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AbstractÐIn the rapidly evolving field of autonomous vehicles,
the safety and reliability of the system components are fun-
damental requirements. These components are often vulnerable
to complex and unforeseen environments, making natural edge-
case generation essential for enhancing system resilience. This
paper presents GENESIS-RL, a novel framework that leverages
system-level safety considerations and reinforcement learning
techniques to systematically generate naturalistic edge cases.
By simulating challenging conditions that mimic the real-world
situations, our framework aims to rigorously test entire system’s
safety and reliability. Our experimental validation, conducted on
high-fidelity simulator underscores the overall effectiveness of
this framework.

I. INTRODUCTION

Scenario-based testing is one of the key approaches for

the validation of autonomous systems, especially those that

This work was partly supported by the National Science Foundation, USA
under grants CNS-1845969, CNS-2141153, CNS-1954556.

incorporate learning-enabled components that are known to be

susceptible to rare, unexpected (potentially out-of-distribution)

scenarios [1]. This testing approach is vital not only for

ensuring the safety and reliability of these systems but also

for enabling them to identify and rectify potential failures

in diverse, unforeseen situations. In this context, identifying

and preparing for challenging or edge-case scenarios becomes

critical. Synthesizing realistic edge-case samples and incorpo-

rating these into the training process [2], [3] can significantly

enhance the resilience of learning-enabled modules against

adversarial conditions. By exposing the learning modules to

these pessimistic samples, systems gain the opportunity to

learn from challenging data and better generalize across a

spectrum of real-world conditions. However, given the vast

amount of possible scenarios, manual creation of every sce-

nario is infeasible, making automated edge-case generation

crucial for scalability and effectiveness [4].
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In this regard, traditional adversarial attacks on machine

learning models explore the vulnerability of the models by

injecting imperceptible noise into the inputs [5], [6]. These

input perturbation methods, while effective in degrading the

model performance, typically generates unnatural and unre-

alistic samples, diverging from genuine real-world scenarios.

Furthermore, these approaches usually target specific com-

ponents of an autonomous system rather than assessing the

system as a whole. This narrow focus can overlook the holistic

behavior of the system, where, for instance, a failure in the

perception module might be compensated by the system’s

control mechanisms, thus not leading to a failure at the

system level. On the other hand, if the control system is not

able to compensate, a relatively small error in the perception

module may lead to a catastrophic system-level failure. This

highlights the limitation of focusing solely on component-level

vulnerabilities without considering the integrated operation of

the entire system.

Generative models have been used to synthesize edge cases

that are more realistic [7]. However, they are known to produce

samples with artifacts that compromise their realism. These

models, including generative adversarial networks (GANs) [8],

diffusion models [9], and more recently, text-to-image gen-

eration models such as DALLE [10], CogView [11], can

suffer from issues such as unnatural distributions [12], distinct

artifacts and unstable training [13], [14], and slow inference

rates, limiting their effectiveness in producing realistic and

natural scenarios [15], [16].

In this paper, we aim to alleviate these challenges, by

performing edge-case generation with system-level safety ob-

jectives while maintaining the naturalness of the generated

scenarios. We employ the rulebook formalism [17] to precisely

specify system-level safety objectives and leverage the capabil-

ities of Reinforcement Learning (RL) to guide the generation

of scenarios that not only challenge the system across all its

components but also resemble real-world conditions closely.

By focusing on the end-to-end vulnerability of autonomous

systems, our approach aims to generate scenarios where

the system fails to adhere to rulebook safety rules, thereby

identifying potential systemic failures. Also, our proposed

framework ensures that the generated scenarios are not only

challenging but also devoid of unrealistic artifacts (via use

of high-fidelity simulators), offering a more effective and

comprehensive approach to testing and validating the safety

and reliability of autonomous systems.

In summary, the key contributions of this paper are as

follows:

• We propose a synthetic edge case data generation frame-

work for system-level safety concerns in learning-enabled

autonomous systems.

• We propose an RL-based intelligent sampling technique

that can identify parametric settings of high-fidelity sim-

ulators to generate natural edge cases that may lead to vi-

olation of safety rules by a learning-enabled autonomous

system.

