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Abstract—We propose a DecryptStrapper and Dually Lever-
aged Deployment (DS+DLD), a protocol to authenticate tenant-
side design checks for trusted cloud FPGA deployment. Current
methods require tenants to trust the cloud FPGA provider with
their designs for inspection and allow for no method to confirm
the confidentiality of the design check process (without Trusted
Execution Environments which have a performance overhead).
As a result, there is a clear need for a protocol that allows
both tenants and providers to cooperate when deploying FPGA
configuration files in a trusted way. DS+DLD works by combining
the hash of a compiled bitstream with the hash of the design
rule or virus scan results, preventing tenants from uploading
bitstreams with falsified results while also never exposing an
unencrypted bitstream to the Cloud FPGA Provider (CFP). The
result is sent along with an encrypted version of the bitstream
to the cloud provider, who recovers the hash of the bitstream
and forwards the encrypted bitstream to a Root-of-Trust on the
FPGA to program. This Root-of-Trust, known as DecryptStrapper
(DS), checks the hash provided by the CFP against the recovered
bitstream to confirm they match before programming the FPGA.
This ensures that both parties are satisfied with the design
in a process we call Dually Leveraged Deployment, forming
DS+DLD. As DS+DLD does not use true Trusted Execution
Environments (TEEs), the compilation overhead is minimal.
We find that our method, while marginally slower than others
that fail to provide the same level of coverage, manages to
outperform the most similar method, completing 1.06x-3x faster
when including compile-time and up to 1.5x faster when not,
while also addressing a larger amount of potential vulnerabilities.

Index Terms—Cloud FPGA Security, Bitstream Validation,
Cloud FPGA Deployment
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I. INTRODUCTION

FPGAs are well known for their ability to accelerate various

computational loads, from search requests [1] to deep learning

[2]. As a result, many current cloud users, or Intended Tenants

(ITs) are eager to integrate FPGA solutions into their solutions

without investing in the physical hardware. Many Cloud FPGA

Providers (CFPs) have emerged in recent years with FPGAs

as part of their cloud solutions using recently developed

techniques [3]–[5]. However, FPGAs have unique security

challenges associated with their design and deployment, in

addition to those of traditional cloud computing.

One of the largest of these challenges is Remote Side Chan-

nel Analysis. In remote side-channel analysis, users upload a

design to an FPGA that contains malicious circuitry such as

Ring Oscillators and Time/Digital Converters, which indirectly

measure voltages [6]–[8] on the FPGA. This data is then

returned to the user, who can analyze it to recover sensitive

information from other circuits and data such as the crypto

keys used in RSA [6]. With deep learning greatly increasing

the capabilities of such side-channel attacks [9], [10], this is

a quickly growing threat. Other threats include trojans, which

can affect the computations of other designs running on the

device or even cause physical damage [11].

In general, to mitigate the risks associated with Remote Side

Channel analysis and other threats, CFPs use Design Rules

Checks (DRCs) and virus checkers to evaluate hardware de-

signs and ensure that bitstreams are free of malicious circuitry

before downloading them onto tenants’ FPGA [11]. CFPs

request that circuits be compiled on their clouds using the
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vendor software they provide in a secure cloud environment.

This approach naturally raises concerns about the confi-

dentiality of any designs made on these services, as they

are compiled in the cloud provider-controlled environment.

Solutions to these concerns either rely on Trusted Execution

Environments (TEEs), like ARM’s TrustZone [12] or Intel’s

SGX [13], to ensure confidentiality [14], or third parties to

compile and check the code [15], and play other active roles

in the protocol [14]. The main problem with TEEs is the

limited throughput because the checks and compilation take

significantly longer [14]. While approaches like SGX-FPGA

[16] can mitigate these throughput limitations using FPGA-

based TEE/enclaves, they fail to address the root of the issue,

authentication of DRC results completed by another party.

To address this issue, we propose a novel protocol, De-

cryptStrapper and Dually Leveraged Deployment (DS+DLD)

(shown at a high level in Figure 1) as a means to ensure that

bitstream compiled by tenants is safe, without compromising

the confidentiality of the design.

Specifically, we propose DS+DLD to enable CFPs to au-

thenticate the design rule results of a bitstream checked by the

tenant. This relies on a Root-of-Trust (RoT) being present on

the tenant’s device with certain capabilities, as well as a second

RoT on the FPGA to program. The CFP can then leverage this

RoT to bootstrap trust onto the tenant’s device. The tenant then

leverages DecryptStrapper, a physical RoT on the target FPGA

owned by the CFP, to securely implement the client’s designs

on the cloud FPGA.

