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Key message  The Arabidopsis KASH protein SINE3 is involved in male and female gametophyte development, likely 
affecting the first post-meiotic mitosis in both cases, and is required for full seed set.
Abstract  Linker of nucleoskeleton and cytoskeleton (LINC) complexes are protein complexes spanning the inner and outer 
membranes of the nuclear envelope (NE) and are key players in nuclear movement and positioning. Through their roles in 
nuclear movement and cytoskeletal reorganization, plant LINC complexes affect processes as diverse as pollen tube rupture 
and stomatal development and function. KASH proteins are the outer nuclear membrane component of the LINC complex, 
with conserved C-termini but divergent N-terminal cytoplasmic domains. Of the known Arabidopsis KASH proteins, SUN-
INTERACTING NUCLEAR ENVELOPE PROTEIN 3 (SINE3) has not been functionally characterized. Here, we show that 
SINE3 is expressed at all stages of male and female gametophyte development. It is located at the NE in male and female 
gametophytes. Loss of SINE3 results in a female-derived seed set defect, with sine3 mutant ovules arresting at stage FG1. 
Pollen viability is also significantly reduced, with microspores arresting prior to pollen mitosis I. In addition, sine3 mutants 
have a minor male meiosis defect, with some tetrads containing more than four spores. Together, these results demonstrate 
that the KASH protein SINE3 plays a crucial role in male and female gametophyte development, likely affecting the first 
post-meiotic nuclear division in both cases.
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Introduction

Sexual reproduction requires the production of haploid 
gametes that fuse to form a diploid zygote. Reproduction in 
flowering plants has evolved to use pollen tubes to deliver 
sperm cells to female gametes (Johnson et al. 2019). Shortly 
after pollination, the pollen grain is hydrated. The pollen 
tube penetrates the pistil and grows through the transmit-
ting tract towards the female gametophyte, or embryo sac 
(Palanivelu and Tsukamoto 2011). Upon arrival at the ovule, 

the pollen tube is guided towards the micropylar opening 
where it contacts one of the two synergid cells of the embryo 
sac (Dresselhaus et al. 2016). The pollen tube ultimately 
ruptures and releases the sperm cells for fertilization (Dres-
selhaus et al. 2016).

Plants have a two-staged life cycle in which a haploid 
gametophyte generation alternates with a diploid sporophyte 
generation. Flowering plants have male and female multi-
cellular haploid gametophytes. Haploid cells in the gameto-
phyte undergo two to three rounds of post-meiotic mitosis, to 
form gametes and the accessory cells required for reproduc-
tion (Drews and Yadegari 2002). During male gametogen-
esis, the diploid pollen mother cell (PMC) undergoes meio-
sis and produces a tetrad of haploid microspores encased 
in callose (Twell et al. 1998; Twell 2011; Oh et al. 2011). 
Once released from the tetrad, the microspores grow in size 
and the nucleus migrates to the germ cell pole (Twell et al. 
1998; Twell 2011; Oh et al. 2011). The polarized microspore 
undergoes an asymmetric mitotic division, termed pollen 
mitosis I (PMI), which produces a generative cell within 
the vegetative cell (Twell et al. 1998; Twell 2011; Oh et al. 
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2011). The generative cell then undergoes a second mitosis 
(PMII) to form two identical sperm cells.

During female gametogenesis, the megaspore mother cell 
(MMC) undergoes meiosis, resulting in four megaspores. 
Subsequently, three megaspores degenerate, leaving one 
functional megaspore (FM) (Erbasol Serbes et al. 2019). 
The FM then undergoes three rounds of mitosis without 
cytokinesis (Erbasol Serbes et al. 2019). After subsequent 
cellularization and polar nuclei fusion, the FM becomes a 
seven-celled female gametophyte, containing an egg cell, 
two synergid cells, a diploid central cell, and three antipodal 
cells, which undergo cell death before fertilization (Erbasol 
Serbes et al. 2019).

Similar to animals, flowering plants undergo open mei-
osis and mitosis. This involves breakdown of the nuclear 
envelope (NE), allowing for the connection of the kineto-
chores to the spindle fibers and for chromosome separation. 
The NE then reforms upon completion of nuclear division 
(Pradillo et al. 2019). The proteins of nucleoplasm and cyto-
plasm that interact with the NE are crucial for the successful 
completion of mitosis and meiosis (Pradillo et al. 2019). The 
linker of nucleoskeleton and cytoskeleton (LINC) complex 
is an important player in various protein interactions at 
the NE. LINC complexes are embedded in the NE and are 
composed of outer NE Klarsicht/ANC-1/Syne Homology 
(KASH) proteins and inner NE Sad1/UNC-84 (SUN) pro-
teins that interact in the NE lumen. The terminal four amino 
acids of KASH proteins interact with the C-terminal SUN 
domain of the SUN proteins to form a bridge between the 
nucleoplasm and the cytoplasm (Starr and Fridolfsson 2010; 
Zhou et al. 2014).

Animals and plants have homologous SUN proteins 
(Graumann et al. 2010; Oda and Fukuda 2011). The outer 
NE KASH proteins appear to have evolved separately in 
plants, because they have nothing other in common with 
animal KASH proteins than being tail-anchored proteins 
with a highly conserved, immediately C-terminal short 
amino acid sequence (Xu et al. 2007; Zhou et al. 2012, 
2014). Several plant KASH proteins have been function-
ally investigated in Arabidopsis, and are involved in a vari-
ety of tissues and processes (Meier et al. 2017). The plant 
KASH proteins WIP1-WIP3, along with their outer nuclear 
envelope interaction partners WIT1 and WIT2, are involved 
in male fertility and the movement of the pollen nucleus 
(Zhao et al. 2008; Zhou and Meier 2014; Zhou et al. 2015b; 
Moser et al. 2020) and shape and movement of the root hair 
nucleus (Zhou et al. 2012, 2015a; Tamura et al. 2013). The 
plant KASH proteins SINE1 and SINE2 are involved in sto-
matal development and stomatal dynamics (Gumber et al. 
2019; Biel et al. 2020a; Biel et al. 2020b; Biel et al. 2022; 
Biel and Moser et al. 2024). In the model legume Medicago 
truncatula, plant KASH proteins are involved in initiation 
of nodulation (Newman-Griffis et al. 2019). All identified 

Arabidopsis KASH proteins bind to the INM-localized SUN 
proteins SUN1 and SUN2 (Zhou et al. 2012, 2014). The 
underlying assumption is that all these roles are, in analogy 
to the function of animal KASH proteins, related to move-
ment or positioning of the nucleus or chromatin organization 
in different cellular situations.

