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ABSTRACT
Efficient multi-join query processing is crucial but remains a
complex, ongoing challenge for high-performance data man-
agement systems (DBMSs). This paper studies the impact
of different memory distribution techniques among join op-
erators on different classes of multi-join query plans under
different assumptions regarding memory availability and
storage devices such as HDD and SSD on Amazon Web Ser-
vices (AWS). We re-evaluate the results of one of the early
impactful studies from the 1990s that was originally done
using a simulator for the Gamma database system.

The main goal of our study is to scientifically re-evaluate
and build upon previous studies whose results have become
the basis for the design of past and modern database systems,
and to provide a solid foundation for understanding basic
“join physics", which is essential for eventually designing a
resource-based scheduler for concurrent complex workloads.

CCS CONCEPTS
• Information systems → Query planning; Query opti-
mization; Join algorithms.
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1 INTRODUCTION
Multi-join queries, among the most important and common
in DBMSs, have been a research focus for decades, partic-
ularly in terms of their processing and performance eval-
uation. A key challenge in processing these queries lies in
selecting an appropriate query plan, determining the join
order, and employing effective memory distribution tech-
niques to optimize performance. Despite years of research,
they continue to be poorly understood with respect to their
dynamic behavior and memory usage due to the complexity
and multidimensional nature of multi-join queries.
For a scientific approach, it is essential to reproduce the

results of prior studies before proceeding with more complex
cases. Accordingly, we decided to re-evaluate the results of a
key study done by Schneider & DeWitt [36] [10] in 1990 first
in which they studied the performance of multi-join queries
for shared-nothing clusters. They used the Hybrid Hash Join
operator (which is still extensively used today) as their join
operator and used a Gamma [10] DBMS simulator based on
HDD storage.
In this study, we evaluate various query plan shapes for

multi-join queries and examine the impact of different mem-
ory allocation and intra-query parallelism techniques. We
include the Left Deep Tree (LDT), Right Deep Tree (RDT),
Static Right Deep Tree (Static-RDT), and a Bushy Tree (BT).
Motivated by hardware advancements and the cloud envi-
ronment, we re-evaluate previous results, which were based
on simulation, using Apache AsterixDB on both HDD and
SSD on AWS.

The contributions of this paper are: 1) Re-evaluating query
plan studies from [36] and [10] with larger data sizes on real
hardware, 2) including sample BTs in query plans, 3) studying
the performance of these plans on SSDs, and 4) using a new
evaluation metric called Gigabyte*Seconds to compare the
monetary costs of different query plans executed in the cloud.
The remainder of this paper is organized as follows: Sec-

tion 2 provides background information on stage-based query
execution and Apache AsterixDB’s design. Section 3 dis-
cusses the different dimensions considered in our experi-
ments for evaluating various query plans, including query
plan shapes, memory distribution approaches, and storage
architecture. Section 4 presents the settings and results of the
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experiments conducted in this study. Section 5 reviews pre-
vious work related to this study, before Section 6 concludes
the paper and provides directions for future research.

2 BACKGROUND
2.1 Stage-Based Query Execution
In a parallel DBMS, each query tree consists of operators
and data flow connectors, forming an activity dependency
graph with operators as nodes and data flow edges as links
[4, 5, 15, 22, 41]. Hybrid Hash Join (HHJ) is a two-phase join
where the start of the probe phase depends on the completion
of the build phase, creating a blocking dependency.

An activity cluster, or pipelined stage, is a group of activi-
ties connected by data flows without blocking dependencies,
allowing them to execute concurrently [5]. When an oper-
ator such as HHJ introduces a blocking dependency, a new
activity cluster is created to separate stages of execution.
These dependencies form a partial or total order of execution
in the query. By executing in stages, the system improves
predictability and resource management, allocating memory
only to the operators of the active stage.

2.2 AsterixDB
Apache AsterixDB [3] is an open-source, parallel, shared-
nothing big data management system (BDMS) built to sup-
port the storage, indexing, modifying, analyzing, and query-
ing of large volumes of semi-structured data. AsterixDB’s
architecture consists of a Cluster Controller (CC) and one or
more Node Controllers (NC). The CC is responsible for re-
ceiving queries, parsing and optimizing them, and providing
query plans as executable Directed Acyclic Graphs (DAGs),
a.k.a. jobs, to the NCs. The NCs are the worker nodes that ex-
ecute the job DAGs on their portions of data (data partitions)
and return the results. Each NC can have one or more data
partitions, and each job DAGwill be executed on each related
data partition in parallel. AsterixDB utilizes Log-Structured
Merge (LSM) trees for storing and indexing the records in a
single or multi-node cluster. All records are hash partitioned
to data partitions of the cluster based on their primary key.
AsterixDB supports various join algorithms, including Block
Nested Loop Join, Hybrid Hash Join (HHJ), Broadcast Join,
and Indexed Nested Loop Join. However, HHJ is the default
and primary join type for processing equijoins due to its
superior performance and wide usage in modern DBMSs.
We chose AsterixDB as our primary platform for imple-

menting and evaluating our proposed techniques for several
reasons. First, AsterixDB is an open-source platform that
gives us the capability to implement and evaluate our tech-
niques and share them with the community. More impor-
tantly, AsterixDB is a parallel big data management system
for large semi-structured data with a declarative language.

Finally, its similarity in structure and design to other parallel
SQL and NoSQL database systems makes our results and
techniques applicable to other systems as well.

3 DESIGN SPACE
Our work studies the performance of multi-join queries in a
three-dimensional design space. The first design dimension
is the query plan shape, which includes LDT, RDT, and BT.
As the next design dimension, we consider various memory
management techniques for distributing memory between
the join operators of a query, including equal and bottom-up
memory management techniques. As the last design dimen-
sion, we consider three different storage alternatives, includ-
ing HDD and SSD, evaluating the performance of multi-join
queries executing with different values for the first two di-
mensions on these storage alternatives.
In the next sections we explain these design dimensions

and their possible variations in greater depth.