The contributions of this work are as follows:

• We propose a method that uses a cloud FPGA-side RoT

to authenticate the results of an inspection for malicious

circuitry performed by the client outside a dedicated TEE

• We additionally propose a method using two separate

Root-of-Trusts to ensure complete system confidentially

and integrity for cloud FPGA deployment without requir-

ing the FPGA Manufacturer/Vendor to play an active role

• We examine the robustness of our proposed solution in a

series of case studies, including novel cases.

• We examine the timing overheads of DS+DLD vs. others

in this space, with ours outperforming the only other to

offer similar levels of protection

The rest of this paper is organized as follows: in Section

II, we provide some necessary background to understand this

work, and in Section III, we introduce the threat models and

introduce a few existing solutions in this area. Next, Section IV

describes DS+DLD, and Section V evaluates security in a few

case studies and compares it to the solutions from Section III.

We further expand upon these comparisons with an analysis

of timing overheads for DS+DLD in Section VI. Finally, we

conclude our work in Section VII.

II. BACKGROUND

To help better understand DS+DLD, we introduce several

foundational security concepts that are used throughout the

protocol. These key concepts include Hash Chains, Certificate

Chains, Public Key Infrastructure (PKI), Root of Trust (RoT),

and the Trusted Execution Environment (TEE).

A. Hash Chains and Hash States

A Hash chain is a state formed from a sequence of hash

values. Each hash value is computed by combining the pre-

vious hash value with the new hash. Hash chains are often

leveraged in secure boot solutions. During the boot process,

the hash state is compared to a list of known values stored in

a secure location in the system. If the hash state matches a

known value, the system continues. If the hash state does not

match a known value, it is assumed that the process has been

compromised, and the system is halted [17].

B. Certificate Chains and Public Key Infrastructure

Certificate chains, (i.e. certificate hierarchies, certificate

paths) play a critical role in establishing the trustworthiness

of digital certificates in a Public Key Infrastructure (PKI)

[18]. A certificate chain comprises three components: the end

certificate, intermediate certificates, and the root or Certificate

Authority (CA) certificate. Certificates are verified starting

with the end certificate and proceeding up the chain the trusted

CA certificate is reached. Once each certificate in the chain is

validated, each certificate within the chain is trusted.

C. Root of Trust (RoT)

A Root of Trust (RoT) is used to establish the trust of all

other components within a system. A common use of this is

to assist with the boot process, where a system can rely on

the RoT to authenticate a bootloader, which can then check

the next component, and so on [19]. A RoT can also provide

various security functions like Secure Key Storage, Attestation,

Secure Communication, and Cryptographic Operations, which

it uses to establish trust of other components.

D. Trusted Execution Environment (TEE)

Trusted Execution Environments (TEEs) take many forms

but are typically execution platforms separate from the rest

of a system’s hardware. Operations conducted in a TEE are

assumed to be safe from external processes and actors. Both

Intel and Xilinx/AMD devices include TEEs [13], [20], and

additionally, many academic works focusing on improvements

to these, especially in the context of FPGAs [16], [21], [22].

III. THREAT MODEL AND RELATED WORKS

In this work, we examine the case of Cloud FPGA Providers

(CFPs) and accelerator developers or Intended Tenants (ITs)

from the FPGA Accelerated Cloud model of [23]. In this

model, ITs design custom hardware logic and utilize rented

FPGA resources for acceleration. As an example, Amazon

provides single-tenant FPGA access through their AWS F1

EC2 service. Tenants can rent an FPGA region allocated by

Amazon and design their hardware logic on Amazon servers.

However, direct upload of the design to the FPGA is not

permitted. Instead, AWS compiles the design, incorporating

preset Design Rule Checks (DRCs), and then uploads the final

bitstream to the FPGA [23]–[25]. Turan et al. find this to
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Fig. 1: A high-level overview of DS+DLD, which is explained in full in Section IV.

be the most common and modern model for Cloud FPGAs

(although research for secure multi-tenancy is ongoing [26]–

[28]). Importantly, they note that:

This trust model and base-design oriented security

protects only the platform providers as they ad-

minister them. In addition, no feature provides the

developers with any protection from potential malice

or abuse. Application developers have to trust the

cloud service providers if they decide using their

infrastructure. [23] (emphasis ours)

As this is a critical security flaw, we introduce threats that

exploit this requirement and evaluate how DS+DLD mitigates

threats from both the IT and CFP in Section V.