SUN-BINDING NUCLEAR ENVELOPE PROTEIN 3 
(SINE3) was identified by its plant KASH C-terminus and 
shown to be associated with the Arabidopsis nuclear enve-
lope in a SUN-dependent manner, but has not been func-
tionally investigated (Zhou et al. 2014). Here, we show that 
Arabidopsis SINE3 plays a role in gametophyte develop-
ment. SINE3 is located at the NE in developing male and 
female gametophytes. Loss of SINE3 results in reduction 
in seed set and silique length, that is driven by defects in 
female gametophyte development, as sine3 mutant ovules 
arrest prior to the first post-meiotic mitosis. Pollen viability 
is significantly reduced in sine3 mutants as well, as a result 
of microspores arresting prior to the first post-meiotic mito-
sis during male gametophyte development. Together, these 
data indicate that SINE3 is involved in both male and female 
gametogenesis in Arabidopsis, and likely has a role in the 
first post-meiotic nuclear division.

Materials and methods

Plant material and growth

Arabidopsis thaliana (Columbia-0 ecotype) was germinated 
on Murashige and Skoog (MS) medium plates (Caisson 
Laboratories) containing 1% sucrose under constant light. 
Plants at the two-leaf stage were transplanted to soil and 
grown at an average temperature of 22–23 °C under a 16-h 
light/8-h dark regime. sine3-1 (SALK_032814C), sine3-
2 (SALK_029812), and sine3-3 (SAIL_248_C12) were 
obtained from the Arabidopsis Biological Resource Center 
(Alonso et al. 2003; Sessions et al. 2002). The primers used 
to genotype the T-DNA insertion mutants are listed in Sup-
plemental Table 1.

Cloning

The SINE3 promoter was amplified from whole seedling 
genomic DNA (~ 2.2 kb; primers used are listed in Sup-
plemental Table 2). Restriction sites for enzymes SacI and 
SpeI were added to the 5’ and 3’ ends and the amplified 
fragment was digested with the appropriate restriction 
enzymes. The SINE3 promoter fragment (approximately 
2200 basepairs upstream of the SINE3 start codon) was iso-
lated and purified with the QIAquik PCR Purification kit 
(Qiagen). The isolated fragment was subsequently ligated 
into a pH7WGF2 Gateway vector to obtain SINE3pro@
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pH7WGF2 (Takagi et al. 2011). PCR-based cloning was 
used previously to generate β-glucuronidase (GUS) and 
SINE3 coding regions, which were cloned into pENTR/D-
TOPO vectors (Zhou et al. 2014). By LR reaction, the GUS, 
SINE3, and SINE3ΔPLPT sequences were moved from 
the pENTR/D-TOPO to SINE3pro@pH7WGF2 to obtain 
the SINE3pro::GFP-GUS, SINE3pro::GFP-SINE3, and 
SINE3pro::GFP-SINE3ΔPLPT constructs, respectively.

Generation of transgenic plants expressing 
GFP‑tagged constructs

Binary vectors were transformed into Agrobacterium tume-
faciens strain ABI by triparental mating (Wise et al. 2006). 
The Agrobacterium-mediated floral dip method was used to 
transform either Col-0 ecotype (WT) or sine3-1 (Clough and 
Bent 1998). Transgenic plants were isolated on MS plates 
supplemented with 30 µg/mL hygromycin, and the positive 
transformants (T1 plants) were confirmed by using confocal 
microscopy to detect GFP fluorescence. Each T1 transgenic 
plant was a result of an independent insertional event of the 
T-DNA of interest within the Arabidopsis genome. Progeny 
from each T1 plant were grown on hygromycin selection 
and floral tissue was imaged to confirm presence of GFP 
fluorescence (T2 plants). Hemizygous or homozygous sta-
tus was determined based on the amount of GFP-positive 
haploid pollen (50% or 100%). Plants with 100% GFP-pos-
itive pollen grains were considered homozygous. Progeny 
of homozygous T2 plants were again grown on hygromycin 
selection and pollen grains were imaged to confirm pres-
ence of fluorescence (T3 plants). In case of SINE3pro::GFP-
SINE3, no T2 plant with 100% fluorescent pollen could be 
identified. Eighteen SINE3pro::GFP-SINE3 in sine3-1 indi-
vidual transgenic lines were isolated (T1 plants). Of those, 
9 SINE3pro::GFP-SINE3 in sine3-1 lines were taken to 
the T3 plant generation. T3 progeny from hemizygous T2 
plants were grown on hygromycin selection, pollen grains 
were imaged to confirm presence of fluorescence. In both 
the T2 and T3 generations, all the plants were hemizygous. 
Hemizygous plants were used for the GFP imaging experi-
ment shown in Fig. 4.

