
nario is building a large bathymetric map of the seabed.
The depth measurements of a multi-beam sonar can be
viewed as point measurements because the unknown
target area is typically vast. Exhaustively sampling the
whole environment is prohibitive, if not impossible; thus,
one must develop adaptive planning algorithms to collect
the most informative data for building an accurate model.
Table 1 introduces the notation system used in this paper.
We use column vector by default.

3.1. Minimization of error vs. uncertainty

Problem 1. The target environment is an unknown function
fenv(X) : RP >R defined over spatial locations x € R”. Let
T2 {r}], be the set of decision epochs. A robot at state
s;_1 €S takes an action a,_ € A, arrives at the next state s,
following a transition function p(s{s;_;, a;_1), and collects
N, €N noisy measurements y, € R at sampling locations
X, = [X15 .-, Xn) T € R¥*P when transitioning from's,_; to's,.
We assume that the transition function is known and deter-
ministic and that the robot state is observable. The robot
maintains a probabilistic model built from all the training data
collected so far D, = {(X;,y;)}i_;- The model provides
predictive mean u,:RP?—R and predictive variance
v, : RP Ry functions. Let x* be a test or query location, and
error(-) be an error metric. At each decision epoch ¢ € T, our
goal is to find sampling locations that minimize the expected
error after updating the model with the collected data
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Table 1. Mathematical notations.

Meaning Example Remark

Variable m Lower-case

Constant M Upper-case

Vector X Bold, lower-case

Matrix X Bold, upper-case

Set/space R Blackboard

Cartesian product [a,b]” D-dim hypercube

Function d() Typewriter

Special PDF N Calligraphy capital

Definition e Normal

Transpose m’ Customized command

Euclidean norm [I-[]2 Customized command
arg minE, [error(feny (x*), 1, (x*), v, (x*))] ()

X

The predictive variance is also included in equation (1)
because it is required when computing some error metrics,
for example, negative log predictive density. Note that the
expected error cannot be directly used as the objective
function for a planner because the ground-truth function fe,,
is unknown. RIG bypasses this problem by optimizing a
surrogate objective.

Problem 2. Assuming the same conditions as Problem 1,
find informative sampling locations that minimize an un-
certainty measure info(-), for example, entropy:

arg minE,« [info(v,(x*))] )

1

RIG implicitly assumes that minimizing prediction un-
certainty (Problem 2) can also effectively reduce prediction
error (Problem 1). This assumption is valid when the model
uncertainty is well-calibrated. A model with well-calibrated
uncertainty gives high uncertainty when the prediction error
is significant and low uncertainty otherwise.

3.2. Gaussian process regression

The predictive mean and variance functions are given by a
Gaussian process regression (GPR) model in this work. A
Gaussian process (GP) is a collection of random variables,
any finite number of which have a joint Gaussian distri-
bution (Rasmussen and Williams 2005).

3.2.1. Model specification. We place a Gaussian process
prior over the unknown target function

Fan (%) ~ GP(m(x), k(x,X)) 3)

which is specified by a mean function m(x) and a
covariance function k(x,x), a.k.a. kernel. After stan-
dardizing the training targets y to have a near-zero mean
empirically, the mean function is typically simplified to a

zero function, rendering the specification of the covariance
function an important choice. Popular choices of the
covariance functions are stationary kernels such as the
RBF kernel and the Matérn family. We refer the interested
reader to Rasmussen and Williams (2005) for other
commonly used kernels.

This paper uses the RBF kernel to show how we
transform a stationary kernel to a non-stationary one using
the proposed method. Given two inputs x and x’, the RBF
kernel measures their correlation by computing the fol-
lowing kernel value

k(x,x") = exp <HX ;;’Hi) 4)

The correlation scale parameter ¢ is called the length-scale,
which informally indicates the distance one has to move in
the input space before the function value can change sig-
nificantly (Rasmussen and Williams 2005). A given sample
should be most correlated to itself; thus, equation (4) gives
the largest kernel value when x = x’. Kernels are typically
normalized to ensure that the largest kernel value is 1 and an
amplitude parameter o can be used to scale the kernel value
ok(x,x) to a larger range.

GPR assumes a Gaussian likelihood function. The target
values y are the function outputs f corrupted by an additive
Gaussian white noise

p(v[x) = N (y[f(x),0%) )

where o is the observational noise scale.

3.2.2. Prediction. Since GP is a conjugate prior to the
Gaussian likelihood, given N training inputs X € R¥*? and
training targets y € RV, the posterior predictive distribution
has a closed-form expression:

Pfxly) = N (il v), (6)
=k Ky, 7)
V= k** - kIKy_lk* (8)

where k4 is the vector of kernel values between all the
training inputs X and the test input x*, K, is a shorthand of
K, + ¢°I, Ky is the covariance matrix given by the kernel
function evaluated at each pair of training inputs, and
k** ék(X"(, X*).

3.2.3. Learning. The prediction of GPR in equation (6) is
readily available with no need to train a model. However,
the prediction quality of GPR depends on the setting of
hyper-parameters y = [(, a, o]. These are the parameters of
the kernel and likelihood function. Hence, optimizing these
parameters—a process known as model selection—is a
common practice to obtain a better prediction. Model se-
lection is typically implemented by maximizing the model
evidence, a.k.a., log marginal likelihood,
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1 Tye—1
Inp(y|y) =57V K} y, - Ilndet(Ky)I — INln(27r)l
model fit model complexity constant
where det(...) is the matrix determinant. M
When using GPR with the commonly used stationary ak(x,x') = az'7 ZWmW:nkm(X, X) ©
m=1

kernels to reconstruct a real-world environment, high un-
certainty is assigned to less sampled areas, regardless of the
prediction error (see Figures 2(b) and 4). However, real-
world spatial environments are typically non-stationary, and
the high prediction error is more likely to be present in the
high-variability region. In other words, the assumption of
well-calibrated uncertainty is violated when using stationary
kernels. Therefore, we aim to develop non-stationary ker-
nels to improve GPR’s uncertainty-quantification capability
and prediction accuracy.

4. Methodology

We propose a new kernel called Attentive Kernel to deal
with non-stationarity.

Definition 1. Attentive Kernel (AK). Given two inputs
X, X €RP, vector-valued functions wy(x):RP—[0,1]"
and z,4(x) : R” [0, 1]" parameterized by 6, ¢, an ampli-
tude o, and a set of M base kernels {k,(x,x)},_,, let W =
WQ(X)/||W9(X)||2 and Z = Zd)(X)/”Zd?(X)HZ. The AK is
defined as

Samples = Target

where w,, is the m-th element of W.

We learn the parametric functions that map each input x
to w and z. The weight me/m gives similarity attention
scores to combine the set of base kernels {k,,(x,x)}, _,.
The inner productZ ' Z defines a visibility attention score to
mask the kernel value.

Definition 1 is generic because any existing kernel can be
the base kernel. To address non-stationarity, we choose the
base kernels to be a set of stationary kernels with the same
functional form but different length-scales. Specifically, we

use RBF kemels with M length-scales {¢,}_, that are
evenly spaced in the interval [{in, fmax]:
N e , I — x5
km(xa X ) =kRBF(Xa X |€m) = CXp Tm

Note that the length-scales {¢,,})_, are fixed constants
rather than trainable variables. When applying the AK to a
GPR, we optimize all the hyper-parameters {a, 8,¢, o} by
maximizing the marginal likelihood and make prediction as
in GPR.

