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Abstract: 

 

When drops are placed on a sufficiently soft surface, the drop surface tension drives an out of 

plane deformation around the contact line (i.e., a wetting ridge). For soft elastomeric surfaces that 

are swollen with a liquid, capillarity from a drop can induce a phase separation in the wetting 

ridge. Using confocal microscopy, we study the dynamics of phase separation at the wetting ridge 

of glycerol drops on silicone elastomers, which are swollen with silicone oils of varying viscosity 

(i.e., molecular weight). We show that the viscosity of the swelling oil plays a large role in the oil 

separation size and separation rate. For networks swollen to near their maximum swelling (i.e., 

saturated), lower viscosity oil separates more and separates faster at early times compared to 

larger viscosity oil. During late-stage wetting, the growth rate of the separation is a function of 

viscosity and swelling ratio, which can be described by a simple diffusive model and a defined 

wetting ridge geometry. In this late-stage wetting, the higher viscosity oil evidently grows faster, 

likely because it is further from reaching equilibrium. Interestingly, the separated oil phase region 

grows with a nearly constant, geometrically similar shape. Understanding how phase separation 

occurs on swollen substrates should provide information on how to control drop spreading, 

sliding, adhesion, or friction on such surfaces. 

  



Introduction 

Wetting on soft surfaces has gain significant attention for the wide range of potential applications, 

from soft robots1 and biological processes2 to adhesives and self-cleaning coatings.3,4 Drops on 

soft elastomers generate an out-of-plane deformation around the three-phase contact line, known 

as a wetting ridge, due to the drop surface tension pulling vertically on the surface5–9. Such 

behavior is more easily observed when the modulus of the polymer network is soft enough for 

surface tension to cause visible deformations. This ridge can play a role in drop spreading, drying, 

and sliding10–18. Similarly, wetting ridges can also be found on slippery, lubricant-infused surfaces, 

although these ridges are comprised purely of liquid lubricant19–23. Swollen elastomers, which are 

polymer networks infused with a liquid, can behave as an intermediate between these two cases; 

the swelling liquid can separate from the polymer network, making the wetting behavior even 

more complex24–39. Specifically, when a drop is placed on a swollen elastomer, the imbibed liquid 

may phase separate at the contact line, affording a pure liquid phase at the wetting ridge tip15,35,40,41. 

While wetting-induced phase separation on swollen elastomers has been investigated, the shape 

and growth dynamics of the phase separated region is not well understood, especially as a 

function of the swelling liquid viscosity. Such information is critical for designing time-

dependent processes for soft polymer coatings. 

 

To study soft wetting, silicone elastomers (e.g., crosslinked polydimethylsiloxane, PDMS) are one 

of the most widely used substrates,31 due to their commercial availability, easily tuned modulus, 

and simple preparation methods.11,25,40,42–47 However, many elastomers contain uncrosslinked 

molecules (i.e. extractable oils) that are left over after curing, which serve as a liquid swelling 

agent in the network48–50. Hence, these materials are two-component systems that include a 

crosslinked network and an uncrosslinked liquid; the liquid phase is effectively a high viscosity 

silicone oil. For example, the Sylgard 184 elastomer kit has a base liquid polymer with a viscosity 

of ~5000 cSt, which likely makes up most of the remaining extractable oil in the elastomer after 

curing48,51,52. This high viscosity oil can play an important role in dynamic surface properties, like 

drop sliding dynamics53 and adhesive detachment dynamics54. However, prior studies have not 

investigated the phase separation shape and dynamics with varying oil viscosities.  

 

In this work, we study the dynamics of wetting-induced oil phase separation of on lightly 

crosslinked elastomers near the contact line of a liquid drop (Figure 1a). We focus on how the oil 

viscosity (i.e., molecular weight) and the degree of swelling (i.e., amount of infused oil) affects 

the size and growth rate of the separated oil region (Figure 1b-1c). For highly swollen networks, 

the oil separation size increases with time after a drop is placed on the surface. The separation 

occurs faster at early times and then slows at longer times. For intermediately swollen elastomers, 

the oil separation size reaches a maximum and remains constant with time. The separation rate 

is a function of the oil viscosity; lower viscosities separate more and faster at early stages, while 

the ridge growth is faster for higher viscosity during later stages.  Interestingly, we observe that 

the growth of the oil region grows with a consistent geometry that scales up during growth. Our 

result suggests that phase separation size and rate are strongly affected by the viscosity and 



amount of oil in soft elastomers, which may provide insight into the design of soft polymer 

coatings.  

 

 

Figure 1: Schematic diagram illustrating the experiment. (a) A drop is placed on swollen 

elastomer, creating a zone of oil separation near the contact line. (b-c) Zoomed-in regions of the 

contact line at two different time points. The oil (ℎ𝑜) and network heights (ℎ𝑛) are measured over 

time, with the separation height given by Δℎ = ℎ𝑜 − ℎ𝑛. At an early time point (e.g. time 1), there 

is a small amount of oil separation. At a later time point (e.g. time 2), the ℎ𝑛 remains constant and 

ℎ0  increases. Note that the wetting ridge zone is not to scale and serves only to describe the 

process. 

 

Results and discussion 

Surfaces with different viscosity oils. To prepare our surfaces, we use a commercially available 

polydimethylsiloxane (PDMS) elastomer kit (Sylgard 184, Dow) with a base to crosslinker ratio 

of 60:1 by weight; this leads to an as-prepared Young’s modulus of the order ~5 kPa32,46,55. At this 

high base/crosslinker ratio (noting that the manufacturer recommended ratio is 10:1, modulus 

~1 MPa), the base is in excess relative to the crosslinker, resulting in uncrosslinked chains that 

remain in the as-prepared samples after curing. The properties of the uncrosslinked chains are 

generally unknown because they come from a commercial product and because there is limited 

control over the molecular weight distribution and architecture after curing. To control the 

number and molecular weight of free chains, we first remove these uncrosslinked chains by 

washing samples in hexane. In this procedure, the as-prepared samples are immersed in hexane 

for several days to allow the uncrosslinked chains to migrate from the elastomer into the 

surrounding solvent. The process is repeated three times. The washed elastomers are then dried 

to remove residual hexane; we consider these washed samples as dry polymer networks. Details 

of this washing process are described elsewhere.40,48 

 

To study the effect of oil viscosity, the dry samples are swollen with different silicone oils. We use 

unreactive, trimethylsiloxy-terminated silicone oils with molecular weights of 14 kg/mol, 28 

kg/mol, and 49 kg/mol, which have viscosities of 350, 1000, and 5000 cSt, respectively. To measure 

the maximum degree of swelling for the different molecular weights, we prepare dry blocks of 

