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Abstract—Unmanned Aerial Systems have become ubiquitous and
are now widely used in commercial, consumer, and military
applications. Their widespread use is due to a combination of their
low cost, high capability, and ability to perform tasks and go places
that are not easy or safe for humans. Most UAS platforms are
dependent on Global Navigation Satellite Systems (GNSS), such as
the Global Positioning System (GPS), to provide positioning
information for navigation and flight control. Without reliable GPS
signals, the flight path cannot be trusted, and flight safety cannot be
assured. However, GPS is vulnerable to several types of malicious
attacks, including jamming, spoofing, or physical attacks on the GPS
constellation itself. Additionally, there are environments in which
GPS reception is not always possible, a key example being urban
canyon areas where line-of-site to the GPS satellite constellation
may be blocked or obscured by large obstacles such as buildings.
Numerous methods have been proposed for position estimation in
GPS denied environments. However, these methods have significant
limitations and typically exhibit poor performance in certain
environments and scenarios. This paper analyzes the strengths and
weaknesses of existing alternate positioning methods and describes
a framework where multiple positioning solutions are jointly
employed to construct an optimal position estimate. The proposed
framework aims to reduce computation complexity of and yield good
positioning performance across a wide variety of environments.

Keywords—Unmanned Aerial System, Positioning, Navigation,
GPS-denied Operations

I. INTRODUCTION

Unmanned Aerial Systems (UAS) have become ubiquitous
and are now widely used in commercial, consumer, and military
applications. Their widespread use is due to a combination of
their low cost, high capability, and ability to perform tasks that
are tedious or not safe for humans. Most UAS, particularly those
used for commercial or Government applications, are dependent
on Global Navigation Satellite Systems (GNSS), such as the
Global Positioning System (GPS), to provide positioning
information for flight control. Without reliable GPS, the flight
path cannot be trusted and flight safety cannot be assured.
However, there are several environments in which GPS
reception is not always possible. Fig. 1 shows six examples of
GPS-denied scenarios. An example is urban canyon areas where
line-of-site (LOS) to the GPS satellite constellation may be
obscured by large obstacles such as buildings. GPS signals are
also sensitive to radio frequency (RF) intentional or
unintentional interference. GPS operates on spectrum allocated
and reserved for its own use. Spectrum utilized by GPS includes
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the L1 carrier operating at 1575.42 MHz while the L2 carrier
operates at 1227.60 MHz. Newer GPS satellites operate at other
frequencies, such as the L5 carrier at 1176 MHz. While these
frequencies are reserved for GPS use, there is always the
potential that other RF devices could inadvertently emit signals
in these reserved bands (either due to poor quality or
malfunctioning hardware components). GPS signals are
extremely weak on Earth, often on the order of -130 dBm or
lower. A relatively low power emitter can interfere, intentionally
or unintentionally, with proper GPS signal reception. This is
exacerbated by the fact that commercial GPS receivers use
widely varying quality of hardware components, which can lead
to poor performance for some receivers in non-pristine
electromagnetic environments.

Commercial GPS signals are not authenticated or protected
in any way from malicious attacks. The most common attack is
GPS spoofing, where an attacker broadcasts its own falsified
GPS signal, leading a receiver to believe it is at a different
position. This type of attack is made more practical due to the
low signal strength of the downlink GPS signal, making it easier
for the malicious attacker’s signal to overwhelm the actual GPS
signal at the receiver. It is also important to note the ease with
which a GPS spoofing attack can be delivered [1, 2]. While there
are many methods for GPS spoofing detection that have been
proposed in the literature [3], these approaches do not go on to
provide another alternate forms of positioning. GPS spoofing
detection is important since the UAS will not be following
fraudulent position information. However, even if an effective
GPS spoofing detection algorithm is employed, the UAS can
find itself in the equivalent of a GPS denied environment and
the UAS is left without positioning information.

II. PREVIOUS WORK

Positioning, navigation, and timing (PNT) in GPS-denied
environments has received significant research interest over the
past two decades [4]. Consequently, there have been many
proposed methods for positioning in GPS-denied environments.
These various proposed methods typically fall into one of six
categories of approach, as summarized in Fig. 2. Inertial
Measurement Unit (IMU)-based approaches utilize the onboard
suite of devices, including accelerometers, gyroscopes, and
magnetometers, to measure roll, pitch, yaw, velocity, and
altitude. Additionally, these devices measure changes in
magnetic and gravitational forces. They can be used to detect
and track motion such that UAS position relative to starting
point can be tracked [4]. These approaches are well understood
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Fig. 1: Different Types of GPS-Denied Scenarios