• We provide extensive experimental validation of our

framework using the CARLA simulator [18]. We also

demonstrate that a pre-trained RL policy can generate

edge-cases for new scenarios with minimal to no training

steps, thus accelerating the process of assessment and

verification of learning-enabled autonomous systems.

II. RELATED WORKS

Recent research has explored diverse approaches to gener-

ating edge cases. Efforts using cost functions to pinpoint high-

risk scenarios have shown potential yet often neglect critical

factors like unpredictable trajectories [19]±[21]. Perception-

based techniques, such as constant norm-based perturbation,

target the system’s perception capabilities but may not address

the system’s overall performance comprehensively [2], [7],

[22], [23]. While innovative, methods that extract and recreate

accidents from videos face challenges in accurately replicating

real-world complexity [24].

Additionally, some edge-case generation software toolkits,

like VerifAI [25], are capable of analysis, falsification, and

data augmentation for systems utilizing ML architectures.

These toolkits leverage an ºabstract feature spaceº of higher-

level information compared to the low-level ºconcrete feature

spaceº of image pixels to search for rule violation scenarios

in a given environment. Domain randomization effectively

bridges the sim-to-real gap [26], [27], but it can lead to

training an overly conservative policy depending on the range

of randomization. System identification [28] offers a feasible

solution by estimating environmental parameters through lim-

ited interaction with real-world scenarios.

Lastly, Bayesian optimization-based methods often generate

challenging scenarios with limited diversity and insufficient

complexity [2], [19]. These methods typically produce short

scenario segments with limited environment interactions since

they require a predefined parameter range [29]. Consequently,

they limit the assessment of system performance and fail to

capture realistic edge cases with diverse interactions.

III. BACKGROUND

In this work, a system refers to the entity that is being

evaluated for its ability to navigate and perform tasks within

variable conditions. It could be an autonomous vehicle or any

computational model. The world denotes the simulated sur-

roundings in which the system operates, a construct designed

to emulate real-world dynamics where every aspect can have

an effect on the system’s behavior. Lastly, an actor is an entity

other than the system that also lives in the world.

As an example, in an autonomous driving context, the

system could be the ego vehicle, and the world is where the

ego vehicle is situated. Other entities, such as other vehicles

and pedestrians on the street, are actors. Together with crucial

factors such as weather and road conditions (including road

markings and traffic signs) that are not part of the system but

could affect the system’s behavior, they are all parts of the

world.



A. Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) [30] is an extension

of RL that harnesses the representational power of deep neural

networks. At its core, DRL adheres to the Markov Decision

Process (MDP) framework, mathematically formulated as a

4-tuple (S,A, P,R), where:

• S represents the state space, comprising all conceivable

states st at a given time t.
• A denotes the action space, encompassing all actions at

available to the agent at time t.
• P the transition probability function, indicating the prob-

ability of transitioning from one state st to another state

st+1 given an action at.
• R : S × A × S′ → R is the reward function, which

assigns a numerical reward for each transition between

states under specific actions.

In a typical DRL setup, the DRL agent is the entity that

we hope to train, whereas the environment is the setting or

domain wherein the DRL agent operates and makes decisions,

which encompasses all aspects mentioned above in the MDP

framework, including the state space S, action space A, the

transition probability function P and rewards R.

Under this MDP framework, the agent’s decision-making

strategy at any time t is governed by a policy π, which

maps the current state st to an action at. In DRL, this

policy is represented with neural networks, denoted as πθ,

where θ represents the neural network’s trainable parameters.

This configuration enables the agent to dynamically refine its

strategy by updating θ, thus improving its performance and

adaptability in navigating the environment.

The objective of DRL is to discover an optimal policy π∗
θ

that guides the agent to maximize the expected return along

a trajectory τ , which is a sequence of states and actions

(s0, a0, s1, a1, ..., sT , aT ). The expected return is calculated

as J(θ) = Eτ∼πθ
[
∑T

t=0
γtR(st, at, st+1)], where γ is the

discount factor and T the length of the trajectory. The concept

of episodes emerges naturally from this setup. An episode

describes a complete trajectory from an initial state to a

terminal state [31].