60:1 PDMS (1.5 x 1 cm x 1 mm) and subsequently immerse them in oil. Upon immersion, the oil 

penetrates the network until it reaches a maximum degree of swelling (i.e., saturated). The degree 

of swelling is defined as 𝑄 = 𝑉𝑑/𝑉𝑠, where 𝑉𝑑 is the volume of the dry sample and 𝑉𝑠 is the volume 

of the swollen elastomer. For all molecular weights, 𝑄 increases with immersion time, indicating 



that silicone oil expands the PDMS elastomer (Figure 2). The rate of increase in 𝑄 is fast initially 

and slows down in the range of 25-50 days, although 𝑄 continues to increase after 135 days (~4.5 

months). As anticipated, the maximum degree of swelling and the rate of swelling decrease with 

increasing molecular weight. At 135 days, 𝑄~4.0 for 14 kg/mol oil, ~2.9 for 28 kg/mol oil, and ~2.0 

for 49 kg/mol oil. 𝑄 appears to be approaching a maximum at 135 days. The increase in swelling 

over these long times may be due to the slow reaching of equilibrium by swelling thick samples 

with high viscosity oil or possibly due to chains breaking (e.g. hydrolysis) and altering the 

equilibrium swelling ratio. Nevertheless, since these values are approaching a plateau, we assume 

these are around their saturated swelling states, and will be used as a baseline comparison for 

preparing swollen, micron-scale thick films for the following wetting experiments. It should be 

noted that due to challenges in high viscosity swelling (i.e., long saturation times) and sample 

preparation of thin films of micron-scale thickness, some variations exist in the maximum 

measured 𝑄 in the following samples for wetting experiments.  

  

Figure 2. The degree of swelling 𝑄 as a function of immersion time in days for macroscopic, bulk 

PDMS elastomers being swollen with silicone oil having molecular weights of 14 kg/mol, 28 

kg/mol, and 49k g/mol. 

 

Observing time-dependent phase separation. To investigate the wetting ridge at the periphery of a 

drop, a glycerol drop is placed onto the surface while imaging its contact line. Glycerol is used 

because it has a similar surface tension to water, low volatility, and does not swell or mix well 

with PDMS51 or silicone oil56, which are important for long wetting experiments. Moreover, we 

previously found that the spreading parameter 𝑆 should be positive for oil separation to occur 

spontaneously31,40; 𝑆 > 0  for a glycerol and silicone oil system. In Fig. 3a, confocal images are 

presented for a drop on a surface with 14 kg/mol oil and a measured swelling of 𝑄 = 4.1 

(~maximum swelling). At early stages (30 s), the swollen polymer network is pulled up and a 

small amount of oil separation is visible. This suggests that the emergence of the phase separated 

region is a fast process. One can hypothesize that at initial contact (t=0), the drop interfaces with 

both polymer network chains and oil molecules. Shortly after, the oil separates and the vertical 

interfacial stresses at the tip of the ridge are mostly felt by the phase separated oil region. After 



50 minutes (3000 s), more oil separates, while it appears that the polymer network relaxes in the 

vertical direction. After an even longer time of 5 hours (18000 s), the oil separation becomes more 

apparent. Additionally, it is observed that not only does the height of the distinct oil wetting ridge 

grow over time, but so does the width to the same extent; that is, the shape remains geometrically 

similar.  

 
Figure 3. (a,c) Confocal imaging of oil separation during wetting of a glycerol drop on PDMS 

elastomers swollen with 14 kg/mol silicone oil. The insets in (c) are to illustrate oil separation 

more clearly at these low separations. (b,d) The corresponding measured heights are plotted. The 

degrees of swelling 𝑄 are (a-b) 4.1 and (c-d) 2.8. Scale bar: 20 μm. 

 

To gain more insight into this time-dependent process, we measured the maximum network 

height ℎ𝑛 and the oil tip height ℎ𝑜 relative to the original, unperturbed surface. The separation 

size is calculated from these values, defined as Δℎ = ℎ𝑜 − ℎ𝑛. These heights are presented in Fig. 

3b for the corresponding images in Fig. 3a. Consistent with our confocal images, the oil separation 

size increases as a function of time. In the short time regime (e.g. 30 s), a quick formation of the 

network wetting ridge is observed when the drop is placed, while a very small Δℎ is observed. 

However, ℎ𝑜 increases with increasing time. After 3000 s, Δℎ ≈ 16 μm, and reaches ≈30 μm at 

18000 s. This qualitative trend also holds for a polymer network swollen to a lower swelling of 

𝑄 = 2.8 (Fig. 3c), but with smallerΔℎ. In this case, we find again that the network wetting ridge 



forms quickly, but without clear oil separation at 𝑡 = 30 s. After 3000 s, a small amount of oil 

separation can be visualized, which appears to be maintained after 18000 s. This is evident in Fig. 

3d, which shows that the separation size Δℎ reaches ~2 μm after about ~2500 s; thereafter it does 

not increase significantly with time (Figure 3c-d). This concept of a stable Δℎ is consistent with 

our prior work on low molecular weight oils (770 g\mol), which showed an apparently stable oil 

separation after a few minutes40. When the degree of swelling is decreased even more to 𝑄 = 2.1, 

effectively no oil separation is visible in our confocal images. The data becomes rather noisy, and 

the oil and network heights are difficult to discern. It is likely that a small amount of oil does 

separate, which is outside the resolution limit of our confocal microscope.  

 

To investigate the idea of geometric similarity in the ridge, we trace the ridge shapes at different 

times and overlay them. Fig. 4a shows the shapes of the ridge for 14 kg/mol oil at the highest 

swelling for all times. The lines are colored according to the measurement time, gradually 

changing from dark purple at early times to light yellow at the latest time. To show the similarity 

in the shape, we rescale the ridges at different times to have the same ridge height, as measured 

from the unperturbed surface of the network. Fig. 4b shows the ridge at different times after 

rescaling. As it turns out, the ridge initially steepens with time (illustrated by the outlying purple 

lines), but soon assumes an invariant shape. Except for the outlying early times, we see a collapse 

of the shapes after rescaling. At equilibrium, a self-similar shape is expected to appear as the result 

of a point load on a viscoelastic medium57, and we believe this manifests itself in the geometrically 

similar growth of the liquid ridge at steady state. To further characterize the shape during growth, 

we measure the opening angle at the tip of the separated ridge (i.e., the tip of the oil-water-air 

contact line). We take the 30 points closest to the tip of the ridge from either side and fit each to a 

line, giving an approximation for the left and right tangents. The opening angle is then calculated 

as the angle between those lines. The results for 14 kg/mol are shown in Figs. 4c and 4d at 𝑄 = 2.8 

and 𝑄 = 4.1, respectively; the angles relax and take constant values after about 500 s and 1000 s, 

respectively. Both durations are shorter than the time needed to reach equilibrium, which is about 

2500 s for 𝑄 = 2.8, and longer than 20000 s for 𝑄 = 4.1. The steady value for the measured angle 

further supports the similarity in the ridge shape during growth.  

