2024 IEEE 42nd International Conference on Computer Design (ICCD) | 979-8-3503-8040-8/24/$31.00 ©2024 IEEE | DOI: 10.1109/ICCD63220.2024.00023

2024 IEEE 42nd International Conference on Computer Design (ICCD)

PCCL: Energy-efficient LLM Training with
Power-aware Collective Communication

Ziyang Jia Laxmi N. Bhuyan
Department of Computer Science and Engineering
University of California, Riverside
Riverside, California
zjia016@ucr.edu, bhuyan@cs.ucr.edu

Abstract—The era of Al is witnessing a significant increase
in energy consumption and carbon emissions from the execution
of large language models (LLMs). Due to memory and compute
requirements, it is necessary to distribute training and infer-
ence across many Al accelerators, such as GPUs. This paper
focuses on distributed training that requires significant collective
communication between accelerators; which often accounts for
greater than half of training time. Besides LLMs, collective
communication between GPUs is also common for many ML
and HPC workloads.

We first analyze the properties of collective communication
operations in Nvidia Collective Communication Library (NCCL)
and characterize the bandwidth, frequency, and energy properties
of each collective communication operation. Then we propose
PCCL, a Power-aware Collective Communication Library, based
on NCCL, that can reduce power for communication kernels with
dynamic voltage and frequency scaling (DVFS). PCCL identifies
the optimal frequency for each collective communication call and
precisely manages the GPU frequency accordingly in runtime.
It can transparently lower the energy consumption of collective
communication operations with negligible impact to throughput
and performance. PCCL can reduce the energy of collective
communication operations by ~27% and can reduce the end-
to-end LLM training energy by 17.3%.

Index Terms—Frequency Scaling, DVFS, Collective Commu-
nication, LLM

[. INTRODUCTION

The growth of Large Language Models (LLMs) in recent
years has drawn considerable attention. As the LLMs grow in
size and parameters, we require more computational resources,
which results in greater power consumption and carbon emis-
sions. Although ML inference is the majority consumer of en-
ergy usage [1], training still represents a significant proportion.
Numerous research works have highlighted the large amount
of energy consumed by deep learning and large language
models [2] [3]. Therefore, to meet the needs of future LLM
workloads and stay within the constraints of limited power
budgets and carbon emissions, we need to optimize training
and inference of LLM workloads to run more efficiently.

LLM training and inference require high-performance Al
accelerators, such as GPUs, which consume a large amount of
power [4] [5]. Due to the size of models and training data
sets, it’s common practice to distribute computation across
multiple GPUs. As a result, collective communication between
these GPUs becomes a critical aspect. Moreover, collective

Daniel Wong
Department of Electrical and Computer Engineering
University of California, Riverside
Riverside, California
danwong @ucr.edu

communication in LLMs consumes a significant amount of
time, particularly as the number of GPUs scales up [6].

Given the considerable time consumed by communication,
it also serves as a notable source of energy consumption. We
found that the GPU tends to be very energy inefficient during
collective communication operations. In addition, we identify
that many collective communications can run at lower GPU
frequencies without impacting the bandwidth.

To improve the energy efficiency of collective communica-
tion, we propose PCCL!, a Power-aware Collective Communi-
cation Library, that employs Dynamic Voltage and Frequency
Scaling (DVFS) techniques to improve the energy efficiency
of collective communication while preserving its performance.
The main contributions of this paper are:

« We perform a comprehensive workload and power char-
acterization study of LLM training and observe that
collective communication phases account for a significant
amount of time during LLM training.

o Through micro-benchmark analysis, we identify that
many collective primitives are insensitive to frequency by
maintaining high bandwidth at significantly lower GPU
frequencies and power consumption.

o We introduce PCCL, a Power-aware Collective Commu-
nication Library, that identifies the optimal frequency
of a collective communication operation for achieving
maximum power savings and limiting overheads.

¢ We evaluate PCCL and observe 27% energy savings of
collective operations and 17.3% energy savings during
end-to-end LLM training.

II. BACKGROUND AND RELATED RESEARCH
A. LLM workload and collective communication

Modern Al data centers are equipped with specialized
Al accelerators to handle computationally intensive Large
Model workloads. These large-scale systems comprise numer-
ous compute nodes interconnected via high-speed networks,
where each node is typically equipped with 4-8 powerful Al
accelerator chips, e.g. GPU, TPU, FPGA, as depicted in Fig.1.

'PCCL is pronounced “Pickle”, similar to how NCCL is pronounced
“Nickle”

2576-6996/24/$31.00 ©2024 IEEE 84
DOI 10.1109/ICCD63220.2024.00023
Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on January 03,2025 at 20:19:46 UTC from IEEE Xplore. Restrictions apply.



LLM Workload ...

Collective Communication Library
(NCCL)

GPU driver(CUDA)

NIC

GPU Server

Training Framework
(torch.distributed)

I~

Fig. 1: Distributed ML System for LLM Workload

Collective communication libraries, such as Nvidia’s NCCL
implements multi-GPU communication primitives (e.g. AllRe-
duce, AllGather) and point-to-point communication primitives
(e.g. SendReceive). It is widely used as a communication
backend for deep learning frameworks (e.g. Pytorch [7], Ten-
sorFlow [8]) for multi-GPU training. It facilitates transparent
and high-performance data transfer between GPU devices,
abstracting the complexities of inter-device communication.

