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A B S T R A C T

In this paper we introduce GP+, an open-source library for kernel-based learning via Gaussian processes (GPs)
which are powerful statistical models that are completely characterized by their parametric covariance and
mean functions. GP+ is built on PyTorch and provides a user-friendly and object-oriented tool for probabilistic
learning and inference. As we demonstrate with a host of examples, GP+ has a few unique advantages over
other GP modeling libraries. We achieve these advantages primarily by integrating nonlinear manifold learning
techniques with GPs’ covariance and mean functions. As part of introducing GP+, in this paper we also make
methodological contributions that (1) enable probabilistic data fusion and inverse parameter estimation, and
(2) equip GPs with parsimonious parametric mean functions which span mixed feature spaces that have both
categorical and quantitative variables. We demonstrate the impact of these contributions in the context of
Bayesian optimization, multi-fidelity modeling, sensitivity analysis, and calibration of computer models.
1. Introduction

Gaussian processes (GPs) are indispensable building blocks of many
powerful probabilistic frameworks such as Bayesian optimization (BO)
[1–11], function and operator learning [12–17], data-driven calibra-
ion of expensive simulations [18–23], and multi-fidelity (MF) model-
ng [24–28]. The recent software and hardware developments, com-
ined with the new means of data collection and the society’s drive to
ackle ever-challenging goals, have sparked significant innovations in
he broad field of machine learning (ML). GPs have also substantially
enefited from these advancements and recent works have enabled
hem to leverage GPUs [29,30] and to accommodate high dimen-
ions [31–35], large datasets [36–44], or disjoint feature spaces that
ave both qualitative and quantitative variables [16,45–48]. In line
ith these advancements, in this paper we introduce GP+ which is
modular and user-friendly library that aims to empower researchers
nd practitioners in harnessing the full potential of GPs for a wide range
f applications such as emulation (i.e., probabilistic metamodeling),
ingle- and multi-fidelity Bayesian optimization (SFBO and MFBO),
ernel-based generalized MF modeling, inverse parameter estimation,
nomaly detection, and sensitivity analyses.
As reviewed in Section 3, there are quite a few existing libraries

or GP modeling and in fact we leverage one of them (i.e., GPy-
orch [30]) in developing ours. While these libraries have been
uccessfully used in many applications across sciences and engineering,
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1 GitHub Repository: https://github.com/Bostanabad-Research-Group/GP-Plus.

we believe a few distinct features set GP+ aside. First, we design
parametric covariance and prior mean functions that automatically
enable GPs to fuse and emulate multi-source datasets, detect anomalies,
find calibration parameters of computer models (i.e., inverse parameter
estimation), and handle categorical variables. These functions leverage
kernel-based nonlinear manifold learning, provide interpretable solu-
tions (see Section 5 for multiple examples), and their parameters are
all jointly learnt via the maximum a posteriori (MAP) method. Second,
we provide a unified platform to use GPs for many tasks such as SFBO
and MFBO, probabilistic regression, and sensitivity analysis. As shown
in Section 5, all of these functionalities are achieved via a few lines of
codes. As an example, we develop a hyperparameter estimation routine
based on the method of continuation [49] which, at the expense of
slightly higher computational costs, provides more numerical stability
and accuracy. This method is accessible by merely changing the default
optimization settings in GP+. Lastly, GP+ is accompanied with a rich
set of datasets (from engineering applications) and benchmark analytic
examples that can be used by researchers in evaluating the performance
of emulation techniques beyond GPs.

The rest of this paper is organized as follows. In Section 2 we pro-
vide a brief background on GPs and then review the relevant literature
in Section 3. We introduce the primary components of GP+ (i.e., its
covariance and prior mean functions) in Section 4 where we also
introduce the three new methodological innovations of this paper.
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The first contribution is focused on the kernel and endows GPs with
probabilistic embeddings that benefit both MF modeling (in terms of
quantifying model-form errors) and mixed data emulation (in terms of
learning the relations among the categorical variables and their levels).
The second contribution is on designing parametric mean functions
such that they naturally handle multi-source or mixed data that have
categorical features. The third contribution is on inverse parameter
estimation where the goal is to probabilistically calibrate computer
models using limited high-fidelity (HF) data such as observations or ex-
periments. We provide some details and examples on some of the most
important functionalities of GP+ in Section 5 where we also conduct
omparative studies against existing methods. Concluding remarks and
uture research directions are provided in Section 6.

.1. Nomenclature

Unless otherwise stated, throughout the paper we denote scalars,
ectors, and matrices with regular, bold lower-case, and bold upper-
ase letters, respectively (e.g., 𝑥,𝒙, and 𝑿). Vectors are by default
column vectors and subscript or superscript numbers enclosed in paren-
thesis indicate sample numbers. For instance, 𝑥(𝑖) or 𝒙(𝑖) denote the
th sample in a training dataset while 𝑥𝑖 indicates the 𝑖th component
f the column vector 𝒙 =

[

𝑥1,… , 𝑥𝑑𝑥
]𝑇 . For clarity, we sometimes

indicate the size of vectors and matrices via subscripts, e.g., 𝒙𝑛 and
𝑛𝑞 . Specifying the size is useful in cases where we do not follow our
otational convention that distinguishes vectors and matrices (e.g., 𝐘𝑞
s a vector while 𝐘 is a matrix).
Lastly, we distinguish between a function and samples taken from

hat function by specifying the functional dependence. As an example,
(𝑥) and 𝑦(𝒙) are functions while 𝑦 and 𝒚 are a scalar and a vector
of values, respectively. We also assume functions accommodate batch
computations. That is, a single-response function returns a column
vector of 𝑛 values if 𝑛 inputs are simultaneously fed into it, i.e., 𝒚 =
𝑦(𝑿).

2. Background on Gaussian processes

To explain the working principles of GPs, we consider 𝐘𝑞 and
𝑛 which are two jointly normal random vectors of sizes 𝑞 and 𝑛,
espectively.2 We write this joint distribution as:
([

𝐘𝑞

𝐘𝑛

])

= 𝑞+𝑛

([

𝝁𝑞

𝝁𝑛

]

,

[

𝜮𝑞𝑞 𝜮𝑞𝑛

𝜮𝑛𝑞 𝜮𝑛𝑛

])

(1)

here the subscripts indicate the array sizes, 𝝁𝑞 = E[𝐘𝑞], 𝜮𝑞𝑞 =
𝑜𝑣(𝐘𝑞) = E[(𝐘𝑞−𝝁𝑞)(𝐘𝑞−𝝁𝑞)𝑇 ], and 𝜮𝑞𝑛 = 𝜮𝑇

𝑛𝑞 = E[(𝐘𝑞−𝝁𝑞)(𝐘𝑛−𝝁𝑛)𝑇 ].
f 𝒚𝑛 is observed for 𝐘𝑛, we can update our knowledge on 𝐘𝑞 based on
ts conditional distribution:
(

𝐘𝑞 ∣ 𝐘𝑛 = 𝒚𝑛
)

= 𝑞

(

𝝁∗
𝑞 ,𝜮

∗
𝑞𝑞

)

(2)

here 𝝁∗
𝑞 = 𝝁𝑞 + 𝜮𝑞𝑛𝜮−1

𝑛𝑛 (𝒚𝑛 − 𝝁𝑛) is the conditional mean vector and
∗
𝑞𝑞 = 𝜮𝑞𝑞−𝜮𝑞𝑛𝜮−1

𝑛𝑛𝜮𝑛𝑞 is the conditional covariance matrix. Similarly,
in interpolation with GPs one first assumes that the given data 𝒚𝑛 and
the to-be-predicted values 𝒚𝑞 are jointly Gaussian and then infers the
latter via Eq. (2). However, the mean vectors and covariance matrices
in Eq. (1) are unknown and thus Eq. (2) can be used for prediction only
after we (1) endow the underlying GP with a parametric mean function
and a parametric covariance function (or kernel), and (2) estimate the
parameters of these two sets of functions.3

2 For this part of the description, we distinguish between the random vector
𝑞 and the specific realization 𝒚𝑞 that it takes.
3 In a fully Bayesian setting, instead of estimating the parameters, their

posterior distributions are obtained and predictions on 𝒚𝑞 require marginal-
ization with respect to these distributions. Due to the significantly higher
computational costs of fully Bayesian techniques and their marginal accuracy
2

improvements in the case of GPs, we recommend and use MAP. e
More formally, assume the training dataset
{

𝒙(𝑖), 𝑦(𝑖)
}𝑛
𝑖=1 is given

where 𝒙 = [𝑥1,… , 𝑥𝑑𝑥]𝑇 ∈ X ⊂ R𝑑𝑥 and 𝑦(𝑖) = 𝑦(𝒙(𝑖)) ∈ R denote
the inputs and response,4 respectively. Given 𝒚 = [𝑦(1),… , 𝑦(𝑛)]𝑇 and 𝑿
whose 𝑖th row is (𝒙(𝑖))𝑇 , our goal is to predict 𝑦(𝒙∗) at the arbitrary point
𝒙∗ ∈ X. Following the above description, we assume 𝒚 = [𝑦(1),… , 𝑦(𝑛)]𝑇

is a realization of a GP with the following parametric mean and
covariance functions:

E[𝑦(𝒙)] = 𝑚(𝒙; 𝜷), (3a)

cov
(

𝑦(𝒙), 𝑦(𝒙′)
)

= 𝑐(𝒙,𝒙′; 𝜎2,𝜽) = 𝜎2𝑟(𝒙,𝒙′;𝜽) (3b)

where 𝜷 and 𝜽 are the parameters of the mean and covariance
functions, respectively. The mean function in Eq. (3a) can take on
many forms such as polynomials or even a feedforward neural network
(FFNN). In many applications of GP modeling, a constant value is used
as the mean function (i.e., 𝑚(𝒙; 𝜷) = 𝛽) in which case the performance
of the GP depends entirely on its kernel. In Eq. (3b), 𝜎2 is the process
variance (or inverse precision) and 𝑟(⋅, ⋅) is the correlation function
whose parameters are collectively denoted via 𝜽. Common choices
for 𝑟(⋅, ⋅) are the Gaussian, power exponential, and Matérn correlation
functions defined as:

𝑟(𝒙,𝒙′;𝝎) = exp

{

−
𝑑𝑥
∑

𝑖=1
10𝜔𝑖 (𝑥𝑖 − 𝑥′𝑖)

2

}

(4a)

𝑟(𝒙,𝒙′;𝝎, 𝑝) = exp

{

−
𝑑𝑥
∑

𝑖=1
10𝜔𝑖

|𝑥𝑖 − 𝑥′𝑖|
𝑝
}

(4b)

𝑟(𝒙,𝒙′;𝝎) = 21−𝜈
𝛤 (𝜈)

𝐾𝜈

(

√

2𝜈 ×
𝑑𝑥
∑

𝑖=1
10𝜔𝑖 (𝑥𝑖 − 𝑥′𝑖)

2

)1+𝜈

(4c)

where 𝜔𝑖 ∈ R,5 𝑝 ∈ [1, 2], 𝜈 ∈ { 1
2 ,

3
2 ,

5
2 }, 𝐾𝜈 is the modified Bessel func-

tion of the second kind, and 𝛤 is the gamma function. The inductive
bias that the kernels in Eq. (4) encode into the learning process is that
close-by input vectors 𝒙 and 𝒙′ have similar (i.e., correlated) output
values. The degree of this correlation is quantified by the interpretable
length-scale (aka roughness) parameters where the magnitude of 10𝜔𝑖

s directly related to the response fluctuations along 𝑥𝑖.
Having defined these kernels we can now write the likelihood

unction of the observation vector 𝒚 as:

(𝒚; 𝜷, 𝜎2,𝜽) = (2𝜋)−
𝑛
2
|𝑪|

− 1
2 × exp

{−1
2
(𝒚 −𝒎)𝑇𝑪−1(𝒚 −𝒎)

}

(5)

where | ⋅ | denotes the determinant operator, 𝑪𝑛𝑛 ∶= 𝑐(𝑿,𝑿; 𝜎2,𝜽) is
the covariance matrix whose (𝑖, 𝑗)th element is 𝐶𝑖𝑗 = 𝑐(𝒙(𝑖),𝒙(𝑗); 𝜎2,𝜽) =
𝜎2𝑟(𝒙(𝑖),𝒙(𝑗);𝜽), and 𝒎 is an 𝑛 × 1 vector whose 𝑖th element is 𝑚𝑖 =
𝑚(𝒙(𝑖); 𝜷). The point estimates for 𝜷, 𝜎2, and 𝜽 can now be found by
maximizing the likelihood function in Eq. (5). Alternatively, Bayes’ rule
can be used to leverage prior knowledge in estimating these parame-
ters. Specifically, the joint posterior distribution of the parameters is:

𝑝(𝜷, 𝜎2,𝜽 ∣ 𝒚) =
𝑝(𝒚 ∣ 𝜷, 𝜎2,𝜽)𝑝(𝜷, 𝜎2,𝜽)

𝑝(𝒚)
, (6)

where 𝑝(𝒚) is the evidence. Since 𝑝(𝒚) is a normalizing constant, we can
find the MAP estimates of 𝜷, 𝜎2, and 𝜽 by maximizing the right-hand-
side of Eq. (6). That is:

[𝜷, 𝜎2, 𝜽̂] = argmax
𝜷,𝜎2 ,𝜽

|2𝜋𝑪|

− 1
2 × exp

{−1
2
(𝒚 −𝒎)𝑇𝑪−1(𝒚 −𝒎)

}

× 𝑝(𝜷, 𝜎2,𝜽)

(7)

4 We focus on regression problems whose output dimensionality is one but
ote that GPs can handle multi-response or multi-task problems as well [50–
2].
5 To ensure numerical stability, 𝜔𝑖 is typically bounded to a subset of R,
.g., [−10, 4].
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or equivalently:

[𝜷, 𝜎2, 𝜽̂] = argmin
𝜷,𝜎2 ,𝜽

𝐿𝑀𝐴𝑃

= argmin
𝜷,𝜎2 ,𝜽

1
2
log(|𝑪|) + 1

2
(𝒚 −𝒎)𝑇𝑪−1(𝒚 −𝒎) − log

(

𝑝(𝜷, 𝜎2,𝜽)
)

(8)

here log(⋅) denotes the natural logarithm. We can now efficiently
stimate all the model parameters by minimizing Eq. (8) via a gradient-
based optimization algorithm6 and then adopt Eq. (2) to obtain the
mean and variance of the response distribution at the arbitrary point
𝒙∗:

E[𝑦(𝒙∗)] = 𝜇(𝒙∗) = 𝑚(𝒙∗; 𝜷) + 𝑐(𝒙∗,𝑿; 𝜽̂, 𝜎2)𝑪−1(𝒚 −𝒎) (9a)

cov(𝑦(𝒙∗), 𝑦(𝒙∗)) = 𝜏2(𝒙∗) = 𝑐(𝒙∗,𝒙∗; 𝜽̂, 𝜎2)

− 𝑐(𝒙∗,𝑿; 𝜽̂, 𝜎2)𝑪−1𝑐(𝑿,𝒙∗; 𝜽̂, 𝜎2) (9b)

where 𝑐(𝒙∗,𝑿; 𝜽̂, 𝜎2) is a 1 × 𝑛 row vector with entries 𝑐𝑖 = 𝑐(𝒙∗,𝒙(𝑖);
𝜽̂, 𝜎2) and its transpose is 𝑐(𝑿,𝒙∗; 𝜽̂, 𝜎2). Eqs. (9a) and (9b) can be
straightforwardly extended to predict the response distribution for a
batch of samples denoted by 𝑿∗:

E[𝑦(𝑿∗)] = 𝑚(𝑿∗; 𝜷) + 𝑐(𝑿∗,𝑿; 𝜽̂, 𝜎2)𝑪−1(𝒚 −𝒎) (10a)

cov
(

𝑦
(

𝑿∗) , 𝑦(𝑿∗)
)

= 𝑐(𝑿∗,𝑿∗; 𝜽̂, 𝜎2) − 𝑐(𝑿∗,𝑿; 𝜽̂, 𝜎2)𝑪−1𝑐(𝑿,𝑿∗; 𝜽̂, 𝜎2)

(10b)

The above formulations build interpolating GPs. To handle datasets
with noisy observations, the nugget or jitter parameter, denoted by
𝛿 [12,53,54], is used where 𝑪 is replaced by 𝑪𝛿 = 𝑪 + 𝛿𝑰𝑛𝑛 where 𝑰𝑛×𝑛
is the 𝑛 × 𝑛 identity matrix (with this adjustment, the stationary noise
variance estimated by the GP is 𝛿).7 In addition to modeling stationary
noise, the nugget parameter is also used to mitigate the numerical
issues associated with 𝑪 . That is, even with noise-free 𝒚, 𝑪𝛿 is used
while minimizing Eq. (8) to ensure the correlation matrix is always
invertible. When the nugget parameter is used for fitting a GP to noisy
observations, Eq. (1) takes on the following form:

𝑝

([

𝐘𝑞

𝐘𝑛

])

= 𝑞+𝑛

([

𝝁𝑞

𝝁𝑛

]

,

[

𝜮𝑞𝑞 + 𝛿𝑰𝑞𝑞 𝜮𝑞𝑛

𝜮𝑛𝑞 𝜮𝑛𝑛 + 𝛿𝑰𝑛𝑛

])

(11)

which means that Eq. (10) should be updated to:

E[𝑦(𝑿∗)] = 𝑚(𝑿∗; 𝜷) + 𝑐(𝑿∗,𝑿; 𝜽̂, 𝜎2)𝑪−1
𝛿 (𝒚 −𝒎) (12a)

cov
(

𝑦
(

𝑿∗) , 𝑦(𝑿∗)
)

= 𝑐(𝑿∗,𝑿∗; 𝜽̂, 𝜎2) − 𝑐(𝑿∗,𝑿; 𝜽̂, 𝜎2)𝑪−1
𝛿

× 𝑐(𝑿,𝑿∗; 𝜽̂, 𝜎2) + 𝛿𝑰 . (12b)

We highlight that Eq. (12b) does not consider the additional un-
certainties incurred by estimating the parameters of the mean and
covariance functions (note that Eq. (2) assumed the mean vector and
covariance matrices are known). These additional uncertainties can be
quantified by building and using the GP within a Bayesian framework
where sampling methods (e.g., Markov Chain Monte Carlo or MCMC)
are required for marginalization as closed-form expressions are only
available for specific cases (see [58] for an example). Since such
sampling methods are typically expensive and the provided benefits are
marginal, MAP is frequently employed in GP modeling [59].