Identifying T‑DNA insertional mutants

Putative insertional lines were identified using T-DNA 
Express, an Arabidopsis gene mapping tool created by the 
Salk Institute Genomic Analysis Laboratory (http://​signal.​
salk.​edu/​cgi-​bin/​tdnae​xpress). Lines where the T-DNA 
insertion was predicted to be in an exon or intron were 
selected and acquired from the Arabidopsis Biological 
Resource Center (ABRC). Primers used for genotyping were 
generated from the T-DNA Primer Design tool also created 
by the Salk Institute Genomic Analysis Laboratory (http://​

signal.​salk.​edu/​tdnap​rimers.​2.​html) (Supplemental Table 1). 
The left borders of T-DNA insertion sites were confirmed 
by sequencing.

Sequencing to determine the T‑DNA insertion site

The DNA fragment between the left border of the T-DNA 
insert and the 3’ end of the SINE3 gene was cloned using 
the left border forward primer (BP) and the correspond-
ing sine3-1 or sine3-2 reverse primer (RP) (Supplemental 
Fig. 1a). The DNA fragment was sequenced and a sequence 
alignment was generated to compare to the SINE3 genomic 
DNA sequence (Supplemental Fig. 1b).

RT‑PCR analysis

Flowers from Arabidopsis plants were ground in liquid nitro-
gen, and total RNA was extracted using RNeasy Plant Mini 
kit (QIAGEN). First-strand cDNA was synthesized using 
SuperScript III First-Strand Synthesis System (Life Tech-
nologies) and oligodT as a primer. Primers used for PCR 
are listed in Supplemental Table 2.

Pollen grain staining

Pollen viability was determined using a dual fluorescent 
stain containing propidium iodide and fluorescein diacetate 
(Hamilton et al. 2015). To visualize nuclei and determine 
male gametophyte developmental stages, fresh anthers were 
squashed in 3 µg/mL DAPI in pollen isolation buffer (PIB; 
100 mM NaPO4, pH 7.5, 1 mM EDTA, and 0.1% [v/v] Tri-
ton X-100) and imaged (Backues et al. 2010).

Floral Staging

Flowers were selected for use in ovule experiments at 
approximate stages of floral development, as previously 
described (Alvarez-Buylla et al. 2010).

Alphafold tertiary structure analysis

The three-dimensional (3-D) structure of the AtSINE3 pro-
tein was predicted using the Alphafold Protein Structure 
Database (https://​alpha​fold.​ebi.​ac.​uk/) (Evans et al. 2021; 
Jumper et al. 2021; Varadi et al. 2021).

Ovule development

For the analysis of embryo sac development in wild type and 
sine3 mutants, ovules were fixed and cleared as previously 
described (Min et al. 2019) with a few modifications. Briefly, 
pistils of floral stage 6 to stage 12 were harvested. For fixa-
tion, dissected ovules were incubated in 4% glutaraldehyde 

http://signal.salk.edu/cgi-bin/tdnaexpress
http://signal.salk.edu/cgi-bin/tdnaexpress
http://signal.salk.edu/tdnaprimers.2.html
http://signal.salk.edu/tdnaprimers.2.html
https://alphafold.ebi.ac.uk/
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(in 12.5 mM K3PO4, pH 6.9) for 4 h. The tissues were dehy-
drated through an ethanol series (10, 20, 40, 60, 80, 95, and 
100% (v/v) in ddH2O) with 10 min per step and left in 100% 
ethanol overnight. The dehydrated tissues were subsequently 
cleared in 2:1 (v/v) benzyl benzoate: benzyl alcohol for 
5 h, and then observed with a Nikon C2plus confocal laser 
microscope. Samples were excited with 561 nm wavelength 
and emission was detected at 566–640 nm.

Imaging GFP localization in ovules

For imaging GFP-SINE3 subcellular localization in ovules, 
ovules were fixed and cleared as previously described 
(Tofanelli et al. 2019). Briefly, pistils were excised from 
flowers at different developmental stages and fixed in 4% 
paraformaldehyde in 1X PBS solution for 2 h at room tem-
perature. The fixed pistils were washed twice in 1X PBS for 
1 min. Next, the pistils were transferred to 1 mL of ClearSee 
solution (10% [w/v] xylitol, 15% [w/v] sodium deoxycho-
late, 25% [w/v] urea) and cleared overnight at room tem-
perature. The cleared pistils were mounted in immersion oil 
and imaged with a Nikon C2plus confocal laser microscope.

Aniline blue staining

Aniline blue staining was conducted as previously described 
(Mori et al. 2006; Wu et al. 2010). Briefly, Arabidopsis pis-
tils from one- or two-day-old flowers after flowering were 
fixed in a 3:1 ethanol/acetic acid solution for at least 2 h at 
room temperature. The fixed pistils were then washed in 
distilled water three times for 5 min each. The pistils were 
softened in 8 M NaOH overnight at room temperature. Care-
fully, the softened pistils were washed in distilled water three 
times for 1 h each and then stained with aniline blue solution 
(0.1% aniline blue in 0.1 M K3PO4 buffer, pH 11) for 3 to 
5 h in the absence of light. After incubation, stained pistils 
were carefully mounted and imaged under Nikon C1 confo-
cal laser microscope.

β‑glucuronidase staining

A. thaliana seedlings and floral tissue were fixed in 90% 
acetone on ice for 30 min. Samples were washed in reaction 
buffer (50 mM sodium phosphate buffer, pH 7.2, 0.1% [vol/
vol] Triton X-100, 2 mM K3Fe(CN)6, 2 mM K4Fe(CN)6) 