B. Rulebook

We will use the rulebook formalism [17] to precisely de-

scribe the correct behavior of the system. A rulebook consists

of a set Λ of rules; each is evaluated over realizations. A

realization is defined as a sequence of states of the system

and all the other actors and features in the world. Given a set

Σ of realizations, a rule is defined as a function λ : Σ → R≥0

that measures the degree of violation of its argument. If

λ(x) < λ(y), then the realization y violates the rule λ to

a greater extent than does x. In particular, λ(x) = 0 indicates

that a realization x is fully compliant with the rule. Note that

the definition of the violation metric might be analytical, ªfrom

first principlesº, or be the result of a learning process.

In this work, we utilize the rulebook to calculate the

rewards. A higher violation score leads to increased rewards,

encouraging the agent to explore scenarios that challenge the

system’s safety protocols and resilience, thereby generating

critical edge cases. For a detailed description of the rules used

for reward calculation, please refer to the Reward calculator

subsection in the Experiments section.

IV. METHODOLOGY

At a high level, GENESIS-RL utilizes DRL to dynamically

explore and manipulate the conditions of a simulated world,

aimed at generating challenging yet naturalistic edge-cases for

a system. To achieve this, we parameterized the world with

parametric knobsÐadjustable settings that control various

aspects of the simulation, which in the case of autonomous

driving, could include dynamic weather patterns, object place-

ments, traffic flow, and so on. By adjusting these knobs, the

DRL agent is provided with the capability to systematically

probe and alter the simulated world, effectively simulating

different edge cases that the system under test might encounter.

Remark. Our objective is to craft and manipulate the world

(via simulation) to induce challenging scenes. By doing so, we

seek to generate edge cases that test the limits of the system’s

current capabilities, aiming to reveal potential failure cases. In

contrast to typical DRL works, we do not focus on improving

the system’s capabilities in this work.

A. DRL Problem Formulation

Following the MDP framework, we define the state space,

action space, and reward of our problem as follows:

1) State space: The state space encompasses all conceiv-

able states st, including permutations of parametric knobs, the

system’s behaviors, other actors, and features of the world.

This state representation captures the dynamics of the world

and the DRL agent’s action inputs, and is conveyed through

information obtained by the system.

2) Action space: The action space is the set of all possible

actions at available to the agent, corresponding to the adjust-

ments the agent can make to the parametric knobs within the

simulation. To ensure that the changes introduced by the DRL

agent lead to scenes that are natural and realistic, we imposed

constraints on the extent of modifications possible at each step.

Specifically, we limit the maximum percentage change that can

be applied to any parametric knob by the DRL agent in a single

action. This measure prevents extreme, unrealistic variations

in conditions, thereby maintaining the realistic nature of the

simulated scenes while still challenging the system under test.

3) Reward: The reward mechanism is designed to motivate

the DRL agent to discover edge cases. It comprises two

components: the learning module loss rm and the violation

score rv derived from the rulebook. The learning module

loss is the loss experienced by the learning-enabled module

within the system, which acts as a direct reward to the agent,

where a lower loss indicates better performance of the module

at performing its designated task. The violation score is an

indirect reward provided to the agent due to the imperfection

of the learning-enabled modules. For example, in autonomous

driving, the rulebook evaluates the ego vehicle’s trajectory



against a set of predefined rules, penalizing actions that lead to

unsafe scenarios. The total reward rt at time step t is calculated

as a combination of these two elements.

B. GENESIS-RL Framework

To implement our DRL formulation, we designed a frame-

work consisting of the following components: the DRL agent,

the initial scene generator, the simulator, the system, and the

reward calculator. The latter four together form an environment

for the DRL agent, facilitating continuous learning of the DRL

agent through dynamic interaction.

1) DRL agent: The DRL agent is the decision-making core.

At each time step t, it obtains the current state st of the

environment and executes an action at. The environment then

responds to this action by evolving to a new state based on the

updated parametric knobs of the simulated world and issues a

scalar reward rt to the agent as feedback.

2) Initial scene generator: The initial scene generator is

responsible for creating a distribution of the initial scenes

(a configuration of physical objects, the system and actors)

and sampling from them in the simulated world. It dictates

the initial conditions the system will encounter, therefore

determining the initial scene observed by the DRL agent.

3) Simulator: The simulator provides a realistic and in-

teractive backdrop where the DRL agent’s actions and the

system’s outputs are executed and new frames are updated,

reflecting the changes in real-time.