6 Since the profile of the objective function in Eq. (8) has many local
minima, it is important to start the gradient-based optimization via multiple
initial guesses. We control this setting in GP+ via the num_restarts
arameter whose default value is 32.
7 Some recent works [55–57] apply the nugget directly to 𝑹 but herein we
3

dhere to [53] and add 𝛿 to 𝑪 .
3. Related works

Many open-source GP libraries have been recently developed and in
this section we review some of the most well-known ones. One of the
earliest open-source GP packages is TreedGP [60] which is developed in
R and primarily aims to address the stationarity and scalability issues
of GPs. In particular, TreedGP recursively partitions the input space
via parallel and axes-aligned boundaries [61] and then endows each
partition with a GP whose covariance function is stationary. TreedGP
uses Bayesian averaging to combine these GPs which is particularly
important for obtaining smooth predictions on the partition boundaries.
The major limitations of TreedGP are its non-differentiability on the
boundaries, high computational costs (as the Bayesian analyses rely on
MCMC [62]), reliance on trees which can only partition the input space
with axis-aligned boundaries [63], and inability to efficiently handle
categorical features in small-data applications.

GPfit [57] and GPM [56] are also R packages and they are primarily
designed to improve the hyper-parameter optimization process at the
expense of increased computational costs. GPfit has a multi-step pre-
processing stage that aims to improve the quality of the initial points
that are used via L-BFGS8 in minimizing Eq. (8). Unlike GPfit, GPM
develops a multi-step continuation-based strategy to increase both the
robustness and accuracy of the optimization process. In particular,
GPM indirectly controls 𝛿 via the auxiliary parameter 𝜖 that puts a
ower bound on the smallest eigenvalue of the correlation matrix.9
GPM first uses a large value for 𝜖 (e.g., 10−2) and minimizes Eq. (8)
while requiring the smallest eigenvalue of 𝑹 to always be larger than
the imposed 𝜖. In addition to guaranteeing numerical robustness, this
requirement dramatically smooths the profile of the objective function
and hence most (if not all) optimizations quickly converge to the same
solution. Then, GPM relaxes the constraint on 𝑹 (e.g., 𝜖 = 10−3) and
epeats the optimization while using the solution(s) of the previous
tep as the initial guess(es) in the current step, see Fig. 1. These steps
re continued until the minimum value of 𝜖 is reached and then the
arameters of the final GP are chosen by identifying the step (or
) at which the leave-one-out cross-validation (LOO-CV) error of the
odel is minimized. GPy [64] is a popular object-oriented library that
s implemented based on numeric Python (NumPy) by the Sheffield
achine learning group. GPy provides a number of basic and advanced
unctionalities for GP regression that include multi-output learning and
on-Gaussian likelihood functions which are accompanied with Laplace
pproximation [65] and expectation propagation since exact inference
ith non-Gaussian likelihoods is not tractable. However, GPy does not
ully leverage modern hardware capabilities (e.g., GPU acceleration)
nd integration with deep neural networks (NNs) which are increas-
ngly crucial in contemporary GP applications. It also lacks some of
he most recent advancements that enable GPs to accommodate high
imensions or categorical features.
One of the first open-source GP libraries that supports GPU accel-

ration and leverages automatic differentiation is GPflow [29] which
s based on Tensorflow and has an object-oriented Python front-end.
Pflow supports regression and classification problems, uses variation-
lly sparse methods for scalability to large data, and provides both
ayesian and point-estimate-based inference classes for Gaussian and
on-Gaussian likelihoods. While GPflow has significant capabilities, it
acks some of the key recent advancements in GPs such as natural
ntegration with SFBO or MFBO frameworks, fusing multi-source data,
alibrating unknown parameters, or directly supporting categorical
ariables.
Perhaps the most widely used open-source package for GP modeling

s GPytorch [30] which accommodates a wealth of functionalities such

8 Limited-memory Broyden–Fletcher–Goldfarb–Shanno.
9 The rationale behind this choice is that the smallest eigenvalue of 𝑹 can

sometimes be negative due to numerical issues.
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Fig. 1. Schematic illustration of continuation-based optimization: The profile of 𝐿𝑀𝐴𝑃
in Eq. (8) is smoothed with a larger 𝜖 (or, equivalently, a larger nugget).

s deep kernel [66] and multi-task/multi-output learning [50–52],
dimensionality reduction via latent variable GPs [67,68], and varia-
ional and approximate modeling for handling non-Gaussian likelihoods
e.g., in classification) or large datasets. A particular feature of GPy-
orch is its use of preconditioned conjugate gradients in accelerating
he expensive computations (i.e., matrix inversion and determinant cal-
ulation) associated with exact GPs in Eqs. (8) and (10). This feature is
oined blackbox matrix-matrix multiplication (BBMM) and is uniquely
uited for GPU-based computations. GPytorch relies on Pyro [69] for
robabilistic programming, forms the backbone of BoTorch which is
n open-source Python library for BO, and has specialized kernels for
F modeling or handling categorical variables. Given the versatility
nd robustness of GPytorch, we use some of its core functionalities to
uild GP+ while addressing the limitations of GPytorch in handling
ategorical features, directly solving inverse problems, learning from
F datasets, or interfacing with SFBO/MFBO engines.
Other notable open-source GP libraries that we mention in passing

nclude those of Ambikasaran et al. [70] which hierarchically factors
he covariance matrix10 into a product of block low-rank updates of
he identity matrix to accelerate matrix inversion and determinant cal-
ulation (their method loses accuracy for 𝑑𝑥 > 3), Vanhatalo et al. [71]
hich is a Matlab library that integrates various elementary computa-
ional tools (e.g., sparse approximation) for GP-based regression, and
PML [12] which is also a Matlab library and has been widely used in
wide range of applications.

. Kernel-based learning

The vanilla GP formulations reviewed in Section 2 break down in
igh dimensions or with large samples [72,73], do not directly accom-
odate MF modeling or MFBO [74,75], and cannot handle categorical
eatures [76]. Since the scalability issue of GPs is rigorously studied in
many recent works, in GP+we focus on holistically addressing the latter
two limitations based on the ideas that were first introduced in [76].
In particular, we generalize the concept of kernel-based learning for
GPs by introducing new bases and kernels with customized parametric
functions that directly enable probabilistic learning from multi-source
data and handling qualitative features. Compared to existing works
that also develop new kernels for GPs (see for example [77–79] for
handling categorical inputs, building multi-response emulators, and MF
modeling), our functions are quite versatile and produce nonlinearly

10 As long as it is built with specific covariance functions such as the
aussian or Matérn.
4

learned embeddings that, while being low-dimensional and highly
interpretable, enable GPs to model more complex relations.

To explain our kernel-based approach, we consider an emulation
scenario where the input space includes two qualitative features 𝑡1 =
{𝑀𝑎𝑡ℎ, 𝐶ℎ𝑒𝑚𝑖𝑠𝑡𝑟𝑦} and 𝑡2 = {𝐽𝑎𝑝𝑎𝑛, 𝐹 𝑟𝑎𝑛𝑐𝑒, 𝐶𝑎𝑛𝑎𝑑𝑎} which have 𝑙1 = 2
nd 𝑙2 = 3 levels, respectively. Vanilla GPs cannot directly work with

𝒕 = [𝑡1, 𝑡2]𝑇 since typical kernels such as those in Eq. (4) require
each feature to be associated with a distance metric while categorical
variables naturally lack such measures. As schematically illustrated in
Fig. 2, we address this limitation by first endowing the categorical
variables 𝒕 = [𝑡1,… , 𝑡𝑑𝑡]𝑇 with the quantitative prior representations
𝝅𝑡 = 𝑓𝜋 (𝒕) where 𝑓𝜋 (⋅) is a deterministic user-specified function. These
priors are typically high dimensional (i.e., 𝑑𝜋 > 𝑑𝑡) and can be designed
in many ways (we describe some of these below, see supplementary
comments on our GitHub page for more options). To reduce the dimen-
sionality of these representations while learning the effects of 𝒕 on the
response, we then pass 𝝅𝑡 through the parametric embedding function
𝑓ℎ(𝝅𝑡;𝜽ℎ) to obtain 𝒉 which is a 𝑑ℎ dimensional latent representation
of 𝒕 where 𝑑𝜋 ≫ 𝑑ℎ. Since 𝒉 = 𝑓ℎ(𝑓𝜋 (𝒕);𝜽ℎ) are quantitative, they can
e easily used to develop new kernels. For instance, we can extend the
aussian and Matérn correlation functions as:

(

𝒖, 𝒖′;𝝎,𝜽ℎ
)

= exp

{

−
𝑑𝑥
∑

𝑖=1
10𝜔𝑖 (𝑥𝑖 − 𝑥′𝑖)

2 −
𝑑ℎ
∑

𝑖=1
(ℎ𝑖 − ℎ′𝑖)

2

}

(13a)

(

𝒖, 𝒖′;𝝎,𝜽ℎ
)

= 21−𝜈
𝛤 (𝜈)

𝐾𝜈

(

√

2𝜈 ×
𝑑𝑥
∑

𝑖=1
10𝜔𝑖 (𝑥𝑖 − 𝑥′𝑖)

2 +
𝑑ℎ
∑

𝑖=1
(ℎ𝑖 − ℎ′𝑖)

2

)1+𝜈

(13b)

where 𝒖 =

[

𝒙

𝒕

]

. We note that (1) no scale parameters are associated

with 𝒉 in Eqs. (13a) and (13b) since, as opposed to 𝒙, 𝒉 are learnt, and
(2) 𝜽ℎ are estimated jointly with the other parameters of the GP via
MAP where the covariance matrix in Eq. (8) is now built via one of the
correlation functions in Eq. (13).

As we explain in the proceeding subsections, the above kernel
eformulations not only allow GPs to operate in feature spaces with cat-
gorical variables, but they also enable GPs to directly fuse MF datasets
from an arbitrary number of sources) or inversely estimate calibra-
ion parameters. Given this general applicability of our approach, we
ave equipped GP+ with various mechanisms to design the priors and
arameterize the embeddings. We believe these options increase the
nterpretability of the model (in particular, the learnt embeddings) as
ell as computational efficiency.
In Fig. 2 we schematically demonstrate a few options for designing

𝝅𝑡 and the embedding functions for an emulation example where the
feature space has quantitative variables 𝒙 and the two categorical
variables 𝒕 = [𝑡1, 𝑡2] mentioned above. As shown in the top row of
the embedding block, 𝑓𝜋 (⋅) can simply be a deterministic bijective11
function that (1) groups the one-hot-encoded representations of 𝒕 into
a single matrix (this option is the default in GP+), (2) builds a random
matrix whose unique rows correspond to the unique combinations of 𝒕,
or (3) constructs multiple matrices where each one corresponds to the
one-hot-encoding of one of the categorical variables. The second row
in the embedding block of Fig. 2 illustrates two options for 𝑓ℎ(𝝅𝑡;𝜽ℎ)
that consist of parametric matrices (denoted by 𝑨 in Fig. 2) and FFNNs.
The construction of 𝑓ℎ(𝝅𝑡;𝜽ℎ) is affected by 𝑓𝜋 (⋅). For instance, the
row size of 𝑨 depends on 𝝅𝑡

12 while its column size is chosen by the
user and determines the dimensionality of the to-be-learnt embedding.

11 Surjective and injective functions may also be used especially if some prior
knowledge encourages such choices. We focus on bijective functions in this
paper and leave other choices for future studies.
12 Hence, the random prior encoding can work with a smaller 𝑨 compared
to the grouped one-hot-encoding.
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Fig. 2. Emulation via GP+ in mixed input spaces: We first endow the categorical variables 𝒕 with some quantitative prior representations which are then mapped to a low-
dimensional embedding with a parametric function. The embedded variables 𝒉 are then concatenated with 𝒙 and fed into the mean and covariance functions. All the model
parameters are jointly learnt via MAP.
The number of 𝑨 matrices also depends on the priors since it should
match with the number of matrices that 𝑓𝜋 (⋅) generates. We note that
these dependencies are automatically enforced in GP+ and the available
options for 𝑓𝜋 (⋅) or 𝑓ℎ(𝝅𝑡;𝜽ℎ) in GP+ can be easily accessed by changing
its default settings.

Once the parametrized embedding is constructed with any of the
procedures described above (or other settings available in GP+), they
are concatenated with the numerical features and used in our reformu-
lated mean and covariance functions to build the likelihood function.
Then, all the model parameters are estimated via MAP. In the following
subsections, we elaborate on how these embeddings as well as refor-
mulated mean and covariance functions benefit MF modeling, inverse
parameter estimation, and MFBO.

4.1. Multi-fidelity modeling via deterministic embedding

The premise of MF modeling is to leverage low-fidelity (LF) data to
reduce the reliance on expensive high-fidelity (HF) samples in many-
query applications such as design optimization [80,81], uncertainty
propagation and variance reduction [82], BO, calibration of computer
models [83], and sensitivity analysis [84]. With the exception of a few
recent works such as [11,85,86], most existing MF techniques fuse only
two data sources while imposing a specific functional relation between
them. For instance, the method of Kennedy and O’Hagan (KOH) [22]
5

and its various extensions [18–21,87–91] fuse the HF and LF data based
on the following generic relation:

𝑦ℎ(𝒙) = 𝜌 × 𝑦𝑙(𝒙, 𝜻) + 𝑦𝑏(𝒙, 𝜻) + 𝜀 (14)

where 𝑦ℎ(𝒙) and 𝑦𝑙(𝒙, 𝜻) denote the HF and LF sources, respectively,
𝑦𝑏(𝒙, 𝜻) is the bias function that aims to quantify the systematic bias of
the LF data source, 𝜻 are the calibration parameters whose values must
be inversely estimated during the fusion process (see Section 4.4), and
𝜀 denotes normal noise whose variance may be known or not. Eq. (14)
is based on some strong assumptions that do not always hold in practice
(e.g., existence of only one LF data source whose bias is additive). To
dispense with such inflexible assumptions, the MF modeling capabilities
of GP+ are based on converting the fusion process into a nonlinear
latent variable learning problem [26].

