2403.19062v2 [eess.SY] 19 Sep 2024

arxiv

GENESIS-RL: GEnerating Natural Edge-cases with
Systematic Integration of Safety considerations and
Reinforcement Learning

Hsin-Jung Yang*, Joe Beck!, Md Zahid Hasan*, Ekin Beyazit*
Subhadeep Chakraborty®, Tichakorn Wongpiromsarn*, Soumik Sarkar*
*Towa State University, Ames, 1A, USA
TUniversity of Tennessee, Knoxville, TN, USA
Email: {hjy, zahid, ekin, nok, soumiks} @iastate.edu, {jbeck9, schakrab}@utk.edu

Initial scene

Number of
fixed
knobs= 0

Number of
fixed
knobs= 1
(fog = 0%)

Number of
fixed
knobs= 2
(fog =0%)
(rain = 0%)

Intermediate 1

. Fog 1, Raw

|

2 Collision
o | n ‘
_ﬁd

v CARLA
- _—

Intermediate

i Fog 1, Rain 1

Rain deposit 1

Rain deposit 1

Episode rollout

GENESIS-RL: A reinforcement learning framework to progressively manipulate the environment (weather conditions in this
example) for an autonomous system (autonomous vehicle in this case) to systematically synthesize natural edge cases that

may lead to system-level safety issues (collision in this case). Project website: https://hjy77.github.io/GENESIS-RL/

Abstract—In the rapidly evolving field of autonomous vehicles,
the safety and reliability of the system components are fun-
damental requirements. These components are often vulnerable
to complex and unforeseen environments, making natural edge-
case generation essential for enhancing system resilience. This
paper presents GENESIS-RL, a novel framework that leverages
system-level safety considerations and reinforcement learning
techniques to systematically generate naturalistic edge cases.
By simulating challenging conditions that mimic the real-world
situations, our framework aims to rigorously test entire system’s
safety and reliability. Our experimental validation, conducted on
high-fidelity simulator underscores the overall effectiveness of
this framework.

I. INTRODUCTION
Scenario-based testing is one of the key approaches for
the validation of autonomous systems, especially those that
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incorporate learning-enabled components that are known to be
susceptible to rare, unexpected (potentially out-of-distribution)
scenarios [1]. This testing approach is vital not only for
ensuring the safety and reliability of these systems but also
for enabling them to identify and rectify potential failures
in diverse, unforeseen situations. In this context, identifying
and preparing for challenging or edge-case scenarios becomes
critical. Synthesizing realistic edge-case samples and incorpo-
rating these into the training process [2], [3] can significantly
enhance the resilience of learning-enabled modules against
adversarial conditions. By exposing the learning modules to
these pessimistic samples, systems gain the opportunity to
learn from challenging data and better generalize across a
spectrum of real-world conditions. However, given the vast
amount of possible scenarios, manual creation of every sce-
nario is infeasible, making automated edge-case generation
crucial for scalability and effectiveness [4].



In this regard, traditional adversarial attacks on machine
learning models explore the vulnerability of the models by
injecting imperceptible noise into the inputs [5], [6]. These
input perturbation methods, while effective in degrading the
model performance, typically generates unnatural and unre-
alistic samples, diverging from genuine real-world scenarios.
Furthermore, these approaches usually target specific com-
ponents of an autonomous system rather than assessing the
system as a whole. This narrow focus can overlook the holistic
behavior of the system, where, for instance, a failure in the
perception module might be compensated by the system’s
control mechanisms, thus not leading to a failure at the
system level. On the other hand, if the control system is not
able to compensate, a relatively small error in the perception
module may lead to a catastrophic system-level failure. This
highlights the limitation of focusing solely on component-level
vulnerabilities without considering the integrated operation of
the entire system.

Generative models have been used to synthesize edge cases
that are more realistic [7]. However, they are known to produce
samples with artifacts that compromise their realism. These
models, including generative adversarial networks (GANs) [8],
diffusion models [9], and more recently, text-to-image gen-
eration models such as DALLE [10], CogView [11], can
suffer from issues such as unnatural distributions [12], distinct
artifacts and unstable training [13], [14], and slow inference
rates, limiting their effectiveness in producing realistic and
natural scenarios [15], [16].