4) System: As defined in the background section, The

system is the entity being evaluated within variable conditions.

5) Reward calculator: As defined in the previous section,

the reward calculator calculates the reward rt for time step t.

C. Training the DRL Agent

Putting things together, a single step of the training looks

like as follows (See Fig. 1): at each time step t, the DRL agent

receives a state st from the simulator and executes an action

at on the simulator. The simulator reflects the changes based

on the updated parametric knobs and the changes are subse-

quently captured by the system through its sensors. The system

then generates control signals based on its inputs, which leads

to a system trajectory update. The updated trajectory is then

evaluated by the rulebook for violation score calculation and

is sent back to the DRL agent combined with the learning

module loss.

The DRL agent is trained through interactions with the

environment, where it observes the states, applies actions,

and receives rewards. The training process involves iterative

episodes of simulation, during which the agent refines its

policy πθ to maximize the cumulative reward, effectively

learning to identify and create challenging scenarios for the

system.

V. EXPERIMENTS

In this paper, we explore the weather conditions that can

lead to natural edge cases for autonomous driving. Hence,

we grant the DRL agent exclusive control over the weather

Fig. 1. Architectural overview of the proposed framework. At each step
t, the DRL agent observes a state st (1) and executes an action at (2).
The simulator then updates the simulated world accordingly and creates an
updated frame. The updated frame (3) is then processed by the system to
generate vehicle control signals (4). The control signals are then applied to
the simulated world to update the vehicle trajectory (5). The reward calculator
evaluates the performance by comparing the ego vehicle’s trajectory against
the rulebook and also computes the learning module loss, issuing a scalar
reward rt (6) that guides the DRL agent’s learning process.

conditions in the simulated world. The system we evaluate

is the ego vehicle, tasked to navigate through the simulated

world based on sensor feedback. In subsequent sections, we

detail the operationalization of the GENESIS-RL framework’s

components, starting with the DRL agent and encompassing

the environment, then the training and testing setups and

evaluation metrics.

Remark. Despite only having weather parameters as avail-

able actions in this work, we can also include other factors

such as the behavior of other actors into our framework

by parameterizing their behavior in the simulation (such as

the aggressiveness of the other actors using CARLA’s traffic

manager, or the position and orientation of the actors using

Scenic [32]).

A. DRL Agent

We have chosen the Proximal Policy Optimization (PPO)

algorithm [33] as the DRL agent for its stabilized training

capabilities and proficiency in handling continuous state and

action spaces. We adopted the implementation of Stable-

Baselines3 [34]. The state and action spaces are as follows:

• State space: A 640×480 three channel numpy array from

the RGB camera attached to the ego vehicle.

• Action space: A 5-tuple that represents the delta in value

for each parametric knob. The parametric knobs are: the

fog density, the precipitation density, the precipitation

deposit level, the sun altitude angle, and the sun azimuth

angle. These actions are bounded between [−1, 1], and

are scaled by a set of preset scalar factors to satisfy the

perturbation limit, which is 5%. For example, if the fog

density ranges from 0 to 100, then the corresponding



parametric knob would be scaled by a factor of 5 such

that the change in fog density level between each step in

an episode will not exceed 5%.

As mentioned earlier, the DRL agent is developing a policy

πθ parameterized by a neural network θ. Here, the architecture

of θ is a CNN, which takes the RGB three channel arrays

(640, 480, 3) as inputs, and outputs a 5-tuple action.

B. Environment

The initial scene generator, the simulator, the system, and

the reward calculator collaboratively create the environment

of the DRL agent. These parts together generate the state and

reward required to train the DRL agent and react to the actions

of the DRL agent dynamically.

1) Simulator: We employ CARLA [18] to simulate intri-

cate, dynamic urban settings with high visual fidelity.