 



 

Figure 4. Geometry of the wetting ridge for 14k and 𝑄 = 4.1. (a) Original ridge and (b) rescaled 

ridge at all times. The time span between two lines is about 30 s, and the lines are colored 

according to the measurement time, gradually from dark purple at early times to light yellow at 

the latest time. Except for ridges at early times, the ridge shapes collapse to a common one after 

rescaling. (c-d) Opening angles of the oil ridge tip for 14k oil swollen surfaces for (c) 𝑄 = 2.8 and 

(d) 𝑄 = 4.1. The opening angle is measured using estimates of the tangents from both sides of the 

tip of the ridge. 

 

An interesting point is that the tip angle is relatively large (>40∘). Due to the interfacial tensions 

at play in our system, vanishingly small angles are expected. The reason is because the spreading 

parameter of the oil on the glycerol is positive, meaning that at equilibrium, a Neumann 

configuration is not possible.31 In addition, if the network is highly swollen, the oil likely cloaks 

the drop, leading to a vanishing angle at the tip of the ridge. Measuring angles from microscopy 

images suffers from inherent limitations, namely the imaging resolution and the inability of 

image analysis tools to find infinitely sharp corners in noisy images. This may lead to measured 

angles being larger than they are in reality. The reported angles should, therefore, not be taken as 

a sign of the existence of a stable Neumann state at equilibrium, but simply as an indication of 

the similarity of the shape of the ridge during growth. 

 

To compare the oil separation for the different molecular weights, Δℎ for different 𝑄 are plotted 

for the 14, 28, and 49 kg/mol surfaces as a function of time (Figs. 5a-c). In the 14 kg/mol case, the 

sample with high swelling (𝑄 = 4.1 ) displays a large separation size, which decreases with 



decreased swelling. Hence, the maximum separation size is a function of the degree of swelling. 

The same general trend is observed for the 28 kg/mol and 49 kg/mol oils (Fig. 5b-c); when the 

networks are swollen to their maximum values, a large oil separation is observed (𝑄𝑚𝑎𝑥 = 3.5 for 

28 kg/mol and 𝑄𝑚𝑎𝑥 = 2.3 for the 49 kg/mol), which decreases with decreased swelling. This can 

be conveniently observed in Fig. 5b for the 28 kg/mol samples, where the long time Δℎ decreases 

with decreasing 𝑄. At a sufficiently low 𝑄, the separation size Δℎ becomes too small to clearly 

image. For example, samples with 𝑄 = 1.9 for the 28 kg/mol and 𝑄 = 1.4 for the 49 kg/mol do not 

display clear separation, even after a long wetting time of ~5 hours; the values remain around ~1 

μm with noisy data, close to our resolution limit. This little to no oil separation is consistent with 

our previous study suggesting that the fluid is held inside the polymer network for elastomers 

with a low 𝑄, possibly due to osmotic pressure.16,24,39,40  

 

To make a direct comparison between the different viscosity oils, we replot the highest swelling 

data from Figs. 5a-c in Fig. 5d; during the duration of our experiments, the separation size clearly 

increases with decreasing oil molecular weight. However, we note that the lower molecular 

weight system has a larger absolute amount of oil within the network, since it has a higher 

maximum 𝑄 (Fig. 2). Hence, it is not immediately obvious whether the molecular weight or the 

amount of oil in the network governs the oil separation size. One could also compare samples 

with similar degrees of swelling but different molecular weights (e.g. 𝑄 = 2.3 for 49 kg/mol, 𝑄 =

2.5 for 28 kg/mol, and 𝑄 = 2.8 for 14 kg/mol, Fig. 5a-c); however, Δℎ𝑚𝑎𝑥 for these are not similar. 

For example, although the swelling ratio for 49 kg/mol is the lowest (𝑄 = 2.3), the ridge height 

reaches higher values than for 28 kg/mol (𝑄 = 2.5), followed by 14 kg/mol, which has the highest 

swelling ratio of the three (𝑄 = 2.8). These overall results indicate that even though the swelling 

ratio plays a role in Δℎ𝑚𝑎𝑥, it is also strongly governed by the viscosity.  



  

Figure 5. Separation height 𝛥ℎ as the function of wetting time with different degrees of swelling 

𝑄 for PDMS elastomers swollen with silicone oil having molecular weights of (a) 14, (b) 28, and 

(c) 49 kg/mol, respectively. (d) Separation height Δℎ as the function of wetting time for elastomers 

swollen with different molecular weight oils near their maximum; 𝑄𝑚𝑎𝑥 = 4.1 (black, 14 kg/mol), 

3.5 (blue, 28 kg/mol) and 2.3 (purple, 49 kg/mol). 

 

In addition to the separation size, we can make a comparison of the time-dependent, oil 

separation dynamics from Fig. 5d for the different viscosities. For all samples, the oil separation 

occurs fastest in the early stages of wetting, which is then followed by a slower rate of oil 

separation. Qualitatively, one can observe that the early-stage oil separation occurs faster with 

lower viscosity oil. For example, the slope (separation height growth rate) of the curves in Fig. 5d 

in the first 1500 s (25 minutes) increase with decreasing molecular weight. This is intuitive if we 

consider that the oil mobility will scale inversely with the molecular weight. On the other hand, 

the growth slows down after a certain point in time, suggesting two regimes.  

 

Description of separation process. Based on our experimental findings, it is clear that the separation 

process is associated with both the molecular weight of the swelling oil and the swelling ratio. 