A. Traditional Threat Models in FPGA Accelerated Cloud

In most prior works on Cloud FPGA deployment, two main

threat models are studied: insertion of malicious circuitry by

ITs for remote side channel or Denial of Service attacks, and

CFPs stealing designs belonging to ITs, known as IP Piracy.
1) IT Malicious Circuit Insertion: It is possible for ITs to

include circuitry in their designs that causes physical damage

or breaches the integrity or confidentiality of other designs

running on the same FPGA as that circuitry. To prevent this

CFPs have DRCs and virus scanners which examine designs

to ensure those types of circuits are not included in a design

[11] or to limit interactions between multiple tenants on the

same physical FPGA [26]–[28].
2) CFP IP Piracy: To run the design checks mentioned

above CFPs must have access to the raw design or bitstream,

which raises concerns about the confidentiality of these de-

signs. If CFPs copy an IT’s designs, or Intellectual Properties

(IPs), they may reuse or resell them. Balancing this with the

CFP’s need to prevent malicious circuitry poses a challenging

problem without a definite solution. So far, most solutions

in this space favor the CFPs, as mentioned in [23], although

recent works have begun to move beyond this [14].

B. Novel Threat Models

However, these two cases do not cover every potential threat

during cloud FPGA deployment. In particular, to the best of

Fig. 2: An example of how MITM attacks can occur during

key exchange, even when TEEs are used.

our knowledge, this is the first work to explicitly examine

the following threat models that even industrial cloud FPGA

infrastructures are vulnerable to.

1) CFP Man-in-the-Middle: Prior works like [14] rely on

the ability of TEEs to exchange keys with outside operators

securely. However, TEEs can be vulnerable to Man-in-the-

Middle (MITM) attacks when not externally confirming the

other party, as shown in Figure 2. Such attacks can defeat cur-

rent industrial solutions that use the following steps Compile,

Sign, and Symmetrically Encrypt (CSSE) [23] as discussed

below. While [14] does include a solution to this, it requires

the FPGA manufacturing to maintain a service allowing users

to confirm the responses of Physically Unclonable Functions

(PUFs) on certain FPGAs, and thus limits practicality.

2) CFP Malicious Circuit Insertion: Preventing keys used

to secure designs from recovery by CFPs goes beyond con-

fidentiality concerns. In particular, CFPs may add malicious

circuitry to designs that affect their performance during critical

junctions. Therefore solutions must ensure IT IP is placed on

the FPGA unmodified and unseen.

3) IT Design Rule Recovery: If given foreknowledge of

the checks designs will be subject to, Malicious ITs may be

able to operate around those restrictions. Thus all Design Rule

knowledge the IT obtains must be minimal.
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Fig. 3: An example of how CFPs can abuse the current FPGA Accelerated Cloud Model during CSSE, either through directly

recovering IP as they control the hardware (1) or performing MITM (Figure 2) to intercept passwords and protected data as

they control both ends of the communication (2).

C. Limitations of Existing Solutions

To our knowledge, a single cohesive protocol that can jointly

address these concerns does not yet exist. While [15] can

maintain IP confidentiality and uses PKI, it requires a trusted

third party to manage bitstream generation and upload while

still not explicitly examining the case of malicious circuitry.

More recently, TruFPGA [14] examines both aspects of the

problem but can only examine the final bitstream, and not

intermediate stages, for malicious circuitry. TruFPGA also

requires the FPGA Manufacturer (FM) to play an active role,

providing ITs with Trusted Shells, nonces (one-off random

numbers used to prevent replay attacks), and Challenges for a

PUF built into the FPGA. At the same time, TruFPGA has the

non-insubstantial overhead of 3.21x slower compile time due

to the compilation and design rules happening in an SGX [13]

TEE provided by the CFP. Client-side TEE compilation has

even further reduced compilation performance due to smaller

TEEs. TruFPGA also does not include support for a CA/PKI,

and as such, may be vulnerable to MITM as seen in Figure 2.

On the other hand, CSSE is the solution currently supported

by industry, with hardware RoTs now included on several

boards [20], [29]. This method works as follows: Firstly, the

developer hashes the bitstream and encrypts the hash with their

private key. Next, the developer encrypts the bitstream with a

symmetric key. The IT then sends the symmetric key, public

key, encrypted hash, and encrypted bitstream to the FPGA.

The FPGA then decrypts the bitstream with the symmetric

key and decrypts the encrypted hash. It then calculates the

hash of the recovered bitstream to match against the decrypted

hash. Should those two match, it proves the authenticity of the

recovered bitstream. However, CSSE can be defeated by the

CFP, as shown in Figure 3. Specifically, once the CFP has

access to KeyProgram and KeyPriv , they can easily recover

the bitstream and/or modify the Encrypted Hash and bitstream,

or even recover the RTL design directly from their servers.

