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Rewards and dangers of regulatory innovation

Luca Comai **

Adaptive evolution often involves structural variation affecting genes or cis-
regulatory changes that engender novel and favorable gain-of-function gene reg-
ulation. Such mutation could result in a favorable dominant trait. At the same time,
the gene product could be dosage sensitive if its change in concentration disrupts
another trait. As a result, the mutant allele would display dosage-sensitive pleiot-
ropy (DSP). By minimizing imbalance while conserving the favorable dominant
effect, heterozygosity can increase fitness and result in heterosis. The properties
of these alleles are consistent with evidence from multiple studies that indicate
increased fitness of heterozygous regulatory mutations. DSP can help explain
mysterious properties of heterosis as well as other effects of hybridization.

Pleiotropy of regulatory mutations

Organisms evolve through mutations that alter either gene products or their regulation, such as
increasing or expanding expression. These gain-of-function changes can have remarkable con-
sequences, such as engendering a new, advantageous trait (Figure 1, Key figure; Figure 2A).
Additional effects are possible because proteins and RNAs can affect fitness in a dosage-sensi-
tive manner. A dosage-sensitive protein (or RNA) is in balance with networked factors, and its
changed expression may violate the optimal stoichiometric ratio in the affected cells. In the hypo-
thetical example involving a herbivore (Figure 1), expanding the expression domain of a growth
regulator lengthens multiple vertebrae. The resulting longer neck increases foraging efficiency.
At the same time, the connected dosage imbalance may result in a different, disadvantageous
trait such as a spindly and wobbly neck that reduces fitness through reduced speed and move-
ment. The evolutionary success of this innovation will depend on the balance of the pleiotropic
traits, which is in turn affected by the genotypic state. (See Box 1.)

Genetic behavior of dosage-sensitive pleiotropy

Dosage-sensitive pleiotropy (DSP; see Glossary) can develop when regulatory mutations occur
in dosage-sensitive genes [2-4]. The altered expression of the gene product disrupts the stoi-
chiometric balance with interacting factors compromising fitness of the mutant and subjecting
the mutation to purifying selection [5,6]. If the same regulatory change has an independent ben-
eficial effect, overall fitness may still exceed that of the wild type (Figure 2). DSP is a special case of
the developmental pleiotropy observed for many genes [7-9]; the deleterious effect is a dosage-
dependent consequence of regulatory innovation. If dosage imbalance decreases function
of a protein, how can this type of allele exert dominance? Multiple dominant conditions affecting
domesticated animals result from haploinsufficiency [10]. Furthermore, different quantitative or
threshold responses to imbalance are possible for different traits controlled by the same gene
[1,11]. Loss of fitness can occur even if there remains considerable activity of the dosage-
sensitive protein. Therefore, current understanding of gene function and evolution argues that
DSP is possible and that some genes can display haploproficiency. Importantly, heterozygosity
reduces the deleterious, additive effect of a DSP allele while conserving any dominant effect. For
this reason, DSP can help explain mysterious genetic phenomena such as transgressive perfor-
mance of hybrids (heterosis) as well as hybrid impairment (Box 1).
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imbalance in cells affected by the expres-
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Pleiotropism of regulatory mutations
is possible. In addition to the dosage-
sensitive trait, the mutation may engen-
der a dominant advantageous trait.

Individuals that are heterozygous for
such mutations will be fitter than the
homozygotes.