The timescale of the separation process is relatively long, suggesting that it is dominated by 

diffusion. Given the time scales of our experiments, it is safe to consider that the system reaches 

the diffusion limit. To describe the phase separation growth dynamics, we consider that the ridge 



grows through the accumulation of oil near the three-phase contact line, and that the oil is 

supplied by a diffusive flow through the swollen network. To describe the process, we set up a 

simple diffusion model for the growth of the wetting ridge in the presence of a drop. A key part 

of a theoretical description of the process is the driving force for the accumulation of oil in the 

ridge. The accumulation of oil is driven by differences in chemical potential between the ridge 

and the network outside the three-phase contact line. The ridge chemical potential can be 

obtained from the free energy in the ridge. We consider the ridge to be composed of the elastic 

network and the phase-separated oil, located at the three-phase contact line. The ridge free energy 

𝐹𝑟 depends on the number of chains 𝑛𝑟 in the ridge and will be a complicated expression with 

contributions from the elasticity of the network, interfacial tensions, and possibly other 

contributions. Developing a comprehensive theory for the ridge free energy goes beyond the 

scope of the present work. Instead, we approximate the free energy function by an expansion 

about its minimum, which corresponds to the saturated ridge with 𝑛0 chains: 

 

𝐹𝑟 ∝ (𝑛𝑟 − 𝑛0)
2 (Eq. 1) 

 

where 𝑛𝑟 is the number of chains in the ridge and 𝑛0 is the number of chains at saturation, which 

is unknown. We consider the location of the ridge to be at the three-phase contact line radius 𝑅, 

and express the ridge free energy in terms of the line number density in the contact line 

 

𝐹𝑟 = ∫𝑑𝑙
𝜅

2
(𝜆 − 𝜆0)

2   (Eq. 2) 

 

where 𝜆 ∝ 𝑛𝑟/𝑅  and 𝜆0 ∝ 𝑛0/𝑅  are the actual line density and the line density at saturation 

respectively, 𝑅 is the radius of the three-phase contact line, and 𝜅 is an unknown proportionality 

constant. The above-mentioned details of the physics in the ridge are captured implicitly within 

the two free parameters 𝜅 and 𝜆0. The details of the free energy in the ridge, however, should not 

play a major role, since the time evolution is dominated by slow diffusion. 

 

For the free energy of the swollen polymer network, we include contributions from the 

translational entropy of the oil, in addition to a term relating to the elasticity of the network. The 

equilibrium free energy for the network is then chosen as 

 

𝐹𝐺 = 𝐹𝑖𝑑 + 𝐹𝑒𝑙  (Eq. 3) 

 

where 𝐹𝑖𝑑 is the entropic contribution and 𝐹𝑒𝑙 ∝ 𝑄2 is the elastic contribution. To capture the local 

details in the network, the free energy can be expressed in functional form, which depends on the 

local fraction of oil at different positions within the network. Expressed in this way, the free 

energy takes the form 

 



ℱG[𝜑] = ∭ 𝑑 𝑉
⬚

Ω

 {
𝜑

𝑁𝑜
 (ln𝜑 − 1) +

𝐾

2
 

1

1 − 𝜑
} (Eq. 4) 

 

where the integral is evaluated over the volume of the network, 𝑁𝑜 is the number of repeat units 

per oil chain, 𝜑 is the local fraction of oil, and 𝐾 is the elasticity of the network. The first term in 

Eq. 4 is the entropic contribution of the oil, while the second term is the contribution from 

elasticity. 

 

Equilibrium between the ridge and network is achieved when the chemical potentials in both are 

equal. The equilibrium line density 𝜆𝑒 ≤ 𝜆0 is then given by 

 

𝜆𝑒 ≡ 𝜆0 +
𝜇𝐺

𝑒𝑞

𝜅
. (Eq. 5) 

 

 

Figure 6. (a) 𝜆(𝑡) vs time as the direct result of solving the dynamical equations. (b) The separation 

height as calculated using 𝜆(𝑡) in Eqs. 9 and 10. 

 

Here 𝜇𝐺
𝑒𝑞

 is the equilibrium chemical potential of the elastomer, which is negative and increases 

monotonously with 𝜑 and 𝑁𝑜. This means that when the swelling or the molecular weight of the 



oil increases, more material will accumulate in the ridge at equilibrium. This provides theoretical 

support for the observations made earlier in Fig. 5. 

 

For the out of equilibrium situation, having the expressions for the free energies of the ridge and 

the network enables us to derive dynamic equations. At the ridge, the flux 𝑗𝑟 into the ridge is 

driven by the difference in chemical potential between the ridge and the network 

 

𝑗𝑟 ∝ 𝜇𝑟 − 𝜇𝐺 . (Eq. 6) 

 

Within the network, the local flux 𝑗𝐺  is driven by local gradients in chemical potential. Using 

variational calculus, Eq. 4 can be varied to obtain the local flux 𝑗𝐺  at every point within the 

network, in a fashion similar to Fick’s first law. Combining the flux with a continuity equation 

results in a diffusion equation for the local fraction of oil within the network 

 

𝜕𝑡𝜑 = 𝑀𝛻𝑟 {[
1

𝑁𝑜
+

𝐾𝜑

(1 − 𝜑)3
] 𝛻𝑟𝜑} . (Eq. 7) 

 

Since our focus is on the separation rate, we assume that the liquid separates immediately from 

the network upon the formation of the ridge. With this assumption and since no material is lost 

during the growth of the ridge, any oil leaving the network must accumulate in the pure liquid 

ridge. With this we set up our diffusion equation with the appropriate boundary conditions, 

namely 

 

𝑗𝐺 = −𝑗𝑟. (Eq. 8) 

 

The full details on the derivation of the theoretical model are included in the Appendix. The 

diffusion equation with the boundary condition does not admit analytical solutions; we use a 

simple spatial discretization and integrate it with a forward Euler scheme. 

 

Solving the dynamical equations gives us the line density within the ridge as a function of time 

𝜆(𝑡). An example of a solution is shown in Fig. 6a. To compare the results from the theory to the 

experiment, it is necessary to calculate the separation height from the line density. To accomplish 

this, we first calculate the volume of the phase-separated ridge from 𝜆(𝑡) as 

 

𝑉(𝑡) =
2𝜋𝑅𝜆(𝑡)𝑁𝑜

𝜌
 (Eq. 9) 

 

where 𝜌  is the density of the liquid and 𝑁𝑜  is the number of repeat units per chain. As noted 

earlier in Fig. 4, the shape of the phase-separated ridge shows geometrically similar growth. This 

kind of growth can be exploited to calculate the separation height from the volume of the ridge 

without having a detailed shape for the ridge. The similarity assumption, combined with the fact 



that the radius of the contact line (~mm) is much larger than the size of the ridge (~𝜇m), implies 

that the volume scales quadratically with the height of the ridge 𝑉(𝑡) ∝ Δℎ2(𝑡) . As time 

progresses, the height of the ridge scales up by a factor of 𝛼(𝑡) = Δℎ(𝑡) Δℎ0⁄  , where Δℎ0  is a 

reference height at a time 𝑡0. We then have for the scaling factor 𝛼(𝑡) = √𝑉(𝑡)/𝑉0 , where 𝑉0 is the 

volume at time 𝑡0. This finally allows us to relate the separation height to the volume of the liquid 

ridge 

 

Δℎ(𝑡) = Δℎ0√
𝑉(𝑡)

𝑉0
. (Eq. 10) 

 

Using Eqs. 9 and 10 we can calculate the separation height Δℎ(𝑡) from 𝜆(𝑡) as shown in Fig. 6b. 