In this paper, we aim to alleviate these challenges, by
performing edge-case generation with system-level safety ob-
jectives while maintaining the naturalness of the generated
scenarios. We employ the rulebook formalism [17] to precisely
specify system-level safety objectives and leverage the capabil-
ities of Reinforcement Learning (RL) to guide the generation
of scenarios that not only challenge the system across all its
components but also resemble real-world conditions closely.
By focusing on the end-to-end vulnerability of autonomous
systems, our approach aims to generate scenarios where
the system fails to adhere to rulebook safety rules, thereby
identifying potential systemic failures. Also, our proposed
framework ensures that the generated scenarios are not only
challenging but also devoid of unrealistic artifacts (via use
of high-fidelity simulators), offering a more effective and
comprehensive approach to testing and validating the safety
and reliability of autonomous systems.

In summary, the key contributions of this paper are as
follows:

o We propose a synthetic edge case data generation frame-
work for system-level safety concerns in learning-enabled
autonomous systems.

o We propose an RL-based intelligent sampling technique
that can identify parametric settings of high-fidelity sim-
ulators to generate natural edge cases that may lead to vi-
olation of safety rules by a learning-enabled autonomous
system.

e« We provide extensive experimental validation of our
framework using the CARLA simulator [18]. We also
demonstrate that a pre-trained RL policy can generate
edge-cases for new scenarios with minimal to no training
steps, thus accelerating the process of assessment and
verification of learning-enabled autonomous systems.

II. RELATED WORKS

Recent research has explored diverse approaches to gener-
ating edge cases. Efforts using cost functions to pinpoint high-
risk scenarios have shown potential yet often neglect critical
factors like unpredictable trajectories [19]-[21]. Perception-
based techniques, such as constant norm-based perturbation,
target the system’s perception capabilities but may not address
the system’s overall performance comprehensively [2], [7],
[22], [23]. While innovative, methods that extract and recreate
accidents from videos face challenges in accurately replicating
real-world complexity [24].

Additionally, some edge-case generation software toolkits,
like VerifAI [25], are capable of analysis, falsification, and
data augmentation for systems utilizing ML architectures.
These toolkits leverage an “abstract feature space” of higher-
level information compared to the low-level “concrete feature
space” of image pixels to search for rule violation scenarios
in a given environment. Domain randomization effectively
bridges the sim-to-real gap [26], [27], but it can lead to
training an overly conservative policy depending on the range
of randomization. System identification [28] offers a feasible
solution by estimating environmental parameters through lim-
ited interaction with real-world scenarios.

Lastly, Bayesian optimization-based methods often generate
challenging scenarios with limited diversity and insufficient
complexity [2], [19]. These methods typically produce short
scenario segments with limited environment interactions since
they require a predefined parameter range [29]. Consequently,
they limit the assessment of system performance and fail to
capture realistic edge cases with diverse interactions.

III. BACKGROUND

In this work, a system refers to the entity that is being
evaluated for its ability to navigate and perform tasks within
variable conditions. It could be an autonomous vehicle or any
computational model. The world denotes the simulated sur-
roundings in which the system operates, a construct designed
to emulate real-world dynamics where every aspect can have
an effect on the system’s behavior. Lastly, an actor is an entity
other than the system that also lives in the world.

As an example, in an autonomous driving context, the
system could be the ego vehicle, and the world is where the
ego vehicle is situated. Other entities, such as other vehicles
and pedestrians on the street, are actors. Together with crucial
factors such as weather and road conditions (including road
markings and traffic signs) that are not part of the system but
could affect the system’s behavior, they are all parts of the
world.



A. Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) [30] is an extension
of RL that harnesses the representational power of deep neural
networks. At its core, DRL adheres to the Markov Decision
Process (MDP) framework, mathematically formulated as a
4-tuple (S, A, P, R), where:

o S represents the state space, comprising all conceivable

states s; at a given time t.

o A denotes the action space, encompassing all actions a;
available to the agent at time ¢.

o P the transition probability function, indicating the prob-
ability of transitioning from one state s; to another state
S¢+1 given an action ay.

e R : S x AxS — R is the reward function, which
assigns a numerical reward for each transition between
states under specific actions.

In a typical DRL setup, the DRL agent is the entity that
we hope to train, whereas the environment is the setting or
domain wherein the DRL agent operates and makes decisions,
which encompasses all aspects mentioned above in the MDP
framework, including the state space S, action space A, the
transition probability function P and rewards R.

