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Abstract— In this paper, we propose a novel method for

autonomously seeking out sparsely distributed targets in an un-

known underwater environment. Our Sparse Adaptive Search

and Sample (SASS) algorithm mixes low-altitude observations

of discrete targets with high-altitude observations of the sur-

rounding substrates. By using prior information about the dis-

tribution of targets across substrate types in combination with

belief modelling over these substrates in the environment, high-

altitude observations provide information that allows SASS to

quickly guide the robot to areas with high target densities. A

maximally informative path is autonomously constructed online

using Monte Carlo Tree Search with a novel acquisition function

to guide the search to maximise observations of unique targets.

We demonstrate our approach in a set of simulated trials using a

novel generative species model. SASS consistently outperforms

the canonical boustrophedon planner by up to 36% in seeking

out unique targets in the first 75 - 90% of time it takes for a

boustrophedon survey. Additionally, we verify the performance

of SASS on two real world coral reef datasets.

I. INTRODUCTION

Seeking out and sampling environmental phenomena is
crucial for modelling geophysical and ecological processes
in ocean environmental monitoring. Autonomous underwater
vehicles (AUVs) have been widely used in the mapping of
continuous scalar oceanic phenomena [1] such as chemi-
cal plumes [2], chlorophyll levels [3], temperature, salinity
[4] and bathymetric depth [5]. Many classical informative
path planning (IPP) approaches assume smooth gradients of
the phenomena distribution to plan effective measurement
strategies [6], [7], gradients that are not present for sparsely
distributed phenomena. The problem of choosing where to
take measurements is challenging when the phenomena of
interest are discrete and sparsely distributed in space or time,
such as when mapping a particular benthic species.

The motivating problem for this paper is monitoring coral
reef environments. Scientists are interested in mapping the
prevalence of infectious diseases, such as the Stony Coral
Tissue Loss disease [8], which affects a subset of sparsely
distributed coral species on a reef. Quantifying the prevalence
of this disease requires observing as many unique samples of
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Fig. 1: The Sparse Adaptive Search and Sample planning algorithm uses a
multi-altitude trajectory to gain information about both the terrain substrate
type and locate target species, for an AUV operating over a coral reef.

these species as possible. Canonically, searching for sparse
discrete phenomenon, a problem we define as the Sparse
Search-and-Sample problem, has been achieved using uni-
form coverage trajectories such as a preprogrammed bous-
trophedon (‘lawnmower’) trajectory [9]. Uniform coverage
approaches are highly predictable (a desirable feature for
expensive sensor assets), but are also inefficient as significant
mission time can be expended over low value regions of
the environment with no phenomena present. When the total
mission duration is constrained by a limited battery life,
data gathering requires either multiple deployments, or risks
missing important measurements. Targeted planning can in-
stead prioritize search over higher value regions. However
the key challenge is determining where to look for these
sparse signals in an efficient manner. Our approach draws
inspiration from the ecological literature, where species
distributions are modelled as correlations between observable
and latent abiotic and biotic processes [10]. These processes
drive the presence of particular species [11], and shape the
broader environmental morphology, or substrates, in which
these species are found. We use a correlation model between
high-altitude sensing of environmental substrate types (e.g.
coral, rock, sand) that provides wider coverage and context
of the environment, and low-altitude detection of discrete
phenomenon of interest within these substrates.

Our Sparse Adaptive Search and Sample (SASS) algo-
rithm (Fig. 1) combines two sensing modes — a broad
coverage visual sensor utilised at higher altitude capable
of detecting visual substrate types, and a low altitude low
coverage visual sensor capable of directly observing the
target phenomena — with an anytime probabilistic planning
framework, as a method of biasing trajectories towards
areas of the map likely to yield observations of our target
species. The primary contributions of this work are (1) the
formalisation of the Sparse Search-and-Sample problem as



a partially observable Markov decision process (POMDP),
(2) a correlation model that combines a generative species
model and Gaussian process classification substrate model,
(3) integration of this correlation model into an anytime
non-myopic multi-altitude planner which enables efficient
sampling of a target phenomena using heterogeneous sensor
modes, and (4) a demonstration of this approach using
simulated and real datasets. The remainder of this paper
is organised as follows: Section II outlines related work
in the field of adaptive environmental mapping and multi-
altitude path planning, Section III formalises the problem,
Section IV details the components of the planning algorithm,
and Section V presents experiments with both simulated and
photomosaic datasets.