3.1 Dimension 1: Query Shapes
Multi-join queries can be executed using three main query
shapes: Left-Deep Trees (LDT), Right-Deep Trees (RDT), and
Bushy Trees (BT). Fig. ?? shows examples of LDT, RDT, and
BT, with each enclosed dashed area representing an activity
cluster and stage. In LDT, the output of each probe phase
feeds into the next join’s build phase, allowing at most two
joins to be active simultaneously. This creates a sequential
query plan with memory shared between consecutive joins,
with execution order defined by intra-operator control de-
pendencies.

RDTs offer the highest parallelism among query plans. All
build phases execute concurrently, sharing memory across
joins. For 𝑛 joins, 𝑛 hash tables are created. Once all builds
are complete, the probe phases start simultaneously, with
records flowing through a pipeline from one join to the next.

BTs combine aspects of both LDTs and RDTs. They allow
joins to run in parallel or sequentially, with inputs that can be
non-base datasets. BTs benefit from independent parallelism,
enabling concurrent execution without blocking dependen-
cies; however, the flexibility of BTs complicates scheduling
and resource estimation. We use techniques from [28] to
generate sample BTs.

3.2 Dimension 2: Memory Management
Memory significantly influences the choice of query plans
for multi-join queries. A DBMS aims to select a query plan
and memory distribution that reduces execution time.
In a LDT, memory is always distributed between two ad-

jacent joins in the query plan. Memory distribution in BTs
must consider overlapping join executions. A precise ap-
proach controls and orders independent activity clusters,
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Figure 1: Experiment 1 - Execution Time

while a simpler method divides memory equally among join
operators. We chose the latter for simplicity in this work.
Next, we introduce the memory distribution strategies for
the RDT query shape.

3.2.1 Equal Memory Distribution. In the Equal Memory Dis-
tribution strategy for an RDT, each join receives an equal
share of memory. If some joins need less memory, the excess
can be used by others. A DBMS with accurate knowledge of
build input sizes and join selectivities can statically assign
memory to enable this sharing among join operators.

3.2.2 Bottom-Up Memory Distribution. In the bottom-up
Memory Distribution strategy, the DBMS assigns each join
operator its ideal memory from the bottom of the query
plan to prevent spilling. Known as "Static-RDT" by [9], this
approach avoids data spilling. In case of insufficient memory
for the whole query to fit in memory, the query plan is
“broken” by materializing the last fitting join’s output, which
is then used as the probe input for the next join.

3.3 Dimension 3: Storage Architecture
In the third dimension, we study the performance of multi-
join query plans across different storage types, mainly using
HDDs and SSDs. HDDs rely on mechanical arms, making
them inefficient for random I/Os, while SSDs, made of non-
volatile flash memory, handle random I/Os more efficiently.
For both HDD and SSD, base tables and spill data are stored
on the same device in separate files.

4 EXPERIMENTAL ANALYSIS
This section compares the performance of different query
plan shapes under various memory availability, query com-
plexities, and join and scan selectivities using HDD and SSD
storage alternatives. Our codebase as well as information
for replicating the experiments and generating data can be
found in [37].

4.1 Datasets and Benchmark
We used an updated Wisconsin Benchmark and the JSON
data generator [18] to evaluate multi-join query plans. This
benchmark’s tunability and selectivity make it ideal for our
tests.We replicated experiment conditions (queries and bench-
mark) from [36], adjusting them for modern storage capa-
bilities with larger record sizes. Records are 1073B, memory
frames are 32KB, and experiments vary in dataset sizes and
selectivities. Queries run on single CPU cores of NC nodes
in AWS US-West-2, using d2.xlarge (4 vCPUs, 2 CPU cores, 2
threads per core, 2.4 GHz Intel Xeon E52676v3 Processor, 3 x
2048 GB storage, moderate network speed, 30.5GB RAM) for
HDD and i3.xlarge (4 vCPUs, 2 CPU cores, 2 threads per core,
2.3 GHz Intel Xeon E5 2686 v4 Processor, 1 x 950 GB NVMe
SSD storage, 206250 100% random read IOPS and 70000 100%
random write IOPS, 1.25 GbPS baseline and 10 GbPS burst
network bandwidth, 30.5GB RAM) for the SSD setting. In our
future work, we plan to explore additional settings, including
other node architectures such as AWS EBS and AWS EBS-
Hybrid, where spill data is stored on a local SSD while base
relations reside on networked SSD storage. We also intend
to utilize multiple CPU cores in a single NC configuration
and experiment with clusters of varying numbers of NCs.

4.2 Experiment 1 - Unlimited Memory
In this subsection, we examine how query complexity affects
the execution time of a join query without spilling to disk,
following the “Unlimited Memory” experiment in [36]. We
used 1GB datasets with 1,000,000 records for each build and
probe, ensuring each join’s output is also 1GB. Although
fixing intermediate result sizes is unrealistic, it simplifies
comparing different query shapes. Additionally, such set-up
keeps our re-evaluation fair to the original results of [36] by
following their settings as faithfully as possible. Our future
work will involve more complex queries using advanced
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Figure 2: Experiment 1 - Resource Cost - AsterixDB

benchmarks such as JOB, TPC-H, and TPC-DS as well as
queries with higher complexity.

In Experiment 1, we increased query complexity by vary-
ing the number of joins from 1 to 8. Fig. 1-a shows results
from theGamma simulator [36], while Fig. 1-b and 1-c present
AsterixDB results using HDD and SSD.

The Gamma simulator’s results were based on simulating
HDD storage devices from the 1990s. As Fig. 1-a shows, in the
Gamma simulator, RDT generally had a lower execution time
than LDT. In this figure from [36], disk utilization in RDT
is only slightly increasing, while its CPU becomes almost
fully utilized as the number of joins in the query increases.
However, we would have expected high disk utilization to be
the bottleneck instead of the CPU since concurrently reading
all the build datasets can cause high disk arm contention in
HDD. From the reported device utilization and comparing
the reported execution times of RDT with LDT, we believe
that the Gamma simulator was not properly simulating disk
arm movement and its impact on disk performance.
BT is another parallel query plan with shorter pipelines

than RDT. These shorter pipelines and the independent par-
allelism make some build and probe phases of different joins
overlap. Thus, BTs take the middle path between RDT and
LDT. The jumps in the execution time of the BT in Figure 1
is due to the change of the query shape when adding more
joins to the query. We are using the algorithm suggested in
[28] for generating BTs, which keeps the pipelines’ lengths
to less than four joins.