2) Initial scene generator: Scenic [32] was utilized for

creating the initial scenes as a strategic approach to ensure

precision and versatility in our experimental setup. It allows

us to craft realistic, detailed and specific initial scenes, thereby

enhancing the relevance and challenge of each test instance

presented to the system. Specifically, this generator is tasked

with assigning the positions of vehicles within the simulator:

For each initial scene, we introduce 30 vehicles, including

the ego vehicle, a lead vehicle, a neighboring vehicle on the

front right, and the remaining 27 vehicles randomly positioned

within a specific radius of the ego vehicle. Vehicle colors,

models, and the distance between the ego, lead, and neighbor

vehicles could be either varied randomly or deterministic,

depending on the use case. All vehicles except for the ego

vehicle are set to CARLA’s autopilot in order to provide a

dynamic environment.

We leveraged CARLA’s [18] record feature to efficiently

catalog the configurations of the initial scenes into json files.

These saved scenes are then randomly sampled and loaded

back into the simulation between training or testing episodes.

A total of 1199 initial scenes for Town05 and 1202 for Town10

were generated and cataloged using this generator.

3) System: The system in our study is an ego vehicle that

navigates itself within the simulated world with RGB and

depth cameras onboard. It is equipped with a perception-

based controller, which consists of two parts: a perception

model for object detection, utilizing a pre-trained YOLOv5s

model [35] to process RGB images from the onboard RGB

camera, and a modified CARLA [18] behavior controller that

translates detection results into vehicle control signals. In our

implementation, the input to the modified behavior controller

includes the detection output from the perception model along

with depth information from the onboard depth camera. By

overlapping the 2D bounding boxes with the depth image,

we were able to obtain the depth of the center point of the

bounding boxes, which will then be used to obtain the 3D

bounding boxes of the detected objects. Leveraging these 3D

bounding boxes, combined with real-time data on the vehicle’s

position, orientation, velocity, and the surrounding map, the

controller adeptly synthesizes these inputs to generate vehicle

control signals, i.e., throttle, brake, and steering signals.

4) Reward calculator: The reward rt is calculated by

the weighted sum of the learning module loss rm and the

violation score rv . The learning module loss is defined by the

Intersection Over Union (IOU) metric, assessing the system’s

object detection precision in real-time. Simultaneously, the

violation score is generated by the rulebook evaluating a

trajectory τ = s1, s2, s3, ....sT , consisting of the following

two violation scores based on two critical safety rules:

• Vehicle collision rule, λc(τ), violated if the ego vehicle

collides with other vehicles:

λc(τ) =

T∑

t=1

αc(st) (1)

αc(st) = vc if collision happens, 0 otherwise (2)

• Vehicle proximity rule, λp(τ), violated when the distance

d between the ego vehicle and the vehicle in front is less

than a predetermined distance (which is set to 5 meters):

λp(τ) =

T∑

t=1

αp(st) (3)

αp(st) = vp if d < 5, 0 otherwise (4)

where vc and vp are the speeds of the ego vehicle in meters

per second when a violation occurs. αc(st) and α(st) are then

weighted by their respective weights wc and wp then summed

and transformed using the natural logarithm to compute rv .

Finally, the reward rt is calculated as follows:

rt = rm + rv = e−iou + ln(1 + wcαc + wpαp) (5)

where iou is the IOU metric, (wc, wp) = (500, 100). The

rationale for incorporating speed values when a violation

occurs is to ensure that violations occurring at higher speeds

are assigned higher violation scores.

C. Training and Testing

Our experiments are divided into two phases: training and

testing, each aimed at evaluating the effectiveness of our

framework.

1) Training: The training experiments were conducted in

CARLA’s [18] Town10, an urban map setting with multiple

four-way intersections. To ensure the DRL agent experi-

ences a broad range of initial scene configurations, we start

each episode by randomly selecting from 1202 pre-cataloged

scenes, each featuring vehicles with randomized colors and

makes. This setup is further enhanced by the stochastic be-

haviors of non-ego vehicles, governed by CARLA’s [18] traffic

manager, introducing both realism and complexity. The vari-

able vehicle arrangement, appearances, and the other vehicle

agents’ stochastic nature significantly enriched the training

landscape, equipping the DRL agent to adeptly uncover the

system’s vulnerabilities. The DRL agent is trained with 40960

steps, with an episode length of 512. The policy of the DRL

agent updates every four trajectories.



2) Testing: The testing experiments unfolded within

CARLA’s [18] Town05, a map setting featuring pine-covered

hills and a network of roads and a highway. In this phase, we

aimed for diverse yet repeatable conditions by selecting 50

out of 1199 cataloged scenes from the initial scene generator.