Suppose we have 𝑑𝑠 data sources of varying accuracy levels and
aim to emulate all sources while dealing with (1) scarce data (espe-
cially from accurate sources), (2) unknown and source-dependent noise
variances, and (3) nontrivial biases of LF sources with respect to the HF
source, i.e., we do not rely on any knowledge on the relative accuracy
of the LF sources and their bias form (e.g., additive, multiplicative,
etc.), see Fig. 3. To this end GP+ first augments the input space with
the additional categorical variable 𝑠 = {‘1’,… , ‘ds’} whose 𝑗th element
corresponds to data source 𝑗 for 𝑗 = 1,… , 𝑑𝑠. Upon this augmentation,
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Fig. 3. Graphical representation of multi-fidelity modeling techniques: The method of KOH [22] (a) and its extension to hierarchical techniques (b) impose specific relations
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he 𝑑𝑠 datasets are concatenated as:

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑼 1
′𝟏′𝑛1×1

𝑼 2
′𝟐′𝑛2×1

⋮ ⋮

𝑼𝑑𝑠
′𝐝𝐬′𝑛𝑑𝑠×1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

and 𝒚 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝒚1
𝒚2
⋮

𝒚𝑑𝑠

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(15)

here the subscripts 1, 2,… , 𝑑𝑠 correspond to the data sources, 𝑛𝑗 is the
umber of samples obtained from source 𝑗, 𝑼 𝑗 and 𝒚𝑗 are, respectively,
he 𝑛𝑗 × (𝑑𝑥 + 𝑑𝑡) feature matrix and the 𝑛𝑗 × 1 vector of responses
btained from 𝑠(𝑗), and ′𝒋′ is a categorical vector of size 𝑛𝑗 × 1 whose
lements are all set to ′𝑗′. Once the unified {𝑼 , 𝒚} dataset is built,
P+ fits an emulator to it following a process similar to Fig. 2. Given
he importance of identifying the relative discrepancies among data
ources, GP+ slightly changes the correlation functions in Eq. (13)
o learn two embeddings where the first one encodes the categorical
ariables in the input space (denoted by 𝒕 in Fig. 2) while the second
ne encodes the data source identifier (𝑠). Following this modeling
ssumption, the correlation functions in Eq. (13) are updated as:

(𝒖, 𝒖′;𝝎,𝜽ℎ,𝜽𝑧)

= exp

{

−
𝑑𝑥
∑

𝑖=1
10𝜔𝑖 (𝑥𝑖 − 𝑥′𝑖)

2 −
𝑑ℎ
∑

𝑖=1
(ℎ𝑖 − ℎ′𝑖)

2 −
𝑑𝑧
∑

𝑖=1
(𝑧𝑖 − 𝑧′𝑖)

2

}

(16a)

(𝒖, 𝒖′;𝝎,𝜽ℎ,𝜽𝑧) =
21−𝜈
𝛤 (𝜈)

𝐾𝜈

×

(

√

2𝜈 ×
𝑑𝑥
∑

𝑖=1
10𝜔𝑖 (𝑥𝑖 − 𝑥′𝑖)

2 +
𝑑ℎ
∑

𝑖=1
(ℎ𝑖 − ℎ′𝑖)

2 +
𝑑𝑧
∑

𝑖=1
(𝑧𝑖 − 𝑧′𝑖)

2

)1+𝜈 (16b)

where 𝒖 = [𝒙, 𝒕, 𝑠]𝑇 and 𝒛 = 𝑓𝑧(𝝅𝑠;𝜽𝑧) is the latent representation
of data source 𝑠 and is obtained similar to 𝒉. Looking at Eq. (16) we
observe that the correlation between the estimated outputs of sources
𝑠 and 𝑠′ at the same inputs is:

0 ≤ 𝑟(
⎡

⎢

⎢

⎣

𝒙
𝒕
𝑠

⎤

⎥

⎥

⎦

,
⎡

⎢

⎢

⎣

𝒙
𝒕
𝑠′

⎤

⎥

⎥

⎦

) = exp

{

0 − 0 −
𝑑𝑧
∑

𝑖=1
(𝑧𝑖 − 𝑧′𝑖)

2

}

≤ 1 (17)

which illustrates that highly correlated data sources must have similar
latent representations, (i.e., they must be encoded with close-by points
in the 𝑧−space), see Section 5 for multiple examples.

We highlight that these learned latent distances provide an average
easure of correlation among the sources and cannot identify local
iscrepancies since the encodings in the 𝑧−space are not functions of 𝒙
r 𝒕. Thus, if some LF sources are only locally correlated with the HF
ource, they will be encoded relatively far from the HF source in the
earned embedding. This implies that those sources provide valuable
nsights in certain areas of the domain and keeping or dropping them
epends on the specific applications. For instance, if the application is
mulation, techniques such as cross-validation or train-test splits can
ssist in determining which sources to keep or drop. However if the
oal is multi-fidelity BO (which typically starts with very small initial
ata, especially from the HF source), we recommend keeping all the
ources during the optimization process (see [92] for more details).
MF modeling in GP+ differs significantly from most existing meth-
6

ds in that its structure does not prioritize learning any source (e.g., the
F source) over the others, i.e., GP+ aims to integrate all the data
ets together to improve its accuracy in emulating all the sources.
or example, multilevel best linear unbiased estimators (MBLUE) and
pproximate control variate (ACV) are two variance reduction-based
echniques that leverage MF data to more accurately learn the HF
ource [93,94]. Since these methods prioritize surrogating the HF
ource and do not build surrogates for the LF sources, they cannot
e used in applications such as MFBO where one has to emulate all
ources. In this paper, we do not explore the possibility of prioritizing
mulation of a particular source (e.g., the HF source) but note that this
irection can be pursued in a number of ways such as constraining the
mbeddings, penalizing the objective function in Eq. (8), or designing
pecific priors.

.1.1. Source-dependent noise modeling
Noise inevitably arises in most applications and incorrectly mod-

ling it reduces the performance of any emulator. As mentioned in
ection 2, GPs model noise via the nugget or jitter parameter, 𝛿, which
hanges the covariance matrix from 𝑪 to 𝑪𝛿 = 𝑪 + 𝛿𝑰𝑛𝑛. Although
his approach works quite well in SF problems, it does not yield the
ame benefits in MF emulation due to the dissimilar nature of the data
ources and their corresponding noises. Consider a bi-fidelity scenario
here the HF data comes from an experimental setup and is subject to
easurement noise, while the LF data is generated by a deterministic
omputer code that has a systematic bias due to missing physics. In this
ase, using only one nugget parameter for MF emulation is obviously
ot an optimum choice.
To address this issue effectively, we follow [92] and use a nugget

ector 𝜹 = [𝛿1, 𝛿2,… , 𝛿𝑑𝑠] to modify the covariance matrix:

𝛿 = 𝑪 +𝑵𝛿 (18)

here 𝑵𝛿 denotes an 𝑛 × 𝑛 diagonal matrix whose (𝑖, 𝑖)th element is
he nugget element corresponding to the data source of the 𝑖th sample.
or instance, suppose the 𝑖th sample 𝒖(𝑖) is generated by source 𝑑𝑠.
hen, (𝑖, 𝑖)th element of 𝑵𝛿 is 𝛿𝑑𝑠. With this modification, the estimated
tationary noise variance for the 𝑖th data source is 𝛿𝑖. We highlight that
P+ uses Eq. (18) by default when learning from multi-source data and
pdates the training and inference formula accordingly. For instance,
ll model parameters in this case are obtained as:

𝜷, 𝜎2, 𝜽̂, 𝜹̂] = argmin
𝜷,𝜎2 ,𝜽,𝜹

1
2
log(|𝑪𝛿|) +

1
2
(𝒚 −𝒎)𝑇𝑪−1

𝛿 (𝒚 −𝒎)

− log
(

𝑝(𝜷, 𝜎2,𝜽, 𝜹)
)

(19)

We highlight that the above formulations model stationary noise for
each data source. We make this choice due to the fact that modeling
an input-dependent noise increases the number of hyperparameters by
at least 𝑑𝑠 × 𝑑𝑥 which can result in overfitting [95,96]. Therefore,
to balance the risk of overfitting with the uncertainty quantification
capacity of our emulator, we assume the noise variance is not a function
of the input variables and only depends on the data source.

4.2. Multi-fidelity modeling via probabilistic embedding

The MF modeling approach described in Section 4.1 is deterministic
in that the learnt embedding encodes a data source with a single point
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Fig. 4. Probabilistic multi-fidelity modeling via GP+: Categorical inputs 𝒕 are mapped to latent points in the ℎ−space while the source indicator variable 𝑠 is mapped to a conditional
distribution in 𝑧−space. Both mappings are achieved via deterministic and differentiable functions. Due to the probabilistic nature of 𝒛, multiple forward passes are required to
obtain the final outputs of the model.
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in the 𝑧−space. To more accurately quantify the epistemic uncertainties
and model form errors, in this paper we develop a computationally
efficient technique to learn probabilistic embeddings. While we can
naturally obtain such embeddings within a Bayesian setting, we opt for
a variational approach as it is computationally much more efficient.

To obtain the probabilistic latent representation of the categorical
source indicator variable 𝑠, we reformulate 𝑓𝑧(𝝅𝑠;𝜽𝑧) to obtain the
conditional distribution 𝑞(𝒛 ∣ 𝑠). To this end we use the reparameter-
ization trick [97] and design 𝑓𝑧(𝝅𝑠;𝜽𝑧) accordingly. Specifically, we
model 𝑞(𝒛 ∣ 𝑠) via a multi-variate normal distribution13 that is fully
characterized via the mean vector 𝝁𝑧 and covariance matrix 𝜮𝑧 = 𝑳𝑧𝑳𝑇

𝑧
where 𝑳𝑧 denotes the lower Cholesky decomposition of 𝜮𝑧. 𝒛 is then
obtained by:

𝒛 = 𝝁𝑧 +𝑳𝑧𝜺 (20)

where 𝜺 is a 𝑑𝑧 dimensional vector whose elements are independent
standard normal variables. 𝝁𝑧 and 𝑳𝑧 in Eq. (20) are obtained via the
differentiable and deterministic function 𝑓𝑧(𝝅𝑠;𝜽𝑧) which we choose to
be a fully connected FFNN, see Fig. 4.

We note that GP+ by default only builds a probabilistic encoding
for 𝑠 and not 𝒕 to avoid overfitting: since the number of categorical
variables and their levels is typically much larger than the number of
levels of 𝑠 (which indicates the number of sources), probabilistically
encoding 𝒕 requires an FFNN with a large number of parameters and
hence may result into overfitting especially if the training data is small.
An alternative approach (which can be achieved in GP+ by changing its
default parameters) is to encode a subset of 𝒕 in a probabilistic latent
space. We leave pursuing this direction to our future studies as it is
application specific.

With a probabilistic fidelity embedding, we must sample from 𝑞(𝒛 ∣
𝑠) multiple times during both training and testing since even for fixed
𝑠, 𝒕, and 𝒙 the predicted covariance from the GP model varies due to
𝝐𝑧 (the effect on the mean function depends on its formulation, see
Section 4.3). Hence, for any fixed values of 𝑠, 𝒕,𝒙, and model parameters
(i.e., 𝜷,𝜽ℎ, 𝜎2, and 𝜽𝑧), we generate 𝑀 samples from 𝑞(𝒛 ∣ 𝑠)14 to
build an ensemble or mixture of 𝑀 GPs. Since 𝝐𝑧 are independent and
identically distributed (IID), each member of the GP ensemble is equally
probable and we can extend Eq. (10) via the laws of total expectation
and covariance [98,99]. To this end, we must obtain expressions for
𝒎 and 𝑪 in Eq. (8) during training. We distinguish among the GPs in
the mixture model via the random variable 𝐼 (whose probability mass

13 Other distributions can also be used but we have had great success with
imple ones such as the bivariate normal distribution when 𝑑𝑧 = 2.
14 These samples are generated by drawing 𝑀 random 𝝐𝑧 vectors of size 𝑑𝑧
rom a standard multi-variate normal distribution.
7

unction or PMF is 𝑝(𝐼 = 𝑘) = 1
𝑀 for 𝑘 = 1,… ,𝑀) and we calculate the

ensemble mean as:

̄ (𝒖) = E[𝑚𝑘(𝒖)] =
1
𝑀

𝑀
∑

𝑘=1
𝑚𝑘(𝒖) (21)

where 𝑚𝑘(𝒖) is the expected value of the 𝑘th GP in the ensemble and
correspondingly we denote 𝒎̄ = 1

𝑀
∑𝑀

𝑘=1 𝒎𝑘 as the ensemble mean over
the training data.

To obtain the ensemble expression for 𝑪 , we start by writing the
ovariance between the two random variables 𝑦(𝒖) and 𝑦(𝒖′) as:

ov
(

𝑦(𝒖), 𝑦(𝒖′)
)

= E
[

cov
(

𝑦(𝒖), 𝑦(𝒖′)
)

|𝐼
]

+ cov
(

E[𝑦(𝒖)|𝐼],E[𝑦(𝒖′)|𝐼]
)

(22)

Given the PMF of 𝐼 and Eq. (3b), we can calculate the first term on the
right hand side of Eq. (22) as:

E
[

cov
(

𝑦(𝒖), 𝑦(𝒖′)
)

|

|

|

𝐼
]

= 1
𝑀

𝑀
∑

𝑘=1
𝑐𝑘(𝒖, 𝒖′; 𝜎2,𝜽) = 𝑐(𝒖, 𝒖′; 𝜎2,𝜽) (23)

where the subscript 𝑘 only affects the 𝑧−components in the kernel.
For instance, 𝑐𝑘(𝒖, 𝒖′; 𝜎2,𝝎,𝜽ℎ,𝜽𝑧) = 𝜎2 exp

{

−
∑𝑑𝑥

𝑖=1 10
𝜔𝑖 (𝑥𝑖 − 𝑥′𝑖)

2 −
‖𝒉 − 𝒉′‖22 − ‖𝒛𝑘 − 𝒛′𝑘‖

2
2
}

for a Gaussian kernel.
We now turn to the second term on the right hand side of Eq. (22)

and represent it as:

cov
(

E[𝑦(𝒖)|𝐼],E[𝑦(𝒖′)|𝐼]
)

= 1
𝑀

𝑀
∑

𝑘=1

(

𝑚𝑘(𝒖) − 𝑚̄(𝒖)
) (

𝑚𝑘(𝒖′) − 𝑚̄(𝒖)
)

. (24)

Inserting Eqs. (23) and (24) into Eq. (22) we obtain:

cov
(

𝑦(𝒖), 𝑦(𝒖′)
)

= 𝑐(𝒖, 𝒖′; 𝜎2,𝜽) + 1
𝑀

𝑀
∑

𝑘=1

(

𝑚𝑘(𝒖) − 𝑚̄(𝒖)
) (

𝑚𝑘(𝒖′) − 𝑚̄(𝒖)
)

(25)

which allows us to calculate the ensemble 𝑪 for Eq. (8) as:

𝑪̄ = 1
𝑀

𝑀
∑

𝑘=1
𝑪𝑘 + (𝒎𝑘 − 𝒎̄)(𝒎𝑘 − 𝒎̄)𝑇 (26)

where 𝑪𝑘 denotes the covariance matrix of the 𝑘th ensemble member
whose (𝑖, 𝑗)th element is given by 𝑐𝑘(𝒖(𝑖), 𝒖(𝑗); 𝜎2,𝜽) for 𝑖, 𝑗 = 1,… , 𝑛. We
use 𝑪̄ and 𝒎̄ while solving the optimization problem in Eq. (8).

For prediction, we take 𝑄 samples from the probabilistic fidelity
embedding to determine the ensemble mean and variance:

E[𝑦(𝒖∗)] = 𝜇̄(𝒖∗) = 1
𝑄

𝑄
∑

𝑘=1
𝜇𝑘(𝒖∗) (27a)

ov(𝑦(𝒖∗), 𝑦(𝒖∗)) = 𝜏2(𝒖∗) = 1
𝑄
∑

(

𝜏2𝑘 (𝒖
∗) + 𝜇2

𝑘(𝒖
∗)
)

− 𝜇̄2(𝒖∗) (27b)

𝑄 𝑘=1
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Fig. 5. Multi-fidelity modeling via mixed basis functions: Two generic options are defined in GP+ for building the mixed bases: (1) predetermined bases where multiple bases like
polynomial, 𝑠𝑖𝑛(⋅) and 𝑐𝑜𝑠(⋅) can be defined for each data source, (2) FFNNs with user-defined architectures. All the parameters of the mean functions have a normal prior and are
jointly learned through MAP.
where 𝜇𝑘(𝒖∗) and 𝜏2𝑘 (𝒖
∗) are the mean and variance of the 𝑘th GP

nd obtained via Eq. (9). We note that the ensemble variance formula
s a specific instance of the ensemble covariance given in Eq. (25).
dditionally, we typically use 𝑄 > 𝑀 to reduce the training costs.

.3. Gaussian processes with mixed basis functions

The parametric mean and covariance functions in Eq. (3) can be
formulated in many ways. In this regard, most advancements have
focused on designing the kernel (e.g., the ones we develop in Eqs. (13)
and (25) or deep kernels [100,101]) since it significantly affects the
performance of the resulting GP model. However, the mean function
in Eq. (3a) plays an important role in many applications that involve,
e.g., extrapolation [102], fusing multi-source data, or identifying model
form errors.