Term Meaning

IP Intellectual Property

CFP Cloud FPGA Provider

IT Intended Tenant

FM FPGA Manufacturer

B# Bitstream number #

H# Hash of Bitstream number #

DR Design Rule(s)

EDR Encrypted Design Rules

DRR Design Rule Results

SDRR Secured Design Rule Results

AsymEnc(D, K) Asymmetric Encryption of data D with key K

AsymDec(D, K) Asymmetric Decryption of data D with key K

SymEnc(D, K) Symmetric Encryption of data D with key K

SymDec(D, K) Symmetric Decryption of data D with key K

TSRoT (Intended) Tenant-side Root of Trust

DS DecryptStrapper (FPGA-side Root of Trust)

CA Certificate Authority

BI Bootable Image / Executable

TABLE I: Common Definitions in this work.

IV. PROPOSED METHOD

A. Assumptions and Definitions

We make a few key assumptions as to the capabilities

and responsibilities of various parties of the Cloud FPGA

Deployment which we outline below and introduce some

common terms in Table I.

• The TSRoT is capable of shutting down the BI should

the TSRoT Hash State exit a list of allowed values

• The BI will require TSRoT authentication to execute any

program, and the TSRoT was enabled at boot

• The CFP has a set of Design Rules that can detect

malicious circuitry in a design along with other violations

• There is a CA trusted and used by the IT, FM, and CFP

• DS prevents reading out the current FPGA configuration

• DS and TSRoT are side-channel resistant

B. Critical Requirements for Security

DS+DLD requires the following statements to hold true in

order to protect the system. In Section V we will examine how
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Algorithm 1: BI Methods

1 Function BI Validate(Design, DR):

2 BI Confirms TSRoT Cert and Capabilities

3 BI Generates BIPub, BIPriv, BICert and sends

them to TSRoT to sign

4 return TSRoTCert, BICert, EDRReq

5

6 Function DRC(Design, DR):

7 foreach rule ∈ DR do

8 if rule met then

9 DRR[rule] = 1
10 else

11 DRR[rule] = 0
12 end

13 return DRR

14

15 Function BI Compile(DR, RTL, EDRKey):

16 NEDR = AsymDec(AsymDec(EDRKey , BIPriv),

TSRoTPriv)

17 DR =SymDec(EDR,EDKey)
18 DRRTL, DRSyn, DRImpl, DRBit ← DR

19 DRR1 ← DRC(RTL, DRRTL)

20 Syn ← Synthesis(RTL)

21 DRR2 ← DRC(Syn, DRSyn)

22 Impl ← Implementation(Syn)

23 DRR3 ← DRC(Impl, DRImpl)

24 B0 ← Bitstream(Impl)

25 DRR4 ← DRC(B0, DRBit)

26 DRR ← [DRR1, DRR2, DRR3, DRR4]

27 H0 ← Hash(B0)

28 SDRR ← AsymEnc(Hash(DRR) ⊕ H0,

CFPPubKey) //See IV-D.1

29 B1 ← SymEnc(B0, H0) //See IV-D.2

30 return SDRR, B1

DS+DLD mitigates risk from potential cases in which either

the CFP or the IT attempt to violate these assumptions.

1) CFP cannot recover or modify B0 or the RTL code.

2) B0 does not contain malicious circuitry.

As long as these statements hold true, all confidentiality and

integrity requirements should be met for the system.

C. IT Registration

The process starts with the IT downloading and booting

a Bootable Image (BI) from the CFP. This BI is a minimal

executable used only for compiling and checking a design, and

is not intended as a full design environment. Once loaded, the

BI generates its own keys, uses the TSRoT to sign them, and

then signs and forwards the result and TSRoT Capabilities

to the CFP. The CFP then calculates and returns EDR to the

BI, which it decrypts into DR. It is important to note that

DR should contain ‘negative’ passing rules (e.g. rules which,

when violated, indicate a non-malicious design and, when

complied with, indicate a malicious design). These will greatly

increase the potential values to explore if an attacker were to

brute force the system and act as a sort of session-specific

Algorithm 2: Main Flow of DS+DLD

1 Function Main():

2 IT boots BI

3 CFP ← BI Validate ()

4 CFP Validates TSRoTCert, BICert with the CA

5 CFP sends TSRoTPub to DS

6 DS creates nonce NDS

7 NDS Safe ←AsymEnc(NDS , TSRoTPub)
8 NDS Auth ← AsymEnc(NDS Safe, DSPriv)
9 NDS Full ← [NDS Safe, NDS Auth]

10 CFP generates nonce NEDR //See IV-D.3

11 EDR ← SymEnc(DR, NEDR)) //See IV-D.3

12 EDRKey ← AsymEnc(AsymEnc(NEDR, BIPub),

TSRoTPub) //See IV-D.3

13 CFP returns EDR, EDRKey , NDS Full

14 IT Provides RTL code to BI

15 SDRR, B1 ← BI Compile(DR, RTL,

EDRKey)