B. Energy efficiency in LLM training systems

GPU DVFS: Dynamic voltage-frequency scaling (DVFS)
is a widely adopted approach for achieving higher energy
efficiency in computer systems. It can be applied to the whole
data center [9]-[11], or specific hardware like CPU [12],
GPU [13]-[15], DRAM [16] and SRAM [17]. All modern
GPUs have the capability to dynamically adjust frequencies
based on workload dynamics. For example, Nvidia GPUs uses
GPU Boost, which automatically boosts and manages GPU
frequency based on the available power and thermal headroom.
However, these hardware-managed DVFS may not always be
beneficial or optimal.

DVES in ML training: Recent works have explored how
DVES can be applied to improve energy efficiency of ML
training. For example, [18] characterized the impact of DVFS
on end-to-end DNN training by statically assigning a DVFS
state across training phases. Power-Inference accuracy Trading
(PIT) [19] explores how precision trade-off and DVFS can be
coordinated to save power in DNN workloads. EnvPipe [20]
carefully applies DVFS to fine-grain tasks on non-critical paths
in pipelined parallel ML training. Our work distinguishes from
prior works by exploring how DVFES can be applied to the
communication portion of ML training, not just the computa-
tional portion. We demonstrate that significant opportunities
for DVFS exist in communication phases.

Collective Communication optimizations: There has been
a notable number of works on the optimization of collective
communication [21], [22]. These optimizations have focused
on algorithmically improving the performance of collectives
and their parameters in GPUs, such as NCCL, or collectives
in CPUs through MPI collectives.

Prior works have also explored improving the energy effi-
ciency of collective communication through DVFS in CPUs
for distributed clusters over infiniband [23], [24]. However,
these works target MPI collectives for HPC workloads, which

85

100 M Idle Time
Compute Time
© 80 HHH | Communication Time
&
o 60
S
5
o 401 |||
7}
a
20

0 L
MicroLlama Optl Gpt2 DistilGpt2

Fig. 2: Temporal breakdown of LLM training workloads.

has drastically different properties than modern ML workloads
on GPUs [25].

ITII. ANALYSIS OF LLM TRAINING ON GPUS

In this section, we will address the challenges and opportu-
nities in achieving energy-efficient collective communication
in LLM training.

A. Evaluation Methodology

Our benchmarking and experiments were run on a real
server with 8 Nvidia Telsa T4 GPUs, interconnected over
PCle. The server runs CentOS 7.9 with CUDA 12.3. Our
LLMs run on PyTorch 2.3.0 with NCCL 2.18.0.

We use a variety of NCCL microbenchmarks (nccl-
tests [26]) and LLM models to benchmark collective com-
munication. We evaluate fine-tuning on various LLM models
from HuggingFace [27] for end-to-end evaluation of LLM
training. We evaluate MicroLlama (based on Llama2) with
300M parameters, OPT-1.5b with 1.5B parameters, Gpt2 with
124M parameters, and Distilgpt2 with 82M parameters. We
utilize data parallelism to distribute training across 8 GPUs.

We use PyTorch Profiler [28] to collect traces of PyTorch
activity and Holistic Trace Analysis (HTA) [29] to perform
performance analysis of the traces. We use the NVIDIA
Management Library (NVML) [30], which exposes APIs to
read the GPU’s on-board energy counters, to measure the
energy and operating frequency of the GPUs. We created a
profiling process that utilizes these NVML APIs to sample
the energy and operating frequency at ~20ms intervals (due
to NVML limitations).

B. Workload Characterization of LLM Training

In Figure 2, we present the breakdown of GPU kernels
during training into the percentage of different categories
for each model. Using Pytorch Profiler and HTA [29], we
analyze the execution trace and classify the runtime activity
into three categories: Compute, Non-compute, and Idle. The
Compute category encompasses various computational kernels
during LLM training. The Non-compute category encompasses
communication-related kernels and memory-related kernels,
typically collective communication through the Nvidia Col-
lective Communication Library (NCCL) and memory copy
between devices and hosts. However, we observed that the

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on January 03,2025 at 20:19:46 UTC from IEEE Xplore. Restrictions apply.



Iteration 1 Iteration 2 Iteration 3

CPU
Activity
GPU Prosusums J Froasonts 1l FroseSHRTE J
Activity el eauce ol soducs redtalLreiuce
FW BW Parameter Sync.FW BW Parameter Sync.FW BW Parameter Sync.

Fig. 3: PyTorch Profiler trace showing three iterations of
MicroLlama training. Each iteration consist of a forward pass
(FW), backward pass (BW), and parameter synchronization.

time of memory kernel in the model is less than 0.1%, so it can
be neglected. Therefore, the Non-compute time reported can
be interpreted as the time spent on communication operations
during the training process. The Idle category encompasses
time during training when neither Computation nor Commu-
nication kernels are running.

