
1. Reply to Cox et al. (2023)

Given the important role that moist static energy (MSE) transports play in shaping the climate, how MSE 

transports will change in a warming climate is an important question. Climate models suggest that poleward 

MSE transports will increase under climate change. This has previously been conceptualized as a downgradient 

response to changes in the near surface MSE (e.g., Armour et al., 2019; Hwang & Frierson, 2010). In our previous 

study (Clark et al., 2022), we concluded that reanalysis products displayed trends over the 1980 through 2018 

period that were neither downgradient nor poleward. Cox et al. (2023), however, point out that our original study 

did not account for the fact that reanalysis products do not respect mass conservation, and justifiably raised a 

question on the validity of our original conclusions. Cox et al. (2023) applied a monthly mean vertically uniform 

correction to the zonal mean mass flux following previous work (Marshall et al., 2014) and found that the reanal-

ysis dependence is significantly reduced, demonstrating the importance of correcting the mass imbalance prior to 

investigating trends in MSE transports. Therefore, in this reply, we revisit our earlier conclusions after applying 

the same correction as Cox et al. (2023).

In Figure  1, we display the zonal mean vertically integrated MSE trend (as in our original study) and the 

near surface MSE trend assuming a constant 80% relative humidity (as in Armour et  al.,  2019; Hwang & 

Frierson, 2010) from each reanalysis (ERA-Interim, Dee et  al., 2011; ERA5, Hersbach et  al., 2020; JRA-55, 

Kobayashi et al., 2015; MERRA2, Gelaro et al., 2017). These two quantities are fairly similar (Figure 1). Using 

Figure 1, we assess whether reanalysis MSE transports follow a flux-gradient relationship. Comparing to Figure 

2a of Cox et al. (2023) which shows trends of the meridional MSE flux, it is evident that reanalysis products a 

do not closely follow a flux-gradient gradient relationship even after correcting the mass imbalance. Focusing on 
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fact that reanalysis products do not respect mass conservation. Correcting for this, MSE transport trends do not 

exhibit a reanalysis dependence to the degree we previously found. Nevertheless, reanalysis MSE transports are 

not associated with changes in the surface MSE gradient, as models suggest, nor are these fluxes poleward in 

the Northern Hemisphere extratropics. An aspect that becomes more consistent between models and reanalysis 
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the average of the four reanalysis products (the black line), our Figure 1d shows that −
�(���)

��
 is mostly negative 

between 60°S and 30°S, undergoes several sign changes between 30°S and 30°N, positive between 30°N and 

50°N, and again negative between 50°N and 80°N. Figure 2a of Cox et al. (2023) shows that the average MSE 

flux trend is negative between ∼70°S and ∼5°S, positive between ∼5N and ∼30°N, and weakly negative between 

∼30°N and ∼70°N. Therefore, the fluxes are downgradient between 60°S and 30°S, and between 50°N and 70°N. 

However, between 30°S and 50°N, the flux-gradient relationship does not hold (Note that the MSE flux trend 

does not satisfy the flux-gradient relationship with the vertically integrated MSE either (Figure 2c)). It is worth 

mentioning that the equatorward MSE transport trend between 50°N and 80°N, coincides with significant Arctic 

warming that has occurred over the 1980 through 2018 period.

We next applied the mass budget correction as in Cox et al.  (2023) to reproduce our Figure 2 in the original 

manuscript for the readers who may wish to know how the mass correction changes our original Figure 2. Specif-

ically, in Figure 2, we split the mass-corrected MSE transport trend from ERA5 into various components (Clark 

et al., 2022). The formulation not only splits the MSE transport into parts associated with the overturning circula-

tion and eddies, but also into parts associated with changes in the circulation, changes in the MSE field, and their 

covariance (i.e., nonlinearities). We also decompose the MSE transports into contributions from latent and dry 

static energy transports (see the Data and Methods of Clark et al. (2022) for complete detail).

First, it is important to evaluate our original conclusion that MSE transport trends are not poleward. In Cox 

et al.  (2023), it can be seen that the reanalysis mean MSE transport trend is poleward between 75°S and 5°S 

and between the equator and 30°N. Poleward of 30°N, the MSE transport trend is equatorward. Compared to 

our original finding (Figure 2 in Clark et al., 2022), for the ERA5 reanalysis, the mass-corrected MSE transport 

Figure 1. Trends in zonal mean (a) vertically integrated and (b) surface moist static energy (MSE), where the surface MSE 

is computed following Hwang and Frierson (2010) by assuming a constant relative humidity of 80% and a flat, constant 

pressure (p = 1,000 hPa), surface. Panels (c) and (d) show −
�

��
 of panels (a) and (b), respectively.
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trend is significantly reduced in amplitude. The MSE transport is trending southward between 70°S and 10°N, 

and trending negligibly elsewhere (Figure 2a). We also find that eddy MSE transports dominate in the Southern 

Hemisphere (SH) between 70°S and 45°S (Figure 2b) while the overturning circulation opposes the eddies in this 

region and dominates between 45°S and 10°N (Figure 2c). Although the MSE transport trend is not poleward at 

all latitudes in ERA5 (Figures 2a) and Cox et al. (2023) show that some reanalysis products exhibit MSE transport 

trends that are more poleward than ERA5.