In SSD storage (Fig. 1-b), BTs excel due to their parallel ex-
ecution, improving CPU utilization. This set-up makes them
superior to RDT on arm-less storage devices. The Gamma
simulator results for HDDs resemble the AsterixDB results
for SSDs, indicating that [36]’s simulator didn’t model disk
arm movement accurately. Thus, RDT’s parallel I/O is better
for SSDs when ample memory is available, while for HDDs,
LDT has a better performance due to its sequential execution
pattern and reduced I/O.

With the prevalence of cloud service providers for data
management, it is valuable to compare different query plans
based on their (monetary) cost, considering both resource
usage and execution duration. Hence, we use a metric that
calculates the resource (memory) cost as the product of mem-
ory usage and execution time (Gigabytes * seconds, GBS).
Fig. 2 shows that the LDT plan’s low memory requirement
makes it the most cost-effective option for a cloud setting
across various storage choices.

4.3 Experiment 2 - Limited Memory
For the second experiment, we study the impact of the amount
of available memory on the execution times of various query
shapes and memory distribution strategies for an eight-join
query. This experiment was designed similarly to the “Lim-
ited Memory - High Resource Contention” experiment of
[36]. We evaluate the performance of each query plan as a
function of memory availability, thus the x-axis represents
the ratio of available memory over the amount of memory
required to keep all eight joins in memory. All inputs con-
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Figure 3: Experiment 2 - Data Spilling - AsterixDB

sist of 1 GB of data, and the size of the intermediate results
remains constant and equal to 1 GB throughout the query
plan’s joins. Each record consists of 1073B.
As depicted in Fig. 3, basic RDT incurs the most I/O, di-

viding memory among all joins, leading to more spilling.
Static-RDT, in most cases, has less I/O than RDT as it spills
only intermediate results at breakpoints. The initial high
spillage in Static-RDT occurs because all of the joins, along
with all necessary intermediate results, spill to disk. LDT,
on the other hand, shows the least I/O, allocating memory
between just two consecutive joins at a time. In terms of
parallelism, RDT and BT rank high, while Static-RDT’s par-
allelism varies with the available memory, as joins within
each segment run concurrently.
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Figure 4: Experiment 2 - Execution Time

Fig. 4-a shows the results of the Gamma simulator as re-
ported in [36], and Fig. 4-b and 4-b show the results of similar
queries executed using Apache AsterixDB on HDD and SSD.
As Fig. 4-b shows, LDT has the fastest HDD execution time
since it performs the least amount of I/O and its sequen-
tial execution pattern is disk arm-friendly. After LDT, the
Static-RDT has the lowest execution times due to its smaller
amount of I/O and sequential execution pattern. Static-RDT’s
parallelism increases with more memory.

RDT shows the poorest HDD performance when memory
is scarce, due to extensive spilling and frequent random disk
access (All of its joins build concurrently and have to split
up the available memory.) BT, second only to RDT in poor
performance, suffers from high I/O and parallel execution
causing random disk access.
As Fig. 4-c shows, parallel query plans such as RDT and

BT perform better in SSD than HDD due to the lack of the
disk arm issue in SSD and its capability to handle random
disk I/Os and large volumes of I/Os efficiently. RDT, BT, and
Static-RDT outperform LDT when the available memory is
very large. LDT is still one of the best-performing query plans
due to its small spilling to disk, especially when memory
is very scarce. Static-RDT performs well, especially with
more memory, due to its semi-parallel execution pattern and
relatively little spilling to disk.
Our AsterixDB results show that LDT is one of the best

query plans, especially with very limited memory. LDT out-
performs other plans on HDD due to minimal data spilling
and a disk-friendly sequential execution pattern. On SSD,
LDT remains one of the best-performing query plans due
to its low I/O and consistent average CPU utilization (42%-
48%) from overlapping disk and CPU operations. Variations
of parallel query plans, including RDT, Static-RDT, and BT,
perform better as the memory increases since the amount of
their spilling to disk drops then significantly.
Comparing the AsterixDB results with the Gamma sim-

ulator shows that RDT’s excessive data spilling makes it
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Figure 5: Experiment 2 - Resource Cost - AsterixDB

the worst-performing plan when memory is less than 80%
of the required amount. This trend matches AsterixDB re-
sults for HDD. Fig. 5 shows that, similar to Experiment 1,
the low memory usage of the LDT plan makes it the most
cost-effective option.

4.4 Experiment 3 - Non-Restrictive
Selections

Next, we re-evaluate the “Large Building Relations - Full
Declustering” experiment from [36] to study the perfor-
mance of various multi-join query plans with low-restrictive
select conditions that minimally reduce the base dataset sizes.
Echoing Schneider and DeWitt’s approach, our four-join

query used relations with cardinalities and selectivities as
follows: 106 records at 50%, 106 records at 50%, 106 records
at 20%, 5 × 105 records at 10%, and 2 × 105 records at 25%.
For a direct comparison to their results, we also set join
selectivities to yield intermediate join results of 5×104, 5×104,
105, and 105 tuples each.