 

With the goal of comparing our experimental data to this simplified theory, we solve the diffusion 

equation for a given set of fixed parameters (e.g. modulus of the material and the drop size, details 

in the Appendix) and vary the molecular weights and swelling ratios; these are chosen based on 

the molecular weight and swelling ratios from experiments. The parameter that appears in the 

theory is the degree of polymerization of the oil 𝑁𝑜. For the 14, 28, and 49 kg/mol oils, 𝑁𝑜 values 

are set to 184, 378, and 667 respectively, assuming a repeat unit (monomer) molar mass of 74 

g/mol. The mobility in the theory is taken as 𝑀 = 𝑀0 𝑁𝑜⁄ , such that it scales inversely with the 

molecular weight and 𝑀0 is the mobility of an individual monomer. This assumes that there is no 

effect of entanglements. In the diffusion regime, the only effect of entanglements is that the 

mobility 𝑀  varies more strongly with molecular weight 𝑀𝑤 .58 When it comes to inter-chain 

entanglements, an estimation of the entanglement molecular weight 𝑀𝑐 for PDMS yields 𝑀𝑐 =

33 ± 7 kg/mol.59 A study of the transition between the two regimes shows that it can be smooth.60 

The 14 kg/mol is below 𝑀𝑐 while the 28 kg/mol falls is within the confidence interval from below, 

and we will consider both to not have entanglements. The mobility of the 49 kg/mol oil might 

include effects from entanglements. However, given the smoothness of the transition and that the 

molecular weight is not too far above the 𝑀𝑐value confidence obtained by Valles and Macosko59, 

we assume that inter-chain entanglement plays a small role and will be neglected. Moreover, for 

elastomers prepared from commercial kits as we do here, it is difficult to estimate the density of 

crosslinks and strand lengths, which are relevant for determining the properties of the swollen 

elastomer.61 Previous studies on the diffusion of unreactive PDMS chains in PDMS networks 

found that up to weight average molecular weights of 30 kg/mol, Rouse dynamics still govern the 

diffusion.62,63 Taking this into consideration, we use the scaling 𝑀 ∝
1

𝑀𝑤
 for our mobility. 



 

Figure 7: Theoretical separation height 𝛥ℎ𝑡ℎ(𝑡) vs time at different swelling ratios for (a) 𝑁𝑜 = 184, 

(b) 𝑁𝑜  = 378, (c) 𝑁𝑜  = 667. (d) Same as a-c but for the highest swollen elastomers with oils of 

different molecular weights. The theoretical results are shown in solid lines, while the 

experimental results in triangles. 

 

The results for the theoretical separation heights Δℎ𝑡ℎ are shown in Fig. 7, which is designed to 

be analogous to Fig. 5. Figs. 7a-c show the evolution of the separation height for 𝑁𝑜 =

184, 378, 667  respectively, at different swelling ratios. One difference is apparent between the 

theory (Figs. 7a-c) and the experiments (Figs. 5a-c) for lower swelling ratios. In the experiments, 

we have little and quickly saturating growth for low swelling ratios, while in the theory the 

growth is significant and slow for all swelling ratios. Since the ridge heights reached for low 

swelling are much smaller than for high swelling, it is possible that all of the necessary oil is 

supplied from the immediate surrounding of the ridge, and equilibrium is reached before the 

diffusive regime sets in. One possible explanation for the discrepancy is our choice of parameters 

in the free energy for the ridge Eq. 3. We choose the same value for the proportionality constant 

𝜅 and for the saturation line density 𝜆0 while both could depend on the swelling ratio.  For 𝑄𝑚𝑎𝑥 

in particular, the theoretical curves are in good qualitative agreement with the experiments. This 

is illustrated in Fig. 7d, showing the evolution of the separation height for different molecular 

weights at the highest swelling ratios for both theory (lines) and experiment (triangles). Above 

we made the choice for the scaling law of the mobility as 𝑀 ∝ 1/𝑀𝑤, based on observations from 



the literature.62,63 The agreement of the theory with the experiment in Fig. 7d supports the validity 

of this scaling.  

 

To better quantify the similarities and differences we plot the data in a logarithmic scale and 

extract power law exponents of the form Δℎ ∝ 𝑡𝛽. Figs. 8a and 8b show the data on a logarithmic 

scale for the experimental results and the theoretical results respectively, for different molecular 

weights at high swelling. The grey dotted lines in the plots are power law fits for the data at 𝑡 ≥

7500s. It is clear in both the experiment and theory that different regimes exist at early and late 

stages, as evident from the deviation of the fit from the curves. The experimental exponents with 

standard errors are 𝛽𝑒𝑥 = 0.296 ± 0.005  (14 kg/mol),  0.338 ± 0.029  (28 kg/mol), and 0.489 ±

0.016 (49 kg/mol), while the theoretical exponents are 𝛽𝑡ℎ = 0.335 (𝑁0 = 184), 0.356 (𝑁0 = 378), 

and 0.412 (𝑁0 = 667 ). The experimental and theoretical exponents are in reasonably good 

agreement, suggesting that the mechanisms governing the long-term growth of the ridge are most 

likely simple diffusion and geometry.  

 

Figure 8. (a) Logarithmic plot of the experimental height vs. time for saturated elastomers with 

different oil molecular weights. The grey dots are power law fits with Δℎ ∝  𝑡𝛽𝑒𝑥 for t ≥ 7500 s. 

𝛽𝑒𝑥  = 0.30, 0.34, and 0.49 for the 14 kg/mol, 28 kg/mol, 49 kg/mol molecular weight oils, 

respectively. (b) The same plots as part (a) but for the theoretical results. The grey dots are power 

law fits Δℎ ∝  𝑡𝛽𝑡ℎ for t ≥ 7500s. 𝛽𝑡ℎ = 0.34, 0.36, and 0.41 for the monomer numbers of 𝑁0 = 184, 

378, and 667, respectively. 



It is interesting to note that in the early-stage of phase separation growth, the rates are in the order 

14k > 28k > 49k; this is observed in initial slopes of Fig. 5d, prior to reaching the second regime. 