Existing techniques typically leverage polynomials (in combination
with other analytic functions such as sin(⋅), log(⋅),…) or NNs in design-
ing 𝑚(𝒙; 𝜷). In GP+, we extend these methods to seamlessly include
the categorical variables in the mean function. Specifically, our idea
is to feed the learnt representations of 𝒕 and 𝑠 into the mean function
nstead of the original categorical variables, i.e., we reparameterize
(𝒙, 𝒕, 𝑠;𝜷) to 𝑚(𝒙,𝒉, 𝒛; 𝜷), see Fig. 5. A major difference between our

reparameterization and other alternatives (such as an NN whose inputs
are one-hot encoded representation of 𝒕 and 𝑠) is that our mean and
covariance functions are directly coupled since the latent variables used
in 𝑚(𝒙,𝒉, 𝒛; 𝜷) are parameterized in the kernel, i.e., 𝒉 = 𝑓ℎ(𝝅𝑡;𝜽ℎ) and
𝒛 = 𝑓𝑧(𝝅𝑠;𝜽𝑧). Based on this idea, in GP+ we provide the following two
options for modeling the mean function: (1) Having a global function
that is shared among all combinations of 𝒕 and 𝑠, and (2) Having mixed
basis functions where a unique mean function is learnt for specific
combinations of the categorical variables (e.g., in MF modeling, we can
learn a unique mean function for each of the 𝑠 data sources).

Fig. 5 illustrates two generic options that we define in GP+ for
building mixed bases. The first option builds the mean function based
on pre-determined bases that can include polynomials, 𝑠𝑖𝑛(⋅), 𝑙𝑜𝑔(⋅) or
any other analytic functions. The second option is based on a fully
connected FFNN whose architecture (e.g., number of hidden layers and
their sizes) should be designed by the user. The size of the input layer
of the NN depends on the dimensionality of 𝒙,𝒉, and 𝒛 while its output
layer size depends on the response dimensionality (hence the output
8

size is 1 for a single-response dataset).
Mixed bases are useful in applications where the input space has cat-
egorical features. The MF modeling approach described in Sections 4.1
and 4.2 is one such application as it requires adding the categorical
variable 𝑠 to the original input space. As shown in Section 5, using
mixed bases improves MF modeling by allowing the fused GP model
to emulate data source 𝑖 with a unique mean function that better
captures the global and local features of source 𝑖. To visualize this
benefit, we consider the simple Sinusoidal example described in
Appendix A.2 where 4 and 20 noisy data points from the HF and LF
sources, respectively, are provided and the goal is to emulate both the
HF and LF sources while inversely learning the model form error of
the LF source. To investigate the effects of mixed bases, we build two
GPs where the first one learns a single constant mean function for the
fused data while the second one considers different mean functions
for the two sources, namely, a zero mean for the HF source and a
second-degree polynomial for the LF source.

The results are illustrated in Fig. 6 and indicate that the second GP
emulates both sources better than the first GP in both interpolation
and extrapolation. As it can be seen in Table 4 the true model form
error is 0.3𝑥2 −0.7𝑥+1 while the discovered one with the second GP is
0.2981𝑥2 −0.7059𝑥+0.9939. We attribute the small differences between
these two functions primarily to the fact that the training data is very
small and noisy. As also shown in Fig. 6 we observe that the inclusion
of the mixed bases affects the learnt encoding for 𝑠 whose two levels
are mapped to distant latent points in the first GP but close-by points in
the second GP. This behavior indicates that the entire model form error
in the second GP can be obtained by comparing the mean functions
associated with the two sources.

In the above example, the true model form error is a 2nd degree
polynomial and so we choose polynomial bases (of degree zero and
two for the HF and LF sources, respectively) as the mean functions for
the second GP. In practice, however, identification of the true model
form error in realistic applications is much more challenging due to its
unknown form, high dimensionality of the problem, lack of data, or
noise. In these scenarios, we recommend using mean functions such as
FFNNs that can adapt to the data and better model the global and local
trends.

4.4. Inverse parameter learning for computer models

Most computer models are built to be applicable to a broad range

of applications. Using these models in a specific context typically
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Fig. 6. Effect of mixed bases in MF emulation: The comparison is conducted on the 1-dimensional bi-fidelity problem where the LF source has a polynomial bias relative to the
HF source, see Sinusoidal example in Table 4. Mixed bases (b) enables the emulator to better capture the local and global biases which, in turn, increases its interpolation
and extrapolation powers. The learnt fidelity manifolds are shown as insets in each figure.
e

relies on adjusting their context-specific parameters using our domain
knowledge or some measurements/observations. For instance, finite
element (FE) models can be used to simulate the behavior of many
materials under a wide range of loading conditions [103]. However,
for a specific application such as modeling the thermoforming process
of woven carbon fiber reinforced plastics [28,104,105], a specific FE
model is needed. The material parameters such as directional Young’s
moduli and yarn-yarn friction coefficients in this FE model should
be calibrated such that it can reproduce force–displacement curves
obtained via experiments such as tension or three-point bending tests.
Since such experimental data does not include the material parameters
themselves, one must solve an inverse problem where the FE model’s
calibration parameters are estimated such that the model fits the ex-
perimental data. During this process, it is implicitly presumed that
the response (e.g., force–displacement curve) is sufficiently sensitive to
the calibration parameters (e.g., Young’s moduli and yarn-yarn friction
coefficients) as otherwise they cannot be accurately estimated.

Calibration of a computer model is tightly connected to that model’s
bias with respect to an HF data source (e.g., experiments). To explain
this connection, we note that most computer models suffer from system-
atic errors that arise from, e.g., their missing physics, the simplifying
assumptions made during their development, or numerical errors. To
mitigate the effect of these errors, computer models sometimes include
a few additional calibration or tuning parameters that may not even
correspond to any physical properties of the system. One example is the
artificial viscosity parameter that is used to stabilize explicit solution
methods that are needed when modeling dynamic processes such as
fracture via the FE method. A related example is the calibration of
physics-based reduced-order models (ROMs) [27,106–110] that sim-
lify expensive computer models (such as direct numerical simulations
r DNS) to gain computational speedups. Such simplifications introduce
ome bias into the ROMs whose effects are typically mitigated by
alibrating material parameters such that a ROM can reproduce small
F data obtained from DNS. That is, even if the material parameters
re known, one may have to adjust them for ROMs.
Calibration of computer models is closely related to MF modeling

ince it requires fusing multiple datasets that typically have different
evels of fidelity (e.g., fusing simulations with experiments or observa-
ions). Hence, we extend the capabilities introduced in Sections 4.1 and
4.2 to accommodate inverse parameter learning for computer models.
For this extension, we consider two application scenarios:

• Simultaneous calibration of multiple (>1) computer models: We
presume that the calibration parameters of these models corre-
spond to some unobserved characteristics of a system. We make
9

r

this assumption since it is not optimal to jointly calibrate the
tuning parameters of different models that are added to them for
reasons besides characterizing unobserved features of a system
(note also that the number of these tuning parameters generally
varies across different models that simulate the same system).

• Calibration of a single computer model: We do not distinguish
between the calibration parameters regardless of whether they
are merely tuning knobs or they correspond to some unobservable
features.

We highlight that in both scenarios we can use multiple HF data
sets in GP+ as long as they correspond to the same physical sys-
tem (e.g., obtaining force–displacement curves via different universal
testing machines that have different levels of fidelity), see Fig. 7.

Following the notation of previous sections, we denote the quantita-
tive inputs by 𝒙 and the latent representations of qualitative inputs and
the categorical source indicator variable by 𝒉 and 𝒛, respectively. These
inputs are shared across all the data sources but, as described above,
the LF sources have additional quantitative inputs that correspond to
the calibration parameters and are denoted by 𝜻 = [𝜁1, 𝜁2,… , 𝜁𝑑𝜁 ]

𝑇 .
The ‘‘best’’ calibration parameters (𝜻∗) should be estimated using the
HF data to accurately characterize the physical system. We denote
these estimates by 𝜻 and modify the correlation function to obtain
them. For instance, the Gaussian and Matérn correlation functions are
reformulated as follows:

𝑟(𝒖, 𝒖′;𝝎,𝜽ℎ,𝜽𝑧) = exp

{

−
𝑑𝑥
∑

𝑖=1
10𝜔𝑖 (𝑥𝑖 − 𝑥′𝑖)

2 −
𝑑ℎ
∑

𝑖=1
(ℎ𝑖 − ℎ′𝑖)

2−

𝑑𝑧
∑

𝑖=1
(𝑧𝑖 − 𝑧′𝑖)

2 −
𝑑𝜁
∑

𝑖=1
10𝜔𝑖+𝑑𝑥 (𝜁𝑖 − 𝜁 ′𝑖 )

2

}
(28a)

𝑟(𝒖, 𝒖′;𝝎,𝜽ℎ,𝜽𝑧) =
21−𝜈
𝛤 (𝜈)

𝐾𝜈

(

√

2𝜈 ×
𝑑𝑥
∑

𝑖=1
10𝜔𝑖 (𝑥𝑖 − 𝑥′𝑖)

2 +
𝑑ℎ
∑

𝑖=1
(ℎ𝑖 − ℎ′𝑖)

2+

𝑑𝑧
∑

𝑖=1
(𝑧𝑖 − 𝑧′𝑖)

2 +
𝑑𝜁
∑

𝑖=1
10𝜔𝑖+𝑑𝑥 (𝜁𝑖 − 𝜁 ′𝑖 )

2

) 1+𝜈

(28b)

where 𝒖 = [𝒙, 𝒕, 𝑠, 𝜻]𝑇 and 𝝎, 𝜽ℎ and 𝜽𝑧 are defined as before. While
training the model, the correlation between LF samples can be readily
calculated via Eq. (28). However, if at least one of the samples is an
HF one, in the last term of Eqs. (28a) and (28b) we use 𝜁𝑖 which are
stimated jointly with all the other parameters of the model via MAP.
Similar to Section 4.2, we can inversely learn the calibration pa-
ameters within a probabilistic setting to more accurately quantify the
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Fig. 7. Inverse parameter calibration via data fusion: GP+ builds a fused model that jointly emulates all the sources while inversely estimating the calibration parameters of the
HF sources. It is assumed that (1) all the data sources share the same inputs, (2) the HF data sets correspond to the same underlying system, and (3) the calibration parameters
epresent some properties of the HF sources.
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ncertainties compared to the deterministic counterpart based on the
AP. Following Section 4.2, we learn the calibration parameters within
variational framework by formulating their joint posterior with a
ultivariate normal distribution that is fully characterized by its mean
ector and covariance matrix. We learn the parameters of this joint
istribution via the reparametrization trick:

𝑖 = 𝜇𝜁𝑖 + 𝜏𝜁𝑖𝜺𝜁𝑖, (29)

here 𝜺𝜁𝑖 ∼  (0, 1) is an auxiliary noise variable while 𝜇𝜁𝑖 and 𝜏𝜁𝑖
arameterize the posterior distribution of 𝜁𝑖. During both the training
nd prediction phases, we draw samples for calibration parameters.
s a result, the values of 𝜻 fluctuate in each optimization iteration
hich consequently changes the covariance and mean functions of
he emulator. To efficiently consider these variations, we follow our
ethod used for probabilistic manifold modeling (see Section 4.2) and
mploy ensembling to calculate both the mean vector and covariance
atrix.
We highlight that in both deterministic and probabilistic calibration

ases, the estimated calibration parameters and the learnt bias are
ightly connected in that the former depends on what bias form has
een chosen. Most existing methods [18,19,22,89,90,111–115] first
ssume a specific functional form (e.g., a GP or a polynomial) for the
ias and the relation between the LF and HF sources (see Eq. (14)
nd Fig. 3 for one example). Then, given data from both LF and HF
ources, they estimate the calibration parameters and the parameters
f the bias function. For these approaches, the estimated calibration
arameters are strongly dependent on the assumed form of the bias
unction and how it relates the HF and LF sources. If these assumptions
re incorrect, the calibration results will be misleading. In GP+ we
ignificantly relax these assumptions. Specifically, we (1) do not assume
he bias term is additive, and (2) simultaneously calibrate multiple
ources (rather than just calibrating one source at a time). Therefore,
e do not eliminate the so-called identifiability issue but provide the
eans that analysts can use to address it depending on the appli-
ation. For instance, an effective way to reduce identifiability issues
s using multiple-response data during calibration [18,19,114,116].
imilarly, the multi-source calibration mechanism in GP+ provides the
alibration process with more information and hence has the potential
o reduce non-identifiability. Additionally, in GP+ we can use mixed
asis functions which can help analysts in choosing appropriate mean
unctions for each source and study the effects of this choice on the
stimated calibration parameters, accuracy on unseen data, and learnt
ias functions (note that the difference between two mean functions
ssentially gives the global bias between the corresponding sources, see
ig. 6).

. Functionalities of GP+ and comparative studies

In this section, we demonstrate the core functionalities of GP+ and
10

ompare them against some of the widely used methods or open-source k
P modeling packages. We start with emulation and MF modeling in
ections 5.1 and 5.2, respectively, where we also study the potential
enefits of using a probabilistic embedding instead of a deterministic
ne in GP+ in Section 5.2.1. Then, in Section 5.3 we conduct a few
carefully designed studies to evaluate the capabilities of GP+ in inverse
parameter estimation. Finally, in Section 5.4 we assess the performance
of GP+ in BO which is a many-query outer-loop application where GPs
are dominantly used for emulation.

Throughout this section, we use normalized root mean squared error
(NRMSE) and normalized interval score (NIS) for assessing the accuracy
of, respectively, the mean values and prediction intervals provided by
a GP:

𝑁𝑅𝑀𝑆𝐸 = 1
𝑠𝑡𝑑(𝒚)

√

√

√

√

1
𝑛test

𝑛test
∑

𝑖=1
(𝑦(𝑖) − 𝜇(𝑖))2 (30)

𝑁𝐼𝑆 = 1
𝑠𝑡𝑑(𝒚)

( 1
𝑛test

𝑛test
∑

𝑖=1
( (𝑖) − (𝑖)) + 2

𝑣
((𝑖) − 𝑦(𝑖))1{𝑦(𝑖) < (𝑖)}

+ 2
𝑣
(𝑦(𝑖) − (𝑖))1{𝑦(𝑖) >  (𝑖)})

(31)

where 𝑦(𝑖) = 𝑦(𝒖(𝑖)) and 𝜇(𝑖) = 𝜇(𝒖(𝑖)) denote the output and predicted
mean of test sample 𝒖(𝑖), respectively, and 𝑠𝑡𝑑(𝒚) = 𝑠𝑡𝑑(𝑦(𝑼 )) shows
the standard deviation of the test samples obtained at 𝑼 .  (𝑖) and (𝑖)

are upper and lower endpoints of the prediction interval for the 𝑖th
test sample. These endpoints are the predictive quantiles at levels 𝑣∕2
and 1 − 𝑣∕2, respectively. We use 95% prediction interval (𝑣 = 0.05)
and hence these endpoints are defined as  (𝑖) = 𝜇(𝑖) + 1.96𝜏(𝑖) and
(𝑖) = 𝜇(𝑖) − 1.96𝜏(𝑖). 1{⋅} is an indicator function which is 1 if its
condition holds and zero otherwise. For both metrics in Eqs. (30) and
31) lower values indicate more accuracy.
Unless otherwise stated, we use the default settings of GP+ which

re detailed in Tables 9 and 10. For instance, the prior distributions
f the parameters in all the examples are 𝜔𝑖 ∼ 𝑁(−3, 3), 𝛽 ∼ 𝑁(0, 1),
𝑖𝑗 ∼ 𝑁(0, 1), 𝜎2 ∼ 𝐿𝑁(0, 1),15 and 𝛿𝑖 ∼ 𝐿𝐻𝑆(0, 0.01)16 [117].

.1. Emulation

We use three analytic and two engineering problems to compare
he performance of GP+ against the GP emulation capabilities of GPy-
orch,17 MATLAB,18 BoTorch, and SMT2 [30,118–120]. These problems

15 Log-Normal.
16 Log-Half-Horseshoe with zero lower bound and scale parameter 0.01.
17 GPyTorch uses the Adam optimizer by default and to improve its perfor-
mance we use a learning rate scheduler during the training process. To avoid
convergence to local optima, we repeat the optimization process 64 times, each
ith a different initialization for the model’s parameters.
18 We use automatic relevance determination (ARD) squared exponential

ernel for GP emulation in MATLAB.
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Fig. 8. Emulation via GP+: We emulate the Borehole-Mixed function by importing the necessary modules, identifying the indices of the categorical variables, generating data,
initializing the GP+ model, and finally training and evaluating the model.
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are briefly described below (see details in Appendix A) and they cover
a range of input dimensionality and characteristics (e.g., HOIP only
has categorical inputs). To provide a comprehensive analysis, we il-
lustrate the emulation comparisons in this section and discuss the
computational costs of these baselines in Appendix I.

