2023 International Conference on Field Programmable Technology (ICFPT) | 979-8-3503-5911-4/23/$31.00 ©2023 IEEE | DOI: 10.1109/ICFPT59805.2023.00007

2023 International Conference on Field Programmable Technology (ICFPT)

A Tenant Side Compilation Solution for Cloud
FPGA Deployment

1% Maximillian Panoff
Dept. of Electrical and Computer Engineering
University of Florida
Gainesville, Florida, 32611, USA
ORCID: 0000-0003-2849-7197

3" Hangiu Wang
Dept. of Electrical and Computer Engineering
University of Florida
Gainesville, Florida, 32611, USA
ORCID: 0000-0002-5947-9285

2™ Muhammed Kawser Ahmed
Dept. of Electrical and Computer Engineering
University of Florida
Gainesville, Florida, USA
ORCID: 0000-0001-7389-7232

4™ Shuo Wang
Dept. of Electrical and Computer Engineering
University of Florida
Gainesville, Florida, 32611, USA
ORCID: 0000-0002-1827-4355

5™ Christophe Bobda
Dept. of Electrical and Computer Engineering
University of Florida
Gainesville, Florida, 32611, USA
ORCID: 0000-0002-9042-9470

Abstract—We propose a DecryptStrapper and Dually Lever-
aged Deployment (DS+DLD), a protocol to authenticate tenant-
side design checks for trusted cloud FPGA deployment. Current
methods require tenants to trust the cloud FPGA provider with
their designs for inspection and allow for no method to confirm
the confidentiality of the design check process (without Trusted
Execution Environments which have a performance overhead).
As a result, there is a clear need for a protocol that allows
both tenants and providers to cooperate when deploying FPGA
configuration files in a trusted way. DS+DLD works by combining
the hash of a compiled bitstream with the hash of the design
rule or virus scan results, preventing tenants from uploading
bitstreams with falsified results while also never exposing an
unencrypted bitstream to the Cloud FPGA Provider (CFP). The
result is sent along with an encrypted version of the bitstream
to the cloud provider, who recovers the hash of the bitstream
and forwards the encrypted bitstream to a Root-of-Trust on the
FPGA to program. This Root-of-Trust, known as DecryptStrapper
(DS), checks the hash provided by the CFP against the recovered
bitstream to confirm they match before programming the FPGA.
This ensures that both parties are satisfied with the design
in a process we call Dually Leveraged Deployment, forming
DS+DLD. As DS+DLD does not use true Trusted Execution
Environments (TEEs), the compilation overhead is minimal.
We find that our method, while marginally slower than others
that fail to provide the same level of coverage, manages to
outperform the most similar method, completing 1.06x-3x faster
when including compile-time and up to 1.5x faster when not,
while also addressing a larger amount of potential vulnerabilities.

Index Terms—Cloud FPGA Security, Bitstream Validation,
Cloud FPGA Deployment

This work was partially funded by the National Science Foundation (NSF)
under Grant numbers 2007320, 1801599, 1916175, and 2019283. Maximillian
Panoff is the corresponding author and is available at m.panoff@ufl.edu

979-8-3503-5911-4/23/$31.00 ©2023 IEEE
DOI 10.1109/ICFPT59805.2023.00007

16

1. INTRODUCTION

FPGAs are well known for their ability to accelerate various
computational loads, from search requests [1] to deep learning
[2]. As a result, many current cloud users, or Intended Tenants
(ITs) are eager to integrate FPGA solutions into their solutions
without investing in the physical hardware. Many Cloud FPGA
Providers (CFPs) have emerged in recent years with FPGAs
as part of their cloud solutions using recently developed
techniques [3]-[5]. However, FPGAs have unique security
challenges associated with their design and deployment, in
addition to those of traditional cloud computing.

One of the largest of these challenges is Remote Side Chan-
nel Analysis. In remote side-channel analysis, users upload a
design to an FPGA that contains malicious circuitry such as
Ring Oscillators and Time/Digital Converters, which indirectly
measure voltages [6]-[8] on the FPGA. This data is then
returned to the user, who can analyze it to recover sensitive
information from other circuits and data such as the crypto
keys used in RSA [6]. With deep learning greatly increasing
the capabilities of such side-channel attacks [9], [10], this is
a quickly growing threat. Other threats include trojans, which
can affect the computations of other designs running on the
device or even cause physical damage [11].

In general, to mitigate the risks associated with Remote Side
Channel analysis and other threats, CFPs use Design Rules
Checks (DRCs) and virus checkers to evaluate hardware de-
signs and ensure that bitstreams are free of malicious circuitry
before downloading them onto tenants’ FPGA [11]. CFPs
request that circuits be compiled on their clouds using the

Authorized licensed use limited to: University of Florida. Downloaded on January 04,2025 at 10:12:30 UTC from IEEE Xplore. Restrictions apply.

vendor software they provide in a secure cloud environment.

This approach naturally raises concerns about the confi-
dentiality of any designs made on these services, as they
are compiled in the cloud provider-controlled environment.
Solutions to these concerns either rely on Trusted Execution
Environments (TEEs), like ARM’s TrustZone [12] or Intel’s
SGX [13], to ensure confidentiality [14], or third parties to
compile and check the code [15], and play other active roles
in the protocol [14]. The main problem with TEEs is the
limited throughput because the checks and compilation take
significantly longer [14]. While approaches like SGX-FPGA
[16] can mitigate these throughput limitations using FPGA-
based TEE/enclaves, they fail to address the root of the issue,
authentication of DRC results completed by another party.

To address this issue, we propose a novel protocol, De-
cryptStrapper and Dually Leveraged Deployment (DS+DLD)
(shown at a high level in Figure 1) as a means to ensure that
bitstream compiled by tenants is safe, without compromising
the confidentiality of the design.

Specifically, we propose DS+DLD to enable CFPs to au-
thenticate the design rule results of a bitstream checked by the
tenant. This relies on a Root-of-Trust (RoT) being present on
the tenant’s device with certain capabilities, as well as a second
RoT on the FPGA to program. The CFP can then leverage this
RoT to bootstrap trust onto the tenant’s device. The tenant then
leverages DecryptStrapper, a physical RoT on the target FPGA
owned by the CFP, to securely implement the client’s designs
on the cloud FPGA.