Under this MDP framework, the agent’s decision-making
strategy at any time ¢ is governed by a policy m, which
maps the current state s; to an action a;. In DRL, this
policy is represented with neural networks, denoted as Ty,
where 6 represents the neural network’s trainable parameters.
This configuration enables the agent to dynamically refine its
strategy by updating 6, thus improving its performance and
adaptability in navigating the environment.

The objective of DRL is to discover an optimal policy 7
that guides the agent to maximize the expected return along
a trajectory 7, which is a sequence of states and actions
(so, a0, 51,01, ..., ST,ar). The expected return is calculated
as J(0) = E;un, [ZtTZO Y R(st, at, s1+1)], where v is the
discount factor and 7" the length of the trajectory. The concept
of episodes emerges naturally from this setup. An episode
describes a complete trajectory from an initial state to a
terminal state [31].

B. Rulebook

We will use the rulebook formalism [17] to precisely de-
scribe the correct behavior of the system. A rulebook consists
of a set A of rules; each is evaluated over realizations. A
realization is defined as a sequence of states of the system
and all the other actors and features in the world. Given a set
> of realizations, a rule is defined as a function A : ¥ — R>¢
that measures the degree of violation of its argument. If
A(z) < A(y), then the realization y violates the rule \ to
a greater extent than does x. In particular, A(x) = 0 indicates
that a realization x is fully compliant with the rule. Note that
the definition of the violation metric might be analytical, “from
first principles”, or be the result of a learning process.

In this work, we utilize the rulebook to calculate the
rewards. A higher violation score leads to increased rewards,

encouraging the agent to explore scenarios that challenge the
system’s safety protocols and resilience, thereby generating
critical edge cases. For a detailed description of the rules used
for reward calculation, please refer to the Reward calculator
subsection in the Experiments section.

IV. METHODOLOGY

At a high level, GENESIS-RL utilizes DRL to dynamically
explore and manipulate the conditions of a simulated world,
aimed at generating challenging yet naturalistic edge-cases for
a system. To achieve this, we parameterized the world with
parametric knobs—adjustable settings that control various
aspects of the simulation, which in the case of autonomous
driving, could include dynamic weather patterns, object place-
ments, traffic flow, and so on. By adjusting these knobs, the
DRL agent is provided with the capability to systematically
probe and alter the simulated world, effectively simulating
different edge cases that the system under test might encounter.

Remark. Our objective is to craft and manipulate the world
(via simulation) to induce challenging scenes. By doing so, we
seek to generate edge cases that test the limits of the system’s
current capabilities, aiming to reveal potential failure cases. In
contrast to typical DRL works, we do not focus on improving
the system’s capabilities in this work.

A. DRL Problem Formulation

Following the MDP framework, we define the state space,
action space, and reward of our problem as follows:

1) State space: The state space encompasses all conceiv-
able states s;, including permutations of parametric knobs, the
system’s behaviors, other actors, and features of the world.
This state representation captures the dynamics of the world
and the DRL agent’s action inputs, and is conveyed through
information obtained by the system.

2) Action space: The action space is the set of all possible
actions a, available to the agent, corresponding to the adjust-
ments the agent can make to the parametric knobs within the
simulation. To ensure that the changes introduced by the DRL
agent lead to scenes that are natural and realistic, we imposed
constraints on the extent of modifications possible at each step.
Specifically, we limit the maximum percentage change that can
be applied to any parametric knob by the DRL agent in a single
action. This measure prevents extreme, unrealistic variations
in conditions, thereby maintaining the realistic nature of the
simulated scenes while still challenging the system under test.

3) Reward: The reward mechanism is designed to motivate
the DRL agent to discover edge cases. It comprises two
components: the learning module loss 7, and the violation
score 7, derived from the rulebook. The learning module
loss is the loss experienced by the learning-enabled module
within the system, which acts as a direct reward to the agent,
where a lower loss indicates better performance of the module
at performing its designated task. The violation score is an
indirect reward provided to the agent due to the imperfection
of the learning-enabled modules. For example, in autonomous
driving, the rulebook evaluates the ego vehicle’s trajectory



against a set of predefined rules, penalizing actions that lead to
unsafe scenarios. The total reward r; at time step ¢ is calculated
as a combination of these two elements.