For the ERA5 reanalysis, splitting the trend into contributions from the latent energy transport and dry static 

energy transport, we find that the mass flux correction does not significantly impact the latent energy transport 

(cf. Figure 2 here with that of Clark et al. (2022)).

Instead, the correction significantly changes the dry static energy transport such that it becomes broadly anti-

correlated with the latent energy transport (Figures 2f and 2i and 2d and 2g). An additionally interesting finding 

is a near balance between trends in transient eddy dry static energy transports and overturning dry static energy 

Figure 2. ERA5 northward moist static energy transport trends (top) decomposed into parts associated with latent energy transport (middle) and dry static energy 

transport (bottom). The gray shading in the leftmost column further splits the energy transport trends into eddy and overturning parts, respectively. The middle column 

further splits the eddy energy transport into a part associated with circulation (dynamic) anomalies, energy (thermodynamic) anomalies, and their nonlinear interaction. 

Similarly, the rightmost column further splits the overturning energy transport into parts associated with the circulation, energy and their nonlinear interaction (see 

Clark et al. (2022)) for a complete discussion). The red line in the leftmost columns indicates a residual. Filled circles denote statistical significance at the 95% 

confidence level.
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transports over the SH (between 70°S and 45°S; Figures 2g–2i). Meanwhile, between 45°S and 10°N, the latent 

and dry static energy transport trends also oppose each other, however, at these latitudes, both the latent and dry 

static energy transports driven by changes in the zonal mean meridional wind (Figures 2f and 2i).

That the dry and latent energy transport trends are anticorrelated in the ERA5 reanalysis is interesting because 

climate models historically suggest the same anticorrelation for the two transport trends under warming (e.g., Held 

& Soden, 2006). An early example of this finding can be seen in Figure 12 of Manabe and Wetherald (1975). Held 

and Soden (2006) examined the response to 2xCO2 equilibrium simulations by GFDL's AM2/LM2 and archives 

of the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change Special Report on 

Emission Scenarios (SRES) A1B. Their Figure 10 (which is replotted in Figure 2 of their corrigendum (Hwang 

et al., 2011)) shows that in midlatitudes of both hemispheres the magnitude of the latent heat transport change is 

roughly twice that of the sensible energy transport. The net result is increased poleward transport of MSE in both 

simulations. It is interesting that in the ERA5 trend that we examined, the trends of the two fluxes cancel each 

other in the Northern Hemisphere (NH) midlatitudes. Figure 2a of Cox et al. (2023) shows that in NH midlati-

tudes, the reanalysis mean is also close to zero. In the SH midlatitudes, however, the mean trend is negative which 

is consistent with the model simulations. The cause of this contrasting behavior between the two hemispheres is 

worth further investigation in the future.

2. Closing Remarks

For the 1980 through 2018 period, reanalysis MSE transport trends are not downgradient at most latitudes nor are 

they poleward between 30°N and 90°N. However, while these aspects do not perfectly line up with expectations 

developed from climate model simulations, ERA5 shows a trend toward increased poleward dry static energy 

transports in the subtropics and decreased poleward dry static energy transports in the extratropics, compensated 

by opposite behavior from the latent energy transports. Such a compensation has been shown in climate model 

simulations historically.

Overall, the results presented here prompt further work on the topic of MSE transports over the historical period. 

In particular, future work on the topic of MSE transport trends in reanalysis may consider whether reanalysis falls 

into the climate model spread (Hwang & Frierson, 2010) and whether the MSE and moisture budgets are closed 

following the mass budget correction (e.g., Bangalath & Pauluis, 2020).

Data Availability Statement

 ERA5 data is available at: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5.

 ERA-Interim data can be obtained from the following archive: https://apps.ecmwf.int/datasets/data/

interim-full-daily/levtype=sfc/.

 JRA-55 data is available at the NCAR-UCAR Research Data Archive: https://rda.ucar.edu/. MERRA2 data used in 

this study can be obtained at: https://goldsmr5.gesdisc.eosdis.nasa.gov/data/MERRA2/M2I6NPANA.5.12.4/.
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