On the other hand, the power law fits in Fig. 8 show the scaling exponents in the order of 49k > 

28k > 14k. Evidently, the late-stage phase separation height grows faster with higher viscosity oils 

(e.g. 49k) compared to lower viscosity (e.g. 14k). This can be rationalized by considering the initial 

phase separation rate to be governed by two main two factors: (a) the swelling ratio is higher for 

lower molecular weight oils, meaning there is more oil available in the local vicinity and (b) a low 

viscosity permits faster oil flow. Hence, the 14k oil separates more and faster initially. For the 

late-stage separation, the slower rates for lower molecular weight oil would then be due to the 

phase-separated ridge being closer to equilibrium, such that the chemical potential difference is 

smaller.  

 

Conclusions 

In this study, we employ confocal microscopy to separately visualize the crosslinked network 

and the mobile oil of a swollen elastomer during wetting. When a drop is placed on the surface, 

we show that phase separation occurs near the contact line, where the phase separation dynamics 

is related to the molecular weight of the swelling oil and the degree of swelling. The ridge 

formation starts with a deformation of both components, followed by a quick separation of the 

liquid and subsequent relaxation of the polymer network. The liquid part of the phase separated 

ridge grows in a geometrically similar fashion The ridge outlines collapse at different times after 

rescaling. For low swelling ratios, the ridge reaches the plateau height relatively fast, while at the 

highest swelling ratios, complete equilibrium is not reached even after long times (i.e., ~15000-

18000 s) Higher degrees of swelling and lower molecular weight oils lead to larger phase 

separation sizes and rates in the early-stage wetting while, the separation rate appears to be faster 

for high viscosity oil at later stages of wetting, likely because less oil has separated compared to 

the lower viscosity counterpart, leading to a lower chemical potential. We confirm this by 

employing a model based on diffusion and by considering the geometrically similar growth of 

the phase separated ridge. The results of the model fit the experiments well for the highest 

swelling ratio. The theory fails, however, to predict the low equilibrium heights and the ensuing 

fast equilibration at lower swelling ratios. This shortcoming is most likely due to simplicity of the 

theoretical considerations, where the two free parameters 𝜅 and 𝜆0 are chosen to be independent 

of the swelling ratio or oil molecular weight. A detailed molecular theory may be needed to 

capture the complex physics in the ridge. The physics in the ridge and the details of what governs 

early-stage phase separation dynamics are still open questions for future consideration. 

 

Experimental section 

The details of the preparation of thin, swollen PDMS films for confocal imaging is described in 

our previous work40. Briefly, Sylgard 184 (Dow) is used as our model polydimethylsiloxane 

(PDMS) elastomer with base/crosslinker of 60:1. Fluorescein O,O’-diacrylate (Sigma-Aldrich) 

with concentration of ~400 μg per gram of PDMS is used to dye the crosslinked PDMS network. 

The samples are cured in a 65°C oven for 48 hours, followed by extracting uncrosslinked chains 



with hexane. After extraction, silicone oil that is mixed with a red-shifted perylene monoimide 

(PMI) dye is used to reswell the PDMS. In this work, silicone oil (polydimethylsiloxane, 

trimethylsiloxy terminated, Gelest) with viscosities of 350, 1000, or 5000 cSt are used. During 

reswelling, a minor amount of hexane can be used to help increase the swelling rate of viscous 

silicone oil into PDMS network. The silicone oil is mixed with hexane with a volume ratio of 1:8, 

and the oil-hexane mixture is added directly onto the extracted PDMS film. The oil-hexane 

mixture spontaneously swells into the PDMS network, and the degree of swelling is controlled 

by the volume of oil-hexane mixture added. The container with samples is sealed with aluminum 

foil for 1 week, followed by unsealing the container and leaving the samples in the open 

environment for 1 hour to allow any residual hexane to evaporate. 

 

Confocal images are captured on an inverted confocal microscope (Leica SP8) equipped with a 

40x objective with a correction ring. Two lasers with wavelengths of 488 nm and 638 nm are 

utilized to excite the fluorescein and PMI dyes separately, and two high-sensitivity (HyD) 

detectors are used to collect emission wavelength ranges of 500-600 nm and 670-750 nm. A 2 μL 

glycerol drop is placed on the sample and cross-sectional images of the surface deformation are 

taken every 30 s or 10 mins, depending on the wetting time of the experiment. The heights of oil 

and network are measured by the vertical distance between the flat surface and the highest tip of 

the oil and network through MATLAB and image analysis. 

  



 

Appendix: Theoretical model 

 

Ridge model 

List of symbols: 

• 𝐹𝑟: total free energy in the ridge 

• 𝑓𝑟: line free energy density of the ridge 

• ∂𝛺: contact line between the droplet and the swollen elastomer 

• 𝜅: prefactor controlling the "rigidtity" of the free energy (implicitly holds information over 

the combined effect of elasticity of the swollen elastomer, interfacial effects, osmotic 

pressure.) 

• 𝜆: line number density in the ridge 

• 𝜆0: saturation line number density in the ridge. 

• 𝑛𝑟: number of polymer chains in the ridge 

• 𝑁𝑜: number of repeat units per chain 

• 𝑛0: saturation number of polymer chains in the ridge 

 

Since the ridge is located at the three-phase contact line we write the free energy ℱ𝑟 as an integral 

over a line free energy density 𝑓𝑟 

ℱ𝑟(𝜆) = ∮ 𝑓𝑟
∂𝛺

 d𝑙 (Eq. A1) 

where the integral is executed over the three-phase contact line of the droplet with the surface. 

We assume that the state of the ridge is not too far away from the equilibrium, so that it can be 

approximated by a quadratic function in the line number density in the ridge 𝜆 

𝑓𝑟(𝜆) =
1

2
𝜅(𝜆 − 𝜆0)

2 (Eq. A2) 

with 𝜆0 the line density at saturation. The total number of polymer chains in the ridge is 

𝑛𝑟 =
1

𝑁𝑜
∮ 𝜆
∂𝛺

 d𝑙 (Eq. A3) 

with 𝑁𝑜 the number of repeat units per chain. With this, the total free energy of the ridge can also 

be written in terms of the number of chains, up to a numerical prefactor that depends on the 

radius of the droplet and 𝑁𝑜 

ℱ𝑟 ∝ (𝑛𝑟 − 𝑛0)
2 (Eq. A4) 

with 𝑛0 the number of chains at saturation. 