B. GENESIS-RL Framework

To implement our DRL formulation, we designed a frame-
work consisting of the following components: the DRL agent,
the initial scene generator, the simulator, the system, and the
reward calculator. The latter four together form an environment
for the DRL agent, facilitating continuous learning of the DRL
agent through dynamic interaction.

1) DRL agent: The DRL agent is the decision-making core.
At each time step ¢, it obtains the current state s; of the
environment and executes an action a;. The environment then
responds to this action by evolving to a new state based on the
updated parametric knobs of the simulated world and issues a
scalar reward r; to the agent as feedback.

2) Initial scene generator: The initial scene generator is
responsible for creating a distribution of the initial scenes
(a configuration of physical objects, the system and actors)
and sampling from them in the simulated world. It dictates
the initial conditions the system will encounter, therefore
determining the initial scene observed by the DRL agent.

3) Simulator: The simulator provides a realistic and in-
teractive backdrop where the DRL agent’s actions and the
system’s outputs are executed and new frames are updated,
reflecting the changes in real-time.

4) System: As defined in the background section, The
system is the entity being evaluated within variable conditions.

5) Reward calculator: As defined in the previous section,
the reward calculator calculates the reward r; for time step t.

C. Training the DRL Agent

Putting things together, a single step of the training looks
like as follows (See Fig. 1): at each time step ¢, the DRL agent
receives a state s; from the simulator and executes an action
a¢ on the simulator. The simulator reflects the changes based
on the updated parametric knobs and the changes are subse-
quently captured by the system through its sensors. The system
then generates control signals based on its inputs, which leads
to a system trajectory update. The updated trajectory is then
evaluated by the rulebook for violation score calculation and
is sent back to the DRL agent combined with the learning
module loss.

The DRL agent is trained through interactions with the
environment, where it observes the states, applies actions,
and receives rewards. The training process involves iterative
episodes of simulation, during which the agent refines its
policy mg to maximize the cumulative reward, effectively
learning to identify and create challenging scenarios for the
system.

V. EXPERIMENTS

In this paper, we explore the weather conditions that can
lead to natural edge cases for autonomous driving. Hence,
we grant the DRL agent exclusive control over the weather
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Fig. 1. Architectural overview of the proposed framework. At each step
t, the DRL agent observes a state s (1) and executes an action a: (2).
The simulator then updates the simulated world accordingly and creates an
updated frame. The updated frame (3) is then processed by the system to
generate vehicle control signals (4). The control signals are then applied to
the simulated world to update the vehicle trajectory (5). The reward calculator
evaluates the performance by comparing the ego vehicle’s trajectory against
the rulebook and also computes the learning module loss, issuing a scalar
reward r; (6) that guides the DRL agent’s learning process.

conditions in the simulated world. The system we evaluate
is the ego vehicle, tasked to navigate through the simulated
world based on sensor feedback. In subsequent sections, we
detail the operationalization of the GENESIS-RL framework’s
components, starting with the DRL agent and encompassing
the environment, then the training and testing setups and
evaluation metrics.

Remark. Despite only having weather parameters as avail-
able actions in this work, we can also include other factors
such as the behavior of other actors into our framework
by parameterizing their behavior in the simulation (such as
the aggressiveness of the other actors using CARLA’s traffic
manager, or the position and orientation of the actors using
Scenic [32]).

A. DRL Agent

We have chosen the Proximal Policy Optimization (PPO)
algorithm [33] as the DRL agent for its stabilized training
capabilities and proficiency in handling continuous state and
action spaces. We adopted the implementation of Stable-
Baselines3 [34]. The state and action spaces are as follows:

« State space: A 640x480 three channel numpy array from
the RGB camera attached to the ego vehicle.

o Action space: A 5-tuple that represents the delta in value
for each parametric knob. The parametric knobs are: the
fog density, the precipitation density, the precipitation
deposit level, the sun altitude angle, and the sun azimuth
angle. These actions are bounded between [—1,1], and
are scaled by a set of preset scalar factors to satisfy the
perturbation limit, which is 5%. For example, if the fog
density ranges from O to 100, then the corresponding



parametric knob would be scaled by a factor of 5 such
that the change in fog density level between each step in
an episode will not exceed 5%.

As mentioned earlier, the DRL agent is developing a policy
g parameterized by a neural network 6. Here, the architecture
of 6 is a CNN, which takes the RGB three channel arrays
(640,480, 3) as inputs, and outputs a 5-tuple action.