Observation: Communication time dominates LLM training.
Figure 2 shows a stacked bar chart of the kernel breakdowns
for all 8 GPUs for each workload. Across all workloads,
communication time takes up the majority of LLM training
time. For example, the communication time for MicroLlama,
Optl, Gpt2, and DistilGpt2 ranges from 23% to 64%. While it
is widely known that LLMs require significant computational
power for training, this result demonstrates that the distributed
training nature of LLM training also incurs significant com-
munication overheads. With larger models that require scaling
out distributed training, it is expected that this communication
overhead will only continue to grow. To this end, we argue
that optimizations to communication should be as important
as a focus on computation in LLM training.

Observation: Collective communication phases are longer
than forward and backward passes. Figure 3 shows the phases
of a typical training iteration. These traces were collected
from PyTorch profiler and visualized through Chrome tracing.
The figure shows 3 training iterations of MicroLlama, where
each iteration consists of a forward pass (as FW), a backward
pass (as BW), and a parameter synchronization stage (as
Parameter Sync.). In data parallel ML training, the parameter
synchronization stage is typically an all-reduce collective
communication. As can be seen in this trace, collective com-
munication often takes up two-thirds of a training iteration,
significantly more than both forward and backward passes. In
this trace, each iteration takes ~600ms. Within each iteration,
the forward, backward, and parameter synchronization steps
take ~40ms, ~110ms, and ~450ms, respectively.

C. Characterizing Energy Properties in LLM Training

In Figure 4, we show the energy properties of LLM training
across 10 iterations. We sample and log both the power
consumption and frequency of the GPU at ~20ms intervals.
The collective communication phases are highlighted by the
green regions, which were identified through timestamps from
the Pytorch profiler and correlated with the timestamps from

86

120

—— Power (W) —— Frequency (MHz) 1750
100 1500
]
—~ 801 12
E 50 =
ot >
g 601 1000 ¢
2 [}
e =
401 750 ©
w
20 500
04— T T T T T 250
0 1 2 3 4 5

Time (us) 1e6

Fig. 4: Power and Frequency trace of MicrolLlama training
with NCCL. Communication phases are highlighted in green
regions.

the power and frequency log. We present the results of a single
GPU since all 8 GPUs exhibit similar power and frequency
behavior, as shown in Figure 2.
Observation: Computation phases consume more power than
communication phases. In Figure 4, we can see that each GPU
consumes ~40W of power during the communication phase
and 65-100W of power during the computation phase. Compu-
tational kernels and communication kernels have significantly
different utilization of the GPU. Computational kernels are
typically highly-optimized kernels from native Pytorch or
vendor-specific libraries, such as cuDNN or cuBLAS. Due to
this, computational kernels tend to have high utilization and
use up all available hardware threads across all SMs. On the
other hand, communication kernels from NCCL are highly
optimized to improve the bandwidth and latency of commu-
nication. In our profiling, we observe that these kernels tend
to utilize only a single SM and a single threadblock. These
collective GPU kernels tend to perform limited computation
(such as simple addition in reduce operations) and coordinate
data copies through GPU-to-GPU peer access memory copy
operations.
Observation: Counterintuitively, the GPU frequency is
higher during communication phases than computation
phases. Nvidia GPUs by default utilize a form of dynamic
voltage frequency scaling (DVFS), called GPU Boost, to
dynamically adjust the frequency of the GPU given the power
and thermal headroom of the GPU. The Nvidia T4 GPU has a
base frequency of 585MHz and a maximum boost frequency
of 1590MHz. Therefore, when running workload on the GPU,
the hardware will automatically modulate the frequency within
this range to achieve maximum performance while satisfying
the power and thermal limits of the GPU. Counterintuitively,
we observe that the GPU operates at a higher frequency
during communication phases and at a lower (but still boosted)
frequency during computation phases. We believe that this
counterintuitive behavior is due to the coarse-grain nature of
GPU Performance States.

While the GPU is underutilized during communication
phases, the GPU does not know to drop to a lower performance
state to throttle the frequency down to save power. That is

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on January 03,2025 at 20:19:46 UTC from IEEE Xplore. Restrictions apply.



AllReduce AllGather

Broadcast

ReduceScatter

35

@30
o

Qa5

P ol P

NN

r.—.a-vvv ~ Y
—e— 128KB

<

520
315
S10

0.5

-

P

250 500 750 1000 1250 1500 250

Frequency (MHz)

500 750 1000 1250 1500 250

Frequency (MHz)

500

750 1000 1250 1500 250
Frequency (MHz)

500 750 1000 1250 1500 250

Frequency (MHz)

500 750 1000 1250 1500

Frequency (MHz)

Fig. 5: Bandwidth of collective communications in NCCL. We vary the frequencies from 300MHz to 1590MHz (x-axis) for

a range of data size from 128KB to 64MB.