The contributions of this work are as follows:

o We propose a method that uses a cloud FPGA-side RoT
to authenticate the results of an inspection for malicious
circuitry performed by the client outside a dedicated TEE

o We additionally propose a method using two separate
Root-of-Trusts to ensure complete system confidentially
and integrity for cloud FPGA deployment without requir-
ing the FPGA Manufacturer/Vendor to play an active role

« We examine the robustness of our proposed solution in a
series of case studies, including novel cases.

o We examine the timing overheads of DS+DLD vs. others
in this space, with ours outperforming the only other to
offer similar levels of protection

The rest of this paper is organized as follows: in Section
II, we provide some necessary background to understand this
work, and in Section III, we introduce the threat models and
introduce a few existing solutions in this area. Next, Section IV
describes DS+DLD, and Section V evaluates security in a few
case studies and compares it to the solutions from Section III.
We further expand upon these comparisons with an analysis
of timing overheads for DS+DLD in Section VI. Finally, we
conclude our work in Section VII.

II. BACKGROUND

To help better understand DS+DLD, we introduce several
foundational security concepts that are used throughout the
protocol. These key concepts include Hash Chains, Certificate

17

Chains, Public Key Infrastructure (PKI), Root of Trust (RoT),
and the Trusted Execution Environment (TEE).

A. Hash Chains and Hash States

A Hash chain is a state formed from a sequence of hash
values. Each hash value is computed by combining the pre-
vious hash value with the new hash. Hash chains are often
leveraged in secure boot solutions. During the boot process,
the hash state is compared to a list of known values stored in
a secure location in the system. If the hash state matches a
known value, the system continues. If the hash state does not
match a known value, it is assumed that the process has been
compromised, and the system is halted [17].

B. Certificate Chains and Public Key Infrastructure

Certificate chains, (i.e. certificate hierarchies, certificate
paths) play a critical role in establishing the trustworthiness
of digital certificates in a Public Key Infrastructure (PKI)
[18]. A certificate chain comprises three components: the end
certificate, intermediate certificates, and the root or Certificate
Authority (CA) certificate. Certificates are verified starting
with the end certificate and proceeding up the chain the trusted
CA certificate is reached. Once each certificate in the chain is
validated, each certificate within the chain is trusted.

C. Root of Trust (RoT)

A Root of Trust (RoT) is used to establish the trust of all
other components within a system. A common use of this is
to assist with the boot process, where a system can rely on
the RoT to authenticate a bootloader, which can then check
the next component, and so on [19]. A RoT can also provide
various security functions like Secure Key Storage, Attestation,
Secure Communication, and Cryptographic Operations, which
it uses to establish trust of other components.

D. Trusted Execution Environment (TEE)

Trusted Execution Environments (TEEs) take many forms
but are typically execution platforms separate from the rest
of a system’s hardware. Operations conducted in a TEE are
assumed to be safe from external processes and actors. Both
Intel and Xilinx/AMD devices include TEEs [13], [20], and
additionally, many academic works focusing on improvements
to these, especially in the context of FPGAs [16], [21], [22].

III. THREAT MODEL AND RELATED WORKS

In this work, we examine the case of Cloud FPGA Providers
(CFPs) and accelerator developers or Intended Tenants (ITs)
from the FPGA Accelerated Cloud model of [23]. In this
model, ITs design custom hardware logic and utilize rented
FPGA resources for acceleration. As an example, Amazon
provides single-tenant FPGA access through their AWS F1
EC2 service. Tenants can rent an FPGA region allocated by
Amazon and design their hardware logic on Amazon servers.
However, direct upload of the design to the FPGA is not
permitted. Instead, AWS compiles the design, incorporating
preset Design Rule Checks (DRCs), and then uploads the final
bitstream to the FPGA [23]-[25]. Turan et al. find this to

Authorized licensed use limited to: University of Florida. Downloaded on January 04,2025 at 10:12:30 UTC from IEEE Xplore. Restrictions apply.

T

2 CEP
BI
— : D tSt:
Desi Bitstream | Design Rules Le Deslgh Rulee SiiaEib e
oo . Compilation € > Check iis | [Programmable
2
l rI 0 Expected ‘
, Hpgr
\ CA 9 ‘ ‘
) By DRR HiRbg ‘
Validate | == H
Capability A : i - 12
TSR Hash i Hash l Validate Certs ; 2 | Ho 1
v ___ ¥ or ’
"] I | RBp=
‘ Ho Hprg CFPpup ‘ i g ET R |
l 4 ! 1 4 T ecrypt T 11
Encrypt f
B;->B; < e ke T 7 SDR | CEPpriv ‘ B1 |
B1=5(Bo,Ho) Xor B SDR e 2 10
» L g | -
5
By

Fig. 1: A high-level overview of DS+DLD, which is explained in full in Section IV.

be the most common and modern model for Cloud FPGAs
(although research for secure multi-tenancy is ongoing [26]—
[28]). Importantly, they note that:
This trust model and base-design oriented security
protects only the platform providers as they ad-
minister them. In addition, no feature provides the
developers with any protection from potential malice
or abuse. Application developers have to trust the
cloud service providers if they decide using their
infrastructure. [23] (emphasis ours)
As this is a critical security flaw, we introduce threats that
exploit this requirement and evaluate how DS+DLD mitigates
threats from both the IT and CFP in Section V.

A. Traditional Threat Models in FPGA Accelerated Cloud

In most prior works on Cloud FPGA deployment, two main
threat models are studied: insertion of malicious circuitry by
ITs for remote side channel or Denial of Service attacks, and
CFPs stealing designs belonging to ITs, known as IP Piracy.

1) IT Malicious Circuit Insertion: It is possible for ITs to
include circuitry in their designs that causes physical damage
or breaches the integrity or confidentiality of other designs
running on the same FPGA as that circuitry. To prevent this
CFPs have DRCs and virus scanners which examine designs
to ensure those types of circuits are not included in a design
[11] or to limit interactions between multiple tenants on the
same physical FPGA [26]-[28].

2) CFP IP Piracy: To run the design checks mentioned
above CFPs must have access to the raw design or bitstream,
which raises concerns about the confidentiality of these de-
signs. If CFPs copy an IT’s designs, or Intellectual Properties
(IPs), they may reuse or resell them. Balancing this with the
CFP’s need to prevent malicious circuitry poses a challenging
problem without a definite solution. So far, most solutions
in this space favor the CFPs, as mentioned in [23], although
recent works have begun to move beyond this [14].