As shown in Fig. 8, emulation via GP+ is achieved via a few lines
of code regardless of whether the problem has categorical variables
or not. As opposed to GP+, MATLAB handles categorical variables by
first one-hot encoding them and then treating the resultant variables
as numerical. BoTorch leverages mixed single-task GP (MST-GP) which
defines two distinct kernels for numerical and categorical features.
Specifically, MST-GP uses the Matèrn kernel for the numerical fea-
tures while for the categorical features it calculates the exponential
of their normalized binary distance which is 0 when the two cat-
egorical variables are the same. The final kernel of MST-GP is the
combination of the categorical and numerical parts (see Appendix D
for details). Since MST-GP is specifically developed to handle mixed
input spaces that have both categorical and numerical features, we
use GPytorch in problems with only quantitative features (note that
Gpytorch cannot handle categorical inputs). SMT2 uses a Gaussian
Kernel for problems involving solely numerical inputs which is mul-
tiplied by a categorical kernel in case the input space has qualitative
features. The options for categorical kernel provided in SMT2 are ho-
moscedastic hypersphere (SMT2HH) [121], exponential homoscedastic
hypersphere (SMT2EHH) [122], and Gower distance-based correlation
kernels (SMT2Gower) [123].

Wing and Borehole are two single-response analytic examples
whose input space only has quantitative features. The dimensionality of
the input space for Wing and Borehole is 10 and 8, respectively. To
compare the performance of the three methods in mixed input spaces,
we convert the first and sixth features of Borehole to categorical
variables with 5 distinct levels. This analytic example is referred to as
Borehole-Mixed (see Appendix A.2 for further details). We generate
10 000 samples from the HF source in Table 4 and use 1% of the data for
training and the rest for testing. HOIP and NTA are both 3-dimensional
problems and only have categorical inputs (see Appendix A.1 for more
11
details). We use 150 and 100 HF samples from HOIP and NTA, respec-
tively, for emulation and the rest of the HF data for testing. For all
problems, we repeat the emulation process 10 times and report the
average values for each metric to ensure the metrics are robust to
random initialization.

Emulation results are summarized in Table 1 which demonstrate
that GP+ more accurately predicts the responses in all examples and
provides more reliable prediction intervals. In the case of Wing or
Borehole which only have quantitative features, we attribute the
superiority of GP+ primarily to the parameter optimization process.
Specifically, we use MAP (as opposed to maximum likelihood estima-
tion or MAE), search for the length-scale parameters (i.e., 𝝎 in the
correlation function) in the log scale, and leverage L-BFGS-B.19 for
optimization. These choices smooth the profile of the objective function
and accelerate the convergence. The comparable performance of SMT2
and GP+ in terms of NRMSE is attributed to SMT2’s usage of the
o-called profiling technique [124] for parameter estimation.
GP+ outperforms all baselines in Borehole-Mixed, HOIP, and

TA which have categorical variables. In these problems, GP+ ex-
licitly learns the relations between different categorical variables and
heir levels which not only improve the emulation performance, but
lso provide visually interpretable embeddings (see Figs. 16(a) to 16(c)
n Section 5.4 for an example). We note GP+ estimate more parameters
than other methods in Table 1 since it directly learns the correlations
among categorical variables. This approach results in a more expensive
and challenging optimization process which can converge to subop-
timal solutions if the training data is very small and the categorical
variables have many levels. To mitigate potential overfitting issues in
such cases, we recommend using tighter priors in 𝑓ℎ(𝝅𝒕,𝜽ℎ). Corre-
spondingly, in NTA and HOIP with 240 and 480 distinct categorical
combinations, respectively, we use  (0, 0.1) and  (0, 0.01) priors for
𝑓ℎ(𝝅𝒕,𝜽ℎ).

19 Limited-memory Broyden–Fletcher–Goldfarb–Shanno that considers sim-
ple bounds on the variables.
Table 1
Comparison of emulation accuracy: We test the performance of GP+ in emulation against GPyTorch, Matlab, and MST-GP on five examples. The reported NRMSE and NIS are for
unseen data and averaged across 10 repetitions.
Model Wing Borehole Borehole-Mixed HOIP NTA

NRMSE NIS NRMSE NIS NRMSE NIS NRMSE NIS NRMSE NIS

GP+ 0.0010 0.0049 0.0008 0.0045 0.0023 0.0139 0.490 2.9563 0.2950 2.2128
MATLAB 0.0045 0.0447 0.0033 0.0430 0.0042 0.0464 0.5404 4.198 0.4043 2.6360
MST-GP – – – – 0.0062 0.0338 0.515 3.940 1.38 2.499
GPytorch 0.0081 0.0715 0.0078 0.0641 – – – – – –
SMT2 0.0009 0.0052 0.0008 0.0054 – – – – – –
SMT2Gower – – – – 0.0034 0.0331 0.526 3.5468 0.3939 2.5104
SMT2HH – – – – 0.0159 0.2899 0.8912 10.8922 1.4979 9.6483
SMT2EHH – – – – 0.0126 0.2203 3.2678 21.9938 1.8296 8.9458
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Table 2
Multi-fidelity emulation: We test the performance of GP+ in various settings against V-GP, STMF-GP, and FFNN across three examples and
report NRMSE and NIS on unseen HF data.
Model Option Sinusoidal Wing DNS-ROM

NRMSE NIS NRMSE NIS NRMSE NIS

GP+

Single constant as 𝑚(𝒖; 𝜷) 0.2501 1.2070 0.0743 0.4294 0.1572 0.9051
Multiple constants as 𝑚(𝒖; 𝜷) 0.2201 0.9274 0.0729 0.4419 0.1560 0.8935
Small FFNN as 𝑚(𝒖; 𝜷) 0.1999 0.8261 0.0751 0.3884 0.1535 0.8561
Medium FFNN as 𝑚(𝒖; 𝜷) 0.2062 0.5475 0.0751 0.4072 0.1528 0.8477

V-GP – 0.4156 1.9842 0.1794 0.9152 0.2101 1.0856

FFNN
Small 0.8076 – 0.6295 – 0.2693 –
Medium 0.6238 – 0.4320 – 0.2297 –
Large 0.5244 – 0.3543 – 0.2221 –

STMF-GP 𝑆𝑇𝑀𝐹 − 𝐺𝑃1 0.4835 6.7312 0.1219 1.0125 0.1618 1.0625
𝑆𝑇𝑀𝐹 − 𝐺𝑃2 0.5362 8.5698 0.2001 1.1661 0.1707 0.9651
5.2. Multi-fidelity modeling

In this section, we assess the performance of GP+ in MF emulation
by comparing it against widely used emulators. Our baselines include
vanilla GPs trained only on the HF data (V-GP), FFNNs, and single-
task multi-fidelity GPs (STMF-GPs) introduced by BoTorch (detailed in
Appendix E). Furthermore, we examine different versions of GP+ with
istinct basis functions explained in Section 4.3. The mean function in
hese versions are formulated as a single constant, multiple constants
the number of constants is 𝑑𝑠 − 1, as we consider zero mean for HF
ource), and finally an FFNN.
Since the performance of FFNNs is sensitive to their architecture,

e design small, medium, and large networks and for each network
ize test many different scenarios and report the results of the most
ccurate ones (see Appendix F for details). In the case of STMF-GP,
s detailed in Appendix E the fidelity indices are numerical and must
eflect the relative accuracy of the data sources. STMF-GP lacks a
uilt-in metric for determining these indices and relies on the user
o provide these values. To address this issue, we first leverage the
earnt embedding (i.e., the 𝑧−space) of GP+ to find the order of these
indices and then assign two different sets of values to them to assess this
method’s sensitivity to the assigned values. These values are outlined
in Table 11 and we denote the corresponding models by 𝑆𝑇𝑀𝐹 −𝐺𝑃1
and 𝑆𝑇𝑀𝐹 − 𝐺𝑃2.

We use two analytic (Sinusoidal and Wing) and one engineering
(DNS-ROM) examples for the comparison (see Table 4 and [125] for
details on these examples). Sinusoidal is a 1-dimensional, bi-fidelity
example for which we generate a dataset consisting of 400 HF and
2000 LF samples. Wing has 4 fidelity sources (1 HF and 3 LFs) and
we produce 1500 samples from the HF source and 4000 samples from
each of the LF sources. In both analytic examples, 1% of data is used
for training and the rest of the HF data for testing. DNS-ROM is a 5-
dimensional problem on fracture modeling of metallic alloys where the
data are generated via four different simulators with 70, 110, 170, 250
samples. In this example, we use 20% of the samples for training and
the rest of the HF data for testing.

The results for each approach on each problem are summarized in
Table 2 and demonstrate that GP+ significantly outperforms the other
baselines in all problems. More specifically, while V-GP is limited to
the small HF data, GP+ effectively leverages the information provided
by the LF data to learn the HF source. The poor performance of STMF-
GP is due to the fact that from a methodological standpoint it models
the inter-relations between the data sources incorrectly. In addition to
providing low accuracy, the predictions of STMF-GP are sensitive to the
values assigned to its fidelity indices. This is evident in Table 2 where
the prediction errors for two different yet close sets of random indices
(𝑆𝑇𝑀𝐹 −𝐺𝑃1 and 𝑆𝑇𝑀𝐹 −𝐺𝑃2, see also Table 11) are very different.
Regarding FFNNs, we attribute their poor performance in all problems
to their architecture and, in particular, their simple mechanism for
handling fidelity levels. These FFNNs simply one-hot encode the fidelity
12
indices and ignore the intricate correlations among the corresponding
data sources. Compared to other methods, the reported NRMSEs for
FFNNs are more sensitive to the model architecture and notably change
as the network size varies. This sensitivity is partly due to the small size
of the MF data and can perhaps be improved by iteratively refining
the architecture or the optimization parameters (e.g., learning rate
schedule or regularization weights). However, we avoid such detailed
refinements since none of the other methods are fine-tuned.

Comparing the results of different versions of GP+ reveals that in all
cases using mixed bases improves MF modeling by better capturing the
global and local features of each source (compare the first row to other
mean functions). This choice benefits NIS slightly more than NRMSE
since the former metric relies on both the expected value and estimated
variance, i.e., 𝜏2(𝒖∗(𝑖)). For instance, GP+ with multiple constants as
𝑚(𝒖; 𝜷) and medium FFNN 𝑚(𝒖; 𝜷) achieve similar NRMSEs (0.2201
vs. 0.2062), but their NIS significantly differs (0.9274 vs. 0.5475) in
Sinusoidal.

Wing and DNS-ROM are relatively complex problems with small
amounts of data and different types of noise (e.g., inDNS-ROM the
noise variance depends on the source while in Wing it does not).
GP+ is very well suited to tackle these types of problems because the
number of its hyperparameters scales much better than FFNNs, is not
limited to the small HF data, and better estimates noise as explained
in Section 4.1.1. Accordingly, we observe lower prediction errors for
GP+ in these examples.

5.2.1. Deterministic and probabilistic embedding
As explained in Sections 4.1 and 4.2, one of the distinctive fea-

tures of GP+ is its ability to learn both probabilistic and deterministic
embeddings for MF modeling. We revisit the Wing example with
smaller datasets to evaluate GP+’s efficacy in data-scarce scenarios.
Specifically, we generate 1000 samples from the HF source and 2000
samples from each LF source and use 1% for training and the rest for
testing. Throughout this section, 𝑓𝑧(𝝅𝑠;𝜽𝑧)) is an FFNN with a single
five-neuron hidden layer and we use the multiple constants option of
GP+ to model the mean function of the GPs.20 Similar to the previous
sections, we repeat both deterministic and probabilistic simulations 10
times.

Fig. 9 illustrates the fidelity embeddings learned through prob-
abilistic and deterministic MF modeling. We only show the learnt
embeddings in one of the repetitions since the relative distances across
the 10 repetitions are quite similar (albeit the exact locations are
different). As explained in Section 4, these embeddings indicate how
similar or correlated different data sources are with respect to each
other. Specifically, the latent distance between the points encoding the
LF sources from the point that encodes the HF source are consistent

20 With this option, a constant is learnt for each of the LF sources since the
data is generated by four sources in Wing and 0 is used for the HF source.
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Fig. 9. Probabilistic vs. deterministic embedding for MF modeling: While both embeddings estimate the same degree of similarity among sources, the probabilistic one characterizes
ore uncertainties.
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ith the NRMSE values reported in Table 4 where, e.g., the furthest
ncoded source (LF3) has the largest NRMSE (5.57). In addition, we
bserve in Fig. 9 that while the general trends are the same across
he two embeddings (e.g., LF3 and LF1 are the furthest and closest to
F), probabilistic embedding more accurately quantifies model form
ncertainties especially in the case of highly biased LF sources.
Fig. 10 compares the prediction accuracy on unseen data with

robabilistic and deterministic embeddings. As it can be observed, the
robabilistic approach is slightly more robust in HF emulation but both
pproaches (1) provide the same degree of accuracy and robustness for
F sources, and (2) are less accurate in emulating HF and LF3 sources.
he reason LF is learnt less accurately than other LF sources is its low
orrelation while the errors in emulating the HF source primarily stem
rom the lack of HF data.

.3. Inverse parameter estimation

In this section, we compare the performance of GP+ in inverse
arameter estimation against the method of KOH and the open-source
oftware package UQLab [126]. As schematically demonstrated in
Fig. 3(a), KOH uses an additive bias and can calibrate a single LF source
at a time. In our studies, we consider two versions of this method where
its parameters (e.g., the kernel parameters of LF and HF sources) are
estimated either jointly or via a modular scheme [28,91,113] which
irst estimates the parameters of the LF source and then optimizes
13
he rest of the parameters. The calibration module of UQLab relies
n Bayesian inference and leverages MCMC for parameter estimation.
imilar to previous sections, we repeat each of our studies 10 times and
eport the average values.
As detailed in Appendix A.2, beam deflection is a 5-dimensional

i-fidelity example where the objective is to infer a beam’s Young’s
odulus (𝜁) whose ground truth value is 30 GPa. This example is
irectly taken from the documentation of UQLab where there is only
ne HF data point and the difference between the LF and HF sources is
zero-mean noise. To explore the effects of prior distributions on the
esults, we assign three different priors to 𝜁 while comparing GP+ with
QLab. While 200 LF samples are used in GP+, UQLab leverages the
nalytic form of the LF model in MCMC.
The results presented in Table 3 indicate that both methods es-

timate similar posterior means for the calibration parameter if the
prior is relatively precise. However, the two methods behave quite
differently as the prior mean is shifted away from the ground truth
value. Specifically, UQLab provides posterior means that are quite close
to the prior means while GP+ is significantly less sensitive to imprecise
priors. In the case of GP+, we note that the deterministic approach
does not provide uncertainties and the reported standard deviations
for the probabilistic approach are very small. These tight posteriors are
expected since the model has access to sufficient LF data and the bias
between the sources is a Gaussian noise.
Fig. 10. Prediction performance with probabilistic vs. deterministic embedding: We report NRMSE and NIS values calculated across 10 repetitions. Both approaches are very
accurate but the probabilistic one is more robust for HF emulation especially since HF data is very small. The similar NRMS and NIS values for LF1 and LF2 are expected because
of their high correlation.
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Table 3
Inverse estimation of Young’s Modulus using GP+ and UQLab: The posterior mean and
standard deviations provided by UQLab is very sensitive to the assigned prior while
GP+ does not suffer from this issue. The reported uncertainties by GP+ are small since
the bias between LF and HF sources is simple and the model has access to sufficient
LF data.
Prior on 𝜁 Method Estimated mean (GPa) Estimated std (GPa)

 (30, 5)
UQLab 30.0101 4.6832
Probabilistic GP+ 29.2363 15.867 10−6

Deterministic GP+ 29.2304 –

 (25, 5)
UQLab 26.1540 4.3772
Probabilistic GP+ 29.0311 29.320 10−6

Deterministic GP+ 29.0449 –

 (20, 5)
UQLab 22.2348 4.3355
Probabilistic GP+ 29.1462 10.3699 10−5

Deterministic GP+ 28.9418 –

We now use the high-dimensional Borehole problem presented in
Table 5 with 1 HF and 2 LF sources that both have nonlinear model form
errors (note that LF1 is more biased compared to LF2, see the NRMSEs
in Table 5). We generate 20 and 100 samples from, respectively, the HF
and each of the LF sources. We only corrupt the HF training samples
with noise and use 1800 noise-free HF samples for evaluation of models’
performance. There are two calibration parameters in this example and
14

their ground truth values are 𝜁1 = 250 and 𝜁2 = 1500. We compare t
the calibration results obtained by GP+ with those from KOH whose
parameters are estimated either jointly or by a modular approach.
Since KOH can only fuse two sources at a time, we consider different
combinations of LF and HF sources in our experiments.