= Prediction(£ 2 Standard Deviation)

@I

@ !

= (0 -
) JoRl Ll iNo!
I I 1
& ) | Wiggly PredictionI
= 0 A
5 I | 1 ' ] | l

Over-Smoothed Prediction

Figure 4. Learning a non-stationary function using GPR with RBF kernel. The target function in red color consists of five partitions
separated by vertical dashed lines. The black dots around the function are data points. The function changes drastically in
partition#3 and smoothly in the remaining partitions. The transitions between neighboring partitions are sharp. This simple function is
challenging for a stationary kernel with a single length-scale. GPR with a stationary RBF kernel produces either the wiggly prediction
shown in (a) or the over-smoothed prediction in (b). Note that in (a), the prediction in the smooth regions is rugged, and the uncertainty

is over-conservative when the training data is sparse. The prediction in (b) only captures the general trend, and every input location seems

equally uncertain.
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At first glance, the AK looks like a heuristic composite
kernel. However, the following sections explain how we
design this kernel from the first principles. In short, the
kernel is distilled from a generative model called AKGPR
that can naturally model non-stationary processes.

4.1. A generative derivation of AK

The example in Figure 4 motivates us to consider using
different length-scales at different input locations. Ideally,
we need a smaller length-scale for partition#3 and larger
length-scales for the others. In addition, we need to break
the correlations among data points in different partitions.
An ideal non-stationary model should handle these two
types of non-stationarity. Many existing works model the
input-dependent length-scale as a length-scale function
(Lang et al., 2007; Plagemann et al., 2008a; Heinonen
et al.,, 2016). However, parameter optimization of such
models is sensitive to data distribution and parameter ini-
tialization. We propose a new approach to address this issue
that avoids learning an explicit length-scale function. Instead,
every input location can select among a set of GPs with
different predefined primitive length-scales and select which
training samples are used when making a prediction. This
idea — selecting instead of inferring an input-independent
length-scale — avoids optimization difficulties in prior work.
These ideas are developed in the following sections.

4.1.1. Length-scale selection. Consider a set of M inde-
pendent GPs with a set of base kernels k,,(x,X ) using
predefined primitive length-scales {Zm}ﬁf:l. Intuitively, if
every input location can select a GP with an appropriate
length-scale, the non-stationarity can be characterized well.
We can achieve this by an input-dependent weighted sum

f(x) = Zwm(x)gm(x),where (10)

2n(x) ~GP(0,ky(x, X)) (11)

Here, w,,(x) is the m-th output of a vector-valued weighting
function wy(x) which is parameterized by 6. We denote w =
[W1(x), ..., wy (x)] T

Consider an extreme case where w is a “one-hot” vector—a
binary vector with only one element being one and all other
elements being zeros. In this case, w selects a single appro-
priate GP depending on the input location. Typically, inference
techniques such as Gibbs sampling or Expectation Maximi-
zation are required for learning such discrete “assignment”
parameters. We lift this requirement by continuous relaxation:

(12)

where Wy(x) is an arbitrary M-dimensional function pa-
rameterized by #. Moreover, using such continuous weights
has an advantage in modeling gradually changing non-
stationarity, as shown in Figure 5.

Figure 6 shows that length-scale selection gives better
prediction after learning from the same dataset as in Figure 4.
However, when facing abrupt changes, as shown in the circled
area, the model can only select a very small length-scale to
accommodate the loose correlations among data. If samples near
the abrupt changes are not dense enough, a small length-scale
might result in a high prediction error. The following section
explains how to handle abrupt changes using instance selection.

wy(x) = softmax(wy(x))

4.1.2. Instance selection. Intuitively, an input-dependent length-
scale specifies each data point’s neighborhood radius that it can
impact. Simply varying the radius cannot handle abrupt changes,
for example, in a step function, because data sampled before and
after an abrupt change should break their correlations even when

1
2 0
0 1 I 1
I 0.01 I 0.03 Bl 0.05 1 0.08 0.10
s 0.02 I 0.04 I 0.07  0.09 I 0.11

Figure 5. Learning f{x) = x sin(40x) with soft length-scale selection. The w-plot visualizes the associated weighting vector wy(x) of each
input location. The more vertical length a color occupies, the higher weight we assign to the GP with the corresponding length-scale.
The set of predefined length-scales is color-labeled at the bottom. The learned weighting function gradually shifts its weight from smooth

GPs to bumpy ones.
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they are close in input locations. We need to control the visibility
among samples: each sample learns only from other samples in
the same subgroup. To this end, we associate each input with a
membership vector z = z,(x) and use a dot product between two
membership vectors to control visibility. Two inputs are visible to
each other when they hold similar memberships. Otherwise, their
correlation will be masked out:

kn(x,X') =z Zkgpr(x, X'|6,) (13)

We can view this operation as input dimension aug-
mentation where we append z to x but use a structured
kernel in the joint space of [x, z].

Discussing one-hot vectors also helps understand the
effect of z. In this case, the dot product is equal to 1 if and
only if z and 7’ are the same one-hot vector. Otherwise, the
dot product in equation (13) masks out the correlation. This
way, we only use the subset of data points in the same
group. To make the model more flexible and simplify the
parameter optimization, we again use soft memberships:

z,(x) = softmax(Z,(x)) (14)
Here, Zy(x) is an arbitrary M-dimensional function pa-
rameterized by ¢.

4.1.3. The AKGPR model. Combining the two ideas, we get
a new probabilistic generative model developed for non-
stationary environments called Attentive Kernel Gaussian
Process Regression (AKGPR). Given N inputs X € R"*? and
targets y € R", the model describes the generative process as
follows. We use some shorthands for compact notation:

gmé [gm(X1)7 ""gm(XN)}T’
f211(xy), ... f(xy)] T,
Wi 2 [Win (X1, <oy Wi (x)]

Here, w,,(x) is the m-output of equation (12).

e We compute the membership vector z, for each input
using equation (14). Plugging z, and the predefined

length-scales /4, into equation (13), we then compute M
covariance matrices K,, evaluated at every pair of inputs.

® The vector g, follows a multivariate Gaussian distri-
bution N (0, K,,) according to the definition of GPs and
equation (11). From equation (10), we can see that fis the
summation of M vectors that follows affine-transformed
multivariate Gaussian distributions; thus, f also follows
Gaussian distribution:

f= EM:ngm ~/\/<0, EM:W,,,K,,,W,I> (15)
m=1

m=1

where W, is a diagonal matrix with w,, being the N di-
agonal elements.

¢ Finally, we can generate the targets y using the Gaussian
likelihood in equation (5).

The plate diagram of this generative process is shown in
Figure 7. From equation (15), we observe that the generative
process of AKGPR is equivalent to that of a GPR with a new
kernel:

2" Zkgpr (X, X'[6,) W, (16)

=3

hidden in K,,

Since z ' 7' is independent of 7, we can move it outside
the summation to avoid duplicate computation.