 

Swollen elastomer model 

List of symbols: 

• 𝜑(𝑟, 𝑧): local lubricant fraction in swollen elastomer 

• ℎ0(𝑟): local height of the swollen network 

• 𝜑𝑏: initial fraction of lubricant in network 

• 𝐻0: height of collapsed network (no lubricant) 



• 𝐾: elastic constant 

• ℱ[𝜑, 𝜆]: total free energy functional 

• 𝑁𝑜: number of repeat units per chain 

• 𝛺: the spacial domain of the swollen network 

 

We consider a situation where the lubricant swells an elastomeric layer, and the elasticity of the 

swollen network layer contributes to the dynamic equation. We formulate the theory in terms of 

the bulk density 𝜑(𝑟, 𝑧) inside the swollen network, where 𝑧 is the coordinate perpendicular to 

the surface layer, and 𝑟 the radial coordinate. We will assume that the layer is thin enough that 

the perpendicular lubricant diffusion is very fast, hence 𝜑(𝑟, 𝑧) = 𝜑(𝑟) only depends on 𝑟. For 

given layer thickness 𝐻 we have the relations: 

𝛷(𝑟) = ∫ d
𝐻

0

𝑧 𝜑(𝑟, 𝑧) = ℎ0(𝑟) 𝜑(𝑟),  ℎ0(𝑟) =
𝐻0

(1 − 𝜑(𝑟))
. (Eq. A5) 

The total free energy of the system has an elastic contribution due to the swelling of the network. 

The elastic distortion is described in terms of a strain tensor 𝛆 , which is derived from the 

displacement 𝑢⃗ (𝑟 0) = 𝑟 − 𝑟 0 of a point in the swollen network with respect to its position 𝑟 0 in the 

unswollen reference network. Here we only account for swelling in the 𝑧 direction, therefore the 

strain tensor only has one nonzero component 𝜀𝑧𝑧 = ∂𝑢𝑧/ ∂𝑟0,𝑧 ≈ ∂𝑧/ ∂𝑧0 = 1/(1 − 𝜑) . In 

coordinates 𝑧0  of the unswollen network, the elastic energy can then be written as ℱ𝑒𝑙 =

𝐾

2
∫ d

𝐻0

0
𝑧0 𝜀𝑧𝑧

2 . In coordinates of the swollen network, this can be written as ℱ𝑒𝑙 =
𝐾

2
∫ d

𝐻

0
𝑧 𝜀𝑧𝑧. The 

integral gives ℱ𝑒𝑙 =
𝐾

2
𝐻2/𝐻0 ∝ 𝐻2 as expected. Hence, we obtain the total free energy 

ℱ[𝜑, 𝜆] = ∬ d
𝛺

𝐴 d𝑧 {
𝜑

𝑁𝑜
 (ln𝜑 − 1) +

𝐾

2
 

1

1 − 𝜑
} + ∮ d

∂𝛺

𝑙 𝑓(𝜆) (Eq. A6) 

where the first term in the first integral is the entropic contribution, and the second integral is the 

contribution of the ridge from the previous section. 

 

Dynamic equations 

List of symbols: 

• 𝑗 𝐺: lateral diffusive current in the network 

• 𝑗 𝑟: diffusive current into the ridge 

• 𝑀: Mobility of the lubricant chains 

• 𝐵: fill rate at the ridge 

• 𝜇𝐺
𝑒𝑓𝑓

: effective chemical potential in the network 

• 𝜇𝐺
𝑒𝑞

: equilibrium chemical potential in the network 

 

The lubricant density 𝜑  obeys the continuity equation ∂𝑡𝜑 + ∇𝑗 = 0 , but the current 𝑗   has a 

diffusive and a convective component. The convective component is perpendicular to the 

substrate and describes the lubricant transport with the swollen network as it expands. Given our 



assumption that 𝜑(𝑟, 𝑧)  does not depend on 𝑧  due to the joint effect of convection and fast 

perpendicular diffusion, we do not need to calculate it explicitly. The diffusive current in the 

lateral direction is given by 

𝑗 𝐺 = −𝑀𝜑∇𝑟

𝛿ℱ

𝛿𝜑
= −𝑀 {

1

𝑁𝑜
+

𝐾𝜑

(1 − 𝜑)3
} ∇𝑟𝜑. (Eq. A7) 

The flux into the ridge is driven by a difference in effective chemical potentials at the boundary 

∂𝛺 ≡ 𝑟 = 𝑅. In addition, it will be proportional to the fraction of lubricant present at the boundary 

𝛷(𝑅). Since material accumulates in the ridge, we have the following equation 

∂𝑡𝜆 = −𝐵 𝛷(𝑅) [𝑓′(𝜆) − 𝜇𝐺
𝑒𝑓𝑓

] (Eq. A8) 

with 𝐵 a filling rate at the ridge. We make the approximation that the effective chemical potential 

in the swollen network near the ridge stays close to the equilibrium value and set 𝜇𝐺
𝑒𝑓𝑓

= 𝜇𝐺
𝑒𝑞

. At 

equilibrium the free energy of the swollen network is 

ℱ𝐺
𝑒𝑞

= 𝑛𝑜(ln𝜑 − 1) +
𝐾

2

𝑛𝑜𝑁𝑜

𝜑(1 − 𝜑)
 (Eq. A9) 

and the chemical potential is 

𝜇𝐺
𝑒𝑞

=
∂ℱ𝐺

𝑒𝑞

∂𝑛𝑜
= ln𝜑 − 𝜑 +

𝐾𝑁𝑜

1 − 𝜑
 (Eq. A10) 

Hence, we have the set of equations 

∂𝑡𝜑 = 𝑀∇𝑟 {
1

𝑁𝑜
+

𝐾𝜑

(1 − 𝜑)3
} ∇𝑟𝜑 (Eq. A11)

∂𝑡𝜆 = −𝐵 𝛷(𝑅) [𝜅(𝜆 − 𝜆0) − 𝜇𝐺
𝑒𝑞

]. (Eq. A12)

 

We can define the equilibrium line density in the ridge 𝜆𝑒 ≡ 𝜆0 +
𝜇𝐺

𝑒𝑞

𝜅
 and rewrite eq. A.12 as 

∂𝑡𝜆 = −𝐵 𝛷(𝑅) 𝜅(𝜆 − 𝜆𝑒).  (Eq. A13) 

For the boundary conditions, we choose at the contact line an equal flux boundary condition, 

while at the outer boundary we choose constant volume fraction 

−𝐻(𝜑(𝑅)) 𝑗𝐺(𝑅) =
!

