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Abstract—The era of AI is witnessing a significant increase
in energy consumption and carbon emissions from the execution
of large language models (LLMs). Due to memory and compute
requirements, it is necessary to distribute training and infer-
ence across many AI accelerators, such as GPUs. This paper
focuses on distributed training that requires significant collective
communication between accelerators; which often accounts for
greater than half of training time. Besides LLMs, collective
communication between GPUs is also common for many ML
and HPC workloads.

We first analyze the properties of collective communication
operations in Nvidia Collective Communication Library (NCCL)
and characterize the bandwidth, frequency, and energy properties
of each collective communication operation. Then we propose
PCCL, a Power-aware Collective Communication Library, based
on NCCL, that can reduce power for communication kernels with
dynamic voltage and frequency scaling (DVFS). PCCL identifies
the optimal frequency for each collective communication call and
precisely manages the GPU frequency accordingly in runtime.
It can transparently lower the energy consumption of collective
communication operations with negligible impact to throughput
and performance. PCCL can reduce the energy of collective
communication operations by ~27% and can reduce the end-
to-end LLM training energy by 17.3%.

Index Terms—Frequency Scaling, DVFS, Collective Commu-
nication, LLM

I. INTRODUCTION

The growth of Large Language Models (LLMs) in recent

years has drawn considerable attention. As the LLMs grow in

size and parameters, we require more computational resources,

which results in greater power consumption and carbon emis-

sions. Although ML inference is the majority consumer of en-

ergy usage [1], training still represents a significant proportion.

Numerous research works have highlighted the large amount

of energy consumed by deep learning and large language

models [2] [3]. Therefore, to meet the needs of future LLM

workloads and stay within the constraints of limited power

budgets and carbon emissions, we need to optimize training

and inference of LLM workloads to run more efficiently.

LLM training and inference require high-performance AI

accelerators, such as GPUs, which consume a large amount of

power [4] [5]. Due to the size of models and training data

sets, it’s common practice to distribute computation across

multiple GPUs. As a result, collective communication between

these GPUs becomes a critical aspect. Moreover, collective

communication in LLMs consumes a significant amount of

time, particularly as the number of GPUs scales up [6].

Given the considerable time consumed by communication,

it also serves as a notable source of energy consumption. We

found that the GPU tends to be very energy inefficient during

collective communication operations. In addition, we identify

that many collective communications can run at lower GPU

frequencies without impacting the bandwidth.

To improve the energy efficiency of collective communica-

tion, we propose PCCL1, a Power-aware Collective Communi-

cation Library, that employs Dynamic Voltage and Frequency

Scaling (DVFS) techniques to improve the energy efficiency

of collective communication while preserving its performance.

The main contributions of this paper are:

• We perform a comprehensive workload and power char-

acterization study of LLM training and observe that

collective communication phases account for a significant

amount of time during LLM training.

• Through micro-benchmark analysis, we identify that

many collective primitives are insensitive to frequency by

maintaining high bandwidth at significantly lower GPU

frequencies and power consumption.

• We introduce PCCL, a Power-aware Collective Commu-

nication Library, that identifies the optimal frequency

of a collective communication operation for achieving

maximum power savings and limiting overheads.

• We evaluate PCCL and observe 27% energy savings of

collective operations and 17.3% energy savings during

end-to-end LLM training.

II. BACKGROUND AND RELATED RESEARCH

A. LLM workload and collective communication

Modern AI data centers are equipped with specialized

AI accelerators to handle computationally intensive Large

Model workloads. These large-scale systems comprise numer-

ous compute nodes interconnected via high-speed networks,

where each node is typically equipped with 4-8 powerful AI

accelerator chips, e.g. GPU, TPU, FPGA, as depicted in Fig.1.

1PCCL is pronounced “Pickle”, similar to how NCCL is pronounced
“Nickle”
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Reduce, NCCL consumes 6.9 Joules per collective operation,

while PCCL consumes 5.3 Joules.

C. End-to-end LLM Training Evaluation

Execution Time: Figure 12 shows the results of evaluating

PCCL on LLM training. PCCL achieves similar execution time

compared to NCCL, with 1-2% slowdown at most.

Power: Despite this slowdown, PCCL saves significantly

more power than NCCL due to aggressively throttling fre-

quency during communication phases. In terms of power,

PCCL observes an average of 18.9% power savings, with up

to 20.1% with MicroLlama.

Energy: Recall from Figure 2 that these LLM models

spend ~30%–60% of the time in communication. Despite that

wide variation, the energy and power savings remain relatively

similar across all LLM models. As we saw before, we also

observe slight power savings during computation phases, even

though PCCL does not explicitly manage those frequencies.

Overall, PCCL achieves an average of 17.3% energy savings

compared to NCCL.

VII. CONCLUSION

As the demand for LLM training grows, so does the resource

and energy requirement. This work identifies that collec-

tive communication takes up a significant portion of LLM

training and that GPUs tend to be highly energy-inefficient

during collective communication phases. We showed that

many collective communication operations are insensitive to

GPU frequency and can run at lower frequencies without

affecting bandwidth. We introduced PCCL, a Power-aware

Collective Communication Library that efficiently lowers the

frequency of collective communication phases. PCCL is a

drop-in replacement for NCCL and does not require any

program modifications. We demonstrate that PCCL can lower

the energy of collective communication by 27% and end-to-

end LLM training by 17%.
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