As shown in Fig. 11, both configurations of GP+ convincingly out-
perform KOH’s approach in terms of both NRMSE and NIS. We attribute
this superior performance to three key factors: (1) GP+’s ability to
utilize all data simultaneously while KOH’s approach can only work
with two sources at a time (expectedly, modular KOH with LF1 has the
least accuracy), (2) GP+’s capability to capture nonlinear correlations
hereas KOH is confined to learning additive model form errors, and
3) GP+ leverages a more stable and regularized training procedure. We
ote that probabilistic GP+ outperforms its deterministic counterpart
s it learns a posterior distribution for 𝜁 rather than just a single point
stimate. While probabilistic calibration improves the performance on
verage, it shows more variability across the 10 repetitions primarily
ue to the fact that it has more parameters than the deterministic one.
The superiority of GP+ in emulation is coupled with a more accurate

stimation of the calibration parameters as illustrated in Fig. 12. While
he estimated values are quite accurate across all methods, probabilistic
P+ provides slightly better results, especially compared to modular
OH that fuses the data in a sequence of steps rather than jointly. We
lso observe that estimations for 𝜁1 in Fig. 12(a) are generally more
ccurate than those of 𝜁2 in Fig. 12(b). This trend is primarily due to
he fact that the underlying functions (i.e., HF and both LF sources)
Fig. 11. High-fidelity emulation performance in Borehole: GP+ consistently outperforms KOH’s approach. The superior performance of both variations of GP+ are primarily
attributed to using all the data jointly and dispensing with the assumption that model form errors are additive.
Fig. 12. Calibration performance in Borehole: Ground truth values are the numbers used to generate the HF samples. While all methods estimate 𝜻 quite well, probabilistic
GP+ performs the best.



Advances in Engineering Software 195 (2024) 103686A. Yousefpour et al.

B

i
3
d
L
s

Fig. 13. High-fidelity emulation performance in Wing: GP+ strategies outperform KOH’s approach which can only fuse two sources at a time and uses an additive formulation
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are more sensitive to 𝜁1 than 𝜁2 (see Table 6 for sensitivity analysis of
orehole).
We now revisit a variation of the Wing problem which has four cal-

bration parameters whose ground truth values are 𝜻∗𝑇 = [40, 0.85, 0.17,
] (these values correspond to the numbers used in the HF source). As
etailed in Table 5, there are four data sources in Wing where LF1 and
F3 are the most and least accurate LF sources, respectively. We take a
15

mall number of samples from each of the four sources and corrupt all w
he data with noise. Similar to the previous study, we compare prob-
bilistic and deterministic calibration capabilities of GP+ against two
ersions of KOH. Throughout, we repeat the simulations 10 times and
se 2500 noise-free HF samples for testing the emulation performance.
Fig. 13 compares the performance of GP+ in predicting unseen HF

ata against both the modular and joint variations of KOH’s method. As
t can be observed, the probabilistic GP+ achieves the lowest NRMSE as

ell as NIS and is closely followed by its deterministic counterpart. As
Fig. 14. Calibration performance in Wing: Ground truth values are the numbers used to generate the HF samples. While all methods estimate 𝜻 quite well, probabilistic GP+ performs
the best, especially in the case of 𝜁1 and 𝜁2 which have low sensitivity index as enumerated in Table 8.
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demonstrated in Fig. 14 we observe a similar trend in estimating the
calibration parameters where both versions of GP+ not only provide
estimates that are closer to the ground truth values, but also show
more robustness to variations in the training data. Comparing the
estimates across the four calibration parameters, we notice that all the
models are less accurate in the case of 𝜁1. We attribute this behavior
to identifiability issues and the fact that the underlying functions are
almost insensitive to 𝜁1 (see the sensitivity analysis in Table 8).

5.4. Bayesian optimization

BO is a global optimization method that is increasingly used in op-
timizing black-box and expensive-to-evaluate objective functions. The
two main ingredients of BO are an acquisition function (AF) [75,127–
131] and an emulator which iteratively interact while searching for the
global optimum. In BO, GPs are dominantly used for emulation [132–
137] since they are easy and fast to train, can effectively learn from
small data, and naturally provide prediction uncertainties which are
needed in the AF.

Given the widespread use of GPs in BO, we equip GP+ with a
few unique functionalities that streamline optimization of black-box
and expensive-to-evaluate objective functions. As schematically demon-
strated in Fig. 15, GP+ enables MFBO with just a few lines of codes;
rimarily with the BO function which has a few features that distinguish
t from other BO packages such as BoTorch. First, it leverages the
mulator described in Sections 4.1 to 4.3 which provides more accuracy
han competing GP modeling packages. Second, it has the option to
ailor the emulation process to BO by integrating MAP with scoring
ules. As detailed in Appendix G, this integration improves the accuracy
f GPs’ prediction intervals and, in turn, improves the exploration
spect of BO in the context of MF problems [92]. Lastly, the BO function
in GP+ has a specialized AF that quantifies the information value of
HF and LF data such that they are used primarily for exploitation and
exploration, respectively [11]. At iteration 𝑘 during MFBO, this AF
quantifies the value of a sample as:

𝛾MFBO(𝒖; 𝑗) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛾𝐿𝐹 (𝒖; 𝑗)∕𝑂𝑗 =
𝜏𝑗𝜙(

𝑦∗𝑗 −𝜇𝑗
𝜏𝑗

)

𝑂𝑗
𝑗 = [1,… , 𝑑𝑠] & 𝑗 ≠ 𝑙

𝛾𝐻𝐹 (𝒖; 𝑙)∕𝑂𝑙 =
𝜇𝑙−𝑦∗𝑙
𝑂𝑙

𝑗 = 𝑙

where 𝛾𝐿𝐹 (⋅) and 𝛾𝐻𝐹 (⋅) are the AFs of the low- and high-fidelity data
sources, 𝑂𝑗 is the cost of querying source 𝑗, 𝑦∗𝑗 is the best function value
16

obtained so far from source 𝑗 (it is assumed that 𝑗 = 𝑙 denotes the a
HF source which we aim to optimize), and 𝜙(⋅) denotes the probability
density function (PDF) of the standard normal variable. 𝜏𝑗 = 𝜏𝑗 (𝒖) and
𝜇𝑗 = 𝜇𝑗 (𝒖) are the standard deviation and mean, respectively, of point
𝒖 from source 𝑗. To proceed to iteration 𝑘 + 1, the AF in Eq. (32) and
he emulator are used to solve an auxiliary optimization problem that
etermines the next point to sample and its corresponding data source:

𝒖(𝑘+1), 𝑗(𝑘+1)] = argmax
𝒖,𝑗

𝛾MFBO(𝒖; 𝑗) (32)

The BO function in GP+ uses two simple convergence criteria to
top the optimization process: overall data collection costs and the
aximum number of iterations without improvement. The former is
rather generic metric but it can result in a considerably high number
f iterations in the context of MF problems if an LF source is extremely
nexpensive to query. The second metric avoids this issue by putting an
pper bound on the maximum number of iterations. These convergence
riteria can be easily modified in GP+.
To demonstrate the effectiveness of GP+ in MFBO we evaluate

t against two alternatives: (1) an SF method (denoted by SFBOEI)
hat uses the same emulator as GP+ but expected improvement as
ts AF, (2) BoTorch with STMF-GP and knowledge gradient (KG) as
he emulator and AF, respectively (see Appendix H for more details).
oTorch is not applicable to the engineering examples studied below
ince it cannot handle categorical variables and reports 𝑦∗ values that
ptimize the learned posterior (rather than the directly sampled data).
n the following simulations we denote our methods via MFBO.
We utilize an analytic (Borehole) and two engineering (HOIP and

EA) examples for comparison. We use all 4 LF sources of Bore-
ole whose formulation, initialization, and source-dependent sam-
ling costs are provided in Appendix A.2. HOIP has 2 LF sources and
he sampling costs are 40 − 10 − 1 where 40 is associated with the HF
ource. We initialize MFBO with 15 − 20 − 15 samples and note that
he relative accuracy of the LF sources is unknown a priori. HEA is
5-dimensional bi-fidelity problem where we start the optimization
ith 5 − 20 HF-LF samples with sampling costs of 50 − 10, respectively
see Appendix A.1 for more details on HOIP and HEA). In the two
ngineering problems, GP+ excludes the best compound from the HF
ataset and then builds the initial data by randomly sampling from the
F datasets. In all the examples, the maximum number of iterations
ithout improvement is 50 and a maximum budget 10 000 and 40 000
re used for the engineering and analytic examples, respectively. We
eport the results for 10 random initializations.
The results of our comparison studies are summarized in Figs. 16
nd 17 where Fig. 16 illustrates the fidelity embeddings learned for
Fig. 15. Multi-fidelity Bayesian optimization in GP+: With just a few lines of code, we solve the Borehole problem where the goal is to optimize the HF source (denoted by
‘𝟶’’) while leveraging four LF sources.
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Fig. 16. Fidelity manifolds in BO problems: The figures display the fidelity embeddings learned by GP+ based on the initial data in each example. These embeddings quantify the
global correlation among the LF sources and the HF source. Based on these plots, while the LF sources in Borehole and HEA are sufficiently correlated with the HF source, both
LF sources of HOIP reveal low correlation with the HF source. This can cause premature convergence of GP+ due to its second stop condition that limits the number of iterations.
Fig. 17. Convergence histories in BO problems: The figures show the convergence history of each method versus their accumulated cost. The thin curves illustrate each repetition
and the thick curves indicate the average behavior across the 10 repetitions. Based on these plots, GP+ significantly outperforms SFBOEI when LF sources are sufficiently correlated
ith the HF source (see also Fig. 16(a)). However, in scenarios without any correlated sources (HOIP, see Fig. 16(c)), GP+ may converge prematurely due to its second stop
ondition that limits the number of iterations.
ach example by GP+. These embeddings are learnt based on the
nitial MF data and provide a quantitative metric for assessing the
elative accuracy of each LF source with respect to the HF source.
ased on these embeddings, while all the fidelity sources are globally
orrelated in HEA, two of the LF sources in HOIP and Borehole are
ighly biased and have a limited potential to improve optimization. The
ffects of these correlated/uncorrelated sources on the optimization are
llustrated in Fig. 17 where the convergence histories are provided by
tracking the best HF estimate found by each method (i.e., 𝑦∗𝑙 in Eq. (32))
as a function of the accumulated sampling cost. Specifically, as shown
in Fig. 17(a), the inexpensive correlated LF sources of HEA significantly
improve the BO where MFBO finds the same compound as SFBOEI but
at a much lower cost. We note that both MFBO and SFBOEI converge
before finding the smallest HF value primarily because both the HF and
LF data are inherently noisy.

As shown in Fig. 17(b), the superior performance of MFBO is more
evident in the Borehole example which has two informative LF
sources (LF3 and LF4 based on Fig. 16(b)). In this case, MFBO is able
to effectively leverage the LF sources in exploring the input space and
occasionally samples from the HF source even though the sampling
cost associated with it is very high. This infrequent sampling reduces
the overall cost but is necessary for converging to the true minimum.
Unlike MFBO, BoTorch fails in this example since (1) its MF emulator
17
is inaccurate, and (2) its AF incorrectly quantifies the information value
to the extent that it cannot find an HF candidate whose value warrants
its high sampling cost. As expected, SFBOEI converges to a value that
is quite close to the minimum but at a much higher cost than MFBO.

HOIP is an example where the interpretable diagnostic tools of
GP+ prove useful. Specifically, the fidelity embedding in Fig. 16(c)
indicates that both LF sources are highly biased compared to the HF
one and hence optimizing the latter may not benefit from sampling
from the LF sources especially if the cost ratios are unbalanced. By
investigating the optimization histories in Fig. 17(c) we realize that
MFBO is unable to provide the same improvements as in the other two
examples. Specifically, MFBO finds an optimum that is quite close to the
one found by SFBOEI (−15.87 vs. −16.2) but it does so at a much lower
cost (2000 vs. 6000) since it primarily samples from the LF sources, see
Fig. 18. The performance of MFBO can be improved in such applications
with highly biased LF sources by initializing the optimization process
with more HF data.

6. Conclusions and future directions

In this paper, we introduce GP+ which is an open-source Python
library that systematically integrates nonlinear manifold learning tech-
niques with GPs. As demonstrated with the examples in Section 5, this
Fig. 18. Sampling history in HOIP: We report the number of samples taken from each source in MFBO and SFBOEI across the 10 repetitions. While MFBO converges with 25 HF
samples on average, SFBOEI requires more than 70 HF samples.
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integration provides a unified platform for studying a broad range of
problems ranging from MF emulation to probabilistic calibration and
BO.

In this paper, we primarily focused on applications where data (es-
pecially high-fidelity data) is scarce and hence probabilistic modeling
has an edge over a deterministic one. We achieve this probabilistic
nature in GP+ via variational approaches and plan to extend it in our
future works based on MCMC. We anticipate this extension to more
accurately quantify uncertainties but with a noticeable increase in com-
putational costs. Additionally, all the problems analyzed in this paper
were single-output. Currently, GP+ manages multi-output problems by
oncatenating the input space with categorical features to distinguish
mong the outputs. We aim to add more options for handling multi-
utput problems in future versions of GP+. Another interesting future
direction is integrating our contributions with techniques that extend
GPs to solve partial differential equations, classification tasks, or big
data problems.

A unique advantage of GP+ over other GP modeling libraries is
the interpretability of its learnt latent spaces. One example is the
fidelity embedding that GP+ constructs for MF data which provides
a visualizable metric that quantifies the relative similarity of the data
sources. Based on the formulations in Sections 4.1 and 4.2, this fidelity
embedding quantifies the global correlations among the data sources
since it is not a function of the input features 𝒙 or 𝒕. We plan to extend
this approach to learn local correlations but note that this extension will
rely on larger training datasets since the required embedding functions
will have more parameters. With a somewhat similar approach, we
believe the calibration scheme introduced in Section 4.4 can be general-
ized to cases where not all the unknown parameters are shared across
the computer models. This generalization is tightly connected to the
so-called non-identifiability issues which are both worthy of in-depth
future investigations.
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Appendix A. Details on data and benchmark problems

In this section, we provide details on the engineering (Appendix A.1)
and analytic (Appendix A.2) examples that are used in Section 5 of the
18

paper.
A.1. Engineering examples

Hybrid organic–inorganic perovskite (HOIP) is a material design
problem where the goal is to identify the composition with the smallest
inter-molecular binding energy [138]. The dataset used here is gen-
erated via three distinct sources that simulate the band gap property
of HOIP as a function of composition based on the density functional
theory (DFT). These compositions are characterized via three categor-
ical variables that have 10, 3, and 16 levels (i.e., there are 480 unique
compositions in total). The major differences between the datasets
generated by the three sources are their fidelity (or accuracy) and size.
Specifically, dataset generated by Source 1 is the most accurate among
the three and contains 480 samples while the datasets generated by
Source 2 and Source 3 contain 179 and 240 samples, respectively, and
have lower levels of accuracy compared to Source 1. In Section 5.1
e exclusively use the HF data but use all three sources with the
orresponding costs of 40, 10, and 1 in Section 5.4.
High entropy alloy (HEA) is another alloy design problem with

he goal of finding the compound with the lowest thermal expansion
oefficient [139]. This is a 5-dimensional example where the features
how the percentage of each element (𝐹𝑒,𝑁𝑖, 𝐶𝑜, 𝐶𝑟, 𝑉 , 𝐶𝑢) in the alloy.
t has one high- and one low-fidelity data sources whose corresponding
osts are 50 and 10, respectively. Both datasets have 700 samples and
re single-response.
The DNS-ROM dataset [125] aims to enhance the speed of multi-

cale damage simulations for cast aluminum alloys. The acceleration
rocess involves replacing the direct numerical simulations (DNS) at
he microscale with reduced-order models (ROMs). The ROMs used in
NS-ROM have three distinct cluster counts: (800, 1600, 3200), where
greater cluster count offers outcomes closer to DNS at a higher
omputational cost. DNS-ROM is a 6-dimensional problem where the
eatures are all quantitative and characterize pore volume fraction, pore
ount, pore aspect ratio, average distance between neighboring pores,
volutionary rate parameter, and the critical effective plastic strain,
ith the latter two determining the material’s damage behavior under
tress. The number of samples from the highest to the lowest fidelities
re 70, 110, 170, and 250, respectively.
NTA is the problem of designing a nanolaminate ternary alloy that

s used in applications such as high-temperature structural materi-
ls [140]. These alloys have compositions of the form 𝑀2𝐴𝑋 where
is an early transition metal, 𝐴 is a main group element, and 𝑋 is

ither carbon or nitrogen. NTA is 3−dimensional with just categorical
eatures which have 10, 12, and 2 levels. The dataset has 224 samples
nd the response is the bulk modulus of the alloy.