The corresponding Gamma simulator results in Fig. 6-a
show that RDT had the worst performance with very limited
memory due to spilling a large amount of data to disk, while
LDT was the best-performing query plan shape due to its
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minimal spilling to disk. Static-RDT performed similarly to
LDT when the available memory is significant. As Fig. 6-b
shows, RDT performs the worst on HDD in AsterixDB due
to high data spilling and disk contention from concurrent
builds. BT performs better by using smaller intermediate
results and less parallelism. LDT and Static-RDT are the best
performers on HDD.
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Figure 7: Experiment 3 - Data Spilling - AsterixDB

LDT excels in low-memory scenarios by sharing mem-
ory between two joins, which helps avoid disk contention.
Static-RDT improves over RDT by cutting parallelism and
reducing data spilling. On HDD, AsterixDB results match
those from Gamma, where RDT lags behind LDT due to ex-
cessive spilling. However, on SSD, RDT performs better with
reduced I/O costs, though CPU usage is inconsistent (Fig.
6-c). Nevertheless, LDT remains one of the best performers,
efficiently handling memory and CPU with its sequential ex-
ecution, while BT and Static-RDT also achieve strong results
with semi-parallel execution.
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Figure 8: Experiment 3 - Resource Cost - AsterixDB

Large input datasets with minimal selection predicates
and small join outputs are more in favor of LDT over more
parallel plans such as RDT that require more memory and
spill more data to disk when memory is limited. Fig. 7 shows
the amount of spilling for different query plan shapes, while
Fig. 8 presents the resource cost based on memory and exe-
cution time. LDT remains one of the lowest-cost plans for
HDD due to efficient memory use and low execution time,
with similar costs to other plans on SSD.

4.5 Experiment 4 - Non-Restrictive Joins
Next, we study the performance of different query plan
shapes with non-restrictive join conditions, where each join
can produce numerous output records per input record. This
setup favors plan shapes such as RDT that use base datasets
as inputs for their build phases. Similar to the “High Join
Selectivity” experiment of [36], the base datasets have orig-
inal sizes of 106, 106, 106, 5 × 105, and 2 × 105 records with
scan selectivities of 50%, 50%, 20%, 10%, and 25%, respectively.
These join selectivities cause the joins to produce 5 × 104,
2 × 105,4 × 105, and 5 × 105 records as their outputs.
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In Fig. 9-a, RDT has the highest execution time due to
extensive spilling to disk when memory is limited in the
original Gamma simulator. However, its parallel nature al-
lowed RDT to outperform LDT and Static-RDT when a large
amount of memory memory was available. Unfortunately,
the [36]’s figure does not show data points for highly scarce
memory conditions.

As Fig. 9-b shows, high disk arm contention from parallel
access makes RDT one of the worst-performing query plans
in AsterixDB on HDD. The performance of RDT improves as
more memory becomes available. Despite using large non-
base relations as build inputs, LDT performs well by dividing
memory between only two consecutive joins and following
a sequential disk access pattern. As Fig. 9-b and 9-c exhibit,
there are two spikes in the performance of Static-RDT where
the increment of memory has shifted the breaking point to
a higher point in the tree with a larger intermediate result

size. This highlights the importance of considering interme-
diate result sizes when setting breaking points in Static-RDT.
Similar observations were expected in the Gamma simulator
results but were not reflected or discussed in [36].

As shown in Fig. 9-c, RDT is the top performer due to its
small build inputs, which result in low memory usage, and
its parallel execution, benefiting from SSD’s random-access
efficiency. LDT also performs well despite its sequential pat-
tern, as each join spills less data and the pipeline between
join phases improves CPU utilization.

As Fig. 10 shows, RDT’s spilling decreases with more mem-
ory, but it requires more overall memory since it divides
memory among all joins. LDT, though expected to spill more
due to large intermediate results, spills less because memory
is shared between only two joins at a time. The amount of
spilling in Static-RDT is dependent on the location of the
breaking points in the query tree.
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Figure 11: Experiment 4 - Resource Cost - AsterixDB

As in previous experiments, LDT is the lowest-cost query
plan on HDD due to its low execution time and memory
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usage (Fig. 11), while RDT is one of the most cost-efficient
plans on SSD.

5 RELATEDWORK
Resource management and multi-join query scheduling have
been studied for over three decades. In the 1990s, various
query plan shapes and resource allocation techniques were
prevalent. Schneider and DeWitt (1990) explored trade-offs
between query shapes formulti-join queries using theGamma
system, focusing on Left Deep Tree (LDT) and Right Deep
Tree (RDT) plans [10, 36]. They proposed Static-RDT, show-
ing that RDT performs best with high parallelism if most
build inputs remain in memory. Philip Yu et al. proposed
Segmented-RDT, a BT composed of smaller RDT subtrees [6].
This approach showed performance benefits through sim-
ulations, indicating Segmented-RDT can outperform other
query plan shapes, including RDT. The ZigZag Tree, a com-
petitor to Static-RDT, reduces I/O by avoiding intermediate
result materialization [44]. Wilschut et al. used PRISMA/DB
to examine processor assignment and scheduling strategies
for multi-join queries on an 80-processor system [39]. They
evaluated various query plans and found sequential plans bet-
ter for systems with fewer processors, while parallel plans
suited systems with many processors. The authors of [2]
addressed memory allocation for concurrent operations in
query execution plans, proposing a post-optimization phase
to identify concurrent operations and find near-optimalmem-
ory allocations. This technique improved execution times,
especially for multi-join queries involving LDT, RDT, and
BTs. The authors of [14] developed PipeSched, a fast resource
scheduling algorithm for physical operator pipelines. This
group of studies are the most related works to our study.
Another group of studies focused on dynamic memory

management techniques and their algorithm designs. A sig-
nificant part of this research involved designing memory-
adaptive operators, with studies on adaptive and dynamic
sort [12, 26, 33] and join [7, 17, 34, 38, 42] operators using
simulators due to limited DBMS resources. Additionally, dy-
namic workload management was studied alongside query
memory management [1, 8, 16, 23, 24, 43].
Another group of works impacting query memory indi-

rectly focuses on join ordering and plan enumeration. Leis et
al. optimized join orders and algorithms with advanced tech-
niques, improving parallel databases [27]. Recent research
uses deep and machine learning to optimize DBMSs, includ-
ing cardinality estimation [21, 31] and join correlations [40].

6 CONCLUSION AND FUTUREWORK
In this study, we re-evaluated Schneider and DeWitt’s [36]
seminal analysis ofmulti-join queries on shared-nothing clus-
ters using HDD. We revisited their results from the Gamma

database simulator using Apache AsterixDB with both HDD
and SSD, and also analyzed the performance of a BT plan.