This is realized by using a fixed random seed, ensuring these

scenarios are consistent across different experiment runs. The

deterministic setting extends to other vehicles’ appearances

and their behavior, i.e., the color/make of the vehicles and the

path they follow throughout the testing episode are determin-

istic, chosen to maintain uniformity to allow each scenario’s

outcomes to be directly comparable. This method ensures that

despite the inherent variability of the test runs, the foundational

conditions remain constant, facilitating an accurate assessment

of performance across varying scenarios.

Records of violation scores and other information were kept,

with averages calculated for analysis. These findings were

benchmarked against two specific scenarios: our system navi-

gating in clear weather and under randomly perturbed weather

conditions by a non-strategic agent, providing a comprehensive

evaluation of the GENESIS-RL framework. The length of each

testing episode is identical to that of the training, which is 512

time steps in the simulation.

D. Evaluation Metrics

In our evaluation process, we employ two metrics: the

violation score and the minimum following distance deficit

δmfd. The former metric has been detailed earlier in this

section and measures the system’s adherence to a set of

predefined safety rules. For the latter, we introduce a metric by

leveraging the concept of minimum following distance dmin,

as defined in Responsibility-Sensitive Safety (RSS) [36]. We

adopt a simplified version of the RSS criterion, which assumes

that both the ego and lead vehicles have the same maximum

deceleration rate and that the reaction time of the autonomous

system is negligible. The simplified formula for calculating

dmin is given by the following equation:

dmin = max{0, (
v2e − v2l

2a
)} (6)

where ve, vl the speed of the ego and lead vehicle, respec-

tively; a the maximum deceleration of both vehicles, which is

5 m/s2.

The minimum following distance deficit δmfd is then cal-

culated by the discrepancy between the actual distance d
maintained by the ego vehicle and the calculated dmin, i.e.,

δmfd = max(0, dmin − d), where d is the distance between

the ego and lead vehicle. Specifically, it quantifies how much

closer the ego vehicle comes to the lead vehicle than is deemed

safe according to the simplified RSS criterion. In the following

section, we will show the sum of this metric over all 50 runs.

Showing the extent of the ego vehicle getting too close to the

lead car.

E. Computational Time

The experiments were conducted on a computational setup

with a 32-core CPU, 64GB of RAM, and an NVIDIA GTX

TITAN X graphics card. A complete training run required

approximately 3-4 hours on this hardware, while a testing run

took about 1-2 minutes per episode.

VI. RESULTS AND DISCUSSION

In this section, we present the outcomes of our experiments,

including an analysis of the performance and efficacy of

our framework. The results underscore the capability of our

approach to generate meaningful edge cases, highlighting key

findings and insights gained through testing scenarios. We

validate our approach by answering the following questions:

• What impact do the generated edge cases have on the

performance and decision-making processes of the sys-

tem?

• How effectively does our framework generate edge cases

that are both challenging and realistic for the system

under test?

A. Impact of GENESIS-RL Generated Edge Cases on System

Performance

Our analysis of GENESIS-RL’s impact on the system re-

veals a notable increase in both violation scores (See Fig. 2)

as well as the sum of minimum following distance deficit,

illustrating its ability to effectively challenge and exploit

system vulnerabilities. Specifically, the scenario output from

GENESIS-RL’s policy leads to significant variations in system

performance, as demonstrated by the following observations:

1) Proximity violation score increase: Under weather sce-

narios controlled by GENESIS-RL, the system’s braking re-

sponse was markedly delayed compared to its reaction under

other testing scenarios and, in some instances, the braking

behavior is altogether absent. This delay/absence is quantifi-

ably demonstrated through the analysis of the ego vehicle’s

telemetry data (See Fig. 3(c), the system operating under the

GENESIS-RL policy maintains brakes much later, i.e., the blue

curve is shifted more to the right compared to the two other

scenarios), showcasing a contrast in the system’s ability to

maintain safe following distances under varied environmental

influences.