AtSINE3 (At3g06600) 100bp

SALK_032804C
sine3-1

SALK_029812
sine3-2

SAIL_248_C12
sine3-3

BA

ACTIN2

SINE3
WT

sin
e3
-1

300 bp

500 bp
650 bp

400 bp

sin
e3
-2

sin
e3
-3DC

N

C

PLPT

20 aa

1611 181 193

Fig. 1   Analysis of SINE3 mutant alleles. A Protein domain organi-
zation of SINE3. (Green) transmembrane domain helix; (gray) 
unknown; (numbers) amino acids. The terminal four amino acids are 
shown in single-letter code. B Predicted tertiary structure of SINE3. 
The per-residue confidence score between 0 and 100 produced by 
Alphafold is shown in colors; dark blue > 90, very high; blue > 70, 
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of the SINE3 locus and insertion sites of T-DNA insertional mutants 

used in this study. The T-DNA insertions in sine3-1, sine3-2, and 
sine3-3 are depicted as triangles, and the arrows indicate the orienta-
tion of the T-DNA insert within the chromosome. Exons, red bars; 
introns, lines; 5’ and 3’ untranslated regions, gray bars. Numbers 
indicate SALK or SAIL T-DNA insertional mutant collection code. 
D RT-PCR determination of the expression level of full length SINE3 
in sine3 mutants. Primers amplifying the coding region were used for 
RT-PCR from floral tissue and are listed in Supplemental Table 1
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and incubated in the GUS staining solution (50 mM sodium 
phosphate buffer, pH 7.2, 0.1% [v/v] Triton X-100, 2 mM 
K3Fe(CN)6, 2 mM K4Fe(CN)6, and 2 mM X-Gluc [Gold-
Bio]) for 48–72 h at 37  °C. Staining solution was then 
removed, and the samples were washed with 70% ethanol 
until the tissue was cleared. Samples were imaged under a 
Nikon SMZ1270 stereo microscope.

Quartet analysis

The qrt1-4 mutant was obtained from the Arabidopsis 
Biological Research Center (SALK_024104, Francis et al. 
2006). Homozygous sine3-1 was crossed with qrt1-4. The 
resulting F1 seeds were grown and allowed to self-fertilize. 
F2 seeds were screen for homozygosity for both the sine3-1 
and qrt1-4 alleles via PCR genotyping (See Supplemental 
Table 1 for primers). In the F3 generation, sine3-1 qrt1-4 
plants were used for Alexander Staining to determine viabil-
ity in each quartet (Supplemental Fig. 2, Table 3).

Results

SINE3 is a plant KASH protein of unknown function

SINE3 was identified previously as a putative Arabidopsis 
Klarsicht/ANC-1/Syne Homology (KASH) protein (Zhou 
et al. 2014). SINE3 is a 193 amino acid protein that contains 
a transmembrane domain (TMD) and KASH tail at its C-ter-
minus (Fig. 1A). The cytoplasmic domain at the N-terminus 
(amino acids 1–158) is predicted to be highly disordered and 
has no known domains (Fig. 1B). SINE3 is a plant-specific 
protein that is not deeply conserved, with homologues only 
found in the Brassicaceae (Poulet et al. 2017).

To identify biological roles of SINE3, we chose three 
T-DNA insertion mutant alleles, sine3-1 (SALK_032804C), 
sine3-2 (SALK_029812), and sine3-3 (SAIL_248_C12). 
Through sequencing, the T-DNA insertion sites were con-
firmed to be within the third exon for both sine3-1 and sine3-
2 (Fig. 1C). Although sine3-1 and sine3-2 are independent 
T-DNA insertion lines, the insertion is at the same exact 
position, between nucleotides 690 and 691 (Supplemental 
Fig. 1). The parental line for sine3-2 contained an additional 
heterozygous T-DNA insertion in the promoter for the gene 
locus At4g29780, which was removed through segregation, 
indicating that the two original SALK lines had arisen inde-
pendently. The T-DNA insertion site for sine3-3 (determined 
by the Salk Institute Genomic Analysis Laboratory (Alonso 
et al. 2003)) was at nucleotide 144 within the first intron 
(Fig. 1C). RT-PCR analysis revealed that no residual full-
length SINE3 transcripts were detected in sine3-1, sine3-2, 
and sine3-3 (Fig. 1D).

Loss of SINE3 leads to a female‑derived seed set 
defect

When growing homozygote sine3 mutant plants, a reduction 
in silique length was noted (Fig. 2A). Quantification showed 
that both seed number and silique length were significantly 
reduced. In WT, the average seed number per silique was 63, 
and the average silique length was 16.3 mm (Fig. 2B, C). In 
sine3-1 and sine3-2, seeds per silique were reduced to about 
25, with siliques measuring on average 11.7 mm (Fig. 2B, 
C). In contrast, seeds per silique and silique length in sine3-
3 were reduced to 52 seeds and 14.1 mm, respectively, 
suggesting that sine3-3 is a weaker allele (Fig. 2B, C). To 
determine if the seed set defect was derived from the male 
or female parent, we performed reciprocal crosses between 
WT and homozygous sine3-1 and sine3-2 mutants. When 
WT stigmas were pollinated with WT, sine3-1, or sine3-2 
pollen, the number of seeds per silique was between 48 and 
50 (Fig. 2D). In contrast, when either sine3-1 or sine3-2 
stigmas were pollinated with WT, sine3-1, or sine3-2 pollen, 
the number of seeds per silique was significantly reduced to 
approximately 20 (Fig. 2D). This suggests that the reduction 
in seeds in the two sine3 mutant alleles was driven by defects 
related to the female parent.

SINE3 is expressed in Arabidopsis seedling roots 
and in reproductive tissues.

To examine SINE3 expression, 2.2. kb of SINE3 promoter 
sequence were fused with an in-frame fusion of GFP and 
β-glucuronidase (GUS) and transformed into WT Arabi-
dopsis plants (SINE3pro::GFP-GUS). In 10  day old 
SINE3pro::GFP-GUS WT transgenic seedlings, GUS activ-
ity was detected throughout the root, the hypocotyl, the shoot 
apical meristem and faintly in the cotyledon vasculature 
(Fig. 3A). The strongest signal was detected in and around 
the root meristems (insert in Fig. 3A). In the inflorescence, 
a GUS signal was detected in the anthers throughout floral 
development and in open flowers (Fig. 3B). A GUS sig-
nal was observed in unfertilized ovules, specifically in the 
embryo sac of the ovule, and in pollen grains (Fig. 3C–E). 
A GUS signal was also detected in siliques, specifically in 
fertilized ovules and in seeds (Fig. 3F and G). The GUS sig-
nal observed is consistent with SINE3 expression data in the 
eFP Browser and Arabidopsis Heat Tree Viewer expression 
databases (Winter et al. 2007; Boavida et al. 2011; Borges 
et al. 2008; Honys and Twell 2004; Qin et al. 2009; Schmid 
et al. 2005). In particular, the SINE3 promoter-driven GUS 
signal in reproductive development is consistent with pub-
licly available transcriptomic data from these databases.