II. RELATED WORK

The majority of IPP approaches to environmental monitor-
ing focus on sample collection within continuous scalar data
fields [12], [13]. Gaussian processes (GP) are a popular tech-
nique for modelling the distribution of target phenomenon
[14], [15], as the GP regression model provides both a mean
estimate of the scalar field state and a formal measure of
predictive uncertainty on the accuracy of this model [16].
A robotic planner can then develop strategies to reduce this
uncertainty [13], a technique that has been widely applied
in the ocean robotics context. Flaspohler et al. [6] described
a maximum-seeking algorithm that maintains a GP belief
model in mapping a scalar chemical field. Like SASS, they
utilised a receding horizon Monte Carlo Tree Search (MCTS)
planner, with a maximum-value heuristic reward, to move
toward the global maxima. The search problem is similar to
ours in that it is characterised by locating a discrete phenom-
ena, i.e., the source of a chemical plume, however this search
utilises sampling of a continuous chemical distribution in
the surrounding water. Similarly, Manjanna and Dudek [12]
used GPs in maximising coverage over a coral reef using
visual sensors. They described a variable resolution coverage
planner which takes into account the spatial variation in
the underlying field, thereby minimising mission time while
maximising coverage. The application of multiple GPs to
the ocean sampling problem was explored by Das et al. [7].
GP regression models were fitted to environmental covariates
such as chlorophyll concentration, salinity, and temperature,
to predict plankton abundance and thus maximise plankton
sampling. A limitation of these approaches within the context
of our problem is that while overall coral coverage or
plankton abundance can be approached as a spatially varying
continuous field, a sufficiently sparse target distribution like
sparse coral targets cannot. We address this limitation by
using a GP classification-based belief model to discretize
the world into regions of different target likelihood, thereby
maximising coverage of discrete targets.

The use of different sensor modes to inform search was
examined by Arora et al. [17], who employed a Bayesian
network to characterize probabilistic relationships between
UV sensing and visual sensing, and a discrete categorical
phenomena of interest (rock type) in an IPP setting. Similar

to our approach of dividing observations between high-
altitude, high-coverage categorical data and low-altitude,
low-coverage discrete data, an MCTS planner was used by
Arora et al. [17] to determine which sensors to reason most
effectively about rock type. A simplistic Gaussian model was
used to impose spatial relationships on these probabilistic
relationships, allowing limited prediction of unseen areas
of the world. In comparison, our proposed use of multiple
Gaussian process models allows for non-myopic planning
over predicted substrates that have varying lengthscales.

While it has seen limited application in the ocean domain,
the concept of planning over three-dimensional space with
a single robot to utilise different levels of sensor cover-
age has been more widely explored in the aerial domain
[18]. Popovic et al. [19] used a GP prior and an altitude-
dependent sensor model to map weed coverage using a
UAV. Coverage of the world was driven by both reducing
uncertainty and prioritising highly-infested areas (determined
by a thresholding on the visual information), and the UAV
traded between gaining noisy broad coverage information of
the world with targeted highly accurate information using a
greedy lookahead planner. Building on this work, Stache et
al. used a semantic classifier to adapt boustrophedon surveys
to different altitudes to maximise segmentation accuracy of
different agricultural terrain types, utilising a semantic ratio
derived from the classifier as the reward function, rather
than a probabilistic belief model [20]. The UAV in both
cases used a single visual data type, with information from
different resolutions fused into a single map. In contrast, our
work seeks to use different data types at different altitudes
to guide exploration, as when operating underwater the
target phenomena are too small to be observed from high
altitude, and visual classes are difficult to determine from
close range. This requires our decision-making algorithm to
simultaneously reason over the different cost of high- and
low-altitude sampling as well as the different informational
utility of each type of observation.

III. PROBLEM FORMULATION

For the Sparse Search-and-Sample problem, we consider
a robot agent with a fixed mission duration B, tasked with
seeking out and observing a set of sparsely distributed target
phenomena in a discrete world. The Sparse Search-and-
Sample problem is formalised as solving a Partially Observ-
able Markov Decision Process (POMDP) [21] represented
by a tuple (S,A, T, Z,O, R, ω) defined below.