Equation (16) is almost the same as the AK in Definition
1, except that this kernel is not normalized yet. When x = x/,
the kernel value k(x,x) might be greater than 1. As
mentioned in Section 3.2.1, using an amplitude parameter a
to adjust the scale of the kernel value is a common practice
in GPR. Introducing the amplitude hyper-parameter re-
quires the kernel to be normalized; otherwise, the interplay
between the amplitude and the scaling effect of a kernel

2 I N ]
> 0 -
P L \YTHTTH 1

I 0.01
. 0.02

N 0.03
. 0.04

. 0.05
. 0.07

0.08
. 0.09

0.10
B 0.11

Figure 6. Prediction of length-scale selection.
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Figure 7. Plate notation of AKGPR.

before normalization makes the optimization difficult be-
cause more local optima are introduced due to the sym-
metries of the parameter space. We normalize w and z with
#-norm to ensure that the maximum kernel value (when
x=x')is 1, and a is the only parameter that controls the scale
of kernel value. After normalization, we now have the final
version of the proposed AK in Definition 1, which can be
used in any GP model. From the discussion above, we have:

Proposition 1. The AKGPR generative model is equivalent
to a GPR model with the AK defined in Definition 1.

4.2. Applying AK to GPR

We use the AK with a GPR model and optimize all the
parameters by maximizing the log marginal likelihood
Inp(ylo, a, 8,¢). Figure 8 shows the prediction results on the
example from Figure 4. Now, we can accurately model the
highly varying part, the smooth parts, and the abrupt
changes. Compared to Figure 4, where the uncertainty
mainly depends on the proximity to training samples, the
AKGPR assigns higher uncertainty to the high-error loca-
tions. The better uncertainty quantification is achieved by
putting more weight on the GPs with small length-scales in
partition#3 and those with large length-scales in the other
partitions. Note that the AKGPR switches the membership
vector z in the circled area to mask the inter-partition
correlations, which cannot be realized by length-scale se-
lection in Figure 6. Due to this modeling advantage, the
results in Figure 8 are qualitatively better than in Figure 6.

4.3. Remark on the Attentive Kernel

In this section, we discuss how to parameterize the weighting
and membership functions in the AK, the computational
complexity of the proposed kernel, and some details on
hyper-parameter optimization of non-stationary kernels.

4.3.1. Parameterization. To instantiate an AK, we must
specify the weighting function wy(x) and the membership
function z,(x). In the experiments, we find that sharing a
single neural network for length-scale selection and instance
selection does not affect the performance but reduces the

number of trainable parameters and sometimes helps the
training of the instance selection mechanism (see Section
5.2.2). Therefore, we use the same set of parameters 8 = ¢
for the two attention mechanisms and choose a simple
neural network with two hidden layers (see Section 5.1.3 for
more details). Using a simple neural network is an arbitrary
choice for simplicity and modeling flexibility. Other para-
metric functions can also be used, and we leave the study of
alternative parameterization to future work.

4.3.2. Computational complexity. Kernel matrix compu-
tations are typically performed in a batch manner to take
advantage of the parallelism in linear algebra libraries.
Figure 9 shows the computational diagram of the self-
covariance matrix of an input matrix X € R for the
case where the same function parameterizes wy(x) and
24(x).

The computation of a cross-covariance matrix and the case
where wy(x) and z,(x) are parameterized separately are
handled similarly. We first pass X to a neural network with
two hidden layers to get We RV M andZ e RVM . The
computational complexity of this step is O(NDH
+NH? 4+ NHM). Then, we compute a visibility masking
matrix O = ZZ ", which takes O(N>M). After getting the
pairwise distance matrix (O(N2D)), we can compute the base
kernel matrices using different length-scales (O(N?)). The
m-th kernel matrix is scaled by the outer-product matrix of the
m-th column of W, which takes O(N?M). Finally, we sum up
the scaled kernel matrices and multiply the result with the
visibility masking matrix to get the AK matrix (O(N*M)).
We defer the discussion of the choices of network size A and
number of base kernels M to the sensitivity analysis in Section
5.2.1. In short, these will be relatively small numbers, so the
overall computational complexity is still O(N2D). In practice,
we find that the runtime of the AK experiments is around three
times slower than that of the RBF kernel.

4.3.3. Optimization. We note that the model complexity
term discussed in Section 3.2.3 is insufficient for preventing
over-fitting when training non-stationary kernels for many
iterations, a point also mentioned in Tompkins et al. (2020a)
in their over-fitting analysis. Although the AK is more
robust to over-fitting (see Section 5.2.3), we implement an
incremental training scheme to improve the computational
efficiency and optimization robustness when using non-
stationary kernels in RIG. Specifically, we train the model
on all the collected data for , iterations after collecting N,
samples at the 7-th decision epoch, which corresponds to
line 7 to line 10 in Algorithm 1.

This training scheme can be considered a rule-of-thumb
early-stopping regularization. We also find that, when using
a neural network in a non-stationary kernel, the initial
learning rate of the network parameters should be smaller
than that of other hyper-parameters. For example, when
using the AK, the initial learning rates of @ or ¢ should be
smaller than that of {a, o}.
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Figure 8. Learning the same function as in Figure 4 using AKGPR. A weight or membership vector is visualized as a stack of bar plots
produced by its elements. Different colors represent different length-scales or dimensions of the weight or membership vector.
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Figure 9. Computational diagram of the AK.

Another important aspect is when to start optimizing
the hyper-parameters. Optimizing the parameters when the
data is too sparse and not representative can lead to wrong
length-scale prediction, which can bias the Informative
Planning. In RIG, exploring the environment and sam-
pling data at different locations is necessary before opti-
mizing the hyper-parameters. In our experiments, this is
done by following a predefined Bézier curve that explores
the environment. An alternative way to achieve this be-
havior is by fixing the hyper-parameters to some appro-
priate values and training the model only after collecting a

certain amount of samples. This approach does not require
a pilot survey of the environment. However, the user
should have some prior knowledge of the target envi-
ronment in order to set the initial hyper-parameters.

This training setup works well empirically, but we ac-
knowledge that developing more principled ways to learn
non-stationary GPs is an essential future direction, which is
still an open research problem and has recently received
increasing attention (Ober et al. 2021; Van Amersfoort et al.
2021; Lotfi et al. 2022).

Algorithm 1. Active Mapping with the AK.

Arguments: Ny, v, 0, {km (x, %) }M_,
wo(x),z4(x), strategy

: compute normalization and standardization statistics
. kernel < AK(a, {ku(%, X' ) ey, Wo(X), 2 (X))
: model + GPR(kernel, o)
t<0
: while model. Niin < Niax do > sampling budget
Xinfo <— Strategy(model) > informative waypoint
X, y: < tracking and_sampling(Xinfo) > N; samples
X, ¥+ < normalize_and_standardize (Xe,yt)
model.add,data()_(t7 Vi)
model.optimize(NV;)
t—t+1
: return model

> maximize marginal likelihood

_ =
SN B A AN e

—_
[S°)
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4.4. Active Mapping with the Attentive Kernel

Algorithm 1 shows how the AK can be used for Active
Mapping. The system requires the following input argu-
ments: the maximum number of training data N, the
initial kernel amplitude o, the initial noise scale o, a set of
M base kernels {k,, (x, x’)}ﬁf:l, functions wy(x) and z4(x),
and a sampling strategy. First, we need to compute the
statistics to normalize the inputs X roughly to the range
[—1, 1] and standardize the targets y to nearly have zero
mean and unit variance (line 1). We can get these statistics
from prior knowledge of the environment. The workspace
extent is typically known, allowing the normalization
statistics to be readily calculated. The target-value sta-
tistics can be rough estimates or computed from a pilot
environment survey (Kemna et al., 2018). Then, we in-
stantiate an AK and a GPR with the given parameters
(lines 2-3). At each decision epoch ¢, the sampling strategy
proposes informative waypoints by optimizing an objec-
tive function derived from the predictive uncertainty of the
GPR (line 6). The robot tracks the informative waypoints
and collects N, samples along the trajectory (line 7). Note
that the number of collected samples is typically larger
than the number of informative waypoints. The new
samples are normalized and standardized and then ap-
pended to the model’s training set (lines 8—9). Finally, we
maximize the log marginal likelihood for N, iterations
(line 10). The robot repeats predicting (hidden in line 6),
planning, sampling, and optimizing until the sampling
budget is exceeded (line 5).