Pleiotropism may help explain heterosis,
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are heterozygous at many loci, causing
transgressive fitness compared with
homozygous parents.
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Key figure
Pleiotropic effect of regulatory mutation altering expression
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Figure 1. The example in a hypothetical herbivore employs a mutation affecting neck length. The concept is broadly applicable:
The example could have been based on other systems and traits, such as root length (Figure 2A), or pigment development in
plants. (A) Proteins f, t, and h form a trimeric complex. Left: Equal expression off, t, and h results in stoichiometric balance and
optimal complex formation. Right: Excess of the bridge subunit t decreases the concentration of the trimeric complex (after [1]).
(B) The t — T mutation in a hypothetical gene regulating vertebrae number and length causes an expansion in its expression
pattern (red), resulting in neck lengthening. (C) Neck lengthening enables the animal to forage on previously inaccessible high
leaves. This trait is dominant, being displayed equally by heterozygote and homozygote. At the same time, the neck is
weakened in a dosage-sensitive mode because the regulatory protein is expressed in cells where it was not previously
expressed, altering its stoichiometric ratio with cofactors. (D) The fitness consequences of this mutation will differ according
to zygosity. TT homozygotes are most affected. For example, they display defects of the neck muscle, resulting in a wobbly
neck. The affected animals are slower in their movements and therefore are less fit than the wild type. Tt heterozygotes have
a thicker neck and display lower muscular malfunction than the TT homozygotes. On balance, the reduced muscular
function in Tt individuals is offset by the foraging advantage and results in increased fitness of hybrids.

Molecular mechanisms of DSP formation
Regulatory mutations can act in trans or in cis. DSP can arise from cis-acting mutations in
dosage-sensitive genes that expand or decrease gene activity (Figure 2). The simplest
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Glossary

Cis-regulatory innovation:
advantageous change in a cis-regulatory
element of a gene. DNA elements in the
promoter region of a gene exert a
regulatory effect on the transcriptional
unit residing on the same DNA molecule
(i.e., in cis). Small to large changes in
these elements, including deletion and
insertion, can result in dramatic
expression changes.

Copy number variation: change in
copy number of gene elements, genes,
and chromosome segments resulting
from deletion, insertion, and duplication.
These changes can affect gene
expression and regulation and have
frequent phenotypic effects.

Dosage sensitivity: property
displayed by certain genes resulting in
variable intensity of one or more traits,
depending on gene copy number.
Dosage sensitivity is exemplified by the
dramatic effect of aneuploidy, the
property of having more or less than the
standard number of chromosomes.
Gene balance hypothesis: the theory
that proper stoichiometry of gene
products, protein, or RNA is needed for
optimal cellular function.
Haploinsufficiency: a property of
dosage-sensitive genes resulting in a
heterozygous phenotype, which in some
cases can be deleterious. From a
genetic point of view, it may appear as
incomplete dominance (homozygote
displays a trait more intensely than the
heterozygote) or dominance
(heterozygote is affected, homozygote
dies prematurely).

Haploproficiency: a property of
dosage-sensitive genes resulting in an
advantageous heterozygous
phenotype.

Heterosis: enhanced fitness, growth,
or productivity of the hybrid progeny
when compared with either parent. This
is also called ‘best parent heterosis’ and
is consistent with the original
observation of hybrid vigor. Sometimes,
quantitative biologists and breeders use
the term ‘midparent heterosis’ to refer to
a quantitative trait that in the hybrid
exceeds the mean of the parental
values.

Pleiotropy: influence of a gene or alele
on two or more apparently unrelated
traits.

Structural variation: large-scale
change (more than a few nucleotides) in
DNA, such as insertion, deletion,
duplication, inversion, and translocation.



Trends in Genetics

(A) Insertion of requltorv

,

4#
Wild-type
. ild-typ

allele t

Reaction
i)
Il
[

F, T\)and H are Increased expression of
in stoichiometric T results in imbalance
balance with F and H
(B) Dominance effect Higher
B . Wild
- L type
2F Lower
o L
E -
iL P
Diploidy tt
) Genotype
Tetraploidy S asss VEgss  THkas
Fraction T 0 025 05 0.75 1 T/proteome

Trends in Genetics

Figure 2. Nature and fitness effects from a dosage-sensitive pleiotropic allele (T). (A) A regulatory mutation increases
expression of gene T in the root, causing localized imbalance. In this hypothetical situation, fitness is increased by the dominant
effect of root branching and decreased by an additive effect that decreases growth. (B) Mutation of the ancestral t alele to T
increases fitness in a dominant mode (not dosage sensitive) and decreases fitness according to a dosage-sensitive response.
Totalfitness (circles) is the sum of the two effects. The favorable dominant effect increased fitness, regardless of dosage or ploidy.
Factor T is expressed in a novel celular environment where it interacts with a naive proteome, which is in stoichiometric imbalance.
The dosage sensitivity curve ilustrates the progressive loss of fitness. Total fitness is positive in the heterozygotes Tttt, TTtt, and Tt,
which minimize the imbalance factor.