16 IT and confirms DSCert with CA

17 ˆNDS ←AsymDec(NDS Safe, TSRoTPriv)

18 IT Confirms AsymDec(AsymDec(NDS Auth,

DSPub), TSRoTPriv) == ˆNDS

19 B2 ← SymEnc(B1, ˆNDS)

//See IV-D.4

Algorithm 3: B0 Deployment

1 Function DecryptStrapper(Ĥ0, B2):

2 B̂1 ← SymDec(B2, NDS)

3 B̂0 ← SymDec(B1, Ĥ0)

4 if Hash(B̂0) == Ĥ0 then

5 DS Programs with B̂0

6 else

7 DS does not program with B̂0, alerts CFP

8 Function Main(SDRR, DRRPred, B2):

9 DRR ← AsymDec(SDRR, CFPPriv)

10 Ĥ0 ← DRR ⊕ Hash(DRRPred)

11 DS ← B2, Ĥ0 from CFP

12 DecryptStrapper(Ĥ0, B2)

nonce, mitigating SDRR rehydration. At the same time, the

CFP should identify an FPGA for the client and provide the

onboard DS with the TSRoTPub, while also returning the

DSCert and NDSFull to the IT.

D. Bitstream Creation

Once Registration has been completed, the IT can use the

BI to create the SDRR and B2. This process is laid out in

Algorithms 1 2. The critical aspects of this process include:

1) Line 28 of Algorithm 1, where the hash of raw bitstream

B0 is xored with the hash of the raw SDRR before being

encrypted by the CFP’s Public Key
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2) Line 29 of Algorithm 1, the hash of B0 is used as a

symmetric key, thereby requiring DS to be provided with

the hash of B0 to be decrypted

3) Lines 10-12 of Algorithm 2, the CFP creates a nonce,

NEDR, which is used as a key for symmetric encryption

of the DR. This nonce is then asymmetrically encrypted

by the BI and TSRoT public keys and sent to the BI.

This greatly increases performance over asymmetrically

encrypting the whole of DR.

4) Line 19 of Algorithm 2, as the Symmetrically Encrypted

bitstream B1 from line 22 is encrypted by the NDS ,

which is not shared with the CFP, it remains locked to a

particular session as well as unrecoverable by the CFP.

E. Bitstream Authentication and Deployment

The resulting SDRR hash and B2 are then sent to the

CFP. Following the process outlined in Algorithm 3, the CFP

recovers an estimate hash of B0, Ĥ0. Only if all rules in

DR were followed or violated as expected by the CFP will

H0 == Ĥ0. Thus the CFP and the DS using Ĥ0 to ‘unlock’

B1 prevents altered or non-conforming designs.

V. CASE STUDIES

To understand the strengths and capabilities of DS+DLD,

we will examine a few standard cases, as well as a few

novel ones, summarized by Table II. Note that this is not a

comprehensive list but focuses on the most relevant scenarios.

A. Malicious Insertions

Modern Cloud FPGA solutions must protect against Remote

Side Channel Analysis (RSCA) [6] and other malicious cir-

cuitry. These cases include a few studies of how DS+DLD

handles efforts to introduce malicious circuitry by the CFP

or IT. In this section, we examine a few cases, focusing on

methods for the IT to defeat the CFP’s checks for malicious

circuitry in a design or for the CFP to alter B0.

1) Malicious Circuitry by IT: Should there be Malicious

Circuity in the RTL code provided to the BI by the IT,

the Design Rule Results (DRR) will differ from the CFP’s

expectation. As a result, the Hash of the DRR will be different.

Thus when the SDRR is used to obtain Ĥ0, the resulting value

will be incorrect and the hash of the symmetrically decrypted

bitstream B̂0 will not match Ĥ0, and DS will refuse to program

the FPGA and alert CFP.

2) Alterations to B2 by IT: Should the IT attempt to replace

B2/B1/B0 with a separate bitstream BMal that is not the same

as the one used to make SDRR, the Hash of BMal will not

equal Ĥ0, therefore DS will prevent the upload and alert CFP.