RDT has long been considered efficient due to its parallel
execution, but our studies show that it excels in SSD-based sys-
tems mainly for queries with few joins and when memory can
accommodate over 80% of the build datasets. Static-RDT may
spill less data to disk than RDT when there is enough mem-
ory for each build dataset. If multiple build phases fit into
memory, Static-RDT requires careful placement of break points
in the tree, avoiding joins that produce large outputs. LDT was
seen to perform best overall, spilling less data and maintaining
steady CPU utilization (42%-48%) from overlapping disk and
CPU operations. In contrast, RDT shows greater variability in
CPU usage, with lower utilization during the I/O-bound build
phase (28%-35%) and higher during the probe phase (75%-
88%), where CPU usage fluctuates depending on whether
disk spilling occurs. Static-RDT’s CPU utilization approaches
that of LDT with limited memory (due to more sequential
operations) and resembles RDT when memory is abundant.
BTs, on the other hand, achieve more consistent CPU utiliza-
tion than both RDT and Static-RDT by overlapping subtrees,
but they require careful input selection during the build phase.
CPU utilization was generally lower on HDDs, as disk I/O be-
came the primary bottleneck. Our results emphasize the need
to consider storage architecture and periodically re-evaluate
past studies due to hardware advancements.
To enable a meaningful comparison, we designed our ex-

periments similarly to [36]. While simple, these experiments
are crucial for understanding "join physics." Future work
will explore realistic queries from benchmarks such as JOB,
TPC-H, and TPC-DS, testing various configurations, storage
setups such as AWS EBS, and cluster sizes to analyze scalable
query performance. Additionally, comparing memory man-
agement techniques between Volcano-style execution and
modern approaches such as vectorized and code-generation
methods is essential for today’s DBMSs.

ACKNOWLEDGEMENT
This researchwas supported in part byNSF award IIS-1954962
and by the Donald Bren Foundation (via a Bren Chair).

REFERENCES
[1] Ashraf Aboulnaga and Shivnath Babu. 2013. Workload management

for big data analytics. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2013, New York, NY, USA,
June 22-27, 2013, Kenneth A. Ross, Divesh Srivastava, and Dimitris Pa-
padias (Eds.). ACM, 929–932. https://doi.org/10.1145/2463676.2467801

[2] Josep Aguilar-Saborit, Mohammad Jalali, Dave Sharpe, and Victor
Muntés-Mulero. 2008. Exploiting pipeline interruptions for efficient
memory allocation. In Proceedings of the 17th ACM Conference on
Information and Knowledge Management, CIKM 2008, Napa Valley,
California, USA, October 26-30, 2008, James G. Shanahan, Sihem Amer-
Yahia, Ioana Manolescu, Yi Zhang, David A. Evans, Aleksander Kolcz,

940

https://doi.org/10.1145/2463676.2467801


Memory Management in Complex JoinQueries: A Re-evaluation Study SoCC ’24, November 20–22, 2024, Redmond, WA, USA

Key-Sun Choi, and Abdur Chowdhury (Eds.). ACM, 639–648. https:
//doi.org/10.1145/1458082.1458169

[3] Sattam Alsubaiee, Yasser Altowim, Hotham Altwaijry, Alexander
Behm, Vinayak R. Borkar, Yingyi Bu, Michael J. Carey, Inci Cetindil,
Madhusudan Cheelangi, Khurram Faraaz, Eugenia Gabrielova, Raman
Grover, Zachary Heilbron, Young-Seok Kim, Chen Li, Guangqiang Li,
Ji Mahn Ok, Nicola Onose, Pouria Pirzadeh, Vassilis J. Tsotras, Rares
Vernica, Jian Wen, and Till Westmann. 2014. AsterixDB: A Scalable,
Open Source BDMS. Proc. VLDB Endow. 7, 14 (2014), 1905–1916.

[4] Shivnath Babu and Herodotos Herodotou. 2013. Massively Parallel
Databases and MapReduce Systems. Found. Trends Databases 5, 1
(2013), 1–104. https://doi.org/10.1561/1900000036

[5] Vinayak R. Borkar, Michael J. Carey, Raman Grover, Nicola Onose, and
Rares Vernica. 2011. Hyracks: A flexible and extensible foundation
for data-intensive computing. In Proceedings of the 27th International
Conference on Data Engineering, ICDE 2011, April 11-16, 2011, Hannover,
Germany, Serge Abiteboul, Klemens Böhm, Christoph Koch, and Kian-
Lee Tan (Eds.). IEEE Computer Society, 1151–1162. https://doi.org/10.
1109/ICDE.2011.5767921

[6] Ming-Syan Chen, Ming-Ling Lo, Philip S. Yu, and Honesty C. Young.
1992. Using Segmented Right-Deep Trees for the Execution of
Pipelined Hash Joins. In 18th International Conference on Very Large
Data Bases, August 23-27, 1992, Vancouver, Canada, Proceedings, Li-Yan
Yuan (Ed.). Morgan Kaufmann, 15–26. http://www.vldb.org/conf/
1992/P015.PDF

[7] Diane L. Davison and Goetz Graefe. 1994. Memory-Contention Respon-
sive Hash Joins. In VLDB’94, Proceedings of 20th International Confer-
ence on Very Large Data Bases, September 12-15, 1994, Santiago de Chile,
Chile, Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo (Eds.). Morgan
Kaufmann, 379–390. http://www.vldb.org/conf/1994/P379.PDF

[8] Diane L. Davison andGoetz Graefe. 1995. Dynamic Resource Brokering
for Multi-User Query Execution. In Proceedings of the 1995 ACM SIG-
MOD International Conference onManagement of Data, San Jose, Califor-
nia, USA, May 22-25, 1995, Michael J. Carey and Donovan A. Schneider
(Eds.). ACM Press, 281–292. https://doi.org/10.1145/223784.223845

[9] David J. DeWitt. 1991. The Wisconsin Benchmark: Past, Present, and
Future. In The Benchmark Handbook for Database and Transaction
Systems (1st Edition), Jim Gray (Ed.). Morgan Kaufmann, 119–165.