mechanism for regulatory change is duplication, a type of structural variation [12-14]. If the du-
plicated segment contains multiple genes, pleiotropy may result from the action of two or more
genes. Alternatively, a promoter or enhancer cis-regulatory module that binds a regulator could
be deleted or created. The frequent cis-evolution of promoters [15-18] is evident by comparison
of orthologous gene regulation in related species and can be responsible for both additive and
dominant traits [17,19], such as tolerance to a common stress [20-22]; novel coloration
[16,23]; or a change in organ size, shape [24,25], and number [24,26,27].
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Dosage sensitivity

An intuitive rationale for dosage sensitivity is cellular homeostasis: A metabolite or protein is
needed in an optimal dose and less or more of it could be deleterious. Genes whose expression
affects the concentration of the sensitive component display dosage sensitivity. Another, more el-
egant explanation for dosage sensitivity is the gene balance hypothesis, which states, ‘The
stoichiometry of members of multisubunit complexes can affect the amount of functional com-
plete product, ... and ultimately, the phenotype and evolutionary fithess’ [4]. Regardless of the
underlying mechanism, dosage-sensitive genes are common. They encode transcription factors
such as Gal4 [28], subunits of multiprotein complexes [2,29], or disordered proteins [3], but even
genes encoding biosynthetic enzymes are coregulated in bacteria and yeast, indicating wide-
spread efficiency of precise stoichiometry [30]. Chromosome copy number changes, aneuploidy,
and gene copy number variation have far-ranging effects on phenotype [4,14]. In yeast,
changes in the dosage of single genes are often deleterious, and, depending on the environmen-
tal conditions, dosage sensitivity can affect 5%—50% of all genes [2,3]. Systematic changes in ex-
pression of -100 test genes revealed that 53% resulted in lower fithess upon low expression,
whereas 30% decreased fitness upon high expression [6] (Figure 3). Interestingly, the environ-
ment affects the response; dosage sensitivity varies according to gene and conditions [6].
Some genes, such as TUB1 (Figure 3), display the classical ‘rounded hill’ response with the zenith
at the wild-type expression level; responses, however, can be quite varied. In summary, there is
compelling evidence for fitness changes, both positive and negative, as a consequence of regu-
latory mutations.

One expectation for homozygous DSP alleles is that hemizygosity should increase fitness or a fit-
ness proxy such as growth. Interestingly, multiple studies have tested the effect of heterozygous
deletions to identify haploinsufficient genes in budding and fission yeast and in human stem cells
(Figure 4). In addition, these studies identified a substantial set of genes that increase fithess when
a single allele is active and, therefore, are ‘haploproficient’ [31-34].

Evolutionary fate of DSP

Purifying selection should eliminate any allele that decreases fitness. Notwithstanding this expec-
tation, such alleles exist [6]. A recent survey of -18 000 natural, putative cis-regulatory sequences
of yeast found that -500 resulted in expression changes that compromised fithess, decreasing it
by 1% or more [35]. Kremling et al. [5] reported comparable results for maize, stating that ‘even
intensive artificial selection is insufficient to purge genetic load.” Sharon et al. concluded that these

Box 1. DSP genes and deleterious hybrid effects

The potential for a buffered DSP locus (Figure 6A) to decrease fitness reemerges upon hybridization. In the absence of sex
chromosomes, the F1s are likely to be viable and fit because all factors in a complex should be balanced. Dosage prob-
lems emerge in the F2, when independent assortment of the complex genes is unlikely to reproduce the balanced parental
or F1 genotypes. This is consistent with the coadapted gene complexes theory underlying Dobzhanski-Muller-Bateson
incompatibilities and resulting from diploid level interactions [57-59]. For three genes, the P of a balanced F2 = 15.5%.
For four genes, P = 7%, and so forth. Large adapted complexes would result in widespread F2 inviability [60].