B. Novel Threat Models

However, these two cases do not cover every potential threat
during cloud FPGA deployment. In particular, to the best of

18

mpyp, instead of opme Mmpyy, instead of TEEpm,e
v 1 ® T
TEE M n Eg Operator
Dataree | powy | 1 at@Eﬁiﬁp—m;L) Datam’e
_Encwi| |

e]
=g
e Encwl _—paro
R L— ,,,,DP,@

OPpup o

Fig. 2: An example of how MITM attacks can occur during
key exchange, even when TEEs are used.

our knowledge, this is the first work to explicitly examine
the following threat models that even industrial cloud FPGA
infrastructures are vulnerable to.

1) CFP Man-in-the-Middle: Prior works like [14] rely on
the ability of TEEs to exchange keys with outside operators
securely. However, TEEs can be vulnerable to Man-in-the-
Middle (MITM) attacks when not externally confirming the
other party, as shown in Figure 2. Such attacks can defeat cur-
rent industrial solutions that use the following steps Compile,
Sign, and Symmetrically Encrypt (CSSE) [23] as discussed
below. While [14] does include a solution to this, it requires
the FPGA manufacturing to maintain a service allowing users
to confirm the responses of Physically Unclonable Functions
(PUFs) on certain FPGAs, and thus limits practicality.

2) CFP Malicious Circuit Insertion: Preventing keys used
to secure designs from recovery by CFPs goes beyond con-
fidentiality concerns. In particular, CFPs may add malicious
circuitry to designs that affect their performance during critical
junctions. Therefore solutions must ensure IT IP is placed on
the FPGA unmodified and unseen.

3) IT Design Rule Recovery: If given foreknowledge of
the checks designs will be subject to, Malicious ITs may be
able to operate around those restrictions. Thus all Design Rule
knowledge the IT obtains must be minimal.

Authorized licensed use limited to: University of Florida. Downloaded on January 04,2025 at 10:12:30 UTC from IEEE Xplore. Restrictions apply.

CFP
IT
| L 4
Create | 1 RTL 1 Create
Keypriv Keypun
l lCompile
. 1 1
Enﬁrgg}fed 4 Bitstream KeYprogram
Encrypt w/
Keyprogram
Encrypted
Bitstream
1
2

"Securely" Send:

Recover through

Privilege Abuse Program
Recover Through \ FPGA /
MITM

CFP
"Securely” Send:
2 / FPGA
Encrypted Encrypted
Hash Bitsream]
Decrypt w/
Keypup

Bitstream

>
>

2

Hash of
Bitstream

Hash of
Bitstream

If match

|

)

Fig. 3: An example of how CFPs can abuse the current FPGA Accelerated Cloud Model during CSSE, either through directly
recovering IP as they control the hardware (1) or performing MITM (Figure 2) to intercept passwords and protected data as

they control both ends of the communication (2).

C. Limitations of Existing Solutions

To our knowledge, a single cohesive protocol that can jointly
address these concerns does not yet exist. While [15] can
maintain IP confidentiality and uses PKI, it requires a trusted
third party to manage bitstream generation and upload while
still not explicitly examining the case of malicious circuitry.
More recently, TruFPGA [14] examines both aspects of the
problem but can only examine the final bitstream, and not
intermediate stages, for malicious circuitry. TruFPGA also
requires the FPGA Manufacturer (FM) to play an active role,
providing ITs with Trusted Shells, nonces (one-off random
numbers used to prevent replay attacks), and Challenges for a
PUF built into the FPGA. At the same time, TruFPGA has the
non-insubstantial overhead of 3.21x slower compile time due
to the compilation and design rules happening in an SGX [13]
TEE provided by the CFP. Client-side TEE compilation has
even further reduced compilation performance due to smaller
TEEs. TruFPGA also does not include support for a CA/PKI,
and as such, may be vulnerable to MITM as seen in Figure 2.

On the other hand, CSSE is the solution currently supported
by industry, with hardware RoTs now included on several
boards [20], [29]. This method works as follows: Firstly, the
developer hashes the bitstream and encrypts the hash with their
private key. Next, the developer encrypts the bitstream with a
symmetric key. The IT then sends the symmetric key, public
key, encrypted hash, and encrypted bitstream to the FPGA.
The FPGA then decrypts the bitstream with the symmetric
key and decrypts the encrypted hash. It then calculates the
hash of the recovered bitstream to match against the decrypted
hash. Should those two match, it proves the authenticity of the
recovered bitstream. However, CSSE can be defeated by the
CFP, as shown in Figure 3. Specifically, once the CFP has
access t0 Keyprogram and Keyp,i,, they can easily recover
the bitstream and/or modify the Encrypted Hash and bitstream,
or even recover the RTL design directly from their servers.

19

Term Meaning
1P Intellectual Property
CFP Cloud FPGA Provider
IT Intended Tenant
FM FPGA Manufacturer
By Bitstream number #
Hy Hash of Bitstream number #
DR Design Rule(s)
EDR Encrypted Design Rules
DRR Design Rule Results
SDRR Secured Design Rule Results

AsymEnc(D, K)
AsymDec(D, K)
SymEnc(D, K)
SymDec(D, K)

Asymmetric Encryption of data D with key K
Asymmetric Decryption of data D with key K
Symmetric Encryption of data D with key K
Symmetric Decryption of data D with key K

TSRoT (Intended) Tenant-side Root of Trust
DS DecryptStrapper (FPGA-side Root of Trust)
CA Certificate Authority
BI Bootable Image / Executable

TABLE I: Common Definitions in this work.
IV. PROPOSED METHOD

A. Assumptions and Definitions

We make a few key assumptions as to the capabilities
and responsibilities of various parties of the Cloud FPGA
Deployment which we outline below and introduce some
common terms in Table I.