SendRecv Scatter

Gather AlltoAll

12

o
=)

: 2

Bandwidth (GB/s)

o| e e eees

) . INANNST
J M

—e— 128KB
—e— 256KB
512kB

o=
YT

M

M8
2mB
ams

/

W =
M+ 32MB
—e— 64MB

250 500 750 1000 1250 1500 250

Frequency (MHz)

500
Frequency (MHz)

750 1000 1250 1500 250

500 750 1000 1250 1500 250 500 750 1000 1250 1500

Frequency (MHz) Frequency (MHz)

Fig. 6: Bandwidth of collective communications in NCCL. We vary the frequencies from 300MHz to 1590MHz (x-axis) for

a range of data size from 128KB to 64MB.

because the Performance States (P-States) in GPUs tend to be
granular and limited. Nvidia GPUs can potentially support 15
P-States, PO-P15, with PO being the highest performance P-
State. However, only certain P-States are actually implemented
and used in practice. For example, we observe that our Nvidia
T4 GPUs utilize only PO when active and P8 when idle.
Therefore, during communication phases, as long as a kernel
is running, the GPU will be in the highest performance PO
P-State. The drop in frequency during computation is likely
due to the GPU operating at a higher thermal output due
to the higher utilization of the GPU. Similarly, during the
communication phase when the GPU is under-utilized, the
GPU has a lower thermal output, and thus, GPU Boost can
operate at a higher boosted frequency.

IV. ANALYSIS OF COLLECTIVE COMMUNICATION

The aforementioned inefficiencies in hardware-managed
DVES presents an opportunity to improve the energy-
efficiency during communication phases. NCCL supports
five types of collective communication patterns: All Reduce,
Broadcast, Reduce, Reduce Scatter, and All Gather. Addition-
ally, it supports five types of point-to-point communication
patterns: Send Receive, Scatter, Gather, and All to All [31].
For each communication pattern, we observe the impacts of
GPU frequency on bandwidth by fixing SM frequency to a
constant value using NVML while benchmarking with nccl-
test [26].

The results are displayed in Figure 5 and Figure 6. Each
figure shows the frequency (x-axis) vs bandwidth (y-axis)
curve for a range of data sizes. The frequency range is from
300MHz to 1590MHz and the range of data size is from
128KB to 64MB.

87

Observation: In general, bandwidth increases as data size
increases. For smaller data sizes, the communication time
is shorter and does not saturate the bandwidth. As the data
size increases, the amount of data communication necessary
is sufficient to fully utilize the bandwidth until it reaches a
peak bandwidth. Therefore, communication performance is
better for larger collective operations. Two exceptions to this
are Broadcast and Reduce, which show the highest bandwidth
with data transfers around 256-512KB, before converging to a
slightly lower bandwidth level at higher data transfer sizes. In
general, for all workloads, once the data size exceeds 32MB,
the frequency-bandwidth curve converges and stabilizes.
Observation: Bandwidth can be insensitive to GPU operating
frequency. For all communication patterns, we observe that
bandwidth remains relatively stable as frequency decreases.
For example, in All Reduce, Figure 5, for data sizes above
2MB the bandwidth remains stable at 3GB/s even when the
frequency is 450MHz At larger data sizes, the most frequency
sensitive pattern is Send Receive, where bandwidth starts drop-
ping slightly at 750MHz. Compared to the baseline scenario
where collective communication phases run at 1590MHz (Fig-
ure 6), significant opportunity exists for lowering frequency for
power savings.

Power savings opportunities are not just limited to large data
sizes. For example, in All to All, the bandwidth is frequency
insensitive for almost all data sizes. Additionally, for certain
cases such as Broadcast and Reduce, bandwidth increases as
frequency decreases. For example, Broadcast with 512KB data
size can achieve bandwidth of 3.5GB/s at 500MHz, while only
achieving 2.8GB/s at 1590MHz.

Observation: Collective communication data sizes in LLMs
tend to be in frequency insensitive regions.

We observe that the LLM training exclusively uses All

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on January 03,2025 at 20:19:46 UTC from IEEE Xplore. Restrictions apply.



—e— all_gather
—o— all_reduce
—eo— alltoall

—e— broadcast
—e— gather

—e— reduce
——
-

45000
42500

40000

reduce_scatter
scatter
sendrecv

37500

Power(mWw)

35000

32500

30000

600 800 1000 1200

Frequency (MHz)

1400 1600

Fig. 7: Power consumption of collective operations as GPU
frequency varies.

Reduce communication only. Other collectives, such as Broad-
cast, only occur during initialization of the model. We col-
lected the message size of collective communication during
training of various LLM models and observed that the collec-
tive data size tends to be either a few bytes or several hundred
megabytes. We observe that for All Reduce, data sizes of a
few bytes occur during initialization and data sizes of several
hundred megabytes occur during training iterations.

For example, MicroLlama has All Reduce collective sizes
of 62.5MB and 581MB. The vast majority of collectives
are of tens of megabytes or hundreds of megabytes, these
collectives already operate in a frequency-insensitive range,
which provides significant opportunities to lower frequency
for power savings with minimal bandwidth impact.
Opportunity: GPUs can save significant power at lower
frequencies. Recall from Figure 4 that the baseline GPUs
observe the maximum frequency during collective communica-
tion phases. We previously demonstrated that many collective
communications can be frequency insensitive and maintain
high bandwidth at significantly lower frequency. This op-
portunity allows us to lower the frequency during collective
communication phase with minimal performance impact.