The state space S is composed of the world state u and
v, the robot’s current location q, the remainder of the cost
budget 0 → bω → B for mission time ε , and the set of
visited cells in the world ϑ. The robot can be at any state
q = (qx, qy, qz) ↑ Q = {m ↓ n ↓ 2} where qx and qy
comprise the robot’s 2D location in the m↓n gridded world,
and qz ↑ {zL, zH} is its altitude. The world state is static,
initially unknown, and partially observable, given by v ↑

V = {1, ..., k}m→n describing the substrate type present in
each cell for k substrate types and u ↑ U = Z+m→n is the
number of unique targets in each cell. Since reward is only



gathered when a unique target is viewed, the set of visited
cells must also be maintained, ϑ = {0, 1}m→n. Thus the
state space is S = Q ↓ U ↓ V ↓ ϑ ↓ B. The action space

A is a discrete set of 5 move actions consisting of motion
in a 4-connected grid centred at robot’s current location, as
well as an action to change the robot’s altitude between two
fixed altitudes. The transition model T for the robot state
q and remaining budget b is fully deterministic and u, v
and ϑ remain static. Each action incurs a time cost which
is subtracted from the budget. Reward R is attained when
the robot visits a grid cell at a low altitude and observes the
target state of the cell, given by the reward function

R(q) =

{
u(qx, qy) qz = zL, ϑ(qx, qy) = 0

0 otherwise
(1)

for b ↔ 0. This function encourages visiting cells with higher
numbers of targets, but the ϑ dependence means that the
reward per cell can only be collected once. The discount

factor ω : 0 → ω → 1 encourages robots to collect rewards
sooner. The observation model Z and observation space

O are described in section III-A. The objective of the Sparse
Search-and-Sample problem is to maximise the number of
observations of targets over the trajectory ϖ = (q1, ...,qt)
of the robot before the cost budget is exhausted

R(ϖ) =
t∑

ω=1

R(qω ) s.t.
∑

bω ↔ 0. (2)

A. Target-substrate observation model

OH

OL

V

U

ϱ

m→ n

Fig. 2: Simplified generative model for substrate and target species. Ob-
servations OH and OL are made by the robot’s sensors, observing either
the substrate set V or the targets U , where both are characterised by some
underlying environmental processes ω, and U by the substrate V

SASS assumes a correlation model between target species
presence and overarching substrate of the region as shown in
Fig. 2, as well as substrate correlation between neighbouring
cells. Interactions between environmental processes drive
the physical properties of a region, which can be grouped
into visible morphologies or substrates. For example, strong
currents in a region combined with a change in depth and
consequently light will lessen the habitability of a region,
reducing overall coral coverage and resulting in areas of non-
coral substrate types. Given that species have specific habitat
requirements this will also affect the distribution of target
species in this region. SASS assumes a known number of k
substrate types, each with an expected target species density
ς ↑ {ς1, ...ςk} which is known a priori. Substrate types
can be viewed at high altitude where broader morphology
can be identified (Eq. 3), whereas observation of target
species is restricted to low altitude (Eq. 4). This mirrors

real underwater operating conditions where light attenuation
reduces the ability to identify species with increased depth.

OH(q) ↑ {1, ..., k}rH→rH , if qz = zH , (3)

OL(q) ↑ [0, d]rL→rL , if qz = zL. (4)

where rH and rL are the sensor footprints at high and low
altitude. We assume a fully deterministic observation model

Z, with the robot able to observe the visible portion of the
true world state in its given grid cell. The optimal solution
to a general POMDP is a policy ϖ↑ that maximises the
number of unique targets observed. Computing the solution
to a POMDP is PSPACE-hard [22], [23]. The world state is
the only unknown component and is static in time, thus SASS
uses a receding horizon MCTS planner with an acquisition
function in the rollouts to tractably solve the POMDP.

IV. THE SPARSE ADAPTIVE SEARCH AND
SAMPLE ALGORITHM

The Sparse Adaptive Search and Sample (SASS) algorithm
addresses the complexities of the Sparse Search-and-Sample
problem, namely the sparsity of the target signal and a
constrained mission time, through the four steps of a receding
horizon planning framework:

1) Predicting low-altitude target densities from high alti-
tude substrate observations

2) Allocating mission time between gathering broad cov-
erage information about the substrate classes present in
the world at high altitude, and searching for the target
phenomena at low altitude via an acquisition function

3) Planning a reward-maximising path through the en-
vironment under time constraints using an anytime
MCTS planner with a receeding horizon.