∂𝑡𝜆 (Eq. A14)

𝜑(∞) = 𝜑𝑏 . (Eq. A15)
 

The initial conditions are chosen as 

𝜑(𝑟, 𝑡 = 0) = 𝜑𝑏       inside 𝛺 (Eq. A16)

𝜆(𝑡 = 0) = 0.                         (Eq. A17)
 

Using eqs. A.5, A.7, and A.12, the boundary condition eq. A.14 can be written as 

[
𝐻0 𝑀

1 − 𝜑
 {

1

𝑁𝑜
+

𝐾𝜑

(1 − 𝜑)3
} ∇𝑟𝜑]𝑟=𝑅 = −𝐵 𝛷(𝑅) 𝜅(𝜆 − 𝜆𝑒).  (Eq. A18) 

 

Numerical integration 

In order to solve the equation numerically, we split the domain radially into bins with width 𝛥𝑟, 

and label the separate bins as 𝑟𝑖 with 𝑟0 = 𝑅. For any function 𝑔(𝑟) we call 𝑔𝑖 ≡ 𝑔(𝑟𝑖). We use the 



discretization scheme : 

∂𝑔𝑖

∂𝑟
=

1

2𝛥𝑟
(𝑔𝑖+1 − 𝑔𝑖−1)  (Eq. A19)

∂2𝑔𝑖

∂𝑟2
=

1

𝛥𝑟2
(𝑔𝑖+1 + 𝑔𝑖−1 − 2𝑔𝑖)  (Eq. A20)

 

and the forward steps in time are executed as a forward Euler scheme. 

The inner boundary condition is imposed by rewriting eq. A.18 in the following way and solving 

for 𝜑(𝑅) ≡ 𝜑0 

(𝜑1 − 𝜑0) [
(1 − 𝜑0)

3

𝑁𝑜
+ 𝐾𝜑0] −

𝐵

𝑀
𝜅(𝜆 − 𝜆𝑒)𝜑0(1 − 𝜑0)

3𝛥𝑟 = 0  (Eq. A21) 

where we used a forward derivative definition instead of central derivative for the concentration 

at the ridge. 

 

Height of the ridge by geometric scaling 

List of symbols: 

• ℎ(𝑟, 𝑡): shape function of the ridge at time 𝑡 

• 𝛥ℎ(𝑡): separation height at time 𝑡 

• 𝛼(𝑡): scaling factor 𝛼(𝑡) =
𝛥ℎ(𝑡)

𝛥ℎ0
 

• 𝑅: radius of the drop and position of the ridge tip 

• 𝑉(𝑡): volume of the ridge at time 𝑡 

Due to the symmetry of the system, the total ridge is a solid of revolution traced by rotating a 

curve ℎ(𝑟 − 𝑅, 𝑡) around the z-axis. The volume of the ridge is then 

𝑉(𝑡) = 2𝜋∫ ℎ
∞

0

(𝑟 − 𝑅, 𝑡)𝑟d𝑟. (Eq. A22) 

The position of the ridge 𝑅 ∼ mm, while the size of the ridge is on the order of 10𝜇m. That 

means that the shape function must decay very quickly as one moves away from 𝑟 = 𝑅. Due to 

this, most of the contribution to the volume is coming from the region close to the tip, and the 

volume of the ridge is very well approximated by 

𝑉(𝑡) = 2𝜋𝑅 ∫ ℎ
∞

0

(𝑟 − 𝑅, 𝑡)d𝑟. (Eq. A23) 

Executing a change of variables 𝑟′ = 𝑟 − 𝑅 the expression for the volume becomes 

𝑉(𝑡) = 2𝜋𝑅 ∫ ℎ
∞

−∞

(𝑟′, 𝑡)d𝑟′ (Eq. A24) 

where we extend the lower bound to −∞ since the radius 𝑅 is much larger than the size of the 

ridge. From the confocal microscopy images, and the analysis in Fig. 4, the shape of the ridge 



shows geometrically similar growth. We therefore choose a scaling form for the shape function 

ℎ(𝑟′, 𝑡) 

ℎ(𝑟′, 𝑡) = 𝛼(𝑡)ℎ (
𝑟′

𝛼(𝑡)
) (Eq. A25) 

where 𝛼(𝑡) is a time-dependent scaling factor. Following another change of variable 𝑟′ → 𝛼(𝑡)𝑟′ 

in eq. A.24 the expression for the volume becomes 

𝑉(𝑡) = 𝛼2(𝑡)2𝜋𝑅∫ ℎ
∞

−∞

(𝑟′)d𝑟′

= 𝛼2(𝑡)𝑉0

 (Eq. A26) 

where 𝑉0 is a constant with units of volume. We then see that the volume scales quadratically 

with the scaling factor. The scaling factor at time 𝑡 is related to the height of the phase separated 

ridge 𝛥ℎ(𝑡) through 

𝛼(𝑡) =
𝛥ℎ(𝑡)

𝛥ℎ0
 (Eq. A27) 

where 𝛥ℎ0 is the height of the ridge when the volume is equal to 𝑉0. Putting all this together we 

finally get 

𝛥ℎ(𝑡) = 𝛥ℎ0√
𝑉(𝑡)

𝑉0
. (Eq. A28) 

The total volume can be obtained from the solution of the diffusion equation as 

𝑉(𝑡) =
𝑁(𝑡)

𝜌
=

2𝜋𝑅𝜆(𝑡)

𝜌
 (Eq. A29) 

where 𝜌 is the density of the fluid. Having the volume 𝑉(𝑡) and choosing for 𝑉0 and 𝛥ℎ0, we use 

eq. A.28 to obtain the time evolution of the height. 

 

Parameters and units 

The diffusion equation was solved for the following fixed parameters: 

• 𝑅 = 1 

• 𝐾 = 0.4 × 10−4 

• 𝜅 = 2.5 

• 𝜆0 = 1 

• 𝐵 = 12 × 10−5 

The mobility was chosen depending on the molecular weight of the fluid as 𝑀 =
𝑀0

𝑁𝑜
 with 𝑀0 =

10−3. We chose 𝑁𝑜 = 184,378,667 which correspond to to the molecular weights of the oils in the 



experiment using 74 g/mol as the molecular weight of a monomer. For each 𝑁𝑜 we chose three 

values for 𝜑𝑏 that would correspond to the experimental swelling ratios using 𝜑𝑏 = 1 − 1/𝑄. We 

choose discretized time and spacial steps 𝛥𝑡 = 10−6; 𝛥𝑟 = 2 × 10−4. For the values of 𝑉0 and Δℎ0 

we choose the shape of the ridge to be an isoceles triangle with side length ≈ 2𝑅 × 10−4. We 

choose 𝜌 = 1 in eq. A.29. A possible mapping of units is to identify the radius of the drop to 𝑅 =

1mm and the mobility 𝑀0 = 10−12m2/s/𝑘𝐵𝑇, which sets the unit of time in the theory to [𝑡] =

103s. 
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