In hybrids where A or epistatic loci become selectively haploid, the imbalance appears in F1s (Figure 6). Haldane’s rule (HR) states
that lethality or sterility of hybrids wil preferentialy affect the heterogametic sex [61]. DSP aleles can account for HR in organisms
that carry out sexual compensation by doubling expression of sex-linked genes in the heterogametic sex (Figure A). Whether the
heterogametic sex hybrids are unviable or sterile may depend on the tissue affected by unbalanced regulation. Sex-linked DSP
aleles that affect a change in an essential organ may result in lethality, whereas those that affect a change in reproductive cels
may result in sterility. The model in Figure A is consistent with the rescue of heterogametic sex sterility by duplication of X in
one parental species [62]. Furthermore, the dominance hypothesis for HR [42] can apply to DSP because dosage sensitivity
of DSP alleles can satisfy the requirement for partial recessivity. On the other hand, DSP cannot easily account for HR in organ-
isms that balance sex chromosome expression by chromosome inactivation (Figure B).
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Figure |. DSP and the Haldane rule. Wide hybridization combines different coadapted orthologous genes from a ‘red’
XY male and a ‘white’ XX female. The DSP gene T is X-linked. T and t represent, respectively, the evolved and ancestral DSP
aleles. (A) When dosage compensation works by doubling expression of sex-linked genes in the heterogametic sex, the F1
female produces the appropriate amount of the complex, but the male does not. This outcome is consistent with Haldane’s
rule. The reciprocal mating has a similar imbalance (not shown). (B) When dosage compensation works through inactivation
of the sex chromosome in the homogametic sex, progeny of both sexes are imbalanced. If the 5:8:5 combination (female on
the right side) is less severe, half of the females would be less affected. Consistent with this scenario, monosomy is typically
more severe than trisomy.

alleles may also have unknown positive effects (i.e., are pleiotropic and thus fit my description of
DSP) [35].

Population genetics theory predicts that novel DSP alleles can persist in a population as balanced
polymorphisms (Figure 5), depending on allele effect and population size [36,37]. Figure 5 illus-
trates a classical simulation of this prediction: The wild-type t allele, when homozygous, confers
a fitness of 0.9. The derived T allele starts arbitrarily at 1% frequency in a population of 10 000.
A heterozygote advantage as small as 0.005 is sufficient to increase the allele frequency to 5%.
The predicted frequency plateau depends on the fitness of the TT homozygote, reaching 0.5
when Fitnessqq = Fithessaa. Even when the fitness penalty for TT individuals is strong, such as
a decrease from 0.9 to 0.75, the T frequency can still increase. This is because the heterozygotes
are favored and the TT homozygotes are unlikely when T frequency is low.
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Figure 3. Variation among different
genes in their fitness response to
dosage. The fitness curves for nine
genes derived by Keren et al. [6] are
redrawn here. In the case of RAP1, the
comparison of glucose versus galactose
media exemplifies the distinct effect of
environment on the dosage response.