4) Execure planned trajectory and collect new observa-
tions and high and low altitudes

A. World State Prediction

The first step of the planning process is to estimate
the distribution of targets, u, and substrates, v, from the
observations, O, obtained by the robot. We estimate the
probability of a given visual substrate at any point in the
world using a binary Gaussian Process (GP) classifier. In
SASS, a single GP is trained on each of the visual substrates
using the one-versus-all approach. Probabilities from these k
GPs are combined and normalized to produce a unified belief
map over k classes. The world state estimate is then based
on the a priori known density values ς for each substrate
type, weighted by the substrate likelihood

ς̃(q) = !k

i=1ς(i) · P (v(q) = i) (5)

A GP is a distribution over functions that can be fully
specified by a mean function and covariance function f(x) ↗
GP(m(x),K(x,x↓)). GP classification (GPC) is a general-
ization of the more common GP regression [16]. In GPC,
given a set of training points X = [x1, ..,xN] and the
corresponding class labels c = [c1, ..., cN ], we aim to predict
the probability that a test point x↑ belongs to a given class.



The latent function f(x) relating a class label to training
points is assumed to have a GP prior, and is mapped to
a interval [0, 1] using a sigmoid function, where 1 denotes
positive class membership and 0 denotes the negative. For
a given test point the mean posterior of the GP models the
likelihood of class membership.

B. Acquisition function

The intractability of the Sparse Search-and-Sample prob-
lem means we cannot naı̈vely apply the POMDP reward
function given in Eq. 1. Observing substrates has no direct
utility with respect to the Sparse Search-and-Sample objec-
tive. Instead we use an acquisition function that encourages
the robot to balance exploring new areas of the map at
high altitude to gain substrate information, and thus the
distribution of high target-density regions, while ensuring
that it spends sufficient mission time at low altitude in
valuable substrates to maximise observations of the target
phenomena (Eq. 6). The acquisition function balances reduc-
ing uncertainty in its belief, while maximising observations
of the target. Doing so better distributes the gradient of
reward though the robot’s action space, making search more
tractable. The acquisition function we use in the MCTS
planner estimates reward along the proposed trajectory ϖ as

R(ϖ) = (1↘ φ)
∑

q↔ε

ς̃(qx, qy, qz = zL) +

φ
∑

q↔ε

H(Aq(qx, qy, qz = zH)) (6)

The first term captures the exploitation component, where
reward is acquired based on the expected target density ς̃
in a given cell q from Eq. 5, if the robot is at low altitude
zL. The second term captures the exploration component.
Uncertainty in the substrate types at a given location is
quantified as the entropy H of the Gaussian process belief
model where H(q) =

∑
k

i=1 Pi ≃ log2(Pi), with P being the
probability of a substrate. Entropy will be highest in regions
where the GP classifier is unsure of the class label, and
is reduced when a substrate is observed. This term drives
the robot to explore beyond its frontier. Aq(q) describes
the higher altitude-dependent sensor footprint centred around
the current robot location i.e. rH ↓ rH grid cells, as shown
in Figure 1. Entropy is calculated over the entire footprint
of the path Aq(ϖ), ignoring grid cells that have already
been explored at a low altitude (ϑ(q) = 1). The exploration
constant φ balances this explore-exploit trade-off, and both
the explore and exploit terms are normalized to [0, 1].

C. Monte-Carlo Tree Search

To find a near-optimal action sequence ϖ↑ that optimizes
the acquisition function, we use receding horizon MCTS
[24]. MCTS is an anytime planning algorithm that searches
the robot’s action space, A, by incrementally growing a tree
of possible action sequences. Nodes in the tree correspond
to robot actions, and are selected for expansion based on
the Upper Confidence Bound (UCB) heuristic. Partial action

sequences are forward simulated from tree nodes, rolled out
to a fixed horizon, using a policy of random action selection
over all 5 actions in A. We use this policy as it is likely
to mix both high- and low-altitude observation. Actions that
move the robot into a previously unexplored grid cell are
randomly selected from first, and repeat cell visits considered
if there are no other viable actions. After exhaustion of a set
computational budget, the partial action sequence that gives
the highest average reward according to Eq. 6 is selected, and
the first action along this path executed by the robot. We omit
a complete description of the MCTS algorithm here, but refer
the interested reader to [24]. Fig. 3 gives an example of the
progression of the SASS planning algorithm over time for
a simulated mission. The AUV remains at a high altitude,
gathering larger coverage data of substrates, until it observes
a high value substrate and then changes altitude to collect
target observations. Once the AUV begins to move beyond
the predicted lengthscale of a given substrate, it returns to
high altitude to gather more knowledge of the substrate
distribution.