B. Environment

The initial scene generator, the simulator, the system, and
the reward calculator collaboratively create the environment
of the DRL agent. These parts together generate the state and
reward required to train the DRL agent and react to the actions
of the DRL agent dynamically.

1) Simulator: We employ CARLA [18] to simulate intri-
cate, dynamic urban settings with high visual fidelity.

2) Initial scene generator: Scenic [32] was utilized for
creating the initial scenes as a strategic approach to ensure
precision and versatility in our experimental setup. It allows
us to craft realistic, detailed and specific initial scenes, thereby
enhancing the relevance and challenge of each test instance
presented to the system. Specifically, this generator is tasked
with assigning the positions of vehicles within the simulator:
For each initial scene, we introduce 30 vehicles, including
the ego vehicle, a lead vehicle, a neighboring vehicle on the
front right, and the remaining 27 vehicles randomly positioned
within a specific radius of the ego vehicle. Vehicle colors,
models, and the distance between the ego, lead, and neighbor
vehicles could be either varied randomly or deterministic,
depending on the use case. All vehicles except for the ego
vehicle are set to CARLA’s autopilot in order to provide a
dynamic environment.

We leveraged CARLA’s [18] record feature to efficiently
catalog the configurations of the initial scenes into json files.
These saved scenes are then randomly sampled and loaded
back into the simulation between training or testing episodes.
A total of 1199 initial scenes for Town05 and 1202 for Townl0
were generated and cataloged using this generator.

3) System: The system in our study is an ego vehicle that
navigates itself within the simulated world with RGB and
depth cameras onboard. It is equipped with a perception-
based controller, which consists of two parts: a perception
model for object detection, utilizing a pre-trained YOLOvVS5s
model [35] to process RGB images from the onboard RGB
camera, and a modified CARLA [18] behavior controller that
translates detection results into vehicle control signals. In our
implementation, the input to the modified behavior controller
includes the detection output from the perception model along
with depth information from the onboard depth camera. By
overlapping the 2D bounding boxes with the depth image,
we were able to obtain the depth of the center point of the
bounding boxes, which will then be used to obtain the 3D
bounding boxes of the detected objects. Leveraging these 3D
bounding boxes, combined with real-time data on the vehicle’s
position, orientation, velocity, and the surrounding map, the

controller adeptly synthesizes these inputs to generate vehicle
control signals, i.e., throttle, brake, and steering signals.

4) Reward calculator: The reward r, is calculated by
the weighted sum of the learning module loss r,, and the
violation score 7,. The learning module loss is defined by the
Intersection Over Union (IOU) metric, assessing the system’s
object detection precision in real-time. Simultaneously, the
violation score is generated by the rulebook evaluating a
trajectory 7 = si, S2, S3,....ST, consisting of the following
two violation scores based on two critical safety rules:

 Vehicle collision rule, \.(7), violated if the ego vehicle

collides with other vehicles:

T
Ae(7) = ae(st) (1)

a(st) = v, if collision happens, 0 otherwise  (2)

o Vehicle proximity rule, A,(7), violated when the distance
d between the ego vehicle and the vehicle in front is less
than a predetermined distance (which is set to 5 meters):

Ap(7) =D ap(se) 3)

ap(sy) = vy, if d < 5,0 otherwise 4)

where v, and v, are the speeds of the ego vehicle in meters
per second when a violation occurs. a.(s;) and «(s;) are then
weighted by their respective weights w. and w,, then summed
and transformed using the natural logarithm to compute r,.
Finally, the reward r; is calculated as follows:

e =Tm + 7y = e % +in(l + weore + wparp) 5)

where iou is the IOU metric, (w.,wp) = (500,100). The
rationale for incorporating speed values when a violation
occurs is to ensure that violations occurring at higher speeds
are assigned higher violation scores.

C. Training and Testing

Our experiments are divided into two phases: training and
testing, each aimed at evaluating the effectiveness of our
framework.

1) Training: The training experiments were conducted in
CARLA’s [18] TownlO, an urban map setting with multiple
four-way intersections. To ensure the DRL agent experi-
ences a broad range of initial scene configurations, we start
each episode by randomly selecting from 1202 pre-cataloged
scenes, each featuring vehicles with randomized colors and
makes. This setup is further enhanced by the stochastic be-
haviors of non-ego vehicles, governed by CARLA’s [18] traffic
manager, introducing both realism and complexity. The vari-
able vehicle arrangement, appearances, and the other vehicle
agents’ stochastic nature significantly enriched the training
landscape, equipping the DRL agent to adeptly uncover the
system’s vulnerabilities. The DRL agent is trained with 40960
steps, with an episode length of 512. The policy of the DRL
agent updates every four trajectories.