Figure 7 shows the frequency-power tradeoff curve for the
various collective communication patterns. From Figure 5
and Figure 6, we observe that many collectives can lower
frequency below 500MHz and still maintain bandwidth. From
Figure 7, we can see that setting the GPU frequency to
500MHz for collective communication can cut the GPU’s
power consumption by ~13W (from 45W to 32W), or a power
reduction of 29%. In the next section, we present our approach
to harness these power savings opportunities.

V. PCCL: POWER-AWARE COLLECTIVE COMMUNICATION

In this section, we introduce PCCL, a Power-aware
Collective Communication Library. PCCL is built off NCCL
and is a drop-in replacement for NCCL, requiring no code
changes to ML frameworks such as PyTorch. PCCL enables
collective communication operations to automatically adjust
the frequency of the GPU to the lowest possible frequency
while still maintaining bandwidth throughput.

88

T V-
| === S B
. I
i Install-time i | cpu ENCCEARI 2 | qask Enqueue !
I| profiling i & Kemel Info Job Create !
: Bandwidth i } Freq@ue:)cy:electlon Kemel Prepare }
| I i :
: @ : i U | Callback Insert ‘ ‘ Reset frequency }
e R Py = ——— S :
| requency || | GPU Stream / ([ ncckemel | ||/ !
| lookuptable || | ~= T Too oo T !
[ — f ] [
PCCL

[[] PccL Modutes [ NeoL Modules

Fig. 8: Overview of PCCL. PCCL extends NCCL to enable
DVFS management during collective communication phases.

A. Overview

Figure 8 shows an overview of PCCL. PCCL extends NCCL
by adding a Frequency selection module that analyzes every
collective call to identify the proper GPU frequency during
the collective communication period. NCCL API calls are
asynchronous and simply inserted kernel events that carry
out the collective operation into the device stream. To set a
custom frequency for a collective, PCCL injects a frequency
management event on the host before the collective kernel
event. PCCL also injects a callback function to reset frequency
after the collective so that the GPU returns to the default
GPU frequency for the future computation phase. To guide fre-
quency selection, PCCL requires building a frequency lookup
table and identifying an overhead point for setting frequency
with NVML API calls. To build the frequency lookup table
and determine the overhead point, PCCL requires a one-
time profiling of the system, which can be done at library
installation time or upon the first initialization call to PCCL.

B. System Profiling

PCCL requires a one-time profiling of the GPU’s energy and
bandwidth properties with respect to frequency and data size
for various collectives. Since the GPU’s energy and bandwidth
relationship with frequency and data size does not change,
this profile only needs to be done once per system. Many
accelerated GPU libraries already take this approach by doing
a one-time profiling run to tune various parameters of a
library for a given hardware. For example, AMD’s MIOpen
library maintains a system and user performance database that
profiles the hardware at installation time or on the first API
call and stores various pre-tuned values for performance [32].
Therefore, this one-time system profiling does not incur any
overhead in the critical path for LLM training or inference.

In PCCL, the profiling pass captures the bandwidth vs
frequency vs data size curves for each collective, which are
illustrated in Figure 5 and Figure 6. PCCL captures these
curves by falling back to NCCL without any overheads from
frequency selection and frequency management events.

Next, to account for the overhead of PCCL, PCCL profiles
and captures a data size vs bandwidth curve for each collective
where PCCL introduces the overhead of frequency selection
and frequency management events with the frequency always
being set to maximum frequency. The goal of obtaining this

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on January 03,2025 at 20:19:46 UTC from IEEE Xplore. Restrictions apply.



Communication Operation | Overload Point
AllReduce IMB
Broadcast 512KB

Reduce 512KB
AllGather 32MB
ReduceScatter 2MB
Scatter 64MB
Gather 64MB
AlltoAll IMB
SendReceive 512KB

TABLE I: Overload point of communication operations. This
represents the data size where the overhead of frequency
management events no longer dominates.

profiling curve is to identify the overhead due to NVML-based
frequency management APIs. In our experiments, the time to
collect all of these profiling takes within 10 minutes.

C. Frequency Selection

During runtime, we need to determine what frequency a
collective should run at, and when we should manage the
frequency of a collective. To facilitate fast frequency selection
at runtime, we analyze the profiled curves to create a frequency
lookup table of minimum frequency given a collective and
data size. In addition, each collective has a management
threshold to guide when PCCL should manage frequency.
To generate this frequency lookup table and guide frequency
management decisions, we need to determine the following
for each collective:

Minimum frequency point: This is the minimum frequency
we can run without impacting bandwidth throughput.

Overhead point:  This is the data size for a collective
where the overhead of PCCL frequency management begins
to dominate and impact bandwidth throughput.

To determine the management threshold of a collective, we
take the overhead point. If the data size is greater than this
threshold, we manage frequency as guided by the frequency
lookup table. Otherwise, PCCL is unlikely to achieve energy
savings or may have a large impact on bandwidth, so PCCL
will leave frequency unmanaged.

1) Building Frequency Lookup Table: For each collective
and data size, we need to determine the minimum frequency
that results in similar a bandwidth to running at maximum
frequency. To achieve this, we analyze each collective-data
size curve and iterate from the maximum frequency to the
lowest frequency and identify the point where the bandwidth
begins to drop. The result of this analysis forms the frequency
lookup table, where given a pair of collective and data size,
we can determine the minimum frequency that we can run at
without and bandwidth impact.