V. EXPERIMENTS

The empirical performance of the SASS algorithm was
assessed in simulation using both real-world and synthetic
environments. We compared the performance against the
single-altitude boustrophedon planner, as this coverage al-
gorithm is standard practice for AUVs mapping coral reefs.
To ensure complete coverage of the target phenomena, the
robot performed the boustrophedon trajectory at the lower
altitude. Performance was evaluated by comparing accumu-
lated reward (Eq. 2) against mission time.

A. Synthetic Environments

We generated synthetic coral reefs using randomly-
generated distributions of substrates populated with species
from Table I. Each simulated reef is 20 m ↓ 20 m in size,
discretised into 1 m cells for planning.

Substrate Classes: Each of k simulated substrates are
drawn from a GP prior with a squared exponential covariance
function and zero mean, with hyperparameters l = 2.0,↼2 =
1.5. The substrates are passed through a softmax function
to produce a simulated distribution of substrates across the
world. These values were then taken as the probability of
a given visual substrate, and the ground truth environment
generated based on the most likely substrate in any given
location. For our tests, we used k = 3 substrates, however
SASS can accept an arbitrary number of k ↔ 2 substrates.

Simulated Target Phenomena: To simulate realistic
sparsely distributed biological phenomena, target coral were
simulated using Thomas point processes [25]. Thomas point
processes are a type of cluster Poisson point process widely
used in spatial statistics and ecological modelling to model
discrete occurrences of events over a specified spatial win-
dow. Thomas point processes are simulated by specifying an
intensity value ↽ > 0 over a simulation window W ⇐ R.
This intensity measure describes the underlying parent Pois-
son point process. Poisson point processes are collections of



(a) t = 3 minutes (b) t = 8 minutes (c) t = 16 minutes

Fig. 3: Example of a simulated mission over three timesteps on a synthetic world. The top three figures illustrate the 3D trajectory of the AUV. The lower
figures shows a pair of maps containing a belief map predicting u (left), and entropy map showing uncertainty of the substrate classification (right).

TABLE I: Example instances of target species

ε µ ϑ Spatial property Example

0.1 10 0.1 sparsely distributed
small clusters (SS)

0.5 10 0.1 densely distributed
small clusters (DS)

0.1 10 0.5 sparsely distributed
large clusters (SL)

0.2 50 0.5 densely distributed
large clusters (DL)

0.1 10 1 homogeneously
sparse (HS)

0.5 10 1 homogeneously
dense (HD)

random points in a finite space where the number of points is
a random variable with a Poisson distribution. For each point
in the parent process, a Poisson number of daughter points
with mean µ > 0 is simulated within a variance ↼2 of the
parent process. Different combinations of parameters were
investigated to capture different typical spatial characteristics
seen on real coral reefs. Six representative species were
selected, with the parameters shown in Table I.

Each synthetic world consists of two substrates assigned
a randomly-chosen species from Table I, and one empty
substrate. Individual coral targets are distributed according
to their corresponding point process, weighted by the preva-
lence of the substrate at each location, resulting in more
realistic gradients in distribution intensity across the world.
We generated a total of 45 synthetic reefs.

For each mission simulation, the robot was randomly

initialised in the world and both the boustrophedon and SASS
planner were used to plan over a mission budget of 3000
seconds. The MCTS planner planned out to a budget h of
100 seconds, with 1000 rollouts per planning cycle. At low
altitude the robot has a sensor footprint of 1 m2 and travels
at 0.2 m/s. At high altitude the footprint is 9 m2, and travel
speed is 0.5 m/s, since the vehicle does not have to go slowly
to avoid colliding with coral heads. Transiting between low
and high altitude takes 5 seconds. In all cases, the robot has a

priori knowledge of average intensities (expected targets per
1x1m grid cell) in each of the substrates. The world belief
model hyperparameters were trained prior to the mission.
25 robot missions were run on each simulated world for a
total of 1125 simulated missions. From experimentation, it
was determined that the optimal exploration constant value
is φ = 0.15.

(a) DS and HD target species (b) SL and HS target species

Fig. 4: Two randomly generated substrate worlds populated by instances
of two species and thinned according to the probability distribution of the
substrates to produce realistic gradients of species across substrate borders.