.2. Analytic examples

The mathematical formulations are provided in Table 4 which also
ncludes details on initializations and source-dependent sampling costs
sed in Section 5.4 for BO. Table 4 also shows the error of each LF
ource with respect to the corresponding HF source based on NRMSE
n Eq. (30). That is:

𝑅𝑀𝑆𝐸 =

√

(𝒚𝑙 − 𝒚ℎ)𝑇 (𝒚𝑙 − 𝒚ℎ)
10000 × 𝑣𝑎𝑟(𝒚ℎ)

(A.1)

here 𝒚𝑙 and 𝒚ℎ are vectors of size 10000 × 1 that store random
samples taken from the low and high-fidelity sources, respectively.

Borehole is an 8-dimensional single-response example whose in-
put space only has quantitative features. Only the Hf source is noisy
in this case and there are 4 LF sources two of which are highly biased
based on the NRMSEs. Note that the relative accuracy levels of the LF
sources are calculated based on large data in Table 4 but interestingly
these are consistent with the latent distances learnt by GP+ based on

small data, see Fig. 16(b).
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Table 4
Analytic examples: The examples have a diverse degree of dimensionality, number of sources, and complexity. 𝑛 denotes the number of initial
samples used in BO and the NRMSE of an LF source is calculated by comparing its output to that of the HF source at 10 000 random points,
see Eq. (A.1).
Name Source ID Formulation n NRMSE Cost Noise

Borehole

HF 2𝜋𝑇𝑢 (𝐻𝑢−𝐻𝑙 )
ln( 𝑟

𝑟𝑤
)(1+ 2𝐿𝑇𝑢

ln( 𝑟
𝑟𝑤 )𝑟2𝑤𝑘𝑤

+ 𝑇𝑢
𝑇𝑙

)
5 – 1000 2

LF1 2𝜋𝑇u (𝐻u−0.8𝐻𝑙 )
ln( 𝑟

𝑟𝑤
)(1+ 1𝐿𝑇u

ln( 𝑟
𝑟𝑤

)𝑟2𝑤𝑘𝑤
+ 𝑇𝑢

𝑇𝑙
)

5 4.40 100 –

LF2 2𝜋𝑇𝑢 (𝐻𝑢−𝐻𝑙 )
ln( 𝑟

𝑟𝑤
)(1+ 8𝐿𝑇𝑢

ln( 𝑟
𝑟𝑤 )𝑟2𝑤𝑘𝑤

+0.75 𝑇𝑢
𝑇𝑙

)
50 1.54 10 –

LF3 2𝜋𝑇u (1.09𝐻𝑢−𝐻𝑙 )
ln( 4𝑟

𝑟𝑤
)(1+ 3𝐿𝑇𝑢

ln( 𝑟
𝑟𝑤

)𝑟2𝑤𝑘𝑤
+ 𝑇𝑢

𝑇𝑙
)

5 1.30 100 –

LF4 2𝜋𝑇u (1.05𝐻𝑢−𝐻𝑙 )
ln( 2𝑟

𝑟𝑤
)

×
(

1 + 3𝐿𝑇𝑖𝑢
ln( 𝑟

𝜏𝑤
)𝑟2𝑤𝑘W

+ 𝑇u
𝑇𝑙

)

50 1.3 10 –

Wing

HF 0.036𝑠0.758𝑤 𝑤0.0035
𝑓𝑤 ( 𝐴

cos2 (𝛬)
)0.6 × 𝑞0.006

×𝜆0.04( 100𝑡𝑐
cos(𝛬)

)−0.3(𝑁𝑧𝑊𝑑𝑔 )0.49 + 𝑠𝑤𝑤𝑝

10 – – 1

LF1 0.036𝑠0.758𝑤 𝑤0.0035
𝑓𝑤 ( 𝐴

cos2 (𝛬)
)0.6 × 𝑞0.006

×𝜆0.04( 100𝑡𝑐
cos(𝛬)

)−0.3(𝑁𝑧𝑊𝑑𝑔 )0.49 +𝑤𝑝

20 0.19 – 1

LF2 0.036𝑠0.8𝑤 𝑤0.0035
𝑓𝑤 ( 𝐴

cos2 (𝛬)
)0.6 × 𝑞0.006

×𝜆0.04( 100𝑡𝑐
cos(𝛬)

)−0.3(𝑁𝑧𝑊𝑑𝑔 )0.49 +𝑤𝑝

20 1.14 – 1

LF3 0.036𝑠0.9𝑤 𝑤0.0035
𝑓𝑤 ( 𝐴

cos2 (𝛬)
)0.6 × 𝑞0.006

×𝜆0.04( 100𝑡𝑐
cos(𝛬)

)−0.3(𝑁𝑧𝑊𝑑𝑔 )0.49
20 5.75 – 1

Sinusoidal HF 2 sin (𝑥) 4 – – 1
LF1 2 sin (𝑥) + 0.3𝑥2 − 0.7𝑥 + 1 20 0.11 – 1
A

t
a
t
r

Borehole-Mixed refers to the Borehole example whose first
nd sixth features are converted into categorical variables with 5 dis-
inct levels each. To achieve this, we first sample 5 values within
he upper and lower bounds of these features. Subsequently, we ran-
omly assign these sampled values to their corresponding variables
nd calculate the outputs using the formulation outlined in Table 4
or Borehole. Then, the categorical conversion is done by sorting the
ampled values for the first and sixth features and substituting each
eature’s sampled point with its index in the sorted list.
To demonstrate the interpretability of embeddings learnt by GP+,

e now use Borehole-Mixed to generate a training dataset of size
00 and then fit an emulator to it. Upon training, we visualize the latent
oints learnt for the two categorical variables and color-code them
ased on either the combination or response magnitude, see Figs. 19(a)
nd 19(b), respectively. As it can be observed in these figures, the
earnt embeddings preserve the underlying numerical relations even
hough GP+ does not have access to the numerical values used in data
eneration. For instance, all the variability in the latent space is in two
irections with is in line with the fact that all combinations of the
ategorical data can be quantified via the two underlying numerical
eatures. We also observe that close-by (distant) latent points have
imilar (different) response values which increases as we move from
he top-right corner to the bottom left corner of the latent space, see
ig. 19(b). These embeddings also indicate variable importance. For
nstance, based on Fig. 19(a) we observe that changing the levels of
he first categorical variable from ‘‘a’’ to ‘‘e’’ results in larger latent
ovements than changing the levels of the second categorical variable.
uch a behavior indicates the underlying function is more sensitive to
he former variable and we validate this argument in Appendix B by
onducting sensitivity analyses.
Wing is a 10-dimensional single-response example with one HF and

LF sources. Based on the NRMSE values shown in Table 4, the source
D, true fidelity level, and sampling costs follow the same trend (unlike
orehole). For instance, the first LF source is the most accurate and
ost expensive among all the LF sources. Additionally, a Gaussian noise
ith a standard deviation of 1 is added to all the fidelity sources.
Sinusoidal is a 1-dimensional bi-fidelity problem where there

re high correlations between the two sources as indicated by the
RMSE value in Table 4. We use a standard Gaussian noise to corrupt
19

he data from both sources.
.3. Calibration examples

Wing, Borehole and beam deflection are used in Section 5.3
o illustrate the performance of GP+ in calibration. Their formulation
nd details are provided in Table 5. As explained in Section 5.3,
here are 2 and 4 calibration parameters in Borehole and Wing,
espectively. Also, beam deflection is a bi-fidelity 5-dimensional
problem [126] whose features are a constant distributed load applied
to the beam (𝑝 = 12000 N∕m), width (𝑏 = 0.15 m), height (ℎ = 0.3 m),
and the length of the beam (𝐿 = 5 m). The last feature is the unknown
material Young’s modulus (𝜁) which we aim to estimate. The analytic
formulation and more details regarding beam deflection is also
presented in Table 5.

Appendix B. Sensitivity analysis

Sobol sensitivity analysis is a global variance-based method used for
quantifying each input’s main and total contribution to the output vari-
ance [141]. While main-order Sobol indices (SIs) reveal the individual
contributions of input variables, total-order indices capture both the
individual and interaction effects of inputs on the output. We highlight
that while Sobol indices are typically applied to quantitative features,
we extend the idea to qualitative features in GP+ by sampling random
quantitative values and mapping them to the unique levels of a cate-
gorical variable. This functionality is accessible with the 𝚖𝚘𝚍𝚎𝚕.𝚂𝚘𝚋𝚘𝚕()
command in GP+.

The 𝝎 parameter in GP-based emulation (see Section 2 for details)
plays a similar role to the Sobol indices in that it reveals the sensitivity
of the emulator to the quantitative features where a smaller 𝜔𝑖 value
indicates that the output is less sensitive to the 𝑖th feature. Since 𝝎 are
not defined for categorical inputs, we propose to measure their sensi-
tivities based on the average distance among the learnt encoded points.
Specifically, we encode the 𝑙𝑖 categories of variable 𝑡𝑖 to 𝑙𝑖 latent points
whose average inter-distances is then used to measure the sensitivity
of the output to 𝑡𝑖. We denote this metric by 𝑆𝑐𝑎𝑡 and highlight that
we calculate it by endowing each categorical variable with its own
latent space (this is in contrast to the examples in Sections 5.1 and 5.4

where we encode all the combinations of all categorical variables into



Advances in Engineering Software 195 (2024) 103686A. Yousefpour et al.
Fig. 19. Latent positions learned via GP+ for Borehole-Mixed: We use the numerical values shown in (b) to generate 400 training samples via Borehole. These values are
then replaced with the corresponding categorical features before GP+ is used for emulation. Upon training, we visualize the embedding learnt by GP+ while color-coding it based
on either the variable combinations or response magnitude.
Table 5
Analytic examples used for calibration: 𝑛 denotes the number of samples used in Section 5.3 and the NRMSE of an LF source is calculated by
comparing its output to that of the HF source at 10 000 random points, see Eq. (A.1).
Name Source ID Formulation n NRMSE Noise

Borehole
HF 2𝜋𝑇𝑢 (𝐻𝑢−𝐻𝑙 )

ln( 𝑟
𝑟𝑤

)(1+ 2×1500𝑇𝑢
ln( 𝑟

𝑟𝑤 )𝑟2𝑤𝑘𝑤
+ 𝑇𝑢

250
)

20 – 2

LF1 2𝜋𝑇u (𝐻u−0.8𝐻𝑙 )
ln( 𝑟

𝑟𝑤
)(1+ 1𝜁1𝑇u

ln( 𝑟
𝑟𝑤

)𝑟2𝑤𝑘𝑤
+ 𝑇𝑢

𝜁2
)

100 4.40 –

LF2 2𝜋𝑇𝑢 (𝐻𝑢−𝐻𝑙 )
ln( 𝑟

𝑟𝑤
)(1+ 8𝜁1𝑇𝑢

ln( 𝑟
𝑟𝑤 )𝑟2𝑤𝑘𝑤

+0.75 𝑇𝑢
𝜁2

)
100 1.54 –

Wing

HF 0.036𝑠0.758𝑤 𝑤0.0035
𝑓𝑤 ( 𝐴

cos2 (𝛬)
)0.6 × 400.006

×0.850.04( 100×0.17
cos(𝛬)

)−0.3(3𝑊𝑑𝑔 )0.49 + 𝑠𝑤𝑤𝑝

25 – 1

LF1 0.036𝑠0.758𝑤 𝑤0.0035
𝑓𝑤 ( 𝐴

cos2 (𝛬)
)0.6 × 𝜁1

0.006

×𝜁20.04(
100𝜁3
cos(𝛬)

)−0.3(𝜁4𝑊𝑑𝑔 )0.49 +𝑤𝑝

40 0.19 1

LF2 0.036𝑠0.8𝑤 𝑤0.0035
𝑓𝑤 ( 𝐴

cos2 (𝛬)
)0.6 × 𝜁1

0.006

×𝜁20.04(
100𝜁3
cos(𝛬)

)−0.3(𝜁4𝑊𝑑𝑔 )0.49 +𝑤𝑝

50 1.14 1

LF3 0.036𝑠0.9𝑤 𝑤0.0035
𝑓𝑤 ( 𝐴

cos2 (𝛬)
)0.6 × 𝜁1

0.006

×𝜁20.04(
100𝜁3
cos(𝛬)

)−0.3(𝜁4𝑊𝑑𝑔 )0.49
60 5.75 1

Beam Deflection HF 5
32

𝑝𝐿4

3×1010𝑏ℎ3 1 – 0.05

LF1 5
32

𝑝𝐿4

𝜁1𝑏ℎ3 200 – 0
a single latent space). We adopt this approach primarily for ease of
implementation and increasing interpretability.

To demonstrate the interpretability of a GP’s parameters, we com-
pare them against main and total SIs in Borehole, Borehole-
Mixed, and Wing problems. To this end, we train three GPs via GP+ to
20
emulate these functions (we use sufficient samples to ensure the trained
GPs accurately learn the underlying functions) and then compare the
estimated parameters of these GPs to main and total SIs. The results are
enumerated in Tables 6–8 and indicate that there is a good agreement
between the two different metrics, that is, important features that have
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Table 6
Sensitivity analysis of Borehole: Sensitivity analysis of Borehole using Sobol indices
nd GP+ emulator. Based on Eq. (13). In Section 5.3, 𝜻 =

[

𝑇𝑙 , 𝐿
]𝑇 are treated as

alibration parameters.
Metric Features

𝑟𝑤 𝑟 𝑇𝑢 𝐻𝑢 𝑇𝑙 𝐻𝑙 𝐿 𝑘𝑤
Main SI 0.830 1.57𝑒−7 2.34𝑒−8 0.042 2.09𝑒−6 0.041 0.039 0.009
Total SI 0.868 3.65𝑒−6 4.07𝑒−8 0.054 1.25𝑒−5 0.054 0.051 0.013
10𝜔𝑖 0.125 1.00𝑒−4 2.45𝑒−7 0.009 2.95𝑒−5 0.013 0.029 0.003

Table 7
Sensitivity analysis of Borehole-Mixed: Sensitivity analysis of Borehole-
Mixed using Sobol indices and GP+ emulator. The 𝝎 parameters in GP+ are only
learned for quantitative features.
Metric Features

𝑟𝑤 𝑟 𝑇𝑢 𝐻𝑢 𝑇𝑙 𝐻𝑙 𝐿 𝑘𝑤
Main SI 0.541 6.67𝑒−6 1.68𝑒−7 0.153 1.92𝑒−5 0.091 0.153 0.037
Total SI 0.562 3.98𝑒−6 6.95𝑒−8 0.163 2.83𝑒−5 0.096 0.164 0.037
10𝜔𝑖 – 4.00𝑒−4 5.06𝑒−6 0.013 3.00𝑒−4 – 0.029 0.004
𝑆𝑐𝑎𝑡 0.115 – – – – 0.019 – –

large SIs also have large 10𝜔𝑖 or 𝑆𝑐𝑎𝑡. For instance, 𝑟𝑤,𝐻𝑢,𝐻𝑙 , and𝐿 are
the most sensitive features of Borehole and Borehole-Mixed as
indicated by both Sobol and GP+. We note that reported metrics in
Tables 6 and 7 are slightly different since the latter is affected by
categorization of two of its inputs.

Appendix C. Emulation and optimization options

GP+ offers a wide range of options that streamline its adoption
for a wide range of applications that involve emulation, MF modeling,
identification of model form errors, inverse parameter estimation, and
BO. In Tables 9 and 10 we provide a comprehensive list of options
related to model initialization and training, respectively. We have
chosen the default values of these options based on the most common
uses of GPs while striking a balance between accuracy and cost.