5. Experiments

We design our experiments to address the following
questions.

Q1 How does the AK compare to its stationary counterpart
and other non-stationary kernels in prediction accuracy
and uncertainty quantification?

If non-stationary kernels have better uncertainty
quantification capability, can we use the uncertainty for
active data collection and to further improve the pre-
diction accuracy?

Some parameters in the AK need to be determined, that
is, the number and range of the primitive length-scales
and the network hyper-parameters. Are these param-
eters hard to tune? Is the performance of AK sensitive
to its parameter settings?

The AK consists of two ideas: length-scale selection
and instance selection. Which one contributes more to
the performance in the experiments?

How does the AK compare to the other non-stationary
kernels in over-fitting?

Q2

Q3

Q4

Q5

To answer Q1, we use random sampling experiments in
Section 5.1.6 to evaluate the AK and the compared kernels.
We run the random sampling experiments first because the

performance of a RIG system depends on not only the
model’s prediction and uncertainty but also the informative
planner. Sampling data uniformly at random (without an
informative planner) provides controlled experiments to
understand the effects of using different kernels. For Q2, we
conduct both active learning (Section 5.1.7) and RIG ex-
periments (Section 5.1.8) to disentangle the influence of the
model’s uncertainty and the planner. RIG considers the
physical constraints of the robot embodiment, while active
learning can sample arbitrary locations. We assess the AK
via sensitivity analysis, ablation study, and over-fitting
analysis to address the remaining questions.

5.1. Simulated experiments

We have conducted extensive simulations in four repre-
sentative environments that exhibit various non-stationary
features. The elevation maps are downloaded from the
NASA Shuttle Radar Topography Mission (dwtkns.com/
srtm30m). Supplemental materials can be found at weizhe-
chen.github.io/attentive_kernels.

5.1.1. Environments. Figure 10 shows the 3D perspectives
of all the environments and the corresponding bird’s-eye
views. Note that the 3D plots are rotated for better visu-
alization. When comparing to the model prediction, we use
the bird’s-eye map as the ground truth, and we will describe
the environmental features in the 3D plots. Looking at
environment N17E073 from left to right, it consists of a flat
part, a mountainous area, and a rocky region with many
ridges. A good non-stationary GP model should use de-
creasing length-scales from left to right. Also, note that the
most complex area (i.e., the red region) occupies roughly
one-third of the whole environment. N43WO080 presents
sharp elevation changes indicated by the arrows while the
lakebed is virtually flat. Using a large length-scale can
model most of the areas well, albeit better prediction can be
achieved by sampling densely around the high-variability
spots indicated by the arrows. It is worth noting that better
predictions will be more evident in the visualization
compared to the evaluation metrics that average across the
whole environment since the important area only occupies a
small portion of the environment, and the improvements
might be negligible in the metrics. In N45W123, the en-
vironment has a narrow complex upper part and a smoother
lower part. The size of the complex region is smaller than
one-third of the environment. There is also a “river” passing
through the middle. The right part of N47W124 varies
drastically, while its left part is relatively flat. Loosely
speaking, N47W124 has the most significant change in
spatial variability, followed by NI17E073 and then
N45W123, so the possible improvement margins of non-
stationary models in these environments should also de-
crease in this order. Only after discovering and sampling the
two arrow-indicated spots can non-stationary models show
an advantage over a stationary one in predicting environ-
ment N43WO080.
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5.1.2. Robot. We set the extent of the environment to 20 x
20 meters and simulate a planar robot that has a simple Dubins’
car model [X},%;,V,®] = [vcos(w), vsin(w), a;,az]. Here,
Xp = [xl,xz]T is the position, w € [—=, ) is the orientation,
andaZ [ar,az) T is the action that represents the change in the
linear velocity and angular velocity. The maximum linear
velocity is set to 1 m/s, and the control frequency is 10 Hz.
Although we assume perfect localization in the simulated
experiments, to keep the same interface with the field ex-
periments, we consider that the robot has achieved a goal if it is
within a 0.1-meter radius. This radius is an arbitrary choice
within the dimension of the robot. The robot has a single-beam
range sensor that collects one noisy elevation measurement per
second with a unit Gaussian observational noise. In the random
and active sampling experiments, the robot can “jump” to an
arbitrary sampling location to collect data, so it does not follow
Dubins’ car model. In the RIG experiment, the robot tracks
some informative locations under the Dubins’ car kinematic
constraint and collects elevation measurements along its
trajectory.

5.1.3. Models. The GPR takes two-dimensional sampling
locations as inputs and predicts the elevation. We only allow
the robot to collect 700 samples, among which the first 50 data
points are collected along a pilot survey path pre-computed for
the environment. As shown in Figure 11, the path is generated
from a Bézier curve with 18 control points. The positions of
the control points adapt to the extent of the workspace ac-
cordingly. These 50 samples are used to initialize the GPR and
compute the statistics to normalize the inputs and standardize
the target values. If the statistics are known in advance, the
pilot survey is not necessary. One can also use a relatively large
length-scale and fix the hyper-parameters of the GPR in the
early stage so that the robot can explore the environment and
collect diverse data for hyper-parameter optimization and
statistics calculation. After normalization and standardization,
we initialize the hyper-parameters to = 0.5, a = 1.0, ¢ = 1.0,
Lmin = 0.01, £2x = 0.5. We use the default PyTorch settings for
initializing the network parameters. These hyper-parameters
and the neural network parameters in the non-stationary
kernels are jointly optimized by two Adam optimizers
(Kingma and Ba 2014) with initial learning rates 0.01 and
0.001, respectively. We first run an initial optimization of all
the parameters for 50 steps. The model’s prediction is eval-
uated on a 50 x 50 linearly spaced evaluation grid, that is,
2500 query inputs, comparing with the ground-truth elevation
values.

We compare the AK with two existing non-stationary
kernels: the Gibbs kernel and Deep Kernel Learning (DKL).
Since the RBF kernel is widely used in RIG, we also add this
kernel as a stationary baseline. The Gibbs kernel extends the
length-scale to be any positive function of the input, de-
generating to an RBF kernel when using a constant length-
scale function. Following Remes et al. (2018), which
showed improved results, the length-scale function is
modeled using a neural network instead of another Gaussian
process. DKL addresses non-stationarity through input

warping. A neural network transforms the inputs to a feature
space where the stationary RBF kernel is assumed to be
sufficient. We use the same neural network with 2 x 10 x
10 x 10 neurons and hyperbolic tangent activation function
for the AK and DKL and change the output dimension to
1 for the Gibbs kernel because it requires a scalar-valued
length-scale function.