3) Compile Time Alterations by CFP: Attempts by BI to

insert malicious circuitry should be detectable by IT. IT can

create a bitstream of their own design implemented on the

same type of board, BTest. They can then do a similar process

to Algorithm 3 by taking the Hash of BT est and using that

to decrypt B1 and confirming that the result matches BTest.

4) Post-Compile Alterations by CFP: Should CFP attempt

to alter B2 prior to deployment on the FPGA, the hash of B̂0

will be altered. Even if Ĥ0 == H0 (i.e. the original bitstream

hash is successfully recovered by the CFP), the properties

of a cryptographic hash ensure that the CFP cannot use that

information to defeat Decryptstrapper’s check of the hash of

Ĥ0 =?Hash(B̂0). It would be possible for the CFP to alter

portions of the deployed bitstream post-deployment, but as

this would have to be done blind, it would be difficult to

accomplish a meaningful stealthy modification of IT logic.

Currently, CSSE does not protect against this case, as the CFP

can recover and modify the bitstream and can modify the hash

the RoT uses for authentication [20], [29].

B. IP Piracy

Large amounts of time and effort go into creating and testing

accelerator IPs, and IP Privacy (the theft of IP) is an unsolved

problem in hardware security. IP Piracy in Cloud FPGA

deployment has traditionally been solved through locking of

IP as in [15]. However, in light of RSCA, many CFPs are

unwilling to accept the risk of deploying a design they have

not evaluated. As a result, ITs often must accept the risk of

CFP IP Privacy to deploy their designs. DS+DLD mitigates

the threat of IP Piracy as shown in the following case studies.
1) Pre-Compile IP Recovery by CFP: As the IT is not

in control of BI and cannot verify exactly what is being

performed, there is a potential threat of BI communicating B0

to the CFP in an encrypted format. This threat is mitigated by

the fact that although IT does not control BI, it is responsible

for all communication to and from it (i.e. BI should not be

directly connected to the internet). As mentioned in Section

V-A4, the IT can easily confirm the contents of B1 to ensure

that the raw bitstream is not being provided. The only other

outputs from BI after the RTL is provided should be the

SDRR and certificates. As these are of fixed length and far

smaller than most bitstreams, these requirements prevent BI

from covertly exporting IT’s IP to the CFP.
2) Post-Compile IP Recovery by CFP: As the CFP is never

directly exposed to B0 (i.e. only encrypted bitstreams), and

DS prevents reading out implemented designs, they should

be unable to recover the plaintext design. Only B2 which

is encrypted by NDS , is exposed to the CFP and thus is

meaningless to them, with all decryption happening inside

the Decryptstrapper. Modern implementations of bitstream

protection [20], [29] may be vulnerable to Man-in-the-middle

(MITM) attacks. Section III-C and Figure 2 cover this in more

detail. To prevent this, the IT verifies the DSCert with the CA

themselves, thus preventing the attack.

C. Breach of Confidentiality Threats

DS+DLD relies on the secrecy of various keys and values.

Should the CFP or IT be able to recover these, they will be able

to violate the critical assumptions of DS+DLD and thus cause

the system to fail. We examine a few cases in which the parties

may attempt to obtain these values and how DS+DLD defeats

these attempts. We exclude the cases targeting DRs/DRRs

from Table II as those attributes are exclusive to DS+DLD.
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Case Unprotected CSSE on IT Hardware CSSE on CFP Hardware Eguro et al. 2012 [15] Zeitouni et al. 2021 [14]1 DS+DLD

V-A1 � � � �2 �3 �

V-A2 � � � � � �

V-A3 � � � � � �

V-A4 � � � � � �

V-B1 � � � � � �

V-B2 � � � � � �

V-C4 � � � � � �

V-D1 � � � � �4 �

TABLE II: A summary of how DS+DLD compares against other solutions in the FPGA Accelerated Cloud model of [23].

CSSE denotes Compile, Sign, Symmetrically Encrypt. 1) Requires active action by FM to create nonces, challenges, and trusted

shells. 2) Unless using a Trusted 3rd party to compile code, which is optional. 3) Only portions of the bitstream are evaluated,

not the whole design process. 4) Assuming the MITM attack from III-C.

1) IT Man-in-the-Middle During Registration: Should the

tenant recover the plaintext DRs, they could extract the DRR,

which will violate system security as with the correct DRR the

tenant could tie a passing result to an arbitrary bitstream. One

method that the tenant may use to recover the plaintext DRs

is to perform a MITM attack between the CFP and TSRoT,

similar to Figure 2. However, DS+DLD mitigates this threat

through CFP confirming TSRoTCert and BICert with the CA.