[10] David J. DeWitt, Robert H. Gerber, Goetz Graefe, Michael L. Heytens,
Krishna B. Kumar, and M. Muralikrishna. 1986. GAMMA - A High
Performance Dataflow Database Machine. In VLDB’86 Twelfth Inter-
national Conference on Very Large Data Bases, August 25-28, 1986, Ky-
oto, Japan, Proceedings, Wesley W. Chu, Georges Gardarin, Setsuo
Ohsuga, and Yahiko Kambayashi (Eds.). Morgan Kaufmann, 228–237.
http://www.vldb.org/conf/1986/P228.PDF

[11] David J. DeWitt, Shahram Ghandeharizadeh, Donovan A. Schneider,
Allan Bricker, Hui-I Hsiao, and Rick Rasmussen. 1990. The Gamma
Database Machine Project. IEEE Trans. Knowl. Data Eng. 2, 1 (1990),
44–62. https://doi.org/10.1109/69.50905

[12] Thanh Do and Goetz Graefe. 2023. Robust and Efficient Sorting with
Offset-value Coding. ACM Trans. Database Syst. 48, 1 (2023), 2:1–2:23.
https://doi.org/10.1145/3570956

[13] Marius Eich, Pit Fender, and Guido Moerkotte. 2018. Efficient genera-
tion of query plans containing group-by, join, and groupjoin. VLDB J.
27, 5 (2018), 617–641. https://doi.org/10.1007/S00778-017-0476-3

[14] Minos N. Garofalakis and Yannis E. Ioannidis. 2014. Multi-Resource
Parallel Query Scheduling and Optimization. CoRR abs/1403.7729
(2014). arXiv:1403.7729 http://arxiv.org/abs/1403.7729

[15] Goetz Graefe. 1993. Query Evaluation Techniques for Large Databases.
ACM Comput. Surv. 25, 2 (1993), 73–170. https://doi.org/10.1145/
152610.152611

[16] Goetz Graefe. 1996. Iterators, Schedulers, and Distributed-
memory Parallelism. Softw. Pract. Exp. 26, 4 (1996), 427–452.
https://doi.org/10.1002/(SICI)1097-024X(199604)26:4427::AID-SPE20\
protect\protect\leavevmode@ifvmode\kern+.2222em\relax3.0.CO;2-
H

[17] Goetz Graefe, Ross Bunker, and Shaun Cooper. 1998. Hash Joins and
Hash Teams in Microsoft SQL Server. In VLDB’98, Proceedings of 24rd
International Conference on Very Large Data Bases, August 24-27, 1998,
New York City, New York, USA, Ashish Gupta, Oded Shmueli, and
Jennifer Widom (Eds.). Morgan Kaufmann, 86–97. http://www.vldb.
org/conf/1998/p086.pdf

[18] Shiva Jahangiri. 2020. "Wisconsin Benchmark Data Generator". http:
//doi.org/10.5281/zenodo.4316003

[19] Shiva Jahangiri. 2021. Wisconsin Benchmark Data Generator: To JSON
and Beyond. In SIGMOD ’21: International Conference on Management
of Data, Virtual Event, China, June 20-25, 2021, Guoliang Li, Zhanhuai
Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM, 2887–2889.

[20] Richard P. King. 1990. Disk Arm Movement in Anticipation of Future
Requests. ACM Trans. Comput. Syst. 8, 3 (1990), 214–229. https:
//doi.org/10.1145/99926.99930

[21] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A.
Boncz, and Alfons Kemper. 2019. Learned Cardinalities: Estimat-
ing Correlated Joins with Deep Learning. In 9th Biennial Confer-
ence on Innovative Data Systems Research, CIDR 2019, Asilomar, CA,
USA, January 13-16, 2019, Online Proceedings. www.cidrdb.org. http:
//cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf

[22] Donald Kossmann. 2000. The State of the art in distributed query
processing. ACM Comput. Surv. 32, 4 (2000), 422–469. https://doi.org/
10.1145/371578.371598

[23] Stefan Krompass, Umeshwar Dayal, Harumi A. Kuno, and Alfons
Kemper. 2007. Dynamic Workload Management for Very Large Data
Warehouses: Juggling Feathers and Bowling Balls. In Proceedings of
the 33rd International Conference on Very Large Data Bases, University
of Vienna, Austria, September 23-27, 2007, Christoph Koch, Johannes
Gehrke, Minos N. Garofalakis, Divesh Srivastava, Karl Aberer, Anand
Deshpande, Daniela Florescu, Chee Yong Chan, Venkatesh Ganti, Carl-
Christian Kanne, Wolfgang Klas, and Erich J. Neuhold (Eds.). ACM,
1105–1115. http://www.vldb.org/conf/2007/papers/industrial/p1105-
krompass.pdf

[24] Stefan Krompass, Harumi A. Kuno, KevinWilkinson, Umeshwar Dayal,
and Alfons Kemper. 2010. Adaptive query scheduling for mixed data-
base workloads with multiple objectives. In Proceedings of the Third
International Workshop on Testing Database Systems, DBTest 2010, Indi-
anapolis, Indiana, USA, June 7, 2010, Shivnath Babu and G. N. Paulley
(Eds.). ACM. https://doi.org/10.1145/1838126.1838127

[25] Lukas Landgraf, Wolfgang Lehner, FlorianWolf, and Alexander Boehm.
2022. Memory Efficient Scheduling of Query Pipeline Execution.
In 12th Conference on Innovative Data Systems Research, CIDR 2022,
Chaminade, CA, USA, January 9-12, 2022. www.cidrdb.org. https:
//www.cidrdb.org/cidr2022/papers/p82-landgraf.pdf

[26] Per-Åke Larson and Goetz Graefe. 1998. Memory Management During
Run Generation in External Sorting. In SIGMOD 1998, Proceedings ACM
SIGMOD International Conference on Management of Data, June 2-4,
1998, Seattle, Washington, USA, Laura M. Haas and Ashutosh Tiwary
(Eds.). ACM Press, 472–483. https://doi.org/10.1145/276304.276346