Algorithm 2. A Myopic Informative Planning Strategy

Notation
workspace: bounding box of the workspace
N.: number of candidate locations
model: Gaussian process regression model
Xp: robot’s position
1: procedure rig(workspace, Nc,model, pose)
2 X. ~ U(workspace,N:) > generate candidate locations
uniformly at random in the workspace
3: M, v < model.predict(Xc)
variance

> predictive mean and

€ + entropy(v) > compute predictive entropy
d < distance(Xc,xp) > pairwise Euclidean distances
€ ¢ [e—min(e))/[nax(e) —min(e)]
(i < [d*min(d)]/[max(d)7min(d)]

score e —d > informativeness score

R B A

i < arg max(score)
10: return the i-th candidate in X,

5.1.4. Sampling strategies. We use different sampling
strategies in the three sets of experiments. We randomly
draw a sample from a uniform distribution at each decision
epoch in random sampling experiments. In active sampling
experiments, we evaluate the predictive uncertainty on
1000 randomly generated candidate locations and then
sample from the location with the highest predictive en-
tropy. While the AK can be plugged into any advanced
informative planner for RIG, we use the naive informative
planner in Algorithm 2 for simplicity. Specifically, in ad-
dition to the predictive entropy, this planner computes the
distances from these locations to the robot’s position. We
normalize the predictive entropy and distance to [0, 1]. Each
candidate location’s informativeness score is defined as the
normalized entropy minus the normalized distance. This
informativeness score considers the robot’s physical con-
straints and encourages the robot to move to a location with
high predictive uncertainty and close to the robot’s current
position. The planner outputs the informative waypoint with
the highest score. A tracking controller is used to move the
robot to the waypoint. Note that the number of collected
samples NV, varies at different decision epochs depending on
the distance from the robot to the informative waypoint.

5.1.5. Evaluation metrics. We care about the prediction
performance and whether the predictive uncertainty can
effectively reflect the prediction error. Following standard
practice in the GP literature, we use standardized mean
squared error (SMSE) and mean standardized log loss
(MSLL) to measure these quantities (see Chapter 2.5 in



420

The International Journal of Robotics Research 43(4)

(a)

F

N17EQ73 3D Perspective

N43WO080 3D Perspective

(e)

N45W123 3D Perspective
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o

N47W124 3D Perspective

(b)

N17E073 Bird's-Eye View

N43W080 Bird's-Eye View

N47W124 Bird's-Eye View

Figure 10. The four environments used in the elevation mapping tasks. Note that the 3D perspectives are rotated and rescaled to highlight

the visual features of the environments.

Rasmussen and Williams (2005)). SMSE is the mean
squared error divided by the variance of test targets. After
this standardization, a trivial method that makes a prediction
using the mean of the training targets has an SMSE of
approximately 1. To take the predictive uncertainty into
account, one can evaluate the negative log predictive
density (NLPD), a.k.a., log loss, of a test target,

In(27v)
2

0* —w’
(2v)

—Inp(y*|x*) = +
where ¢ and v are the mean and variance in equations (7)
and (8). MSLL standardizes the log loss by subtracting the
log loss obtained under the trivial model, which predicts
using a Gaussian with the mean and variance of the
training targets. The MSLL will be approximately zero for
naive methods and negative for better methods. In the

experiments, we also measured the root-mean-square error
(RMSE) and the mean absolute error (MAE). We report the
mean and standard deviation of the metrics over ten runs of
the experiments with different random seeds. For a more
obvious quantitative comparison, we present all the
benchmarking results in Tables 2—4. Each number sum-
marizes a metric curve by averaging the curve across the
x-axis, that is, the number of samples, which indicates the
averaged area under the curve. A smaller area implies a
faster drop in the curve. For all the metrics, smaller values
indicate better performance.

5.1.6. Random sampling results. Table 2 gives a positive
answer to Q1 firmly. The AK consistently outperforms other
kernels across all the considered environments and evalu-
ation metrics. To avoid clutter, we only visualize the SMSE
and MLSS curves because they are normalized versions of
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Figure 11. Pilot survey path. The red stars are control points to
generate the Bézier curve.

RMSE and NLPD and the results of MAE are consistent
with that of RMSE.

Figure 12 shows the metrics versus the number of col-
lected samples of the four kernels in all environments. From
the SMSE curves, we can see that the advantage of the AK
(i.e., the green line) is most significant in N47W124, fol-
lowed by N17E073 and then N45W123. This order com-
plies with the changes in the spatial variability of these
environments. In environment N43WO080, all the lines are
overlapped. N43WO080 is the environment that has two spots
with drastic variations. Too few random samples landed on
the two spots to allow the AK to learn better prediction. That
said, the MLSS curve of the AK is still outstanding in this
environment. The advantage of the AK on uncertainty
quantification is significant in all environments. The Gibbs
kernel also has better uncertainty quantification than the
RBF kernel and DKL.

Figure 13 visually compares kernels’ prediction, un-
certainty, and absolute error after collecting 570 samples in
environment N47W124. Note that the prediction and error
maps use the same color scale for easy comparison across
different methods. Each uncertainty map uses its color
scale—red color only indicates relatively high uncertainty
within the map. These rules are applied to other heat maps
hereafter. The AK learns more detailed environmental
features (c.f., Figure 10(h)), hence obtaining better SMSE;
the AK also assigns higher uncertainty to the region that is
relatively more difficult to model, thus giving better MSLL.
As a comparison, the RBF kernel ignores these details and
assigns higher uncertainty to the sparsely sampled areas.
The Gibbs kernel also has a smooth prediction in the
complex region because it learns an incorrect length-scale
function. Instead of assigning small length-scales to the
complex region, it places them in the lower-right corner,
indicated by the high uncertainty. DKL’s prediction and
uncertainty maps have similar patterns to the Gibbs kernel.

5.1.7. Active sampling results. The objective of active
sampling experiments is to investigate whether prediction
uncertainty can influence sampling towards significant areas
and ultimately enhance accuracy. By comparing the SMSE
results of the AK in Table 2 and Table 3, we observe a clear

improvement in accuracy when using the active sampling
strategy. Specifically, the relative accuracy improvements are
9%, 15%, 23%, and 6% in N17E073, N43W080, N45W123,
and N47W124, respectively, which answers Q2. The AK’s
better uncertainty quantification can further enhance pre-
diction accuracy when the data collection strategy is guided
by predictive uncertainty. However, we do not observe
consistent improvements when using active sampling with
the other kernels. Although they all improve the SMSE in
N45W123 and N47W124, they do not improve the accuracy
in the other two environments. Note that the relative im-
provements in N17E073 and N47W124 are smaller because
the AK has already achieved good accuracy in these two
environments when using random samples, so there is less
room to improve than in the other two environments.

The AK still performs the best in the active sampling
experiments, as seen in Table 3 and Figure 14. The SMSE
curves in Figures 14 and 12 are similar, except that the
advantage gap of the AK shrinks in N47W124 and increases
in N43WO080. We attribute the faster error drop in
N43WO080 to the better sample distribution. Figures 15(a)
and 15(e) show that, when using the AK, more informative
samples are collected in the complex regions in N43W080.
Figure 15 also shows the prediction, uncertainty, and
570 samples of the three non-stationary kernels in
N45W123, where all methods provide better accuracy when
using active sampling strategies. The predictions of the AK
and the Gibbs kernel are visually similar. The minor dif-
ference is located at the lower-right corner, where the AK
learns more details (c.f, Figure 10(f)). This difference
comes from the different sampling patterns. The AK
samples the right part densely while the Gibbs kernel
emphasizes the upper-right (c.f., Figures 15(f) and 15(g)).
Also, the Gibbs kernel samples the left part of the envi-
ronment very sparsely. Figure 15(d) shows that DKL is
good at depicting the river. However, it connects the two
“hotspots™ at the upper-right corner, which is an interesting
phenomenon: two non-adjacent locations are correlated.
This phenomenon can be found in all the DKL predictions
(see Figures 13(d) and 17(d)). The cause of this behavior is
that the neural network in DKL warps the geometry of the
input space, so the correlation of two given data points is no
longer proportional to their distance in the original input
space. It is nontrivial to explain the prediction uncertainty
and sampling distribution of DKL shown in Figure 15(h).