2) IT Commandeering of BI: Another method that the IT

could use to recover DRR is to freeze the system or read

out intermediate values as BI compiles the design. However,

as we assume the TSRoT has the ability to force a system

shutdown, needs to compute and record the hash state when

executing any programs on the system, and receives a list of

acceptable hash states from the CFP, DS+DLD defeats any

such attempts. However, it may still be possible for the IT

to recover this information through side channel analysis or

bus piracy [9]. The CFP can mitigate these threats by using

the TSRoT to verify the hardware installed on the system and

require components that protect against these concerns through

encrypted bus traffic and side channel mitigations.

3) Binary Analysis of BI: Should the IT recover BIPriv ,

they could recover DR from EDR. While attempts to get

the BI’s private key at runtime would be handled by the

same prevents as in Section V-C2, it may be possible for IT

to violate this assumption of confidentiality through binary

analysis. DS+DLD prevents this by having the BI generate a

new private key at runtime, which is then registered with the

TSRoT to form a certificate chain. This signed certificate is

then provided to the CFP, which uses it to create EDR after

verifying the creator is the BI. As a result, there is no secret

key stored within the binary for the IT to recover.

4) Side Channel Analysis: Side channel analysis (SCA) is

often used to recover the secret keys used by cryptographic

operations, such as TSRoTPriv and NDS , which would result

in a violation of the critical security requirements of DS+DLD.

However, SCA is a well-established threat in hardware security

and many RoT components can be designed to resist it. Addi-

tionally, modern SCA attempts require thousands of encryption

measurements to train a model or multiple measurements using

the same key once trained [9]. As DS+DLD uses one-off

session-specific nonces as keys, it mitigates this threat.

Operation 400kB 4MB 40MB 400MB

SHA256 (CPU) 8 25 115 1414

AES128 (CPU) 7 47 140 1296

SHA256 [20] 3.2 32 320 3200

AES128 (FPGA) 8 84 836 8359

TABLE III: A comparison of the time to complete different

cryptographic operations across platforms. All values in ms.

Test s.o. B s.o. CD CT s.o. BI Fig Case

1 400MB 400MB 1min 200GB 4a Least Favorable

2 400kB 400MB 1hr 20GB 4b Most Favorable

3 4MB 40MB 5min 20GB 4c Least Realistic

TABLE IV: The timing case studies conducted. s.o. stands for

‘size of’, B for the bitstream, CD for configuration memory

size, and CT for Compile-Time.

D. Rehydration Threats

Rehydration or replay attacks reuse ‘good’ messages from

prior communications to circumvent security measures. We

examine how DS+DL responds to several of these.

1) IP Rehydration by CFP: The CFP is prevented from

Rehydrating B2 after receiving it in two ways. Firstly, at a

more practical level, as the CFP does not know the design

B0 it does not have knowledge of the plaintext IP or how to

interact with it. Secondly, at a more formal level, as the design

is encrypted with NDS , it is locked to that particular session.

2) SDRR Rehydration by IT: Similarly, there are two pro-

tections against IT simply replaying a compliant SDRR and

then uploading an arbitrary bitstream to the CFP. Firstly,

EDR should be changed between transactions, which acts as

a nonce. Should the EDR not be changed, however, only a

bitstream with a hash matching the one the SDRR was created

with will be programmed, which prevents IT from altering it.

VI. TIMING ANALYSIS

Bitstream security is essential to maintaining programmed

FPGAs’ integrity. Both major manufacturers, Xilinx and Intel,

have implemented proprietary bitstream security solutions,

which we denote as Compile, Sign, and Symmetrically En-

crypt (CSSE) within their commercially available FPGAs to

safeguard against unauthorized alterations and ensure authen-

ticated use [20], [29]. Xilinx, for example, employs security

measures across different generations of their FPGA models.
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Operation Type DS+DLD TruFPGA [14] [15] w/ TTP [15] w/o TTP

CPU Asymmetrical 6 (256 bits) + 3 (2048 bits) 2 (s.o. FPGAID) 2 (2048 bits) 1 (2048 bits)

CPU Symmetrical 2 (s.o. B) 3 (s.o. B × CO) + 3 (256 bits) 1 (s.o. B) 3 (s.o. B)

CPU Hash 2 (s.o. B) + 2 (s.o. DRR) + 1 (s.o. BI) 3 (s.o. CD) 0 (N/A) 0 (N/A)