Next, hemizygous SINE3pro::GFP-SINE3 in sine3-1 
transgenic plants (see Methods) were utilized to exam-
ine SINE3 expression and subcellular localization 
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during gametophyte development. We first analyzed 
SINE3pro::GFP-SINE3 in sine3-1 during pollen develop-
ment (Fig. 4A). GFP was not detected at the tetrad stage but 
was present at the NE in unpolarized and polarized micro-
spores, bicellular pollen, and tricellular pollen. In bicellular 
pollen, the GFP-SINE3 signal was stronger at the vegetative 
NE than at the generative NE. In mature pollen grains, the 
GFP-SINE3 signal was only detectable at the vegetative NE 
(Fig. 4A).

In the sporophyte, we have shown that the associa-
tion of GFP-SINE3 with the nuclear envelope depends 
on the most C-terminal four amino acids (PLPT), which 
are required for binding SUN proteins (Zhou et al. 2014). 
To assess if the association with the gametophytic NE 
followed the same requirements, we also expressed the 
truncated SINE3pro::GFP-SINE3ΔPLPT in sine3-1. As 
shown in Fig. 4b, this led to diffuse GFP fluorescence in 

unpolarized microspores and at the bicellular and tricellular 
stage, indicating that the mechanism of SINE3 association 
with the nuclear envelope is the same in the sporophyte and 
gametophyte.

When GFP-SINE3 expression and localization was 
determined during female gametophyte development, GFP-
SINE3 was detected at the NEs in ovules at all develop-
mental stages (Female Gametophyte 1 (FG1) through FG7; 
Fig. 4C). The GFP-SINE3 fluorescent signal was detected on 
nuclear envelopes across all developmental stages. Together, 
these data show that the SINE3 promoter is specifically 
active in both male and female gametophytes, that SINE3 
is expressed during all stages of gametophyte development, 
and that the protein is associated with the nuclear envelope 
at all stages, dependent on the last four amino acids. In pol-
len, nuclear envelope localization of SINE3 is limited to the 
vegetative cell.

Fig. 4   SINE3 is expressed 
throughout male and female 
gametophyte development. A 
Representative microscopic 
images of the expression and 
localization of SINE3pro::GFP-
SINE3 in sine3-1 in develop-
ing pollen grains at the tetrad, 
unpolarized microspore, polar-
ized microspore, bicellular, and 
tricellular pollen stages. Tricel-
lular pollen grain counterstained 
with DAPI to show the position 
of the vegetative nucleus (VN) 
and sperm cells (SCs). Scale 
bar = 10 μm. B Representa-
tive microscopic images of the 
expression and localization of 
SINE3pro::GFP-SINE3ΔPLPT 
in sine3-1 in the unpolarized 
microspore, bicellular, and 
tricellular pollen stages. Tricel-
lular pollen grain counterstained 
with DAPI to show the posi-
tion of the vegetative nucleus 
(VN) and sperm cells (SCs). 
Scale bar = 10 μm. C Images 
of developing ovules at stages 
FG1 to FG7. FM, functional 
megaspore; ACN, antipodal cell 
nucleus; SCN, synergid cell 
nucleus; ECN, egg cell nucleus; 
CCN, central cell nucleus. All 
images were captured using 
confocal microscopy. Scale 
bar = 20 μm
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sine3 mutant ovules arrest at the FG1 stage 
of female gametophyte development

Because the seed set defect in sine3 mutants was driven by a 
defect from the female, we observed WT, sine3-1, and sine3-
2 ovules at various stages of female gametophyte develop-
ment using whole-mount tissue clearing (Min et al. 2019). In 
WT, female gametogenesis proceeded normally from female 
gametophyte stage 1 (FG1) to FG7 (Fig. 5A–F). WT ovules 
at FG1 contained one functional megaspore (FM) which 
then underwent three rounds of mitosis without cytokinesis 
resulting in eight nuclei (Fig. 5A–D; FG2-FG5). Following 
the subsequent nuclear fusion of two polar nuclei and the 
degeneration of the three antipodal cells (Fig. 5E; FG6), 
WT ovules reached maturity (Fig. 5F; FG7). In the sine3-1 
and sine3-2 mutants, female gametogenesis proceeded nor-
mally in approximately half of the ovules, however, the other 
half appeared to arrest at FG1 (Fig. 5G–L for sine3-1 and 
Fig. 5M–R for sine3-2). When analyzing the female game-
tophytes at the mature stage in WT, sine3-1, and sine3-2, 
95.4% of WT gametophytes reached the FG7 stage (Fig. 5F; 
Table 1). By contrast, only 47% of the sine3-1 ovules and 
47.8% of the sine3-2 ovules reached the FG7 stage, while 
51.4% of sine3-1 and 51% of sine3-2 ovules were arrested 
at FG1 (Fig. 5L, R; Table 1). Taken together, these results 

indicate that SINE3 plays an important role at the onset of 
the nuclear divisions during female gametophyte devel-
opment and that the mutant phenotype has an about 50% 
penetrance.