5.1.8. Informative Planning results. The RIG experiments
are more challenging than random and active sampling
because once the robot decides to visit an informative
waypoint, it has to collect the intermediate samples along
the trajectory, so the results in Table 4 should not be
compared with that of Tables 2 and 3. Given a fixed
maximum number of samples, the number of decision
epochs of RIG is much smaller than that of active sampling,
which makes informed decisions more essential. Table 4
shows that AK consistently leads across all metrics in the
four environments with the simple Informative Planning
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Table 2. Random sampling benchmarking results.

Environment Method SMSE |} MSLL |° NLPD | RMSE |, MAE |,
N17E073 RBF 1334003 x 107" —99+0.1x10"" 459+0.01 2.33+0.03 x 10 1.69 + 0.03 x 10"
AK 1.11 £ 0.04 x 107! —1.24 £0.01 434 +0.01 2.13 +£0.04 x 10! 1.50 + 0.02 x 10"
Gibbs 1.33 £ 0.01 x 107! —1.09 + 0.02 450 +0.03 233 +0.09 x 10! 1.66 + 0.04 x 10"
DKL 1374006 x 107" —97+03x 107" 4.62+0.03 237 +0.05 x 10" 1.68 + 0.04 x 10"
N43W080 RBF 7.1+03 x 1072 —1.43 £0.02 3.87+£0.02 1.23+0.03 x 10! 8.13 £ 0.06
AK 6.0 +0.5x 1072 ~1.69 £ 0.06 3.62+0.06 1.11 +0.05 x 10 7.0+02
Gibbs 7.2 +0.4 x 1072 —1.48 £ 0.06 3.83+0.06 1.25+0.05 x 10! 83+03
DKL 6.6 +0.8 x 1072 —1.49 + 0.04 3.81 £0.04 1.19 +0.07 x 10 75+03
N45W123 RBF 1.65+0.07 x 107" —94+03x 107" 437+0.03 1.97+0.04 x 10" 1.28 +0.03 x 10"
AK 1.41 +0.06 x 107! ~1.28 £ 0.02 403 +0.02 1.80+0.04 x 10! 1.15 £ 0.02 x 10
Gibbs 1.8+0.1 % 107! —1.08 + 0.01 424 +0.02 2.07 +0.07 x 10! 1.34 £ 0.02 x 10!
DKL 20+0.1x107Y  —9.1+0.1x10"" 441+001 2.18+0.07 x 10 1.42 + 0.06 x 10"
N47W124 RBF 226+0.07x107"  —72+0.1x10"" 477+001 2.77 +0.04 x 10’ 1.97 £ 0.02 x 10
AK 1.90 £ 0.05 x 107! —1.06 = 0.01 443 +£0.01 2.53 +0.03 x 10’ 1.77 £ 0.02 x 10!
Gibbs 2214008 x 107" —7.7+04x10"" 472+0.05 2.74 +0.05 x 10! 1.94 +0.03 x 10!
DKL 234+008x 107" —71+02x10""' 478+0.02 2.82+0.05x 10" 1.98+0.0+0.03 x 10!
Table 3. Active sampling benchmarking results.
Environment Method SMSE ié MSLL |° NLPD | RMSE |, MAE |,
N17E073 RBF 1.41 £ 0.04 x 107! —9.8+0.02 x 107! 461 +£0.02 238+003 % 10" 1.70 = 0.03 x 10"
AK 1.01 £ 0.02 x 107! —1.32 +£0.04 436 +0.02 2.00+0.02x 10" 1.43+0.02 x 10!
Gibbs 1.37 £ 0.06 x 107! —1.20 £ 0.08 459 +0.03 235+006x 10" 1.72 +0.05 x 10"
DKL 1.33 £ 0.07 x 107! —1.09 £ 0.05 459 +0.03 232+0.06x 10" 1.62 +0.05 x 10}
N43W080 RBF 7.8 +£0.2 x 1072 —1.41 £ 0.01 3.96 £0.01 1.28+0.01 x 10 9.0 + 0.1
AK 51+£02x1072 —1.72 £0.02 3.74 £ 0.03  1.02 +0.02 x 10" 6.9 + 0.1
Gibbs 8.0+ 0.6 x 1072 —1.48 £ 0.05 3.98 +0.06 1.31 +0.06 x 10" 9.8 £ 0.4
DKL 7+1x 1072 —1.6 0.1 3.9 +0.01 1.2 +£0.1 x 10" 8.2 £ 0.06
N45W123 RBF 147 £0.04 x 1071 —9.7+0.1+001 x 107" 436+0.01 1.85+0.02x 10" 1.23 +0.02 x 10
AK 1.08 +0.03 x 107! —1.55 £ 0.0 = 0.04 416 +0.02 1.57+0.03 x 10! 1.14 + 0.03 x 10!
Gibbs 1.29 + 0.06 x 107! —1.48 £ 0.05 430 +0.02 173 +0.04 x 10" 1.28 +0.02 x 10°
DKL 1.6 0.1 x 107! —1.18 £ 0.04 435+0.03 191 +0.07 x 10" 1.35+0.04 x 10!
N47W124 RBF 2.15+0.05 x 107! —75+0.1 % 107! 475 +0.01 2.70 £0.03 x 10! 1.90 + 0.03 x 10!
AK 1.78 + 0.08 x 107! —1.09 + 0.07 456 +£0.01 2.45+0.06x10" 1.75+0.03 x 10’
Gibbs  2.04 +0.06 x 107! —99+0.5x 107! 471 £0.02 2.63+0.04 x 10" 1.86+0.03 x 10!
DKL 22+0.1 % 107! —8.1+05x 107" 476 £0.05 2.75+0.09 x 10" 1.94 + 0.05 x 10!
Table 4. Robotic information gathering benchmarking results.
Environment ~ Method ~ SMSE |} MSLL |° NLPD | RMSE |, MAE |,
N17E073 RBF 145+0.03%x 107" —97+02x10""  4.63+0.02 242+0.02x10" 1.73 £0.02 x 10"
AK 1.14 + 0.04 x 107! —1.27 £ 0.03 441 £0.04 2.14+0.04 x 10" 1.51 £0.02 x 10"
Gibbs 1.43 £ 0.07 x 107! —1.16 £ 0.04 461 +£0.04 240 +0.07 x 10" 1.76 + 0.06 x 10
DKL 1.38 £ 0.09 x 107! —1.01 £ 0.06 461 +0.04 238+0.08x 10" 1.67+0.06 x 10
N43W080 RBF 77+04 x 1072 —1.40 £ 0.02 3.94+002 1.27 +0.03 x 10 8.8 +0.2
AK 6.6 +02x 1072 —1.64 + 0.04 3.78 £0.03  1.14 +0.02 x 10 7.69 + 0.09
Gibbs 7.6 +0.9 x 1072 —1.50 = 0.05 391 +£0.07 1.25+0.07 x 10 9.0 +0.6
DKL 7.0+0.1x 1072 —1.56 = 0.07 3.85+0.06 1.19 +0.08 x 10 8.1+0.6
N45W123 RBF 1.60 £0.06 x 107" —93+£02x10""  439+002 1.93+0.04x10" 129 +0.02 x 10"
AK 1.32 £ 0.06 x 107! —1.43 +£0.04 415+0.03 1.71 £0.04 x 10" 1.21 £0.03 x 10"
Gibbs 1.38 £ 0.07 x 107! —1.34 £ 0.04 430+0.03 1.79+0.05 x 10" 1.32 +0.04 x 10!
DKL 1.7+02x 107! —1.06 + 0.08 441 +0.06 199 +0.09 x 10! 1.40 + 0.06 x 10
N47W124 RBF 2234006 x 107" —74+01x10""  476+0.01 2.75+0.03 x 10"  1.94 +0.02 x 10’
AK 1.85 + 0.04 x 107! —1.10 £ 0.03 448 +0.03 2.50+0.03 x 10! 1.79 + 0.03 x 10'
Gibbs 212+008 x 1071 —9.0+05x 107" 4.73+0.03  2.69+0.05x 10"  1.91 +0.02 x 10!
DKL 236+006x 107" —77+04x107"  478+003 2.83+0.03x 10"  1.99 +0.04 x 10"
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Figure 12. Random sampling metrics versus number of collected samples.
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Figure 13. Snapshots of the random sampling experiments with different kernels.
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Figure 15. Snapshots of the active sampling experiments with different kernels.
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Figure 16. Robotic information gathering metrics versus number of collected samples.