To minimize overheads, we limit the size of the frequency
lookup table by only storing entries that are likely to be
beneficial. If the minimum frequency of a collective-data point
pair is determined to be the same as the maximum frequency,
we do not store it in the lookup table. Therefore, the frequency
lookup table should contain only entries that will likely lead
to energy savings.

89

120

—— Power (W) —— Frequency (MHz) 1750
100 1500
g
—~ 801 L
s 1250 =
= >
g 601 1000 &
2 [}
S =]
401 1750 &
[
20 1 r500
0 250
0 2 4 6

Time (us) 1le6

Fig. 9: Power and Frequency trace MicroLlama training with
PCCL. PCCL achieves significantly lower frequency and
power during communication phases.

Note that we cannot directly make management decisions
based on this lookup table alone. Due to overheads of fre-
quency management events in PCCL (mainly due to NVML
APIs), we need to separately determine when to enable PCCL
frequency management events.

2) Identifying Overhead Point: It is important for PCCL to
determine whether we should manage frequency of a collective
or not. Due to overheads of frequency management events, it
is possible that the overheads of NVML can outweigh the
benefits of lowering frequency, leading to no energy savings
or lower bandwidth. Therefore, it is important for PCCL to
identify this point. To obtain the overhead point, we compare
the data size vs. bandwidth curves of NCCL with the data size
vs. bandwidth curves of PCCL setting maximum frequency.
The overhead point is the data size where these curves begin
to diverge in achieved bandwidth. Table I shows the overhead
points that were identified for all collectives.

During runtime, for every collective call, we compare the
data size with this overhead point. If the data size is greater
than this, we perform a lookup in the frequency lookup table to
determine the frequency to run the collective at. If a minimum
frequency is found, then we inject frequency management
events to throttle the frequency. If there are no entries, then
the collective is run at the default frequency.

D. Frequency Management Events

PCCL is implemented by extending NCCL. By maintaining
the NCCL API, PCCL is a drop-in replacement for NCCL
and requires no code changes to ML frameworks, such as
PyTorch. All additional modules of PCCL (frequency selector
and frequency management events) are entirely in NCCL.
When a collective API is called, PCCL will first search the
frequency selector to identify a frequency to run the collective
at. We spawn a separate thread to perform frequency selection
so it can be done in parallel with the initialization/setup tasks
required by PCCL. The workflow of converting API calls to
CUDA kernels which carry out the collective is unmodified
from NCCL. Since collective API calls to PCCL/NCCL are
non-blocking, they simply insert collective operations into
device streams before returning.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on January 03,2025 at 20:19:46 UTC from IEEE Xplore. Restrictions apply.



a0 AllReduce 15.0 AllGather 15.0 - Broadcast 15.0 ReduceScatter 150 Reduce 15.0
. e ° o . . %—n—x f‘
25 < t2s 125 § 12.5 125 12.5
52-0 10.0 10.0 1100 10.0 1005
< e - >
215 7.5 175 P 7.5 15 B
210 5.0 5.0 o 5.0 5.0 50 W
@ T ) e it
0.5 / 25 Pty 25 L 25 25 . 25
—e~ NCCL  — PCCL il il : s o NeCL e peCL
0 0.0 L& 0.0 0.0 0.0 L 0.0
0 200 400 ] 200 400 [} 200 400 ] 200 400 0 200 400
Data Size (MB) Data Size (MB) Data Size (MB) Data Size (MB) Data Size (MB)
Fig. 10: Performance and energy comparison of 5 collective communications.
o Training Time GPU Energy GPU Power
1S
F 1.00 20 20
5 A *
7 ° u [0}
6 *é 0.75 g’ 15 5 15
2> g z H
G20 rect °s & 0.50 @10 &10
5 ] 2 & &
e £} No.2s g 5 z s
S I © c K
§ 1.0 2 £ w
s 1 $0.00 0 0 ey
| 0 X1 20 e
o o \@‘:‘-\\g‘) (N OQ‘A"&\\@(@Q

0 100 200 300

Data Size (MB)

400 500
Fig. 11: Performance and energy
comparison of Send Receive.

To ensure the frequency management events are timed
correctly, we need to ensure that a frequency set event occurs
before the collective task and a frequency reset event occurs
after the collective task. For the frequency set event, we call
this as soon as possible once we determine the frequency
to run at. The frequency set event spawns a thread that
usesnvmlDeviceSetGpuLockedClocks () to set the fre-
quency of each GPU.

For the frequency reset event, we have to ensure that this
occurs after the collective task. To achieve this, before the
exit of the collective API, we insert a callback event into the
device stream with cudaLaunchHostFunc (). Once the
collective kernel completes, this callback event will trigger a
callback function that spawns another thread to reset the fre-
quency with nvmlDeviceSetGpuLockedClocks () for
each GPU. Note, that the set and reset are performed with the
same API, but with different parameters.

VI. EVALUATION

In this section, we will evaluate the effectiveness of PCCL
and compare it to the baseline state-of-the-practice NCCL
collective communication library. The evaluation methodology
was detailed previously in Section III-A. We will first evaluate
PCCL on microbenchmarks and then perform end-to-end
evaluation on LLM training.