Loss of SINE3 leads to a pollen viability defect

Approximately half of the genes identified as functioning 
in gametogenesis are required for both female and male 
gametophyte development (Pagnussat et al. 2005). Thus, 
we next determined if the loss of SINE3 also affected the 
male gametophyte. Using a dual fluorescent stain containing 
propidium iodide and fluorescein diacetate (Hamilton et al. 
2015), we observed a reduction in pollen viability in sine3-1 
and sine3-2 mutants. Many of the nonviable pollen grains 
in sine3-1 and sine3-2 mutants were shriveled or collapsed 
(Fig. 6A, red arrows; white arrows mark non-viable normal-
size pollen grains). 53.9% of sine3-1 pollen grains (n = 1264) 
and 50.7% of sine3-2 pollen grains (n = 1269) were viable, 
compared to 92% of WT pollen grains (n = 1310) (Fig. 6B).

We then outcrossed the homozygous sine3-1 mutant to 
a quartet1 (qrt1-4) mutant (Francis et al. 2006). In qrt1-4 
plants, the four products of a single meiosis remain attached 
to each other throughout pollen development. Alexander 
staining showed that the qrt1-4 plant produced four attached 
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Fig. 5   Loss of SINE3 leads to defects in female gametophyte develop-
ment. Ovules at different developmental stages in WT (A-F), sine3-1 
(G-L), and sine3-2 (M-R): FG1 (A, G, M), FG2/3 (B, H, N), FG4 
(C, I, O), FG5 (D, J, P), FG6 (E, K, Q), FG7 (E, L, R). DM, degen-

erated megaspore; FM, functional megaspore; ECN, egg cell nucleus; 
PN, polar nucleus; ACN, antipodal cell nucleus; CCN, central cell 
nucleus; SCN, synergid cell nucleus; V, vacuole. Bright white spots 
indicate nucleoli. Scale bar = 20 µm

Table 1   Developing sine3 
mutant ovules arrest at female 
gametophyte stage (FG) 1

Genotype FG1 (%) FG2 (%) FG3 (%) FG4 (%) FG5 (%) FG6 (%) FG7 (%) n

WT 1 0 0 0.3 1 2.3 95.4 306
sine3-1 51.4 0 0 0 0.6 1 47 315
sine3-2 51 0.3 0.3 0 0 0.6 47.8 335
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yet otherwise normal mature pollen grains (Supplemental 
Fig. 2). However, between zero and four shriveled and non-
viable pollen grains were detected in tetrads from the F3 
sine3-1 qrt1-4 homozygous double mutant plants at an about 
equal distribution (Supplemental Fig. 2 and Supplemental 
Table 3), suggesting that the male defect occurs with about 
50% penetrance and occurs randomly after meiosis. These 
data also show that the gametophyte development phenotype 
is linked to the sine3-1 allele, which was followed in this 
cross by PCR detection of the T-DNA insertion to the F3 
generation.

When self-pollinated Arabidopsis pistils from WT and 
sine3-1 were fixed and stained with aniline blue to observe 

pollen tube growth within the transmitting tract, abundant 
sine3-1 pollen tubes germinated and grew successfully 
through the stigma and the pollen tube transmitting tract, 
and neared the ovules throughout the pistil, similar to WT 
(Fig. 6C). This indicates that the viable sine3-1 pollen grew 
normally and that pollen tube growth and guidance were 
normal in sine3-1 pistils.

Together, these data suggest that loss of SINE3 also 
perturbs male gametophyte development. Like the female 
gametophyte defect, the male defect occurs with about 50% 
penetrance and occurs randomly after meiosis. This defect 
had no effect on the male reciprocal cross (see Fig. 2D), 
likely because viable pollen was present in abundance.
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Fig. 6   Loss of SINE3 perturbs pollen development and leads to 
defects in viability. A-B Representative images (A) and quantification 
of viability (B) of WT and sine3 mutant pollen after hydration. Pol-
len was incubated for 30  min in pollen germination media contain-
ing fluorescein diacetate (FDA) and propidium iodide (PI), dyes that 
stain viable and non-viable pollen, respectively. White arrows mark 
non-viable normal-size pollen grains and red arrows mark non-viable 
shriveled or collapsed pollen grains. N > 1260 pollen grains per back-
ground. Scale bar = 25 μm. (C) Aniline blue-stained pollen tubes in 
self-pollinated WT and sine3-1 pistils. The white dotted lines indi-

cate the pollen tube growth front in the pistils. Scale bar = 100 µm. 
(D) Developing spores and pollen grains stained with DAPI from 
WT (D-H) and sine3-1 (I-R) plants at tetrad (TET; D, I, N), unpo-
larized microspore (UMS; E, J, O), polarized microspore (PMS; F, 
K, P), bicellular (BC; G, L Q), and tricellular (TC; H, M, R) pol-
len stages. Developing sine3-1 pollen grains were split into 2 groups: 
pollen exhibiting WT-like development (I-M) and pollen exhibiting 
abnormal development (N-R). Images in each column correspond to 
the stages indicated above, with the exception of P and Q, which were 
present at the UMS, PMS, and BC stages
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sine3 mutant microspores arrest prior to pollen 
mitosis I

Based on the significant decrease in pollen viability and 
the collapsed pollen phenotype observed at the mature pol-
len stage, we wanted to determine when the initial defect 
appears during pollen development. We thus examined 
DAPI-stained microspores dissected from staged anthers 
of WT and sine3-1 mutant plants (Fig. 6D-R; Table 2). A 
typical progression of pollen development was observed in 
WT plants (Fig. 6D-H; Table 2). Meiosis resulted in a tet-
rad of 4 equally sized microspores (Fig. 6D). Upon callose 
degradation, the microspores were released from the tetrad 
(Fig. 6E). The microspore became polarized with the migra-
tion of the nucleus to the germ cell pole (Fig. 6F). The polar-
ized microspore underwent an asymmetric mitotic division 
(pollen mitosis I, PMI) to form the germ cell nucleus and 
vegetative nucleus (Fig. 6G). A second symmetric mitotic 
division (pollen mitosis II, PMII) of the generative cell 
nucleus generated two sperm cells (Fig. 6H).