strategy described in Algorithm 2. The conclusions we can
draw from Figure 16 are the same as in active sampling
experiments. From Figure 16, we can see again that the AK
has the fastest error reduction, especially in N47W124. All
non-stationary kernels have better MLSS than the stationary
baseline. The AK ranks first in MSLL, and the Gibbs kernel
outperforms DKL.

Figure 17 is a snapshot of different methods’ prediction,
uncertainty, and absolute error after collecting 400 samples
in N17E073. The prediction maps show that the RBF kernel
misses many environmental features that non-stationary
kernels can capture. We observe the following behaviors
by comparing the patterns in the uncertainty maps and error
maps.

® Regardless of the prediction errors, the RBF kernel gives
the less-sampled area higher uncertainty, so the robot’s
sampling path uniformly covers the space.

e The AK assigns higher uncertainty in the regions with
more significant spatial variation; thus, the sampling
path focuses more on the complex region.

® The Gibbs kernel also has higher uncertainty in the rocky
region but does not assign high uncertainty to the lower
right. Therefore, the sampling path concentrates on the
upper-right corner and misses some high-error spots at
the bottom.

®  When using DKL, the robot also samples the upper-right
corner densely, and the prediction error at the bottom of
the map is the largest across different methods. However,
DKL places high uncertainty in the high-area region,
which can guide the robot to visit these spots later.

5.2. Further evaluation and analysis

We evaluate the AK under different parameter settings for
sensitivity analysis and compare four variants of the AK for
ablation study. The challenges of learning the model are also
discussed in this section.

5.2.1. Sensitivity analysis. We use the same experiment
configurations as the main experiments in the sensitivity analysis
but only run the random sampling strategy. In each analysis, we
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Figure 17. Snapshots of the robotic information gathering experiments with different kernels.

only change one target parameter to different settings and keep
all the other parameters fixed. Figure 18 presents the sensitivity
analysis results of the number of base kernels M, which should
be larger than 2. Increasing M brings better performance, albeit
with a diminishing return and higher computational complexity.
Choosing a number in the range of [5, 10] is a good trade-off
between performance and computational efficiency.

Figure 19 shows that the AK is not sensitive to the number
of hidden units in the neural network as long as H is not too
small. When H = 2, the uncertainty quantification ability
decreases, as indicated by the blue MSLL curve. In this case,
the AK can only blend the minimum and maximum primitive
length-scales, and the instance selection mechanism can only
use a two-dimensional membership vector.

Smaller 4, yields better performance, as shown in
Figure 20, albeit with a diminishing improvement. The blue
and green lines overlap, meaning that the advantage is
negligible when choosing a minimum length-scale smaller
than 0.01. If the inputs are normalized to [—1, 1], setting the
minimum primitive length-scale to 0.01 is appropriate. It is
worth noting that this is the minimum primitive length-scale
for the length-scale selection component. It does not mean
that the AK can only learn the minimum correlation corre-
sponding to this minimum length-scale because the instance
selection component can further decrease the kernel values.

As shown in Figure 21, the AK is robust to the choice of
the maximum length-scale as long as it is not too small, for
example, 0.2 or 0.3. If the inputs are normalized to [—1, 1],
choosing a value in the range [0.5, 1.0] is reasonable.

To conclude, these results are positive indicators of ad-
dressing Q3: the AK has robust performance to various pa-
rameter settings and does not require laborious parameter tuning.

5.2.2. Ablation study. We compare four AK variants in the
ablation study via random sampling experiments. Full means

the AK presented in the paper, Weight represents the AK
with only length-scale selection, Mask stands for instance
selection alone, and NNx2 uses two separated neural net-
works to parameterize the similarity attention and visibility
attention independently. Figure 22 shows that using only the
instance selection component deteriorates the performance
significantly, so the length-scale selection component con-
tributes more to the performance, which answers Q4. We do
not observe obvious performance change after dropping the
instance selection component. Nonetheless, as illustrated in
Figure 8, we expect instance selection to provide better
modeling of sharp transitions. Since instance selection im-
proves the prediction only in a small region, the improvement
might be subtle in the aggregated evaluation metrics. With
our current training scheme, using two separate neural net-
works does not provide a better performance, and one of the
MSLL curves is surpassed by the one-network version
(Figure 22(f)). The two-network implementation might show
its strength with a more refined approach to parameter
training.

5.2.3. Overfitting analysis. Non-stationary kernels can
enhance the modeling flexibility of GPR, but they are also
more susceptible to over-fitting. This can lead to degraded
prediction accuracy and uncertainty estimates. To evaluate
the robustness of non-stationary kernels, we present an over-
fitting analysis in N17E073 and the Mount St Helens en-
vironment. The latter is referred to as the volcano environ-
ment hereafter. We sample 600 training data from the
environment uniformly at random. All the training config-
urations are the same as in Section 5.1.3, except for the
number of optimization iterations. We train all the models for
2000 iterations and evaluate the prediction on the training set
and a 100 x 100 test grid at each optimization step. Figure 23
shows the training and test MSLL. In some environments, as
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Figure 19. Sensitivity analysis of the number of hidden units H.

shown in Figures 23(a) and 23(b), the AK is fairly robust,
while the Gibbs kernel and DKL show a clear over-fitting
trend—the training MSLL goes down while the test MSLL
goes up. However, as shown in Figures 23(c) and 23(d), all
the non-stationary kernels suffer from over-fitting in some
environments, such as N17E073. To mitigate this issue, after
collecting one new sample, the optimizer takes only one
gradient step on the whole dataset. This heuristic training
scheme works well in practice. We have tried to optimize the
model for more iterations at each decision epoch. All the non-
stationary kernels give poor prediction (the AK is still more
robust in this case), and the issue persists even after collecting
more data. Overall, the answer to QS5 is positive: the AK is
more robust to over-fitting than other non-stationary kernels,
but it can still over-fit in some environments. Developing

more advanced training schemes to mitigate over-fitting is an
essential future direction.