2) Testing: The testing experiments unfolded within
CARLA’s [18] Town05, a map setting featuring pine-covered
hills and a network of roads and a highway. In this phase, we
aimed for diverse yet repeatable conditions by selecting 50
out of 1199 cataloged scenes from the initial scene generator.
This is realized by using a fixed random seed, ensuring these
scenarios are consistent across different experiment runs. The
deterministic setting extends to other vehicles’ appearances
and their behavior, i.e., the color/make of the vehicles and the
path they follow throughout the testing episode are determin-
istic, chosen to maintain uniformity to allow each scenario’s
outcomes to be directly comparable. This method ensures that
despite the inherent variability of the test runs, the foundational
conditions remain constant, facilitating an accurate assessment
of performance across varying scenarios.

Records of violation scores and other information were kept,
with averages calculated for analysis. These findings were
benchmarked against two specific scenarios: our system navi-
gating in clear weather and under randomly perturbed weather
conditions by a non-strategic agent, providing a comprehensive
evaluation of the GENESIS-RL framework. The length of each
testing episode is identical to that of the training, which is 512
time steps in the simulation.

D. Evaluation Metrics

In our evaluation process, we employ two metrics: the
violation score and the minimum following distance deficit
Omsd. The former metric has been detailed earlier in this
section and measures the system’s adherence to a set of
predefined safety rules. For the latter, we introduce a metric by
leveraging the concept of minimum following distance d;x.,
as defined in Responsibility-Sensitive Safety (RSS) [36]. We
adopt a simplified version of the RSS criterion, which assumes
that both the ego and lead vehicles have the same maximum
deceleration rate and that the reaction time of the autonomous
system is negligible. The simplified formula for calculating
dmin 1s given by the following equation:

2 _ .2
Vg — Uj

%a )} (6)
where v., v; the speed of the ego and lead vehicle, respec-
tively; a the maximum deceleration of both vehicles, which is
5 m/s?.

The minimum following distance deficit d,,74 is then cal-
culated by the discrepancy between the actual distance d
maintained by the ego vehicle and the calculated d,,;,, i.e.,
Omfd = max(0,dpn — d), where d is the distance between
the ego and lead vehicle. Specifically, it quantifies how much
closer the ego vehicle comes to the lead vehicle than is deemed
safe according to the simplified RSS criterion. In the following
section, we will show the sum of this metric over all 50 runs.
Showing the extent of the ego vehicle getting too close to the
lead car.

dpmin = max{0, (

E. Computational Time

The experiments were conducted on a computational setup
with a 32-core CPU, 64GB of RAM, and an NVIDIA GTX

TITAN X graphics card. A complete training run required
approximately 3-4 hours on this hardware, while a testing run
took about 1-2 minutes per episode.

VI. RESULTS AND DISCUSSION

In this section, we present the outcomes of our experiments,
including an analysis of the performance and efficacy of
our framework. The results underscore the capability of our
approach to generate meaningful edge cases, highlighting key
findings and insights gained through testing scenarios. We
validate our approach by answering the following questions:

o What impact do the generated edge cases have on the

performance and decision-making processes of the sys-
tem?

o How effectively does our framework generate edge cases

that are both challenging and realistic for the system
under test?

A. Impact of GENESIS-RL Generated Edge Cases on System
Performance

Our analysis of GENESIS-RL’s impact on the system re-
veals a notable increase in both violation scores (See Fig. 2)
as well as the sum of minimum following distance deficit,
illustrating its ability to effectively challenge and exploit
system vulnerabilities. Specifically, the scenario output from
GENESIS-RL’s policy leads to significant variations in system
performance, as demonstrated by the following observations:

1) Proximity violation score increase: Under weather sce-
narios controlled by GENESIS-RL, the system’s braking re-
sponse was markedly delayed compared to its reaction under
other testing scenarios and, in some instances, the braking
behavior is altogether absent. This delay/absence is quantifi-
ably demonstrated through the analysis of the ego vehicle’s
telemetry data (See Fig. 3(c), the system operating under the
GENESIS-RL policy maintains brakes much later, i.e., the blue
curve is shifted more to the right compared to the two other
scenarios), showcasing a contrast in the system’s ability to
maintain safe following distances under varied environmental
influences.