A. Energy Consumption with PCCL

Figure 9 shows a power and frequency trace of PCCL while
running the same workload as Figure 4. Here we can see that
PCCL can successfully ramp down the frequency of every
collective communication phase to 5S00MHz (from 1590MHz
with NCCL). This results in collective communication phases

R BEF AP o
@\6‘0\)(?\9‘\\& * oﬂ”vx a“e‘b

90

PB4 o
\&\00”\&“\‘39 F o> e

“{\do\’é\

Fig. 12: End-to-end LLM training results. PCCL achieves significant energy and power
savings with minimal performance overheads.

to consume only ~33W of power (compared to ~45W with
NCCL), achieving ~27% power savings during collectives on
average.

Also note that during computation phases, the frequency
is also more stable around 1000-1200MHz. Compared to
Figure 4 with NCCL, the computational phases had a wider
variance between 800-1200MHz. We speculate that the power
savings during collective phases in PCCL lead to additional
thermal headroom availability during the computation phases
to enable more frequency boosting opportunities. Similarly, the
power consumption was also more stable and lower during
computation between 60-80W with PCCL, compared to 60-
100W with NCCL.

B. Microbenchmark evaluation

We use nccl-test to evaluate the impact of PCCL on the
bandwidth and energy across various collective data sizes.
These results are presented in Figure 10 and Figure 11. Due
to space limitations, we only show Send Receive for point-
to-point communication as all other communications that use
Send Receive as a primitive.

We can see that PCCL achieves bandwidth close to NCCL
for almost all data sizes. For very small data sizes, PCCL ex-
periences more bandwidth impact due to the overheads of set-
ting/resetting frequency. These regressions can potentially be
avoided by setting a more conservative management threshold
to guide PCCL with small message sizes. For LLM training,
this is not a major issue as most observed collectives (All
Reduce) are in the order of hundreds of MBs, where PCCL
performs well. In the region where LLMs most commonly
operate, we also observe that PCCL typically achieves ~27%
energy savings. For example, at 256MB data size for All

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on January 03,2025 at 20:19:46 UTC from IEEE Xplore. Restrictions apply.



Reduce, NCCL consumes 6.9 Joules per collective operation, [6] H. Qi, L. Dai, W. Chen, Z. Jia, and X. Lu, “Performance characteri-

: zation of large language models on high-speed interconnects,” in /EEE
while PCCL consumes 5.3 Joules. Symposium on High-Performance Interconnects (HOTI), 2023.

.. . [7]1 S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li, A. Paszke,

C. End-to-end LLM Tmlmng Evaluation J. Smith, B. Vaughan, P. Damania et al, “Pytorch distributed:

Execution Time: Figure 12 shows the results of evaluating S:)I(’ljcvr_lzegggsl 50;104ac20812%ratmg data parallel training,” arXiv preprint

PCCL on LLM training. PCCL achieves similar execution time [8] M. Abadi and et al, “TensorFlow: Large-scale machine
compared to NCCL, with 1-2% slowdown at most. learning on heterogeneous systems,” 2015. [Online]. Available:

. ; ; . https://www.tensorflow.org/
Power: Desplte this slowdown, PCCL saves 51gn1ﬁcantly [9] S. Wang, Z. Qian, J. Yuan, and I. You, “A DVFS based energy-efficient

more power than NCCL due to aggressively throttling fre- tasks scheduling in a data center,” IEEE Access, vol. 5, pp. 13090
quency during communication phases. In terms of power, 13102, 2017
PCCL observes an average of 18.9% power savings, with up [10] A. Jahanshahi, N. Yu, and D. Wong, “PowerMorph: QoS-aware server

K K power reshaping for data center regulation service,” ACM Trans. Archit.
to 20.1% with MicroLlama. Code Optim., vol. 19, no. 3, aug 2022.

Energy: Recall from Figure 2 that these LLM models [11] L.Zhou, C.-H. Chou, L. N. Bhuyan, K. K. Ramakrishnan, and D. Wong,

spend ~30%-60% of the time in communication. Despite that Joint server and network energy saving in data centers for latency-
sensitive applications,” in /PDPS, 2018.

wide variation, the energy and power savings remain relatively [12] C.-H. Chou, L. N. Bhuyan, and D. Wong, “xDPM: Dynamic power
similar across all LLM models. As we saw before, we also management for the microsecond era,” in HPCA, 2019.

observe slight power savings during computation phases, even 131 & FRCRA i L SR L et e ain
though PCCL does not explicitly manage those frequencies. DVES in GPUs.” in ASPLOS, 2024.

Overall, PCCL achieves an average of 17.3% energy savings [14] M. Chow and D. Wong, “CoFRIS: Coordinated frequency and resource
compared to NCCL. scaling for GPU inference servers,” in IGSC, 2024.

[15] A. Jahanshahi, M. Rezvani, and D. Wong, “WattWiser: Power &

resource-efficient scheduling for multi-model multi-GPU inference
VII. CONCLUSION servers,” in IGSC, 2024.