B. Real-World Reef Orthomosaic Environments

We also evaluated the performance of SASS on real world
coral reef datasets, shown in Fig. 8. Images were collected
using the CUREE robot [26] at Tektite Reef and Booby
Rock on St John in the U.S. Virgin Islands. 4K images
collected by CUREE were rectified and color-corrected using
DeepSeeColor [27] and an orthomosaic of the reef was
generated in Metashape from these images (Fig. 8a), which
served as the ground truth for the mission.



1) Visual Classes: The photomosaic datasets were classi-
fied based on visual features using Realtime Online Spa-
tiotemporal Topic modelling (ROST) [28]. For a detailed
presentation of the ROST model, refer to [28]. The ROST
model is tuned by varying three scalar hyperparameters
and the cell size. In this work, the number of topics K
was limited to a maximum of three to ensure less patchy
topics, and the hyperparameters set to φ = 0.8, ⇀ = 0.4,
ω = 0.000001, with a cell size of 0.2 m and 0.5 m for the
Tektite and Booby Rock datasets respectively. As can be seen
in Figure 8b, the substrates correspond roughly to a sand, and
two different coral substrates.

2) Target phenomena: The target phenomena chosen for
the sparse search-and-sample problem was the stony coral
species Porites astreoides, a common coral species in the
Caribbean. Each Porites astreoides in the orthomosaic was
manually segmented and a binary mask of the segments
generated. Locations of the target coral were taken to be the
centroid of the coral head, and expected densities of coral
calculated for each substrate class as in the simulated worlds.

As with the synthetic worlds, the real world environments
were divided into 1 x 1 m grid for the purposes of planning.
25 missions were run on the Tektite and Booby Rock datasets
in the same manner as the simulated world missions, and
compared with a boustrophedon trajectory that ensured full
coverage of the reef. Full coverage at low altitude took 3600s
and 7200s for Tektite and Booby Rock respectively. The same
robot parameters were used as in the simulated case. The
exploration constant was set to 0.1 and 0.12 for Tektite and
Booby Rock respectively.

VI. RESULTS

A. Performance on Synthetic Reef Environments

Fig. 5: Performance in terms of difference in percentage of targets observed
of SASS compared to boustrophedon planner. Each line is the performance
difference averaged across all worlds with a given species combination.
ϖ = 0.15 for all tests.

For each of the 45 synthetic worlds, we compare the
percentage of targets observed by SASS and a boustrophe-
don planner, averaged across 25 simulated missions with
different random initial starting points. SASS was run with
a MCTS horizon of 100s over a 3000s total mission time.
The low-altitude boustrophedon is able to achieve complete
coverage of a synthetic environment in 2000 seconds. Figure

5 shows the comparative performance of SASS compared
to the boustrophedon planner, in terms of the difference in
percentage of targets observed over time. Each line on the
graph represents the average performance difference of SASS
compared to boustrophedon, across all worlds containing
a particular combination of two species, to account for
variation in substrate distribution. Across all worlds there is
a peak performance improvement of between 8% and 36% of
SASS over boustrophedon centred around 750-1000s into the
mission, with performance difference then decreasing over
time. This suggests that given the restricted mission budget
of many underwater vehicles and the typical sizes of the en-
vironments being explored (on the order of tens or hundreds
of square metres) preventing full environment coverage,
SASS is consistently a better planning choice for maximising
observations of the target species. The highest performance
corresponds to worlds that both contain species DS and
DL, dense clusters of species. The lowest performing band
consists of worlds containing large areas of homogenously
distributed (HD) species, as a fairly homogenous world will
see little advantage of a targeted planner. Separating out the
results by world, in 40 worlds the SASS algorithm provides
a significant increase in performance over boustrophedon
in the first ↗1500-1800s of the mission, depending on the
world. An example is shown in Figure 6a, where SASS
significantly outperforms boustrophedon in the first 1860s.
SASS drives the robot to a high altitude to learn class
distributions, and thus identifying likely locations of high
target density and moving directly to these areas, focusing
initial target detection on high-value substrates. Between
1860s and 2000s, boustrophedon matches or exceeds SASS
performance since it is more rapidly achieving complete
coverage. After 2000s SASS asymptotically approaches the
performance of boustrophedon, and given a long enough
time it will also achieve full low-altitude coverage of the
world. For 5 worlds, SASS only marginally outperforms
boustrophedon, an example of which is shown in Figure 6b.
These worlds are characterized by fairly uniform distribution
of high reward across the world, usually a combination of
HD, DL or DS such as that shown in Fig. 4a. As such, a
coverage algorithm like boustrophedon can achieve reward
at a rate similar to targeted planner like SASS.