Appendix D. Mixed single-task GP (MST-GP)

As mentioned in Section 5.1, BoTorch employs MST-GP to model
problems with categorical variables. MST-GP defines two distinct cor-
relation functions for numerical and categorical features. The final
correlation function is the combination of these two:

𝑟(

[

𝒙

𝒕

]

,

[

𝒙′

𝒕′

]

;𝜴) = 𝑟(𝒙,𝒙′;𝝎1) + 𝑟(𝒕, 𝒕′;𝝎2) + 𝑟(𝒙,𝒙′;𝝎3) × 𝑟(𝒕, 𝒕′;𝝎4)

(D.2)

where {𝝎1,𝝎2,𝝎3,𝝎4} ∈ 𝛺 are the distinct length scale parameters
for each correlation function. Specifically, 𝝎1 and 𝝎3 are length scale
parameters associated with quantitative features while 𝝎2 and 𝝎4 scale
the categorical features (𝝎1 and 𝝎3 are 𝑑𝑥-dimensional while 𝝎2 and
𝝎4 are of dimension 𝑑𝑡). 𝑟(𝒙,𝒙′;𝝎𝑗 ) is the Matèrn correlation function
with 𝑣 = 2.5 while 𝑟(𝒕, 𝒕′;𝝎𝑗 ) is formulated as:

𝑟
(

𝒕, 𝒕′;𝝎𝑗
)

= exp

{

(−
𝑑𝑡
∑

𝑖=1

(𝑡𝑖 − 𝑡′𝑖)
𝜔𝑗𝑖

)∕𝑑𝑡

}

(D.3)

where 𝜔𝑗𝑖 is the length scale parameter estimated for the 𝑖(th) feature
through correlation function 𝑗. Also, (𝑡𝑖 − 𝑡′𝑖) is the Hamming distance
which is 0 when the two categorical variables are the same and 1
otherwise.

Appendix E. Single-task multi-fidelity GP (STMF-GP)

The STMF-GP modifies the correlation function of GP for MF hi-
21

erarchical MF modeling. Specifically, it adopts an additive covariance
function that relies on introducing two user-defined quantitative fea-
tures [4,30]. The first feature, denoted by 𝑥𝑎, is restricted to the [0, 1]
range and assigns a fidelity value to a source based on the user’s belief
(larger values correspond to higher fidelities). This assigned fidelity
value directly affects the correlation and cost function. The second
feature, denoted by 𝑥𝑏, is the iteration fidelity parameter and benefits
MF BO specifically in the context of hyperparameter tuning of large
machine learning models. These two features are used in three user-
defined functions defined as follows. 𝑒1(⋅) and 𝑒3(⋅) are bias kernels that
aim to take the discrepancies among the sources into account:

𝑒1(𝑥𝑎, 𝑥′𝑎) = (1 − 𝑥𝑎)(1 − 𝑥′𝑎)(1 + 𝑥𝑎𝑥
′
𝑎)

𝑝 (E.4)

𝑒3(𝑥𝑏, 𝑥′𝑏) = (1 − 𝑥𝑏)(1 − 𝑥′𝑏)(1 + 𝑥𝑏𝑥
′
𝑏)
𝑝 (E.5)

where 𝑝 is the degree of polynomial (which needs to be estimated) and
has a Gamma prior. 𝑒2(⋅) is the interaction term with four deterministic
terms and one polynomial kernel:

𝑒2([𝑥𝑎, 𝑥𝑏]𝑇 , [𝑥′𝑎, 𝑥
′
𝑏]
𝑇 ) = (1 − 𝑥𝑏)(1 − 𝑥′𝑏)(1 − 𝑥𝑎)(1 − 𝑥′𝑎)

× (1 + [𝑥𝑎, 𝑥𝑏]𝑇 [𝑥′𝑎, 𝑥
′
𝑏]
𝑇 )𝑝

(E.6)

Finally, the modified covariance function is [142]:

cov(𝒙,𝒙′) =𝑐(𝒙,𝒙′;𝜽0, 𝜎02) + 𝑒1(𝑥𝑎, 𝑥′𝑎)𝑐(𝒙,𝒙
′;𝜽1, 𝜎12)

+ 𝑒2([𝑥𝑎, 𝑥𝑏]𝑇 , [𝑥′𝑎, 𝑥
′
𝑏]
𝑇 )𝑐(𝒙,𝒙′;𝜽2, 𝜎22)

+ 𝑒3(𝑥𝑏, 𝑥′𝑏)𝑐(𝒙,𝒙
′;𝜽3, 𝜎32)

(E.7)

where 𝑐(𝒙,𝒙′;𝜽𝑖, 𝜎𝑖2) is the Matern kernel that characterize the spa-
ial correlations across the numerical inputs (the parameters of these
ernels are endowed with Gamma priors in BoTorch).
In Section 5.2 we use STMF-GPs as one of the baselines for evaluat-

ng the performance of GP+ in MF emulation. Therein, we assing two
ets of values to the fidelity indices of STMF-GP to quantify their effect
n the results. These two sets of values are enumerated in Table 11.

ppendix F. Neural network architectures for multi-fidelity mod-
ling

In Section 5.2, FFNNs are employed both as MF emulators and as
asis functions in GP+. We design the architecture of these models as
etailed in Table 12.

ppendix G. Bayesian optimization (BO)

In this section, we first explain how GP+ handles highly biased
ources in MFBO and then provide a few options available in GP+ for
FBO and MFBO.

.1. BO improvements

As mentioned in Section 5.4, the accuracy of the emulator in quan-
ifying uncertainties significantly affects the performance of BO. This
mpact is more noticeable in MF problems where biased LF sources can
isguide the optimization process. To address this challenge, we em-
loy interval scores (𝐼𝑆) to penalize the objective function. We choose
𝑆 since it is robust to outliers, rewards narrow prediction intervals,
nd is flexible in the choice of desired coverage levels [143,144]. 𝐼𝑆
is a special case of quantile prediction that penalizes the emulator for
each observation that is not inside the (1−𝑣)×100% prediction interval
and is calculated as:

𝐼𝑆 = 1
𝑛

𝑛
∑

𝑖=1
( (𝑖) − (𝑖)) + 2

𝑣
((𝑖) − 𝑦(𝑖))1 {𝑦(𝑖) < (𝑖)}

+ 2
𝑣
(𝑦(𝑖) − (𝑖))1{𝑦(𝑖) >  (𝑖)}

(G.8)

where 𝑦(𝑖) = 𝑦(𝒖(𝑖)) is the response of the 𝑖th training sample.  (𝑖), (𝑖),
𝑣 and 1 are defined in Section 5.
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Table 8
Sensitivity analysis of Wing: Sensitivity analysis of Wing using Sobol indices and GP+emulator. In Section 5.3, 𝜻 =

[

𝑞, 𝜆, 𝑡𝑐 , 𝑁𝑧
]𝑇 are treated as

calibration parameters.
Metric Features

𝑆𝑤 𝑤𝑓𝑤 𝐴 𝛬 𝑞 𝜆 𝑡𝑐 𝑁𝑧 𝑤𝑑𝑔 𝑤𝑝

Main SI 0.125 2.3𝑒−6 0.220 4.8𝑒−4 8.4𝑒−5 1.8𝑒−3 0.142 0.412 0.085 3.3𝑒−3
Total SI 0.128 2.4𝑒−6 0.225 5.1𝑒−4 8.7𝑒−5 1.8𝑒−3 0.146 0.420 0.087 3.3𝑒−3
10𝜔𝑖 0.005 8.7𝑒−7 0.010 0.006 2.0𝑒−4 5.0𝑒−4 0.027 0.023 0.005 2.0𝑒−4
Table 9
Model options: We provide a range of options that streamline the adoption of GP+ in many applications with just a few lines of code.
Option name Description Type/Default setting

train_x Input Tensor
train_y Output (response) Tensor
dtype Data type of the model and data torch.float
device Device to build the model (CPU or CUDA) "cpu"
qual_dict Column index and number of levels of categorical variables {}
multiple_noise Modeling separate noise for each data source False
lb_noise Lower bound for noise 1𝑒 − 8
fix_noise Flag for estimating noise via the nugget parameter False
fix_noise_val Fixed noise value if fix_noise = True 1𝑒 − 5
quant_correlation_class Kernel of numerical variables "Rough_RBF"
fixed_length_scale Flag to fix the length scale False
fixed_length_scale_val Fixed length scale value torch.tensor([1.0])
encoding_type Type of 𝑓𝝅 (𝒕) "one-hot"
embedding_dim Dimension of embedding (manifold) to be learnt 2
separate_embedding Which categorical features be learned separately [ ]
embedding_type Type of embedding "deterministic"
NN_layers_embedding Network structure of 𝑓ℎ(𝝅𝒕 ,𝜽ℎ) [ ]
m_gp Type of mean function for GP "single"
m_gp_ref Mean function for reference source (ID = 0) "zero"
NN_layers_m_gp Structure of neural network for mean function [4, 4]
calibration_type Deterministic or probabilistic calibration "deterministic"
calibration_id Index of the parameter to be calibrated [ ]
mean_prior_cal Mean prior for calibration parameter 0
std_prior_cal Standard deviation prior for calibration parameter 1
interval_score Interval scoring during optimization False
num_pass_train Number of training passes; deterministic/probabilistic 1∕20
num_pass_pred Number of prediction passes; deterministic/probabilistic 1∕30
Table 10
Options for model training: These options control the optimization process and their default values are selected to strike a
balance between accuracy and cost.
Option name Description Type/Default setting

add_prior Flag for using MAP instead of MLE True
jac Flag for using Jacobian True
num_restarts Number of optimization restarts 32
method Optimization method "L-BFGS-B"
options Optional parameters {}
n_jobs Number of cores (uses all cores if 𝚗_𝚓𝚘𝚋𝚜 = −1) −1
constraint Flag for adding constraints False
bounds Flag for adding bounds on parameters False
regularization_parameter Regularization coefficients [0, 0]
Table 11
Fidelity indices of STMF-GP: We use these fidelity indices in Section 5.2 to demonstrate
heir effect of MF emulation. Even though the two sets of numbers are close, the
erformance of the corresponding emulators are quite different.
Model Fidelity parameters (𝒙𝑎)

Sinusoidal Wing-weight DNS-ROM

𝑆𝑇𝑀𝐹 − 𝐺𝑃1 [1, 0.25] [1, 0.96, 0.83, 0.49] [1, 0.96, 0.83, 0.49]
𝑆𝑇𝑀𝐹 − 𝐺𝑃2 [1, 0.5] [1, 0.75, 0.5, 0.25] [1, 0.6, 0.4, 0.2]

Using the 𝐼𝑆 in Eq. (G.8) we now formulate the new objective
function for emulation within BO where 𝐼𝑆 is used as a penalty term.
Since the effectiveness of this penalization mechanism depends on the
value of the posterior, we introduce an adaptive coefficient whose
22

magnitude depends on the posterior value. With this penalty term, the
Table 12
Network architectures of feed-forward neural networks: We design different
architectures for our MF emulation studies in Section 5.2.
Method Option Problems

Sinusoidal Wing DNS-ROM

GP+ Small FFNN as 𝑚(𝒖; 𝜷) [1, 2] [4, 4] [4, 4]
Medium FFNN as 𝑚(𝒖; 𝜷) [2, 2, 2] [8, 8, 8] [8, 8, 8]

FFNN
Small [4, 4] [8, 8, 8] [8, 8, 8]
Medium [16, 16] [4, 16, 32] [32, 32, 32]
Large [16, 32] [4, 16, 128] [128, 128, 32]

modified objective function for the GP emulator is:

[𝜷, 𝜎2, 𝜽̂, 𝜹̂] =argmin 𝐿𝑀𝐴𝑃 + 𝜖|𝐿𝑀𝐴𝑃 | × 𝐼𝑆 (G.9)

𝜷,𝜎2 ,𝜽,𝜹
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Fig. 20. Training cost in examples with categorical inputs: Each bar in the graph represents the computational costs associated with different methods for various examples. Since
EHH, HH, and Gower are from SMT2, we use the same color to represent them. In the context of mixed-input problems, the manifold learning process of GP+ leads to a slight
increase in its computational cost. However, given the significantly higher accuracy it achieves, this difference in time is justified.
v
v
o

where | ⋅ | denotes the absolute function and 𝜖 is a user-defined scaling
parameter which is set to 0.08 by default in GP+. We refer the reader
to [92] for more in-depth information.

G.2. BO options

The BO options of GP+ are summarized in Table 13. We note that
GP+ is able to handle both analytic functions and datasets for BO. This
versatility is achieved by specifying the analytic function for the former
(see Fig. 15 for an example) and utilizing datasets for the latter through
the data_func option.
23
Appendix H. BoTorch

BoTorch is an MF cost-aware BO package that employs STMF-GP
(explained in Appendix E) as the emulator and leverages the knowledge
gradient (KG) as the AF. KG is a look-ahead AF that chooses the next
sampling point (𝒙(𝑘+1)) based on the effect of the yet-to-be-seen obser-
ation (i.e., 𝑦𝑘+1 which follows a normal distribution) on the optimum
alue predicted by the emulator. This AF quantifies the expected utility
f 𝒙 at iteration 𝑘 + 1 as:

(𝑘+1) (𝑘) (H.10)
𝛾𝐾𝐺(𝒙) = E𝑝(𝑦∣𝒙,𝑘)[max𝜇 ] − max𝜇
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Table 13
Options provided by GP+ for Bayesian optimization: GP+ accommodates both single- and multi-fidelity BO. The user can
provide both analytic functions and datasets where the former is typically used in comparison studies while the latter is used
in real world applications.
Option name Description Type/Default setting

U_init Initial input Tensor
y_init Initial output (response) Tensor
costs Source-dependent sampling costs {}
l_bound Lower bound of the variables [ ]
u_bound Upper bound of the variables [ ]
U_mean Mean of the initial inputs [ ]
U_std Standard deviation of the initial inputs [ ]
qual_dict Column index and number of levels of categorical variables {}
data_func Data (function/dataset) –
n_train_init Number of initial data {}
maximize_flag Flag for maximization False
one_iter Flag for suggesting only one new sample False
max_cost Maximum budget for optimization 40 000
MF Flag for doing MFBO True
AF_hf AF of HF source AF_HF
AF_lf AF of LF source AF_LF
IS Flag for penalizing the objective function with scoring rules True
where 𝑘 = {(𝒙(𝑖), 𝑦(𝑖))}𝑘𝑖=1 is the training data in iteration 𝑘 and
ax𝜇(𝑘) = max𝜇(𝑘)(𝒙) denotes the maximum mean prediction of the
mulator trained on 𝑘. The expectation operation in Eq. (H.10) ap-
ears due to the fact that 𝑦(𝑘+1) is not observed yet and 𝛼𝐾𝐺(𝒙) is relying
n the predictive distribution provided by the emulator that is trained
n 𝑘. This expectation cannot be calculated analytically and hence a
onte Carlo estimate is used in practice:

𝐾𝐺(𝒙) ≈
1
𝑀

𝑀
∑

𝑚=1
max𝜇(𝑘+1)𝑚 − max𝜇(𝑘) (H.11)

here max𝜇(𝑘+1)𝑚 = max𝜇(𝑘+1)𝑚(𝒙) is calculated by first drawing a
ample at 𝒙 from the emulator that is trained on 𝑘 and then retraining
24
the emulator on 𝑘 ∪(𝒙, 𝑦𝑚) where 𝑦𝑚 is response of the drawn sample.
In practice, a small value must be chosen for 𝑀 since maximizing
𝛾𝐾𝐺(𝒙) over the input space at each iteration of BO is very expensive.
Refer to [145,146] for more information on KG and its implementation.

Appendix I. Computational costs

In this section, we compare the computational costs of various
baselines discussed in Section 5.1 for the examples outlined in Table 1.
The results are summarized in Figs. 20 and 21. Fig. 20 is for prob-
lems whose input space has categorical variables while Fig. 21 is for
problems that only have numerical inputs. We observe in Fig. 20 that
Fig. 21. Training cost in examples with all-numerical inputs: Each bar in the graph represents the computational costs associated with different methods for various examples. In
the context of numerical problems, all the benchmarks have the same formulation and they just differ in their optimization. This difference causes slightly different computational
costs.
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GP+ is slightly more expensive than Gower, MST-GP, and MATLAB.
This is because, unlike packages that convert categorical features to
numerical ones in a naive manner (MATLAB, Gower, and MST-GP),
GP+ nonlinearly learns the underlying characteristics of the categorical
nputs. Additionally, we find that the larger number of parameters used
n SMT2EHH and SMT2HH not only fails to improve accuracy, but also
eads to significantly higher computational costs for SMT2.
In numerical examples (Wing and Borehole, see Fig. 21), the for-
ulations of all methods are the same and they only differ in the
arameter estimation and optimization. Specifically, for MATLAB, we
mploy default settings that utilize MLE for parameter estimation and
he BFGS algorithm for optimization. The lower computational costs
bserved in MATLAB are attributed to its optimization process and
treamlined implementation. SMT2 exhibits slightly lower computa-
ional costs compared to GP+ and GPytorch which is due to its use of
he profiling method. Furthermore, while GP+ and GPytorch are quite
similar, the minor difference in their computational costs stems from
the different optimizers they employ (GP+ uses L-BFGS from SciPy by
default, while GPytorch uses Adam21 from PyTorch).
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