and can provide very accurate initial results. However, their
accuracy decreases over time due to error accumulation during
the integration of angular and linear velocity. These errors fall
into one of three categories: biases, scale-factor errors, and
misalignment errors. They can be quite large for commercial
IMU equipment, with significant inaccuracies resulting after as
little as one minute of use. IMU calibration procedures can
significantly lower these errors. However, error accumulation
limits the timeframe during which accurate results can be
maintained. There is the emergence of the concept of quantum
accelerometers that would produce negligible error such that
error accumulations would be insignificant. In this case, IMU-
based positioning and navigation would be sufficient. However,
quantum accelerometers do not yet exist in a form practical for
UAS applications.

Many approaches for positioning and navigation have been
proposed in literature that rely on the use of landmarks. These
approaches generally fall into one of two categories: 1) RF
landmarks and 2) visual landmarks. RF landmark-based
approaches use existing terrestrial cellular infrastructure for
position calculation by the UAS [5]. Previous studies have
shown good accuracy that can be obtained; however, the
accuracy is dependent on the environment (e.g., rural versus
urban) and position accuracy is sensitive to interference. Other
approaches have been proposed where known signal emitters
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are pre-placed along the flight path. This requires a priori
knowledge of the flight path and requires installation of ground-
based infrastructure. These approaches have been shown to be
effective and may prove valuable in applications where a UAS
always performs a fixed flight path. However, they may not be
practical for generalized UAS operations.

One potentially viable approach for positioning based on
RF-based landmarks is the use of signals from the terrestrial
cellular communications infrastructure [5]. There are two
fundamental approaches that can be taken: 1) cooperative
cellular-based positioning, or 2) uncooperative cellular-based
positioning. In the case of cooperative cellular-based
positioning, the UAS is equipped with a cellular transceiver and
a member of the cellular network. In this scenario the UAS
could receive position via the cellular network using existing
methods (e.g., in 4G cellular using the LTE Positioning
Protocol (LPP)). The cooperative approach has been shown to
yield good results but is sensitive to jamming and interference
[6]. If this approach became common, the result could be a
significant number of cellular users at high elevations with
visibility to many cell towers. This will stress the cellular
network’s interference model and could negatively impact the
overall network [7]. In the uncooperative cellular-based
positioning approach, the UAS is not a user of the cellular
network (i.e., no onboard cellular transceiver). Rather, the UAS
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is passively observing and using the cellular signals.

Visual landmark-based approaches use a camera onboard
the UAS to visually detect natural or manmade landmarks for
position determination [8, 9]. These approaches are typically
limited to well-known existing landmarks, or reliant on pre-
placed objects along the flight path, limiting the generalization
of these approaches. Approaches that rely on the pre-placement
of landmarks along a pre-planned flight path could prove
valuable in applications where a UAS flies a fixed, known flight
path. However, these types of approaches are not practical for
many UAS applications. Approaches that utilize existing
landmarks have been shown capable of good results [8].
Furthermore, the combination of visual landmark-based
approaches with IMU-based approaches has also shown
promising results [10]. In these types of approaches, visual
recognition provides an accurate dead reckoning that can be
then used to reset IMU integration errors back to their initial
state. Within regions dense with visually identifiable
landmarks, this approach works well [8, 10]. However, in
regions void of unique landmarks, these approaches can
perform poorly.

Star tracker-based approaches utilize onboard optical
devices that measure the position of stars in the sky to
determine their position. These approaches are well known and
established in nautical and space-based positioning and
navigation and have a long history of working well in low light,
clear sky scenarios. However, these approaches have limited
utility in daytime or obstructed views (e.g., cloud cover).

Several approaches are based on the utilization of other
satellite systems for the purpose of positioning and navigation.
These methods fall into one of two categories: 1) the use of
other GNSS systems, or 2) the use of non-GNSS mega
constellations. There are other GNSS systems, such as
GLONASS, Galileo, and BeiDou. Many commercial chipsets
include receivers for multiple of these GNSS systems. These
commercial chipsets somewhat mitigate the threat of physical

GPS attack since it is less likely that all GNSS systems will be
simultaneously attacked. However, these other GNSS systems,
like GPS, are susceptible to jamming and spoofing attacks. A
growing area of research is in the use of non-GNSS satellite
systems for position determination, such as Starlink, OneWeb,
OrbComm, and Iridium [11], with particular interest in the use
of mega-constellation systems such as Starlink [12]. The
extremely large size of the Starlink constellation and the Low
Earth Orbit (LEO) nature of the constellation would make a
physical attack scenario extremely unlikely. However, Starlink
signals will likely also be susceptible to jamming and/or
spoofing attacks.