5.3. Field experiment

The proposed AK is demonstrated in a RIG task—active
elevation, a.k.a. bathymetric mapping for underwater terrain.
Figure 24(a) shows our robot working in the environment.
The goal is to explore an a priori unknown quarry lake and
build an elevation map of the underwater terrain. There are
two reasons for choosing this task. First, the underwater
terrain is static, so the ground-truth environment is available
by aggregating the sampled data across different field ex-
periment trials after offsetting the water surface level. Sec-
ond, the underwater terrain in our target environment has a
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clear separation between “interesting” regions and “boring”
areas, which makes it an ideal testbed for RIG with non-
stationary GPs.

5.3.1. Target environment. The target environment is a
quarry lake formed by seeped-in groundwater and precipi-
tation since mining and quarrying have been suspended for a
long time. The floor of the quarry lake is complex in that there
are many submerged quarry stones and even abandoned
equipment. Our goal is to build an elevation map within the

workspace, that is, the white rectangle shown in Figure 24(c),
with a small number of samples. The workspace is 80 X
88 meters. We chose this workspace because the central part
is relatively flat, while the two circled areas have interesting
spatial variations. We can vaguely see the environmental
features in these circled spots from the satellite imagery.

5.3.2. Hardware setup. We deploy the Autonomous Surface
Vehicle (ASV) shown in Figure 24(b). The robot has a single-
beam sonar pointing downward to collect depth measurements



428

The International Journal of Robotics Research 43(4)

— Full — Weight Mask —— NNx2
(@ | o) Y O S N
0.20 J0.30 10.40 . 0.0 ]
[ 10.20 F 3 1 1
[ ] 3 10.20 F 10.20 .
0'10-_..|..... _0-105.. = : ] Ly [ J —..I..‘.I..
250 500 250 500 250 500 250 500
SMSE in N17E073 SMSE in N43W080 SMSE in N45W123 SMSE in N47W124
) P () e @ : (h) e
-0.50 | o | 5'0-50 3-0.50 B .
; b 4 1-1.00 F 1 3
10 1200 F }-1.00 F 3
-1.50 | 1 1 = 1 1 -1.50 F 1 | 4 ; 1
250 500 250 500 250 500 250 500
0 MSLL in N17E073 MSLL in N43W080 ® MSLL in N45W123 N MSLL in N47W124
i
25.00 '|"“|‘-'—520_00 T ‘I""I"':25_00-"""I"'_
20.00 [ : ’ 20.00 N
110.00 s 12000 ¢ :
15.00 | 377 1 L ] C
P n I 110.00 & 1 =215.00 E I I
250 500 250 500 250 500 250 500
MAE in N17E073 MAE in N43W080 MAE in N45W123 MAE in N47W124
Figure 22. Results of the four variants in the ablation study.
— RBF —_— AK Gibbs —— DKL
(a) (b) (d)

-1.0 T T T

—-1.5 ]§

—-2.0

—05F T T T =

.

1500 0 500

0 500

1000 1000 1500

Training MSLL in Volcano Test MSLL in Volcano

1 1k
)

1 ]
0 500 1000 1500 C 500 1000 1500

Training MSLL in N17E073 Test MSLL in N17E073

Figure 23. Results of the over-fitting analysis in the volcano environment introduced in Figure 1 and N17E073.

and a DJI Manifold 2-C computer for onboard computation.
The sonar is the Ping Sonar Altimeter and Echosounder from
BlueRobotics. Its maximum measurement distance is 50 meters
underwater, and the beam width is 30 degrees. It comes with a
Python software interface, and we implemented its ROS driver,
which is publicly available at github.com/weizhe-chen/sin-
gle beam sonar. The ASV from Clearpath Robotics has a
built-in Extended Kalman Filter (EKF) localization module that
fuses the GPS signals and the UM6 Inertial Measurement Unit
(IMU) data. The robot also has an embedded WiFi router for
communication in the field. The ASV is 1.3, 0.94, and
0.34 meters in length, width, and height, respectively, and is
actuated by two thrusters at the rear. It is a differential-drive
robot, but its thrusters’ maximum forward spinning speed is
faster than the backward one. We restrict the maximum linear
velocity to 0.7 meters per second and send linear and angular
velocities to the robot to track an informative waypoint using a
PD controller available at github.com/weizhe-chen/track-
ing_pid. Since the localization is unreliable, the robot only needs
to reach a two-meter-radius circle centered at the waypoint.

5.3.3. Results. Figure 24 shows the snapshots of the model
prediction, uncertainty, and sampling path at different

stages. We can see that the prediction uncertainty is ef-
fectively reduced after sampling. Most of the samples (i.e.,
yellow dots) are collected in critical regions with drastic
elevation variations. Such a biased sampling pattern allows
the robot to model the general trend of smooth regions with
a small number of samples while capturing the characteristic
environmental features at a fine granularity.

6. Limitations and future work

Although the AK has the same asymptotic computational
complexity as the RBF kernel, its empirical runtime is
slower than that of the RBF kernel. Thus, one important
future work is to speed up the computation. We leverage
heuristics to train the non-stationary kernels in our exper-
iments, which can be improved by a more principled
training scheme in the future. Using a stationary kernel in
non-stationary environments is just one example of model
misspecification. Investigating the influence of other types
of model misspecification on RIG is interesting. For ex-
ample, the Gaussian likelihood assumes no sensing outliers,
and the observational noise scale is the same everywhere.
Developing proper ways to handle sensing outliers and
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Figure 24. An active elevation mapping field experiment: (a) illustrates the physical space the ASV is mapping and (b) shows the ASV
and its components. (c) shows the rectangular workspace for the elevation mapping experiment. We can see two areas with significant
elevation features in two highlighted areas, but other regions are opaque. (d) and (f) are two snapshots of the GPR prediction in the
rectangular workspace, with the predictive-mean map at the bottom and the uncertainty map (i.e., standard deviation) at the top. In (d), the
lower part shows that some features of the highlighted areas have already been detected. The uncertainty is significant on the left side of
the workspace and a smaller region in the top right. (¢) shows the snapshot at the end of the experiment. The ASV has extensively
explored the lower left portion and has a detailed estimate of its elevation map. The smooth portion in the middle shows differences in
elevation, which are not visible in the satellite image. The remaining areas of high uncertainty are at boundaries of elevation changes in

that region and the top right.

modeling heteroscedastic noise can be important future
work for RIG. We only tried neural-network parameteri-
zation for the weighting function and the membership
function. Comparing different parameterization methods for
the AK is also valuable. Although we have only showcased
the efficacy of AK in elevation mapping tasks, it has po-
tential to benefit other applications such as 3D recon-
struction, autonomous exploration and inspection, as well as
search and rescue. Exploring its utility in these domains
would be interesting. Additionally, while we focused on

non-stationary kernels in the spatial domain, developing
spatiotemporal kernels is crucial for RIG in dynamic
environments.

7. Conclusion

In this paper, we investigate the uncertainty quantification of
probabilistic models, which is decisive for the performance
of RIG but has received little attention. We present a family
of non-stationary kernels called the Attentive Kernel, which
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is simple and robust and can extend any stationary kernel to
a non-stationary one. An extensive evaluation of elevation
mapping tasks shows that AK provides better accuracy and
uncertainty quantification than the two existing non-stationary
kernels and the stationary RBF kernel. The improved uncertainty
quantification guides the Informative Planning algorithms to
collect more valuable samples around the complex area, thus
further reducing the prediction error. A field experiment dem-
onstrates that AK enables an ASV to collect more samples in
important sampling locations and capture the salient environ-
mental features. The results indicate that misspecified probabi-
listic models significantly affect RIG performance, and GPR with
AK provides a good choice for non-stationary environments.
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