.. [16] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and R. Bianchini,
As the demand for LLM training grows, so does the resource “Coscale: Coordinating cpu and memory system dvfs in server systems,”

and energy requirement. This work identifies that collec- in MICRO, 2012.

tive communication takes up a Signiﬁcant pOI’tiOIl of LLM [17] J. Zhang ar}d E Sadredini, “Inha]e:.Enabling high;performance and
trainine and that GPUs tend to be hiehly enerey-inefficient energy-efficient in-SRAM cryptographic hash for IOT,” in ICCAD, 2022.
g ghly &y [18] Z. Tang, Y. Wang, Q. Wang, and X. Chu, “The impact of GPU DVFS

during collective communication phases. We showed that on the energy and performance of deep learning: An empirical study,”
many collective communication operations are insensitive to in e-Energy, 2019.

. . [19] S. M. Nabavinejad, H. Hafez-Kolahi, and S. Reda, “Coordinated DVFS
GPU frequency and can run at lower frequencies without

. . . and precision control for deep neural networks,” IEEE Computer Archi-
affecting bandwidth. We introduced PCCL, a Power-aware tecture Letters, vol. 18, no. 2, pp. 136-140, 2019.

Collective Communication Library that efficiently lowers the ~ [20] S. Choi, I. Koo, J. Ahn, M. Jeon, and Y. Kwon, “EnvPipe: Performance-
preserving DNN training framework for saving energy,” in USENIX ATC,

frequency of collective communication phases. PCCL is a 2003
drop-in replacement for NCCL and does not require any [21] U. Wickramasinghe and A. Lumsdaine, “A survey of methods for
program modifications. We demonstrate that PCCL can lower collective communication optimization and tuning,” arXiv preprint

arXiv:1611.06334, 2016.

the energy of collective communication by 27% and end-to- [22] G. Wang, S. Venkataraman, A. Phanishayee, N. Devanur, J. Thelin, and

end LLM training by 17%. I. Stoica, “Blink: Fast and generic collectives for distributed ML,” in
MLSys, 2020.

ACKNOWLEDGEMENTS [23] L. Oden, B. Klenk, and H. Froning, “Energy-efficient collective reduce

) ) and allreduce operations on distributed GPUs,” in CCGrid, 2014.
The research was partly supported by National Science [24] K. C. Kandalla, E. P. Mancini, S. Sur, and D. K. Panda, “Designing
Foundation under grants CCF-1907401, CNS-1955650, CNS- power-aware collective communication algorithms for infiniband clus-

ters,” ICPP, 2010.
2047521’ CCF_2324940’ CCF-2324941 and CNS-2415202. [25] Z. Han, C. Gao, J. Liu, S. Q. Zhang et al., “Parameter-efficient fine-

We would also like to thank the anonymous reviewers for tuning for large models: A comprehensive survey,” arXiv preprint
their invaluable comments and insights. arXiv:2403.14608, 2024. _ ,
[26] NVIDIA, “Neccl tests,” 2021. [Online]. Available:

https://github.com/NVIDIA/nccl-tests
Hugging Face, “Hugging face datasets,” 2024. [Online]. Available:

. . https://huggingface.co/datasets
[1] D. Patterson, J. Gonzalez, Q. Le, C. Liang, L.-M. Munguia, b L, ) » )
D. Rothchild, D. So, M. Texier, and J. Dean, “Carbon emissions and (28] PyTorch, Pytorch X pmh'ler, ,2024' [Onlu}e]. Available:
large neural network training.” arXiv preprint arXiv:2104.10350, 2021. htps://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
[2] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy con- [29] Meta, “Holistic trace analysis, 2022. [Online]. Available:

. - L - . ; . https://hta.readthedocs.io/en/latest/
%Ile;atlons for deep learning in nlp,” arXiv preprint arXiv:1906.02243, (30] NVIDIA, “Nvidia management library (nvml)” 2024. [Online].

Available: https://developer.nvidia.com/management-library-nvml

REFERENCES [27]

[3]1 A. S. Luccioni, S. Viguier, and A.-L. Ligozat, “Estimating the carbon

. » . . 31] —, “Collective operations.” [Online]. Avail-

fi f bl 1 1 17 arXi [

a(;;tlp\)}r?zt ]0] 0132881;1’2%227 6 parameter language model.” arXiv preprint able: https://docs.nvidia.com/deeplearning/nccl/user-
ol ] ’ Yo T . guide/docs/usage/collectives.html

[4] M. Hodak, M. Gorkovenko, and A. Dholakia, “Towards power efficiency (32] AMD, “Performance databse ) miopen,” 2024, [On-

in deep learning on data center hardware,” in Big Data, 2019.

[5] A. Jahanshahi, H. Z. Sabzi, C. Lau, and D. Wong, “GPU-NEST:
Characterizing energy efficiency of multi-GPU inference servers,” IEEE
Computer Architecture Letters, vol. 19, no. 2, pp. 139-142, 2020.

line]. Awvailable: https://rocm.docs.amd.com/projects/MIOpen/en/docs-
5.0.0/perfdatabase.html

91

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on January 03,2025 at 20:19:46 UTC from IEEE Xplore. Restrictions apply.