[27] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Al-
fons Kemper, and Thomas Neumann. 2015. How Good Are Query
Optimizers, Really? Proc. VLDB Endow. 9, 3 (2015), 204–215. https:
//doi.org/10.14778/2850583.2850594

[28] Bin Liu and Elke A. Rundensteiner. 2005. Revisiting Pipelined Par-
allelism in Multi-Join Query Processing. In Proceedings of the 31st
International Conference on Very Large Data Bases, Trondheim, Norway,

941

https://doi.org/10.1145/1458082.1458169
https://doi.org/10.1145/1458082.1458169
https://doi.org/10.1561/1900000036
https://doi.org/10.1109/ICDE.2011.5767921
https://doi.org/10.1109/ICDE.2011.5767921
http://www.vldb.org/conf/1992/P015.PDF
http://www.vldb.org/conf/1992/P015.PDF
http://www.vldb.org/conf/1994/P379.PDF
https://doi.org/10.1145/223784.223845
http://www.vldb.org/conf/1986/P228.PDF
https://doi.org/10.1109/69.50905
https://doi.org/10.1145/3570956
https://doi.org/10.1007/S00778-017-0476-3
https://arxiv.org/abs/1403.7729
http://arxiv.org/abs/1403.7729
https://doi.org/10.1145/152610.152611
https://doi.org/10.1145/152610.152611
https://doi.org/10.1002/(SICI)1097-024X(199604)26:4427::AID-SPE20\protect \protect \leavevmode@ifvmode \kern +.2222em\relax 3.0.CO;2-H
https://doi.org/10.1002/(SICI)1097-024X(199604)26:4427::AID-SPE20\protect \protect \leavevmode@ifvmode \kern +.2222em\relax 3.0.CO;2-H
https://doi.org/10.1002/(SICI)1097-024X(199604)26:4427::AID-SPE20\protect \protect \leavevmode@ifvmode \kern +.2222em\relax 3.0.CO;2-H
http://www.vldb.org/conf/1998/p086.pdf
http://www.vldb.org/conf/1998/p086.pdf
http://doi.org/10.5281/zenodo.4316003
http://doi.org/10.5281/zenodo.4316003
https://doi.org/10.1145/99926.99930
https://doi.org/10.1145/99926.99930
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
https://doi.org/10.1145/371578.371598
https://doi.org/10.1145/371578.371598
http://www.vldb.org/conf/2007/papers/industrial/p1105-krompass.pdf
http://www.vldb.org/conf/2007/papers/industrial/p1105-krompass.pdf
https://doi.org/10.1145/1838126.1838127
https://www.cidrdb.org/cidr2022/papers/p82-landgraf.pdf
https://www.cidrdb.org/cidr2022/papers/p82-landgraf.pdf
https://doi.org/10.1145/276304.276346
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.14778/2850583.2850594


SoCC ’24, November 20–22, 2024, Redmond, WA, USA Shiva Jahangiri, Michael J. Carey, and Johann-Christoph Freytag

August 30 - September 2, 2005, Klemens Böhm, Christian S. Jensen,
Laura M. Haas, Martin L. Kersten, Per-Åke Larson, and Beng Chin Ooi
(Eds.). ACM, 829–840. http://www.vldb.org/archives/website/2005/
program/paper/thu/p829-liu.pdf

[29] William C. Lynch. 1972. Do disk arms move? SIGMETRICS Perform.
Evaluation Rev. 1, 4 (1972), 3–16. https://doi.org/10.1145/1041603.
1041604

[30] Darko Makreshanski, Georgios Giannikis, Gustavo Alonso, and Don-
ald Kossmann. 2018. Many-query join: efficient shared execution of
relational joins on modern hardware. VLDB J. 27, 5 (2018), 669–692.
https://doi.org/10.1007/S00778-017-0475-4

[31] Parimarjan Negi, Ryan Marcus, Andreas Kipf, Hongzi Mao, Nesime
Tatbul, Tim Kraska, and Mohammad Alizadeh. 2021. Flow-Loss: Learn-
ing Cardinality Estimates That Matter. Proc. VLDB Endow. 14, 11 (2021),
2019–2032. https://doi.org/10.14778/3476249.3476259

[32] Oracle. 2023. "Join Groups in Oracle". https://docs.oracle.
com/en/database/oracle/oracle-database/23/inmem/optimizing-
queries-with-join-groups.html#GUID-3E5491C4-B345-4A8E-8B1B-
8DC150C8A797

[33] HweeHwa Pang, Michael J. Carey, and Miron Livny. 1993. Memory-
Adaptive External Sorting. In 19th International Conference on Very
Large Data Bases, August 24-27, 1993, Dublin, Ireland, Proceedings,
Rakesh Agrawal, Seán Baker, and David A. Bell (Eds.). Morgan Kauf-
mann, 618–629. http://www.vldb.org/conf/1993/P618.PDF

[34] HweeHwa Pang, Michael J. Carey, and Miron Livny. 1993. Partially
Preemptive Hash Joins. In Proceedings of the 1993 ACM SIGMOD In-
ternational Conference on Management of Data, Washington, DC, USA,
May 26-28, 1993, Peter Buneman and Sushil Jajodia (Eds.). ACM Press,
59–68. https://doi.org/10.1145/170035.170051

[35] Doron Rotem. 1992. Analysis of Disk Arm Movement for Large Se-
quential Reads. In Proceedings of the Eleventh ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, June 2-4, 1992,
San Diego, California, USA, Moshe Y. Vardi and Paris C. Kanellakis
(Eds.). ACM Press, 47–54. https://doi.org/10.1145/137097.137108

[36] Donovan A. Schneider and David J. DeWitt. 1990. Tradeoffs in Pro-
cessing Complex Join Queries via Hashing in Multiprocessor Database
Machines. In 16th International Conference on Very Large Data Bases,
August 13-16, 1990, Brisbane, Queensland, Australia, Proceedings, Den-
nis McLeod, Ron Sacks-Davis, and Hans-Jörg Schek (Eds.). Morgan
Kaufmann, 469–480. http://www.vldb.org/conf/1990/P469.PDF

[37] Jahangiri Shiva. 2024. Memory Management in Complex Join
Queries: A Re-evaluation Study. https://github.com/shivajah/Memory-
Management-in-Complex-Join-Queries-A-Re-evaluation-Study.
https://github.com/shivajah/Memory-Management-in-Complex-
Join-Queries-A-Re-evaluation-Study GitHub repository.