In sine3-1 plants, aberrant phenotypes were first evident 
at the tetrad stage (Fig. 6I and N). WT had 100% normal tet-
rads composed of four equally sized microspores (Fig. 6D). 
In sine3-1, the majority of tetrads (91.5%) were also nor-
mal (Fig. 6I; Table 2) However 8.5% of sine3-1 tetrads con-
tained 5 or 6 spores that were not equally sized (Fig. 6N; 
Table 2). At later developmental stages, a population of 
abnormally small microspores was observed in sine3-1 
(Fig. 6O, P, Table 2), in addition to normal microspores 
(Fig. 6J; Table 2). Nuclear migration towards the future 

germ cell pole occurred in sine3-1 mutant microspores but 
appeared slightly delayed (Fig. 6K, Q; Table 2). Only 56% 
of microspores underwent PMI to form bicellular pollen 
(Fig. 6L; Table 2), with a large proportion of microspores 
remaining polarized (Fig. 6Q; Table 2). The WT-like sine3-1 
bicellular pollen underwent PMII to form tricellular pollen 
containing a vegetative nucleus and 2 sperm cells (Fig. 6M; 
Table 2). The proportion of aberrantly small microspores, 
and unpolarized and polarized microspores observed at the 
bicellular pollen stage accounts roughly for the proportion of 
collapsed pollen grains observed at the mature pollen stage 
(44%) (Fig. 6R; Table 2).

Together, these data show that SINE3 is also required for 
male gametophyte development and that the mutation leads 
to a variety of defects. Most prominent is the inability of 
mutant pollen to progress from the polarized microspore to 
the bicellular pollen stage, in other words to complete pollen 
mitosis I. Like in the female, this phenotype has about 50% 
penetrance, with remaining microspores developing to fully 
mature, viable pollen grains capable of pollen tube growth, 
female signal perception, and fertilization.

Discussion

In this study, we have shown that the plant KASH protein 
SINE3 plays an important role in plant gametophyte devel-
opment. Both male and female gametophyte development 
are defective in sine3 mutants. Approximately half of the 
male gametophytes of sine3 were arrested at the polarized 

Table 2   Pollen developmental 
analysis in WT and sine3-1 
mutant plants

Expected developmental stages are listed across. Stages and abnormalities as detected are listed in the left 
column
TET, tetrad; UMS, unpolarized microspore; PMS, polarized microspore; BC, bicellular pollen; TC, tricel-
lular pollen; AbTET (5), abnormal tetrad containing 5 nuclei; AbTET (6), abnormal tetrad containing 6 
nuclei; AbUMS, abnormal phenotype resembling smaller unpolarized microspore pollen; AbDEG, abnor-
mally degenerating pollen with or without residual DAPI staining

Tetrad (TET) Unpolarized 
microspore 
(UMS)

Polarized micro-
spore (PMS)

Bicellular (BC) Tricellular 
(TC)

WT sine3-1 WT sine3-1 WT sine3-1 WT sine3-1 WT sine3-1

TET 152 140
UMS 149 139 5 18 9
PMS 3 3 149 123 1 51
BC 149 94 4
TC 150 107
AbTET (5) 9
AbTET (6) 4
AbUMS 13 14 14
AbDEG 1 87
Abnormal (%) 0 8.5 2.0 8.4 3.2 9.0 1.0 44 1.0 46
Total (n) 152 153 152 155 154 155 150 168 151 198
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microspore stage prior to pollen mitosis I. Less than 50% 
of sine3 female gametophytes completed the three rounds 
of mitosis to form mature female gametes. The remaining 
ovules were arrested at the FG1 developmental stage, prior 
to the first post-meiotic mitosis. SINE3 was expressed in 
male and female gametophytes and located at the nuclear 
envelope (NE) at all developmental stages. Together, these 
data suggest that SINE3 is important for the initiation of 
the first post-meiotic nuclear/cell division in both female 
and male gametophytes. The incomplete penetrance of the 
mutant phenotype observed here has been reported in other 
reproductive mutants, indicating that this is not an unusual 
phenomenon among Arabidopsis reproductive mutants 
(Chen and McCormick 1996; Howden et al. 1998; Park 
et al. 1998).

Previous studies have dissected the mechanisms of male 
and female gametophyte development through mutant iden-
tification and characterization. In gemini pollen 1 (gem1) 
mutant microspores, nuclear migration towards the future 
germ cell pole was impaired, thus resulting in similar daugh-
ter cells and failed germ cell differentiation (Park et al. 
1998). gem1 was later identified as an allele of MOR1, which 
is a member of the microtubule-associated protein (MAP) 
215 family (Whittington et al. 2001; Twell et al. 2002; Oh 
et al. 2010b). In microspores of sidecar pollen (scp) mutants, 
nuclear migration occurs normally, but a proportion of pol-
len contains an extra vegetative cell, attributed to a delay in 
nuclear division and an altered spindle orientation (Chen 
and McCormick 1996; Oh et al. 2010c, 2011). Unlike gem1 
and scp mutants, defective sine3 mutant microspores did 
not undergo division and the nucleus remained polarized.

A plethora of other female gametophyte mutants that 
affect cell cycle progression have been identified and many 
have a similar phenotype to sine3 mutants (Elliott et al. 
1996; Baker et al., 1997; Christensen et al. 1998; Springer 
et  al. 2000; Acosta-Garcia and  Vielle-Calzada  2004; 
Huanca-Mamani et al. 2005; Colombo et al. 2008; Latrasse 
et al. 2008; Liu et al. 2008; Gallois et al. 2009; Backues et al. 
2010; Sankaranarayanan et al. 2020; Qin et al. 2022). These 
mutants affect fundamental cellular processes, such as gene 
expression and regulation (Elliott et al. 1996; Baker et al., 
1997; Huanca-Mamani et al. 2005; Colombo et al. 2008; 
Latrasse et al. 2008), DNA replication (Springer et al. 2000), 
and protein degradation (Liu et al. 2008; Gallois et al. 2009).