FPGA Asymmetrical 2 (128 bits) 0 (N/A) 0 (N/A) 1 (2048 bits)

FPGA Symmetrical 2 (s.o. B) 1 (s.o. B0 × CO) + 5 (256 bits) 1 (s.o. B) 3 (s.o. B)

FPGA Hash 1 (s.o. B) 5 (s.o. CD) 0 (N/A) 0 (N/A)

Compile Overhead 1x 3.21x 1x 1x

TABLE V: Number of cryptographic operations on each device for each method. B0 denotes the bitstream, CO the amount

of overlap between partial bitstreams, and CD is the Configuration Memory on the FPGA and TTP for Trusted Third Party.

(a) Source of overheads for Test 1 (b) Source of overheads for Test 2

(c) Source of overheads for Test 3
(d) A comparison of total time to complete each Test, including
compilation times (lower is better)

Fig. 4: Comparisons between our approach and other similar protocols. Note that Eguro et al. only protects against malicious

ITs when using a Trusted Third Party.

In their 7 series FPGAs, Advanced Encryption Standard (AES)

is utilized to encrypt and decrypt bitstream, which adds an

extra layer of security that deters alterations to the bitstream.

In the more recent Ultrascale and Ultrascale+ FPGAs, the RSA

algorithm is applied to sign the segmented bitstream, providing

an additional level of security that enables the identification of

the sender and prevents unauthorized modifications [20]. On

the other hand, Intel incorporates a Secure Device Manager

module in their Stratix 10 FPGAs [29]. This comprehensive

module contains an encryption core, AES, and Elliptic Curve

Digital Signature Algorithm (ECDSA). The AES core is used

to encrypt the bitstream, similar to the security measures im-

plemented by Xilinx. However, Intel further enhances security

by employing ECDSA to sign the bitstream, ensuring the

integrity and authenticity of the bitstream data [29].

As DS+DLD relies upon a hardware RoT module per-

manently installed into the cloud FPGA (i.e. thus not using

programmable logic), we did not feel it would be beneficial

to compare resource utilization and thus focused our efforts

on timing analysis. We examined the estimated timing delay

of existing cryptographic solutions and compared these in

Table III. For these tests, CPU evaluation was run on a work-

station with an i7-11700KF @ 3.60GHz using OpenSSL [30].

FPGA timings come from [31] for AES and [32] for SHA256,

assuming a 33MHz Clock on a Zynq UltraScale+. We also note

asymmetric encryption of ≤ 400kB takes 7ms for CPU and

1.7ms for FPGA (determined experimentally). We compare the

number of cryptographic operations DS+DLD, [14], and [15]
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each require in Table V.

We examine the complete timing of each pipeline in a few

generalized situations using the estimations from Tables III

and V in Figure 4. We assume a DR size of 28,963 bytes,

taken from the signatures used by [11]. We also assume no

overlap between partial bitstreams and CPU bound TSRoT as a

less favorable comparison for DS+DLD vs. TruFPGA across

all Tests. We note that configuration Flash memory size on

Zynq Ultrascale+ boards varies from 64MB to 512MB [33].

Under these assumptions, we create the Tests in Table IV.

From these, and a complete comparison including compile

time in Figure 4d, we can see that DS+DLD performs similarly

in terms of timing overhead compared to [15] when including

compilation times but is slower when ignoring that. We believe

this is still a favorable comparison, as [15] requires a third

party to compile and inspect designs prior to programming,

and without that entirely fails to prevent malicious circuitry

(which is of critical concern to this threat model). At the same

time, TruFPGA [14] protects against malicious ITs and CFPs

(discounting MITM attacks), but DS+DLD often has lower

timing overhead. This difference is largely due to TruFPGA

needing to hash the entire configuration of the FPGA, which

can be a considerable source of overhead (especially for

smaller designs), in addition to using a TEE.

VII. CONCLUSION

We present a DS+DLD, a method to authenticate tenant-

side DRCs for cloud FPGA deployment without needing a

TTP beyond a Certificate Authority. We find that DS+DLD,

while marginally slower than others that fail to provide the

same coverage [15], manages to outperform the most similar

method [14], completing ∼1.06x-3x (3.04x under the most

realistic conditions) faster when including compile-time and

up to 1.5x faster when not. These values assume a CPU-

based TSRoT, indicating more significant potential gains with

a dedicated hardware TSRoT. Notably, this performance in-

crease improves linearly with compilation time and the size

of configuration data for the FPGA, but decreasing linearly

with larger bitstreams and BIs.
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