[38] Giulliano Silva Zanotti Siviero and Shiva Jahangiri. 2023. Towards
a Memory-Adaptive Hybrid Hash Join Design. In IEEE International
Conference on Big Data, BigData 2023, Sorrento, Italy, December 15-
18, 2023, Jingrui He, Themis Palpanas, Xiaohua Hu, Alfredo Cuz-
zocrea, Dejing Dou, Dominik Slezak, Wei Wang, Aleksandra Gruca,
Jerry Chun-Wei Lin, and Rakesh Agrawal (Eds.). IEEE, 6283–6285.
https://doi.org/10.1109/BIGDATA59044.2023.10386098

[39] Annita N. Wilschut, Jan Flokstra, and Peter M. G. Apers. 1995. Parallel
Evaluation of Multi-Join Queries. In Proceedings of the 1995 ACM SIG-
MOD International Conference onManagement of Data, San Jose, Califor-
nia, USA, May 22-25, 1995, Michael J. Carey and Donovan A. Schneider
(Eds.). ACM Press, 115–126. https://doi.org/10.1145/223784.223803

[40] Ziniu Wu, Parimarjan Negi, Mohammad Alizadeh, Tim Kraska, and
Samuel Madden. 2023. FactorJoin: A New Cardinality Estimation
Framework for Join Queries. Proc. ACM Manag. Data 1, 1 (2023),
41:1–41:27. https://doi.org/10.1145/3588721

[41] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das,
Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shiv-
aram Venkataraman, Michael J. Franklin, Ali Ghodsi, Joseph Gon-
zalez, Scott Shenker, and Ion Stoica. 2016. Apache Spark: a unified
engine for big data processing. Commun. ACM 59, 11 (2016), 56–65.
https://doi.org/10.1145/2934664

[42] Hansjörg Zeller and Jim Gray. 1990. An Adaptive Hash Join Algorithm
for Multiuser Environments. In 16th International Conference on Very
Large Data Bases, August 13-16, 1990, Brisbane, Queensland, Australia,
Proceedings, Dennis McLeod, Ron Sacks-Davis, and Hans-Jörg Schek
(Eds.). Morgan Kaufmann, 186–197. http://www.vldb.org/conf/1990/
P186.PDF

[43] Mingyi Zhang, Patrick Martin, Wendy Powley, and Jianjun Chen.
2018. Workload Management in Database Management Systems: A
Taxonomy. IEEE Trans. Knowl. Data Eng. 30, 7 (2018), 1386–1402.
https://doi.org/10.1109/TKDE.2017.2767044

[44] Mikal Ziane, Mohamed Zaït, and Pascale Borla-Salamet. 1993. Parallel
Query Processing with Zigzag Trees. VLDB J. 2, 3 (1993), 277–301.
http://www.vldb.org/journal/VLDBJ2/P277.pdf

942

http://www.vldb.org/archives/website/2005/program/paper/thu/p829-liu.pdf
http://www.vldb.org/archives/website/2005/program/paper/thu/p829-liu.pdf
https://doi.org/10.1145/1041603.1041604
https://doi.org/10.1145/1041603.1041604
https://doi.org/10.1007/S00778-017-0475-4
https://doi.org/10.14778/3476249.3476259
https://docs.oracle.com/en/database/oracle/oracle-database/23/inmem/optimizing-queries-with-join-groups.html#GUID-3E5491C4-B345-4A8E-8B1B-8DC150C8A797
https://docs.oracle.com/en/database/oracle/oracle-database/23/inmem/optimizing-queries-with-join-groups.html#GUID-3E5491C4-B345-4A8E-8B1B-8DC150C8A797
https://docs.oracle.com/en/database/oracle/oracle-database/23/inmem/optimizing-queries-with-join-groups.html#GUID-3E5491C4-B345-4A8E-8B1B-8DC150C8A797
https://docs.oracle.com/en/database/oracle/oracle-database/23/inmem/optimizing-queries-with-join-groups.html#GUID-3E5491C4-B345-4A8E-8B1B-8DC150C8A797
http://www.vldb.org/conf/1993/P618.PDF
https://doi.org/10.1145/170035.170051
https://doi.org/10.1145/137097.137108
http://www.vldb.org/conf/1990/P469.PDF
https://github.com/shivajah/Memory-Management-in-Complex-Join-Queries-A-Re-evaluation-Study
https://github.com/shivajah/Memory-Management-in-Complex-Join-Queries-A-Re-evaluation-Study
https://github.com/shivajah/Memory-Management-in-Complex-Join-Queries-A-Re-evaluation-Study
https://github.com/shivajah/Memory-Management-in-Complex-Join-Queries-A-Re-evaluation-Study
https://doi.org/10.1109/BIGDATA59044.2023.10386098
https://doi.org/10.1145/223784.223803
https://doi.org/10.1145/3588721
https://doi.org/10.1145/2934664
http://www.vldb.org/conf/1990/P186.PDF
http://www.vldb.org/conf/1990/P186.PDF
https://doi.org/10.1109/TKDE.2017.2767044
http://www.vldb.org/journal/VLDBJ2/P277.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Stage-Based Query Execution
	2.2 AsterixDB

	3 Design Space
	3.1 Dimension 1: Query Shapes
	3.2 Dimension 2: Memory Management
	3.3 Dimension 3: Storage Architecture

	4 Experimental Analysis
	4.1 Datasets and Benchmark
	4.2 Experiment 1 - Unlimited Memory
	4.3 Experiment 2 - Limited Memory
	4.4 Experiment 3 - Non-Restrictive Selections
	4.5 Experiment 4 - Non-Restrictive Joins

	5 Related Work
	6 Conclusion and Future Work
	References