The TSRoT is capable of shutting down the BI should
the TSRoT Hash State exit a list of allowed values

The BI will require TSRoT authentication to execute any
program, and the TSRoT was enabled at boot

The CFP has a set of Design Rules that can detect
malicious circuitry in a design along with other violations
There is a CA trusted and used by the IT, FM, and CFP
DS prevents reading out the current FPGA configuration
DS and TSRoT are side-channel resistant

B. Critical Requirements for Security

DS+DLD requires the following statements to hold true in
order to protect the system. In Section V we will examine how

Authorized licensed use limited to: University of Florida. Downloaded on January 04,2025 at 10:12:30 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: BI Methods

Algorithm 2: Main Flow of DS+DLD

1 Function BT Validate (Design, DR):

2 BI Confirms TSRoT Cert and Capabilities

3 BI Generates Blpyy, Blpiy, Bloer: and sends
them to TSRoT to sign

return TSRoTcert, Blcert, EDRpeq

foreach rule € DR do

4
5

6 Function DRC (Design, DR) :
7

8 if rule met then

9

| DRR[rule] =1
10 else
1 | DRR[rule] =0
12 end
13 return DRR

Function BI Compile (DR, RTL, EDRk.y):

Nepr = AsymDec(AsymDec(ED Ry, Blpyiv),
TSROTpiv)

DR =SymDec(EDR, ED¢y)

DRRTL’ DRSyna DRI'anl’ DRBit <~ DR

DRR; < DRC(RTL, DRgr7y)

Syn <— Synthesis(RTL)

DRRy < DRC (Syn, DRsyn)

Impl <+ Implementation(Syn)

DRR3 < DRC (Impl, DRppp1)

By < Bitstream(Impl)

DRR, < DRC (Bo, DRBit)

DRR < [DRR;, DRRy, DRR3, DRRy4]

H() — HaSh(B())

SDRR + AsymEnc(Hash(DRR) & Hy,
CFPPubKey) //See IV-D.1

By <+ SymEnc(By, Hy) //See IV-D.2

return SDRR, B,

17
18
19
20
21
22
23
24
25
26
27
28

29
30

DS+DLD mitigates risk from potential cases in which either
the CFP or the IT attempt to violate these assumptions.

1) CFP cannot recover or modify By or the RTL code.

2) By does not contain malicious circuitry.
As long as these statements hold true, all confidentiality and
integrity requirements should be met for the system.

C. IT Registration

The process starts with the IT downloading and booting
a Bootable Image (BI) from the CFP. This BI is a minimal
executable used only for compiling and checking a design, and
is not intended as a full design environment. Once loaded, the
BI generates its own keys, uses the TSRoT to sign them, and
then signs and forwards the result and TSRoT Capabilities
to the CFP. The CFP then calculates and returns EDR to the
BI, which it decrypts into DR. It is important to note that
DR should contain ‘negative’ passing rules (e.g. rules which,
when violated, indicate a non-malicious design and, when
complied with, indicate a malicious design). These will greatly
increase the potential values to explore if an attacker were to
brute force the system and act as a sort of session-specific

20

1 Function Main ():

IT boots BI

CFP <~ BI Vvalidate ()

CFP Validates T'SRoTceri, Blcers With the CA

CFP sends T'SRoTp,, to DS

DS creates nonce Npg

NDS_Safe <—AS)/H1EIIC(]VDS7 TSROTPU,},)

Nps_auth < AsymEnc(Nps_safe, DSpriv)

Nps_ruit < [Nps_safe, NDS_Auth]

CFP generates nonce Nppr //See IV-D.3

EDR < SymEnc(DR, Ngpr)) //See IV-D.3

EDRgecy < AsymEnc(AsymEnc(Nepr, Blpup),
TSRoTpy,) //See IV-D.3

CFP returns EDR, ED Ry, NDS_Full

IT Provides RTL code to BI

SDRR, B; <~ BI Compile (DR, RTL,
EDRKey)

IT and confirms DS¢.,; with CA

Nps < AsymDec(Nps_safe, T'SROTpriv)

IT Confirms AsymDec(AsymDec(Nps_ aAuth.
DSPub)a TSROTP'riv) == NADS

B, + SymEnc(B1, Nps)
//See IV-D.4

o X N R W N

_ = =
No= o

13
14
15

16

17
18

19

Algorithm 3: By Deployment

1 Function DecryptStrapper (ﬁo, Bs):
B; + SymDec(Bs, Nps)
BO < SymDec(Bj, ﬁo)
if Hash(By) == H, then

‘ DS Programs with By
else

‘ DS does not program with By, alerts CFP
Function Main (SDRR, DRRpycq, B2):
DRR <« AsymDec(SDRR, CF Pp,;,)
Hy < DRR @ Hash(DRRp,cq)
DS + B,, Hy from CFP
DecryptStrapper (I—jo, Bs)

o X 9 N R WN

_- =
-

—
(5]

nonce, mitigating SDRR rehydration. At the same time, the
CFP should identify an FPGA for the client and provide the
onboard DS with the T'SRoTp,,, while also returning the
DSCert and Npg,.yu to the IT.

D. Bitstream Creation

Once Registration has been completed, the IT can use the
BI to create the SDRR and Bs. This process is laid out in
Algorithms 1 2. The critical aspects of this process include:

1) Line 28 of Algorithm 1, where the hash of raw bitstream
By is xored with the hash of the raw SDRR before being
encrypted by the CFP’s Public Key

Authorized licensed use limited to: University of Florida. Downloaded on January 04,2025 at 10:12:30 UTC from IEEE Xplore. Restrictions apply.

2) Line 29 of Algorithm 1, the hash of By is used as a
symmetric key, thereby requiring DS to be provided with
the hash of By to be decrypted

Lines 10-12 of Algorithm 2, the CFP creates a nonce,
Ngpr, which is used as a key for symmetric encryption
of the DR. This nonce is then asymmetrically encrypted
by the BI and TSRoT public keys and sent to the BI.
This greatly increases performance over asymmetrically
encrypting the whole of DR.

Line 19 of Algorithm 2, as the Symmetrically Encrypted
bitstream B; from line 22 is encrypted by the Npg,
which is not shared with the CFP, it remains locked to a
particular session as well as unrecoverable by the CFP.

3)

4)

E. Bitstream Authentication and Deployment

The resulting SDRR hash and Bs are then sent to the
CFP. Following the process outlined in Algorithm 3, the CFP
recovers an estimate hash of By, [—fo. Only if all rules in
DR were followed or violated as expected by the CFP will
Ho == I-io. Thus the CFP and the DS using ﬁg to ‘unlock’
B prevents altered or non-conforming designs.

V. CASE STUDIES

To understand the strengths and capabilities of DS+DLD,
we will examine a few standard cases, as well as a few
novel ones, summarized by Table II. Note that this is not a
comprehensive list but focuses on the most relevant scenarios.

A. Malicious Insertions

Modern Cloud FPGA solutions must protect against Remote
Side Channel Analysis (RSCA) [6] and other malicious cir-
cuitry. These cases include a few studies of how DS+DLD
handles efforts to introduce malicious circuitry by the CFP
or IT. In this section, we examine a few cases, focusing on
methods for the IT to defeat the CFP’s checks for malicious
circuitry in a design or for the CFP to alter By.