Over time, the deleterious component of the T allele may be suppressed by epistatic beneficial
mutations such that Fitnessy < Fitnessit = Fitnesst1. When loss of fitness is due to stoichiometric
imbalance, these suppressors could restore stoichiometric equivalence of interacting gene prod-
ucts (Figure 6). Once buffered by these changes, allele Twill cease to be an active DSP allele, and,
with the corollary loci, it will form a beneficial genotype. The resulting allele complex, compatible
with effect size and recombination, should drive to fixation. Alternatively, drift could first fix Tin
the population, setting up strong positive selection for compensatory mutations. These epistatic
mutations can have a profound impact on the outcome of hybridization (Box 1).
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Figure 4. Effect of hemizygosity
on growth in human stem cells.
The figure was taken, with permission,
from Sarel-Gallily et al. [34] and
modified to highlight genes displaying
haploproficiency. It describes the
growth performance of CRISPR-
edited, genome-wide mutants that
are hemizygous for each individual
gene. The CRISPR score equates to
growth. The colored red box on the
left highlights haploinsufficient genes
(red: essential genes, orange: known
haploinsufficiency genes). The green
box contains haploproficient genes
(i.e., genes that in hemizygous state in-
crease growth).
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Figure 5. Frequency prediction for dosage-sensitive pleiotropic alleles. Simulation of allele frequency changes
during 1000 generations of a diploid population in which dosage-sensitive pleiotropic alleles with different fitness
properties start at 1% frequency. The simulation, a common tool in population biology courses, was carried out using the
simuPop Population module [38] and was plotted using Seaborn [39]. Each line is the mean of five replicates. The shaded
area surrounding each line represents the 95% confidence interval.
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Figure 6. Evolutionary outlook for dosage sensitive pleiotropy. (A) Hypothetical evolution of a pleiotropic mutation
affecting a three-gene system encoding dosage-sensitive subunits of a protein complex [4]. A mutation causing increased
expression (t = 1 to T = 4) results in deleterious imbalance of a protein complex (legend at bottom right). If the mutation
has a beneficial effect, it can persist (Figure 4). The deleterious effect of the T allele can be suppressed by compensatory
mutations at interacting loci (¢ =1- F =4, n=1- H =4)thatincrease the concentration of interacting protein subunits
to regain a stoichiometric optimum. Eventually, the advantageous epistatic alleles become fixed. Sensitivity to epistatic
interactions predicts that the effect of dosage-sensitive pleiot ropy loci could vary from species to species. (B) Wide
hybridization combines different co adapted orthologous genes. The F1 progeny expresses balanced amounts of the
protein complex subunits. Many F2s will express excess T subunits (e.g., bottom right genotype) and will be imbalanced.
Some F2 will express excess of F and H subunits (e.g., bottom left genotype) and, depending on the biochemistry of the com-
plex, may or may not display deleterious imbalance. Overall, the F2 fitness will be decreased.
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DSP genes and heterosis

| define heterosis broadly as the transgressive performance of hybrids over parents, thus
encompassing luxuriance and fitness. Alleles with DSP (Figure 1) can explain multiple properties
of heterosis. In outcrossing large populations, fixation of DSP aleles is improbable until the TT ge-
notypic burden (Figure 1) is aleviated by compensatory mutations. DSP can, however, be fixed by
inbreeding and selection for DSP-derived dominant traits. Inbred individuals with different fixed DSP
are likely to display good combining properties because their diverged genotypes maximize the
chance of heterozygosity at DSP loci and thus heterotic gain. DSP can explain properties of heter-
osis that are difficult to explain with existing theories. The constant improvement of maize inbreds
without erosion of heterotic gain [40] appears mysterious and is difficult to reconcile with the dom-
inance hypothesis, the complementation of deleterious recessives [41]. Breeder’s selection, how-
ever, is effective on deleterious alleles with large effects, but less so on DSP alleles because of their
pleiotropism and relatively smal effects. Their persistence could maintain heterosis of suitable pa-
rental combinations. Furthermore, DSP loci can explain progressive heterosis, a phenomenon
seen in polyploids, where four-way hybrids can exhibit higher heterosis than two-way hybrids
[42-44], as well as the dependance on parental genome dosage in the heterosis of triploid hybrids
[45]. In a four-way (four parents) tetraploid hybrid, dilution of each parental allele to one-fourth min-
imizes the negative dosage effect while maintaining beneficial dominant effects (Figure 1). Atthe
same time, the increase in frequency of these alleles when inbreeding could explain rapid and pro-
gressive inbreeding depression (Figure 2). Indeed, small-effect dosage-sensitive loci that are purely
deleterious could also explain both inbreeding depression and heterosis [42]. These loci may accu-
mulate under special conditions, such as in low recombining regions of small populations [46].