A mutation with similar characteristics to sine3-1 and 
sine3-2 is mos7-5, a mutant allele of the nucleoporin MOS7 
(Modifier of Snc1, 7), the Arabidopsis homolog of Nup88 
(Park et al. 2014). Nuclear migration in mos7-5 mutant 
microspores occurs normally but arrests at pollen mitosis I, 
similar to sine3 mutants. Loss of MOS7 also affected female 
gametophyte development, similar to sine3 mutants, with 
developing female gametophytes arrested at FG1 (Park et al. 
2014). MOS7 was shown to be required for spindle assembly 

during pollen mitosis I and is localized at the spindle during 
mitosis (Park et al. 2014).

Like MOS7, SINE3 is a NE-associated protein, cur-
rently of unknown function in reproductive development. 
SINE3 is a plant KASH protein, the ONM component of 
plant LINC complexes (Zhou et al 2014). LINC complexes, 
which facilitate nuclear movement and nuclear position-
ing, span the nuclear envelope, with KASH proteins fre-
quently interfacing directly and indirectly with the cytoskel-
eton (reviewed in Meier et al. 2017). At this point, it is not 
known at which step of the male and female gametophyte 
cell cycles the SINE3 gene product acts. However, based on 
its nuclear envelope localization and its dual role in both 
gametophytes, one attractive hypothesis is that the protein 
is directly involved in a process required for the initiation of 
the first post-meiotic mitosis. In land plants, that do not have 
centrosomes, the nuclear envelope is involved in forming the 
microtubule organizing centers (MTOCs) for the outgrowth 
of the spindle apparatus at the onset of prophase (Zhang and 
Dawe 2011; Masoud et al. 2013). Further work is required 
to investigate this step specifically, e.g. by imaging fluores-
cently labeled microtubules in sine3 mutants during pollen 
mitosis I (Oh et al. 2010a).

Sine3 mutants also displayed a minor male meiosis 
defect, with approximately 8.5% of tetrads containing 
more than four spores (Table 2). In animals, LINC com-
plexes have been shown to be involved in meiosis, in par-
ticular the KASH protein KASH5, which associates with 
Dynein (Morimoto et al. 2012; Horn et al. 2013; Agrawal 
et al. 2022). In plants, a KASH protein that functions dur-
ing meiosis has not yet been identified. However, there is a 
precedent for a LINC-complex role in plant meiosis because 
in Oryza sativa and Arabidopsis, double mutants of SUN1 
and SUN2 have severe meiotic defects, such as delayed mei-
otic progression, an absence of full synapsis, unresolved 
interlock-like structures, and a reduction in the mean cell 
chiasma frequency (Zhang et al. 2020; Varas et al. 2015). 
The meiotic defect reported here suggests that SINE3 too 
plays a minor role during meiosis.

Unlike many other gametophyte mutants, the function of 
SINE3 appears to be specific to the gametophyte. SINE3 is 
expressed in sporophytic tissues, such as the root and shoot 
apical meristems, but the homozygous sine3 mutants did not 
exhibit obvious growth defects. One hypothesis is that the 
presence of other proteins, which are expressed in the spo-
rophyte but not the gametophyte, are acting redundantly to 
SINE3. Alternatively, the currently unknown molecular role 
of SINE3 might point towards a step required for the onset 
of gametophytic, but not sporophytic mitosis. For example, 
pollen mitosis I is an asymmetric division that produces a 
cell within a cell and occurs in the absence of a prepro-
phase band (Terasaka and Niitsu 1995; Oh et al. 2010b, 
2010c). Female gametophyte mitosis occurs in the absence 
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of cytokinesis, producing a coenocyte. Thus, important regu-
latory or mechanistic steps might be unique to gametophyte 
mitosis. Investigating the molecular roles of SINE3 might 
shed light on such a mechanism.

A limitation of this study was the inability to recover 
any sine3-1 transgenic lines that were homozygous for 
SINE3pro::GFP-SINE3 or SINE3pro::GFP-SINE3ΔPLPT. 
Eighteen SINE3pro::GFP-SINE3 in sine3-1 and 13 
SINE3pro::GFP-SINE3ΔPLPT in sine3-1 individual trans-
genic lines were isolated. Of those lines, 9 SINE3pro::GFP-
SINE3 in sine3-1 and 3 SINE3pro::GFP-SINE3ΔPLPT in 
sine3-1 lines were further characterized. In both the T2 and 
T3 generations, all plants were hemizygous for the GFP-
fusion construct. The inability to isolate a homozygous line 
seems to suggest that two copies of either SINE3pro::GFP-
SINE3 or SINE3pro::GFP-SINE3ΔPLPT are detrimental. 
Possibly a dose-dependent dominant-negative or neomor-
phic effect of the fusion proteins is at play. Despite this limi-
tation the two independently isolated mutant alleles sine3-1 
and sine3-2 as well as the weaker allele sine3-3 (5’ intron 
insertion) all recapitulate the same phenotype. Sine3-1 was 
outcrossed from two, sine3-2 from one additional T-DNA 
insertion present in the original germplasm. Sine3-1 was 
additionally crossed with the qrt1-4 mutant. This strongly 
suggests that the disruption of the SINE3 open reading frame 
is the cause of the mutant phenotypes of the three lines.

Taken together, we provide evidence that the plant KASH 
protein SINE3 is involved in male and female gametophyte 
development, as related to male meiosis and male and female 
mitosis. Further examination of sine3 mutant defects in mei-
osis and mitosis will shed light on the molecular function of 
SINE3 and its potential interactors.
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