1) Malicious Circuitry by IT: Should there be Malicious
Circuity in the RTL code provided to the BI by the IT,
the Design Rule Results (DRR) will differ from the CFP’s
expectation. As a result, the Hash of the DRR will be different.
Thus when the SDRR is used to obtain ﬁo, the resulting value
will be incorrect and the hash of the symmetrically decrypted
bitstream Bg will not match H, 0, and DS will refuse to program
the FPGA and alert CFP.

2) Alterations to By by IT: Should the IT attempt to replace
By/B1/By with a separate bitstream By, that is not the same
as the one used to make SDRR, the Hash of B, will not
equal Hy, therefore DS will prevent the upload and alert CFP.

3) Compile Time Alterations by CFP: Attempts by BI to
insert malicious circuitry should be detectable by IT. IT can
create a bitstream of their own design implemented on the
same type of board, Br.s:. They can then do a similar process
to Algorithm 3 by taking the Hash of Brest and using that
to decrypt By and confirming that the result matches Bregt.

21

4) Post-Compile Alterations by CFP: Should CFP attempt
to alter By prior to deployment on the FPGA, the hash of By
will be altered. Even if ﬁo == Hj (i.e. the original bitstream
hash is successfully recovered by the CFP), the properties
of a cryptographic hash ensure that the CFP cannot use that
information to defeat Decryptstrapper’s check of the hash of
Hy =?Hash(Bjy). It would be possible for the CFP to alter
portions of the deployed bitstream post-deployment, but as
this would have to be done blind, it would be difficult to
accomplish a meaningful stealthy modification of IT logic.
Currently, CSSE does not protect against this case, as the CFP
can recover and modify the bitstream and can modify the hash
the RoT uses for authentication [20], [29].

B. IP Piracy

Large amounts of time and effort go into creating and testing
accelerator IPs, and IP Privacy (the theft of IP) is an unsolved
problem in hardware security. IP Piracy in Cloud FPGA
deployment has traditionally been solved through locking of
IP as in [15]. However, in light of RSCA, many CFPs are
unwilling to accept the risk of deploying a design they have
not evaluated. As a result, ITs often must accept the risk of
CFP IP Privacy to deploy their designs. DS+DLD mitigates
the threat of IP Piracy as shown in the following case studies.

1) Pre-Compile IP Recovery by CFP: As the IT is not
in control of BI and cannot verify exactly what is being
performed, there is a potential threat of BI communicating By
to the CFP in an encrypted format. This threat is mitigated by
the fact that although IT does not control BI, it is responsible
for all communication to and from it (i.e. BI should not be
directly connected to the internet). As mentioned in Section
V-A4, the IT can easily confirm the contents of B; to ensure
that the raw bitstream is not being provided. The only other
outputs from BI after the RTL is provided should be the
SDRR and certificates. As these are of fixed length and far
smaller than most bitstreams, these requirements prevent BI
from covertly exporting IT’s IP to the CFP.

2) Post-Compile IP Recovery by CFP: As the CFP is never
directly exposed to By (i.e. only encrypted bitstreams), and
DS prevents reading out implemented designs, they should
be unable to recover the plaintext design. Only Bs which
is encrypted by Npg, is exposed to the CFP and thus is
meaningless to them, with all decryption happening inside
the Decryptstrapper. Modern implementations of bitstream
protection [20], [29] may be vulnerable to Man-in-the-middle
(MITM) attacks. Section III-C and Figure 2 cover this in more
detail. To prevent this, the IT verifies the DS¢.,+ with the CA
themselves, thus preventing the attack.

C. Breach of Confidentiality Threats

DS+DLD relies on the secrecy of various keys and values.
Should the CFP or IT be able to recover these, they will be able
to violate the critical assumptions of DS+DLD and thus cause
the system to fail. We examine a few cases in which the parties
may attempt to obtain these values and how DS+DLD defeats
these attempts. We exclude the cases targeting DRs/DRRs
from Table II as those attributes are exclusive to DS+DLD.

Authorized licensed use limited to: University of Florida. Downloaded on January 04,2025 at 10:12:30 UTC from IEEE Xplore. Restrictions apply.

[Case

[Unprotected | CSSE on IT Hardware | CSSE on CFP Hardware | Eguro ef al. 2012 [15] [Zeitouni et al. 2021 [14]* | DS+DLD |

V-Al X

x2 /3

V-A2

V-A3

V-AZ

V-B1

V-B2

V-C4

<[3] <] 3| %[| x| %
| 3| 3| || x| x| |~

SN AR

V-D1

SNININ NSNS NS

ANEYIENEN/ENENE
b-IEN/ENENIENENEN

TABLE II: A summary of how DS+DLD compares against other solutions in the FPGA Accelerated Cloud model of [23].
CSSE denotes Compile, Sign, Symmetrically Encrypt. 1) Requires active action by FM to create nonces, challenges, and trusted
shells. 2) Unless using a Trusted 3rd party to compile code, which is optional. 3) Only portions of the bitstream are evaluated,
not the whole design process. 4) Assuming the MITM attack from III-C.

1) IT Man-in-the-Middle During Registration: Should the
tenant recover the plaintext DRs, they could extract the DRR,
which will violate system security as with the correct DRR the
tenant could tie a passing result to an arbitrary bitstream. One
method that the tenant may use to recover the plaintext DRs
is to perform a MITM attack between the CFP and TSRoT,
similar to Figure 2. However, DS+DLD mitigates this threat
through CFP confirming T'S RoT¢ e+ and Bl with the CA.

2) IT Commandeering of Bl: Another method that the IT
could use to recover DRR is to freeze the system or read
out intermediate values as BI compiles the design. However,
as we assume the TSRoT has the ability to force a system
shutdown, needs to compute and record the hash state when
executing any programs on the system, and receives a list of
acceptable hash states from the CFP, DS+DLD defeats any
such attempts. However, it may still be possible for the IT
to recover this information through side channel analysis or
bus piracy [9]. The CFP can mitigate these threats by using
the TSRoT to verify the hardware installed on the system and
require components that protect against these concerns through
encrypted bus traffic and side channel mitigations.