Some yeast hybrids display heterosis, and the genetic resources available in this system should help
determine the causal loci. Several investigations agree on the contribution of multiple small-effect
genes but differ on the action mode of heterotic alleles: from underdominant [47] to overdominant
and epistatic [48]. These discrepancies may derive in part from the genetics and environmental condi-
tions of each experimental system. In one study, Herbst et al. [49] introduced genome-wide deletions
of single genes (A) in Saccharomyces cerevisiae in heterotic hybrids of S. cerevisiae (c/c) x
Saccharomyces paradoxus (p/p). They identified as heterotic genes whose deletion decreased growth
of the hybrids (c/p > A/p). When these putative heterotic genes were tested in S. cerevisiae, however,
hemizygosity (c/A) did not display dosage sensitivity, defying the expectation of dosage dependency. It
may be premature, however, to take these results as proof that dosage-sensitive genes are not in-
volved in heterosis. At least two considerations come to mind. First, the authors documented extensive
remodeling of multiple regulatory pathways. Divergence between S. cerevisiae and S. paradoxus is
considerable (5 My), and dissonance between the regulatory programs of the two species may com-
plicate the comparison of dosage responses. Second, the study tested hemizygosity in parental and
hybrid backgrounds under the reasonable assumptions that it would assess the heterotic potential of
each locus. It is difficult, however, to determine whether loss of fitness in a hemizygous hybrid results
from loss of a heterotic interaction or from simple haploinsufficiency. It may be more informative to
compare the heterotic F1 hybrid with nearly isogenic hybrids where genome-wide replacement pro-
duced homozygosity at each tested locus (such as c/p versus c/c, c/p versus p/p). Single-gene
analysis of putative heterotic loci has revealed surprising properties; the fitness effect of yeast
ADH alleles and Neurospora sulfonamide resistance mutations are reminiscent of DSP [50,51].
How could the DSP hypothesis be further tested? Although most DSP are likely to have small ef-
fects and therefore be difficult to study individually, rare DSP with large effects are possible, and
their characterization would help testing this proposal (see Outstanding questions).

The study of loci that may confer small fitness changes, although possible in yeast, is challenging
in plants [6] and may be difficult to control. In maize, the heterotic effect of hemizygosity for
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selected mutations [52] was attributed to pleiotropy, but these results have been disputed [53]. In
tomato [54], and arabidopsis [55], however, large effects are evident for selected genes, although
they may derive from physiological and developmental effects unrelated to DSP. Recent evidence
in maize is encouraging. DSP alleles fit a maize model of heterosis based on the observation of
rare, dosage-sensitive SNPs that are either deleterious or associated with variant expression.
These alleles accounted for a decrease in seed size fithess [5,42,56]. The authors proposed
that these alleles persist because they are in low recombination regions of the genome.
Pleiotropism could also contribute to their persistence. In addition, because mutations that
compensate for DSP emerge at other loci, relocation of these gene complexes to linked,
nonrecombining regions would be advantageous to maintain the favorable interactions and
the resulting fitness.

Concluding remarks

| propose that DSP alleles can emerge from adaptive evolution. They are characterized by the
coincidence of two established but incompletely understood mechanisms: first, the deleterious
consequences of copy number variation and aneuploidy, which can emanate from a single imbal-
anced gene product [24]; and second, the evolution of a beneficial trait through cis-regulatory
changes [18]. Segmental duplications affecting multiple genes can easily result in pleiotropy
and behave as a DSP allele. DSP could affect evolution, breeding, and human disease. Consis-
tent with the proposal that nonadditive regulation of dosage-sensitive loci underlies heterosis
[42], DSP alleles may make a significant contribution to hybrid success.
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Outstanding questions

Unicellular organisms have provided
fertle ground to study evolution,
yielding results that in multiple cases
support DSP. Can similar methods
be applied to selected multicellular
systems?

Could evolution through a specific DSP
be demonstrated? An obvious chal-
lenge is that DSP genes are predicted
to have small and difficult-to-measure
effects. However, it may be possible
to identify traits for which favorable
and measurable changes may be ac-
quired through a DSP.

Could DSP be engineered and tested
experimentally? A large effect dosage-
sensitive pleiotropic allele may be
engineered by expressing a transgene
encoding a predicted dosage-sensitive
factor. A selected regulator may result
in a useful dominant trait and enable
measurement of the effect of zygosity
on fitness.
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