2) Collision violation score increase: Further looking into

the types of collision violations induced by GENESIS-RL, we

categorize them into three main failure modes:

• Non-detection collisions: Instances where the system fails

to detect the leading vehicle at all, resulting in high-speed

impacts (See Fig. 3(a)). This failure mode underscores

critical perception system vulnerabilities under complex

environmental conditions orchestrated by GENESIS-RL.

• Intermittent detection collisions: Occurrences where the

system initially detects the lead vehicle but subsequently

loses track of it, leading to collisions at reduced speeds

(See Fig. 3(b). These incidents underscore the deficien-

cies in the system’s ongoing tracking, and/or highlight the

shortcomings in its ability to respond promptly within the

scenarios induced by GENESIS-RL.

• Delayed detection collision: Occurrences where the sys-

tem detects the lead vehicle too late to stop in time,



leading to collisions at reduced speeds (See Fig. 3(c).

These incidents highlight the deficiencies in the system’s

detection mechanisms.

These findings not only exemplify GENESIS-RL’s capabil-

ity in uncovering and leveraging system weaknesses but also

emphasize the imperative need for bolstered system robustness

against a wide spectrum of real-world conditions.

B. Effectiveness of GENESIS-RL in Generating Edge Cases

Our results show that with the GENESIS-RL framework,

we were able to generate edge cases that pose significant

challenges not only to automated systems but also to human

perception and response capabilities. A prime example of such

conditions includes scenarios combining foggy weather with

heavy rainfall or nocturnal settings accentuated by heavy rain,

where the reflections on wet surfaces severely disrupt the de-

tection capabilities of autonomous systems. These conditions,

inherently challenging due to their impact on visibility and

sensor efficiency, highlight the scenario generation capabili-

ties of GENESIS-RL, underscoring its potential for creating

diverse testing environments that closely mimic real-world

driving complexities.

During inference, we observed that the DRL agent relies

heavily on manipulating certain parametric knobs (such as

rain and fog density) to introduce challenges to the system.

To investigate GENESIS-RL’s capability to generate a variety

of edge cases, we conducted experiments with fog and rain

density levels set to zero, individually and in combination.

Despite the absence of these parametric knobs, our framework

is still capable of creating edge cases that undermine the

system’s performance, demonstrating its robustness in edge

case generation beyond the reliance on certain powerful and

effective parametric knobs (See banner figure on the first page

for reference).

Fig. 2. Violation scores and the sum of minimum following distance deficit
(based on RSS) across three testing scenarios - the system operates under
sunny weather, random weather and under the GENESIS-RL policy. The
results presented are averages across 50 runs with randomly selected initial
scenes.

Fig. 3. Examples of the system failure modes based on vehicle telemetry.
(a) Example of a non-detection collision - where the system crashed into the
vehicle in front at full/high speed due to the non-detection of the other vehicle.
(b) Intermittent detection collision - where the intermittent detection prevents
the ego vehicle from stopping in time, leading to a lower-speed collision. (c)
Delayed detection collision - where the system detects the lead car too late to
stop in time. In the tests depicted in this figure, the ego vehicle successfully
avoided collisions across both sunny and random weather scenarios and only
failed under the conditions generated by GENESIS-RL.

VII. CONCLUSION AND FUTURE WORK

In conclusion, our study demonstrates the GENESIS-RL

framework’s capability to generate complex and challenging

edge cases for autonomous systems, which are critical for

thoroughly testing and enhancing the reliability of systems as

such. Moreover, GENESIS-RL proved capable of producing

edge cases that will lead to system failure even in the absence

of some dominating factors, underscoring its robustness and

potential broader application in safety-critical testing environ-

ments.

The implications of the results from our work is manifold.

First, they highlight the need for including a wide range of

challenging scenarios in the testing protocols for autonomous

systems, ensuring they are well-equipped to handle the in-

tricacies of complex and dynamic environments. Additionally,

the ability of GENESIS-RL to generate test conditions without

relying exclusively on dominant factors showcases its value in

crafting safer, more dependable autonomous system solutions.

In future work, we aim to expand our exploration to include

a wider spectrum of parameters, such as a more comprehensive

range of weather parameters, behaviors of other actors (e.g.,

vehicles and pedestrians) to further enhance the scenario gen-

eration capabilities of GENESIS-RL, thereby facilitating the



creation of more diverse and challenging testing environments

for autonomous systems.
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