(a) HS % SL species (b) DS & HD species

Fig. 6: Comparison of SASS to boustrophdeon for example simulated
worlds. Mean µ±ϑN percentage of targets observed for N = 25 missions.
Mission time is 3000s with ϖ = 0.15.

Fig 7 shows the results of running SASS with different



(a) HS & SL species (b) DS & HD species

Fig. 7: Results of different sensor footprints for example simulated worlds.
Mean µ±ϑN percentage of targets observed for N = 25 missions. Mission
time is 3000s with ϖ = 0.15 and 0.08 for rH = 3 and rH = 5 respectively.

sensor footprint rH sizes, holding all other robot parameters
constant, where rH = j gives a footprint of j ↓ j grid
cells. Different exploration constants φ were tested for each
sensor footprint and 0.15 and 0.08 found to give the highest
performance for rH = 3 (9 m2) and rH = 5 (25 m2)
respectively. A larger footprint results in slighter improved
performance, as more information about the world is gained
at each high altitude measurement compared to a smaller
footprint, thus allowing the MCTS planner to better plan
trajectories toward high value regions.

B. Performance on Real-World Reef Orthomosaic Environ-

ments

Fig. 8c shows example trajectories from simulations of
SASS over the Tektite and Booby Rock dataset. From the
substrate maps it can be seen that the majority of the targets
are concentrated in the green and purple substrate types. The
SASS algorithm is able to utilize the high altitude substrate
observations to concentrate slower low altitude exploration
in these higher value substrates, and remain at a high altitude
when moving over sandy areas that contain much fewer
coral. Fig. 8d shows the performance of both SASS and
the boustrophedon planner averaged across 25 missions for
horizon budget of 50s. Full coverage of the reef at low
altitude takes approximately an hour for Tektite, and we can
see that as in the synthetic cases, SASS is able to outperform
the baseline up to a mission time of 2500 s, and more rapidly
acquires reward than the baseline boustrophedon for the first
half of the mission. This validates the applicability of the
SASS algorithm to a real coral environment, where substrates
are much patchier than in the synthetic cases, and coral is
very sparsely distributed.

We see comparative performance between SASS and bous-
trophedon for the Booby Rock dataset, with boustrophedon
eventually outperforming SASS in the later part of the mis-
sion. While the Tektite dataset has coral and sand substrates
distributed across the world, the Booby Rock dataset is
more bimodal, with the majority of the coral substrates,
concentrated in the left half of the dataset. This means that
any robot initialised in the right half of the reef will initially
spend significant time over less valuable areas while it learns
the substrate distributions. Additionally there is significant
mixing of the green and purple substrates in the Booby Rock

dataset, making it challenging to accurately fit a GP model
to these substrates. We also see a more uniform distribution

of targets at Booby Rock as compared to Tektite. These two
datasets demonstrate a good use case for the SASS algorithm
- patchy reefs with clustered coral targets.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we formalize the sparse search-and-sample
problem and present a new method for searching for sparsely
distributed discrete phenomena across an environment. Our
approach mixes low-altitude observations which can resolve
the target phenomena, with high altitude observations of
terrain substrates to enable more efficient reward gathering.
We demonstrated the SASS algorithm on a variety of syn-
thetic coral reef environments, and found that it observed
more of the target phenomena than the baseline methods
when full coverage of the world is not possible. Performance
of the algorithm was further validated in realworld coral
datasets, and SASS observed to outperform the canonical
boustrophedon coverage planner for patchy, clustered reefs.

While in this paper, the two sensor footprints and tran-
sitional model were held constant, based on the properties
of the CUREE robot, an avenue for future work would be
a parameter sensitivity analysis of the interaction between
these properties and the properties of the world. This would
be useful in fully articulating the use cases and marginal
cases for SASS. Additionally, properly capturing the dynam-
ics of an AUV moving through an underwater environment
and generating more realistic trajectories through the use of
lattice optimization and spline fitting (such as in [19]) is an
important next step to moving this algorithm from simulation
to field tests. This work assumed a priori knowledge of high
value substrate types, however future work will incorporate
online learning of this relationship as the robot explores its
environment and detects target species.
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