3) Binary Analysis of BI: Should the IT recover Blp,;,,
they could recover DR from EDR. While attempts to get
the BI’s private key at runtime would be handled by the
same prevents as in Section V-C2, it may be possible for IT
to violate this assumption of confidentiality through binary
analysis. DS+DLD prevents this by having the BI generate a
new private key at runtime, which is then registered with the
TSRoOT to form a certificate chain. This signed certificate is
then provided to the CFP, which uses it to create EDR after
verifying the creator is the BI. As a result, there is no secret
key stored within the binary for the IT to recover.

4) Side Channel Analysis: Side channel analysis (SCA) is
often used to recover the secret keys used by cryptographic
operations, such as T'S RoT'p,;, and Npg, which would result
in a violation of the critical security requirements of DS+DLD.
However, SCA is a well-established threat in hardware security
and many RoT components can be designed to resist it. Addi-
tionally, modern SCA attempts require thousands of encryption
measurements to train a model or multiple measurements using
the same key once trained [9]. As DS+DLD uses one-off
session-specific nonces as keys, it mitigates this threat.

22

[Operation | 400kB | 4MB | 40MB | 400MB |
SHA256 (CPU) 8 25 | 115 | 1414
AESI28 (CPU) 7 47 | 140 | 1296

SHA256 [20] 32 32 | 320 | 3200
AESI28 (FPGA) | 8 84 | 836 | 8359

TABLE III: A comparison of the time to complete different
cryptographic operations across platforms. All values in ms.

[Test | s.o. B [s.0.CD | CT [so.BI [Fig | Case |

1 400MB 400MB Imin | 200GB 4a Least Favorable
2 400kB 400MB Thr 20GB 4b Most Favorable
3 4MB 40MB Smin 20GB 4c Least Realistic

TABLE IV: The timing case studies conducted. s.o. stands for
‘size of’, B for the bitstream, C'D for configuration memory
size, and CT for Compile-Time.

D. Rehydration Threats

Rehydration or replay attacks reuse ‘good’ messages from
prior communications to circumvent security measures. We
examine how DS+DL responds to several of these.

1) IP Rehydration by CFP: The CFP is prevented from
Rehydrating B after receiving it in two ways. Firstly, at a
more practical level, as the CFP does not know the design
By it does not have knowledge of the plaintext IP or how to
interact with it. Secondly, at a more formal level, as the design
is encrypted with Npg, it is locked to that particular session.

2) SDRR Rehydration by IT: Similarly, there are two pro-
tections against IT simply replaying a compliant SDRR and
then uploading an arbitrary bitstream to the CFP. Firstly,
EDR should be changed between transactions, which acts as
a nonce. Should the EDR not be changed, however, only a
bitstream with a hash matching the one the SDRR was created
with will be programmed, which prevents IT from altering it.

VI. TIMING ANALYSIS

Bitstream security is essential to maintaining programmed
FPGAs’ integrity. Both major manufacturers, Xilinx and Intel,
have implemented proprietary bitstream security solutions,
which we denote as Compile, Sign, and Symmetrically En-
crypt (CSSE) within their commercially available FPGAs to
safeguard against unauthorized alterations and ensure authen-
ticated use [20], [29]. Xilinx, for example, employs security
measures across different generations of their FPGA models.

Authorized licensed use limited to: University of Florida. Downloaded on January 04,2025 at 10:12:30 UTC from IEEE Xplore. Restrictions apply.

Operation Type DS+DLD TruFPGA [14] [15] w/ TTP | [15] w/o TTP
CPU Asymmetrical 6 (256 bits) + 3 (2048 bits) 2 (s.o. FPGArp) 2 (2048 bits) | 1 (2048 bits)
CPU Symmetrical 2 (s.0. B) 3 (s.0. B x Cp) + 3 (256 bits) 1 (s.0. B) 3 (s.0. B)

CPU Hash 2 (s.0. B) + 2 (s.o. DRR) + 1 (s.0. BI) 3 (s.0. CD) 0 (N/A) 0 (N/A)
FPGA Asymmetrical 2 (128 bits) 0 (N/A) 0 (N/A) 1 (2048 bits)
FPGA Symmetrical 2 (s.0. B) 1 (s.0. Bg x Cp) + 5 (256 bits) 1 (s.0. B) 3 (s.0. B)

FPGA Hash 1 (s.0. B) 5 (s.0. CD) 0 (N/A) 0 (N/A)
Compile Overhead 1x 3.21x 1x Ix

TABLE V: Number of cryptographic operations on each device for each method. By denotes the bitstream, Co the amount
of overlap between partial bitstreams, and CD is the Configuration Memory on the FPGA and TTP for Trusted Third Party.

Time to Complete Protocol (w/o Compile)

Test 1: B=400MB, CD=400MB, Compile Time= 1min (Least Favoriable)
[]
1.00E+5 CPU Asym
® CPU Sym
CPU Hash
1.00E+4 B FPGA Asym
= FPGA Sym
% 1.00E+3 B FPGA Hash
E = Total w/o Compile
g
= 1.00E+2
1.00E+1 ‘ I I
1.00E+0
DS+DLD (ours) TruFF'GA Egurow/ TTP Eguro w/o TTP

Protocol

(a) Source of overheads for Test 1

Time to Complete Protocol (w/o Compile)
Test 3: B=4MB, CD=40MB, Compile Time= 5min (Most Realistic)

1.00E+5 B CPU Asym
W CPU Sym
CPU Hash
W FPGA Asym
® FPGA Sym
W FPGA Hash

W Total w/o Compile

1.00E+4

1.00E+3

Time (ms)

1.00E+2

1.00E+1

DS+DLD (ours) TruFPGA Eguro w/ TP Eguro w/o TP

1.00E+0

Protocol

(¢) Source of overheads for Test 3

Time to Complete Protocol (w/o Compile)
Test 2: B=400KB, CD=400MB, Compile Time= 1hr (Most Favoriable)

1.00E+5 ® CPU Asym
W CPU Sym
CPU Hash
1.00E+4
B FPGA Asym
= FPGA Sym
. 1.00E+3 B FPGA Hash
n
E ™ Total w/o Compile
Py
E 10042
- ‘I | I| ‘ I I | |
DS+DLD (ours) ~ TruFPGA Eguow/TTP Eguro w/o TP
Protocol
(b) Source of overheads for Test 2
Time to Complete Protocol (w/ Compile)
B Test 1: Least Favorable M Test 2: Most Favorable Test 3: Most Realistic
1.00E+7
5.00E+6
1.00E+6
E 5.00E+5
Py
£
£
1.00E+5
5.00E+4 I

1.00E+4

DS+DLD (ours) TruFPGA Eguro w TTP Eguro wio TTP

Protocol

(d) A comparison of total time to complete each Test, including
compilation times (lower is better)

Fig. 4: Comparisons between our approach and other similar protocols. Note that Eguro et al. only protects against malicious

ITs when using a Trusted Third Party.