Simultaneous Localization and Mapping (SLAM) is
another category for navigation and positioning. SLAM-based
methods aim to characterize the environment surrounding the
autonomous vehicle via its onboard sensors and determine the
vehicle’s position within that environment. Most SLAM
methods fall within two categories: 1) Light Detection and
Ranging (LIDAR)-based SLAM [13] and 2) Visual SLAM
(VSLAM) [14]. These SLAM approaches attempt to detect
features in the environment, building up a feature map such that
it can navigate the vehicle’s surroundings. These approaches
have shown very promising results, but typically are used for
localized environments and serve the purpose of obstacle
avoidance or navigation along specific pre-planned paths. They
typically do not provide absolute positioning (i.e., latitude and
longitude) for generalized scenarios.

Generalized vision-based approaches, that can operate on
general terrain rather than simple landmarks, and that can
provide absolute positioning (i.e., latitude and longitude) have
received limited research [15]. In this category of approaches,
the UAS-based camera observes the ground below. Algorithms
onboard the UAS then attempt to recognize the terrain to
determine the UAS position. These approaches have been
demonstrated to be achievable [15]. However, a major
limitation of these approaches is their complexity due to the size
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of image dataset for training and validating the AI algorithms.
For a single global training dataset that would encompass all
locations on Earth, an 80-meter resolution would require a
minimum dataset of 419.9 billion images (assuming a single
image representing each (latitude, longitude) coordinate
separated by 80 meters). However, a more realistic dataset for
80-meter resolution would be approximately 4.2 trillion
images. This is because the training dataset requires diversity
to accommodate different scales (i.e., altitudes), different
rotations and orientations, different environmental conditions
(e.g., partial occlusions due to cloud cover, shadowing efforts
due to time of day), and different degradations that may appear
in the UAS-based imagery (e.g., Additive White Gaussian
Noise (AWGN), Salt and Pepper Noise, blurring). This
estimation assumes at least 10 images per coordinate would be
required to provide sufficient diversity within the training
dataset. For a globally applicable dataset (i.e., a dataset
representing all positions on Earth), the relationship between
estimated training dataset size and achievable spatial resolution
is depicted in Fig. 3. Even with a very large Graphical
Processing Unit (GPU) infrastructure to support algorithm
training, this dataset size is not practical.

Lastly, several methods in literature propose to mitigate the
effects of a jammer or spoofer through advanced antenna or
signal processing techniques to reject the energy of the attacker
[16-18]. Many of these approaches have shown promising
results. However, these methods introduce hardware and/or
processing complexity into the UAS, which makes many of
these methods impractical for low-cost commercial UAS
platforms.

The advantages and disadvantages of these various
positioning approaches are summarized in Table 1.

III. PROPOSED APPROACH

The proposed framework, depicted in Fig. 4, not only
incorporates positioning estimates from multiple sources, but
also uses certain individual position estimates as aids for other
positioning methods (i.e., to calculate conditional position
estimates based on information learned from other

Required Training Dataset Size as a Function of Achievable
Resolution

Training Dataset Size (log)

1

Achievable Resolution (m)

Fig. 3: Relationship between Training Dataset Size and Achievable Spatial
Resolution

sensors/approaches). These position estimates are combined in
a confidence-based weighting approach to produce an overall
position estimate.

The proposed confidence-based weighting approach is
intended to address the weaknesses and shortcomings of the
previously mentioned approaches While a UAS may have
multiple sensors and positioning methods available to it, not all
methods are ensured to work well within a given circumstance.
IMU-based approaches may work well for short flights but have
lower confidence as time-of-flight increases. Star tracker-based
approaches may work well during nighttime environments with
clear skies but will have low confidence during daytime
operations. RF-based landmark produces good results in some
environments, but not other environments. The proposed
framework aims to utilize confidence-based weighting to
accommodate these performance trends.

A key aspect of this framework is a cellular-aided visual
recognition position determination approach. The goal here is
to utilize cameras that are likely already onboard the UAS that
can observe the ground beneath the UAS and then associate that
observation with a location, all while mitigating the
complexities of previous approaches. This cellular-aided visual
recognition approach does not require any pre-placed anchor
points or a priori information. While previous research has
demonstrated it is possible to determine position by using
ground images (i.e., image of the ground directly beneath the
UAS) [15], these methods suffer from high computational
complexity and/or require an impractically large onboard image
library.