2) Collision violation score increase: Further looking into
the types of collision violations induced by GENESIS-RL, we
categorize them into three main failure modes:

« Non-detection collisions: Instances where the system fails
to detect the leading vehicle at all, resulting in high-speed
impacts (See Fig. 3(a)). This failure mode underscores
critical perception system vulnerabilities under complex
environmental conditions orchestrated by GENESIS-RL.

« Intermittent detection collisions: Occurrences where the
system initially detects the lead vehicle but subsequently
loses track of it, leading to collisions at reduced speeds
(See Fig. 3(b). These incidents underscore the deficien-
cies in the system’s ongoing tracking, and/or highlight the
shortcomings in its ability to respond promptly within the
scenarios induced by GENESIS-RL.

o Delayed detection collision: Occurrences where the sys-
tem detects the lead vehicle too late to stop in time,



leading to collisions at reduced speeds (See Fig. 3(c).
These incidents highlight the deficiencies in the system’s
detection mechanisms.

These findings not only exemplify GENESIS-RL’s capabil-
ity in uncovering and leveraging system weaknesses but also
emphasize the imperative need for bolstered system robustness
against a wide spectrum of real-world conditions.

B. Effectiveness of GENESIS-RL in Generating Edge Cases

Our results show that with the GENESIS-RL framework,
we were able to generate edge cases that pose significant
challenges not only to automated systems but also to human
perception and response capabilities. A prime example of such
conditions includes scenarios combining foggy weather with
heavy rainfall or nocturnal settings accentuated by heavy rain,
where the reflections on wet surfaces severely disrupt the de-
tection capabilities of autonomous systems. These conditions,
inherently challenging due to their impact on visibility and
sensor efficiency, highlight the scenario generation capabili-
ties of GENESIS-RL, underscoring its potential for creating
diverse testing environments that closely mimic real-world
driving complexities.

During inference, we observed that the DRL agent relies
heavily on manipulating certain parametric knobs (such as
rain and fog density) to introduce challenges to the system.
To investigate GENESIS-RL’s capability to generate a variety
of edge cases, we conducted experiments with fog and rain
density levels set to zero, individually and in combination.
Despite the absence of these parametric knobs, our framework
is still capable of creating edge cases that undermine the
system’s performance, demonstrating its robustness in edge
case generation beyond the reliance on certain powerful and
effective parametric knobs (See banner figure on the first page
for reference).
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scenes.
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Fig. 3. Examples of the system failure modes based on vehicle telemetry.
(a) Example of a non-detection collision - where the system crashed into the
vehicle in front at full/high speed due to the non-detection of the other vehicle.
(b) Intermittent detection collision - where the intermittent detection prevents
the ego vehicle from stopping in time, leading to a lower-speed collision. (c)
Delayed detection collision - where the system detects the lead car too late to
stop in time. In the tests depicted in this figure, the ego vehicle successfully
avoided collisions across both sunny and random weather scenarios and only
failed under the conditions generated by GENESIS-RL.

VII. CONCLUSION AND FUTURE WORK

In conclusion, our study demonstrates the GENESIS-RL
framework’s capability to generate complex and challenging
edge cases for autonomous systems, which are critical for
thoroughly testing and enhancing the reliability of systems as
such. Moreover, GENESIS-RL proved capable of producing
edge cases that will lead to system failure even in the absence
of some dominating factors, underscoring its robustness and
potential broader application in safety-critical testing environ-
ments.

The implications of the results from our work is manifold.
First, they highlight the need for including a wide range of
challenging scenarios in the testing protocols for autonomous
systems, ensuring they are well-equipped to handle the in-
tricacies of complex and dynamic environments. Additionally,
the ability of GENESIS-RL to generate test conditions without
relying exclusively on dominant factors showcases its value in
crafting safer, more dependable autonomous system solutions.

In future work, we aim to expand our exploration to include
a wider spectrum of parameters, such as a more comprehensive
range of weather parameters, behaviors of other actors (e.g.,
vehicles and pedestrians) to further enhance the scenario gen-
eration capabilities of GENESIS-RL, thereby facilitating the



creation of more diverse and challenging testing environments
for autonomous systems.
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