In their 7 series FPGAs, Advanced Encryption Standard (AES)
is utilized to encrypt and decrypt bitstream, which adds an
extra layer of security that deters alterations to the bitstream.
In the more recent Ultrascale and Ultrascale+ FPGAs, the RSA
algorithm is applied to sign the segmented bitstream, providing
an additional level of security that enables the identification of
the sender and prevents unauthorized modifications [20]. On
the other hand, Intel incorporates a Secure Device Manager
module in their Stratix 10 FPGAs [29]. This comprehensive
module contains an encryption core, AES, and Elliptic Curve
Digital Signature Algorithm (ECDSA). The AES core is used
to encrypt the bitstream, similar to the security measures im-
plemented by Xilinx. However, Intel further enhances security
by employing ECDSA to sign the bitstream, ensuring the

23

integrity and authenticity of the bitstream data [29].

As DS+DLD relies upon a hardware RoT module per-
manently installed into the cloud FPGA (i.e. thus not using
programmable logic), we did not feel it would be beneficial
to compare resource utilization and thus focused our efforts
on timing analysis. We examined the estimated timing delay
of existing cryptographic solutions and compared these in
Table III. For these tests, CPU evaluation was run on a work-
station with an i7-11700KF @ 3.60GHz using OpenSSL [30].
FPGA timings come from [31] for AES and [32] for SHA256,
assuming a 33MHz Clock on a Zynq UltraScale+. We also note
asymmetric encryption of < 400kB takes 7ms for CPU and
1.7ms for FPGA (determined experimentally). We compare the
number of cryptographic operations DS+DLD, [14], and [15]

Authorized licensed use limited to: University of Florida. Downloaded on January 04,2025 at 10:12:30 UTC from IEEE Xplore. Restrictions apply.

each require in Table V.

We examine the complete timing of each pipeline in a few
generalized situations using the estimations from Tables III
and V in Figure 4. We assume a DR size of 28,963 bytes,
taken from the signatures used by [11]. We also assume no
overlap between partial bitstreams and CPU bound TSRoT as a
less favorable comparison for DS+DLD vs. TruFPGA across
all Tests. We note that configuration Flash memory size on
Zynq Ultrascale+ boards varies from 64MB to 512MB [33].
Under these assumptions, we create the Tests in Table IV.

From these, and a complete comparison including compile
time in Figure 4d, we can see that DS+DLD performs similarly
in terms of timing overhead compared to [15] when including
compilation times but is slower when ignoring that. We believe
this is still a favorable comparison, as [15] requires a third
party to compile and inspect designs prior to programming,
and without that entirely fails to prevent malicious circuitry
(which is of critical concern to this threat model). At the same
time, TruFPGA [14] protects against malicious ITs and CFPs
(discounting MITM attacks), but DS+DLD often has lower
timing overhead. This difference is largely due to TruFPGA
needing to hash the entire configuration of the FPGA, which
can be a considerable source of overhead (especially for
smaller designs), in addition to using a TEE.

VII. CONCLUSION

We present a DS+DLD, a method to authenticate tenant-
side DRCs for cloud FPGA deployment without needing a
TTP beyond a Certificate Authority. We find that DS+DLD,
while marginally slower than others that fail to provide the
same coverage [15], manages to outperform the most similar
method [14], completing ~1.06x-3x (3.04x under the most
realistic conditions) faster when including compile-time and
up to 1.5x faster when not. These values assume a CPU-
based TSRoT, indicating more significant potential gains with
a dedicated hardware TSRoT. Notably, this performance in-
crease improves linearly with compilation time and the size
of configuration data for the FPGA, but decreasing linearly
with larger bitstreams and Bls.

REFERENCES

[1] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers,
M. Haselman, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo,
T. Massengill, K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka,
D. Chiou, and D. Burger, “A cloud-scale acceleration architecture,” in
2016 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), 2016, pp. 1-13.

C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, and X. Zhou, “Dlau: A scalable
deep learning accelerator unit on fpga,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 36, no. 3, pp.
513-517, 2016.

J. M. Mbongue, F. Hategekimana, D. T. Kwadjo, D. Andrews, and
C. Bobda, “Fpgavirt: A novel virtualization framework for fpgas in the
cloud,” in 11th IEEE International Conference on Cloud Computing,
CLOUD 2018, San Francisco, CA, USA, July 2-7, 2018, 2018, pp. 862—
865. [Online]. Available: https://doi.org/10.1109/CLOUD.2018.00122
J. M. Mbongue, A. M.-I. Shuping, P. Bhowmik, and C. Bobda, “Archi-
tecture support for fpga multi-tenancy in the cloud,” in 2020 IEEE 31st
International Conference on Application-specific Systems, Architectures
and Processors (ASAP), 2020, pp. 125-132.

2

—

[3]

[4]

24

[5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

J. Mandebi Mbongue, F. Hategekimana, D. Tchuinkou Kwadjo, and
C. Bobda, “Fpga virtualization in cloud-based infrastructures over vir-
tio,” in 2018 IEEE 36th International Conference on Computer Design
(ICCD), 2018, pp. 242-245.

M. Zhao and G. E. Suh, “Fpga-based remote power side-channel
attacks,” in 2018 IEEE Symposium on Security and Privacy (SP), 2018,
pp. 229-244.

S. Moini, A. Deric, X. Li, G. Provelengios, W. Burleson, R. Tessier,
and D. Holcomb, “Voltage sensor implementations for remote power
attacks on fpgas,” ACM Trans. Reconfigurable Technol. Syst., vol. 16,
no. 1, dec 2022. [Online]. Available: https://doi.org/10.1145/3555048
I. Giechaskiel, S. Tian, and J. Szefer, “Cross-vm covert- and
side-channel attacks in cloud fpgas,” ACM Trans. Reconfigurable
Technol. Syst., vol. 16, no. 1, dec 2022. [Online]. Available:
https://doi.org/10.1145/3534972

M. Panoff, H. Yu, H. Shan, and Y. Jin, “A review and comparison of
ai-enhanced side channel analysis,” J. Emerg. Technol. Comput. Syst.,
vol. 18, no. 3, apr 2022. [Online]. Available: https://doi.org/10.1145/
3517810

H. Yu, S. Wang, H. Shan, M. Panoff, M. Lee, K. Yang, and
Y. Jin, “Dual-leak: Deep unsupervised active learning for cross-device
profiled side-channel leakage analysis,” in 2023 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST). Los
Alamitos, CA, USA: IEEE Computer Society, may 2023, pp. 144—
154. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/
HOSTS5118.2023.10133491

T. M. La, K. Matas, N. Grunchevski, K. D. Pham, and D. Koch,
“Fpgadefender: Malicious self-oscillator scanning for xilinx ultrascale
+ fpgas.” ACM Trans. Reconfigurable Technol. Syst., vol. 13, no. 3, sep
2020. [Online]. Available: https://doi.org/10.1145/3402937

B. Ngabonziza, D. Martin, A. Bailey, H. Cho, and S. Martin, “Trustzone
explained: Architectural features and use cases,” in 2016 IEEE 2nd
International Conference on Collaboration and Internet Computing
(CIC). IEEE, 2016, pp. 445-451.

“Overview on Signing and Whitelisting for Intel® Software Guard
Extension (Intel® SGX) Enclaves Scope.” 2015.

S. Zeitouni, J. Vliegen, T. Frassetto, D. Koch, A.-R. Sadeghi, and
N. Mentens, “Trusted configuration in cloud fpgas,” in 2021 IEEE
29th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2021, pp. 233-241.

K. Eguro and R. Venkatesan, “Fpgas for trusted cloud computing,”
in 22nd International Conference on Field Programmable Logic and
Applications (FPL), 2012, pp. 63-70.

K. Xia, Y. Luo, X. Xu, and S. Wei, “Sgx-fpga: Trusted execution
environment for cpu-fpga heterogeneous architecture,” in 202/ 58th
ACM/IEEE Design Automation Conference (DAC), 2021, pp. 301-306.
B. Kelly, “Hardware secure boot,” OCP Security workgroup, Tech. Rep.
Revision 1.

D. Clarke, J.-E. Elien, C. Ellison, M. Fredette, A. Morcos, and R. L.
Rivest, “Certificate chain discovery in spki/sdsi,” Journal of Computer
security, vol. 9, no. 4, pp. 285-322, 2001.

K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito, “Smart: secure
and minimal architecture for (establishing dynamic) root of trust.” in
Ndss, vol. 12, 2012, pp. 1-15.

Xilinx, TrustZone Technology Support in Zyng-7000 All Programmable
SoCs, 2014. [Online]. Available: https://www.xilinx.com/support/
documentation/white_papers/wp429-trustzone-zynq.pdf

S. Kumar Saha and C. Bobda, “FPGA Accelerated Embedded System
Security through Hardware Isolation,” in Proceedings of the 2020 Asian
Hardware Oriented Security and Trust Symposium, AsianHOST 2020.
Institute of Electrical and Electronics Engineers Inc., 12 2020.

F. Hategekimana, T. Whitaker, M. J. H. Pantho, and C. Bobda, “Shield-
ing non-trusted IPs in SoCs,” in 2017 27th International Conference on
Field Programmable Logic and Applications (FPL), 2017, pp. 1-4.

F. Turan and I. Verbauwhede, “Trust in fpga-accelerated cloud
computing,” ACM Comput. Surv., vol. 53, no. 6, dec 2020. [Online].
Available: https://doi.org/10.1145/3419100

C. Bobda, J. M. Mbongue, P. Chow, M. Ewais, N. Tarafdar, J. C.
Vega, K. Eguro, D. Koch, S. Handagala, M. Leeser, M. Herbordt,
H. Shahzad, P. Hofste, B. Ringlein, J. Szefer, A. Sanaullah, and
R. Tessier, “The future of fpga acceleration in datacenters and the
cloud,” ACM Trans. Reconfigurable Technol. Syst., vol. 15, no. 3, feb
2022. [Online]. Available: https://doi.org/10.1145/3506713

Authorized licensed use limited to: University of Florida. Downloaded on January 04,2025 at 10:12:30 UTC from IEEE Xplore. Restrictions apply.

[25] J. M. Mbongue, D. T. Kwadjo, A. Shuping, and C. Bobda, “Deploying
multi-tenant fpgas within linux-based cloud infrastructure,” ACM Trans.
Reconfigurable Technol. Syst., vol. 15, no. 2, dec 2021. [Online].
Available: https://doi.org/10.1145/3474058

A. Bag, S. Patranabis, D. B. Roy, and D. Mukhopadhyay, “Cryptograph-
ically secure multi-tenant provisioning of fpgas,” 2018.

[27] B. Hong, H.-Y. Kim, M. Kim, T. Suh, L. Xu, and W. Shi, “Fasten: An
fpga-based secure system for big data processing,” IEEE Design & Test,
vol. 35, no. 1, pp. 30-38, 2018.

J. Vliegen, M. M. Rabbani, M. Conti, and N. Mentens, “Sacha: Self-
attestation of configurable hardware,” in 2019 Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2019, pp. 746-751.
[29] Intel, Secure Device Manager, 2023.

[30] N. I of Standards and Technology, “Cryptographic module
validation program, certificate #4282, National Institute of
Standards and Technology, Gaithersburg, MD, Tech. Rep. 4282,
2022. [Online]. Available: https://csrc.nist.gov/CSRC/media/projects/
cryptographic-module- validation- program/documents/certificates/
August%202022_010922_0715_signed.pdf

L. Design Gateway Co., “Aes128 ip,” Tech. Rep., Feb 2023. [Online].
Available: https://dgway.com/ASIP_E.html\#AES

S. binti Suhaili and T. Watanabe, “Design of high-throughput sha-256
hash function based on fpga,” in 2017 6th International Conference on
Electrical Engineering and Informatics (ICEEI), 2017, pp. 1-6.

Zynqg 7000 SoC Technical Reference Manual, Xilinx,
june 2023. [Online]. Available: https://docs.xilinx.com/r/en-US/
ug585-zyng-7000-SoC-TRM

[26

[28

[31

[32

[33

25

Authorized licensed use limited to: University of Florida. Downloaded on January 04,2025 at 10:12:30 UTC from IEEE Xplore. Restrictions apply.