The proposed cellular-aided visual recognition approach
mitigates this issue. It is an uncooperative cellular-based
positioning approach that serves as a coarse position estimation.
That coarse position is then used to perform region-specific
vision-based position estimation. Instead of a single vision-
based detection algorithm trained against a global dataset, we
employ multiple detectors each trained against smaller, more
tenable regional datasets. Both position estimates, along with
confidence scores, and along with estimates from other sources
(e.g., IMU) into a weighted combination function.

Weighting functions are calculated based on location
estimates and confidence scores.
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Fig. 4: Proposed Framework for Hybrid RF Landmark / Computer Vision
Positioning
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TABLE I. STRENGTHS AND WEAKNESSES OF ALTERNATE POSITIONING APPROACHES

in dense RF environments

Positioning Method Hardware Advantages Disadvantages
Requirement
GPS GPS receiver | e Low Size, Weight, and Power (SWaP) Vulnerable to spoofing and Denial-of-Service
hardware (DoS) attacks
® Low-cost hardware Poor performance in some environments
® Good performance in most benign
environments
IMU IMU e Good performance for short flight times Error accumulations degrades performance over
e Utilizes hardware already onboard UAS time
RF Landmark RF receiver e Good performance possible, particularly Some approaches require pre-placed signals along

flight path

e Potentially requires additional radio receiver
e Performance dependent on environment and
geometry

Visual Landmark Camera e Good performance possible e Requires pre-placed physical objects along flight
e Minimal hardware requirements path
Star Tracker Star tracker ® Good performance in certain conditions | ® Limited utility in daytime or when night sky
obscured
® Requires additional star tracker hardware
Alternate GNSS GNSS e Low-cost, low-SWaP hardware, often ¢ Vulnerable to spoofing and DoS attacks
receiver same hardware as GPS receiver e Poor performance in some environments

Mega-Constellation

RF receiver ® Good performance possible
® Mega-constellations less vulnerable to e Additional hardware required

e Vulnerable to spoofing and DoS attacks

physical attacks
LIDAR SLAM LIDAR e Good performance possible e Expensive hardware
transceiver ¢ Computationally expensive
e Typical application is regional mapping, not
absolute position for navigation
Visual SLAM Camera e Good performance possible e Computationally expensive
e Minimal hardware requirements e Typical application is regional mapping, not

absolute position for navigation

Receiver-based
(e.g., antenna)

RF hardware | e Good performance possible

e Additional hardware and/or computational
complexity

Generalized Vision

Camera e Good performance possible
e Minimal hardware requirements

e Computational expense for algorithm training

Finally overall position estimates (latitude and longitude) are
calculated using the weighting function given by:

n
L=WC-LC+W,,-L,,+ZWL--LL- )

i=1

This paper does not define the weighting function, nor does
it define the method to calculate confidence scores. Rather, the
paper focuses on investigating the viability of cellular RF-based
positioning and CV-based positioning.

A. Cellular RF-based Course Position Estimation

The location of all commercial 4G/5G infrastructural
emitters (i.e., base stations) are publicly known. Thus, it would
be possible to build an onboard database for positioning
purposes. Each base station in the cellular network uniquely
identifies itself over the Radio Access Network (RAN), so a
mobile receiver will be able to definitively determine whose
signals it is receiving. Combining that knowledge with a priori
knowledge of the location of those emitters, the problem to
solve is given a received signal from a known source,
estimating the receiver’s location based on characteristics of
that received signal. In other words, the UAS will know the

locations of the surrounding base stations (i.e., those within
range of the UAS), and the UAS will have received signals that
are attributable to those base stations. The UAS will use that
information to estimate its own position; the UAS will attempt
to geolocate itself based on the known signals around it. It is
interesting to note that this is the opposite of the typical
geolocation problem. In most geolocation problems, you have
a network of sensors attempting to determine the location of a
single emitter. In this case, we have a network of known
emitters and attempting to calculate the position of the single
sensor. However, standard geolocation approaches can still be
applied to this problem.

There are numerous geolocation methods that can be used
to determine location based on received signal attributes,
including Time Difference of Arrival (TDOA), Frequency
Difference of Arrival, and Power Difference of Arrival
(PDOA). These approaches are predicated on the scenario of
multiple distributed spectrum sensors attempting to locate a
single emitter by comparing the differences in the versions of
the same signal independently received at these distributed
sensor locations.
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The proposed framework aims to employ a Received
Signal Strength (RSS)-based approach due to its simplicity. In
this approach, these known identifiable signals will be received
with some RSS. Based on that RSS along with the known
position of the emitters, the UAS would then estimate the
distance between itself and the known transmitter location. If at
least three emitters (i.e. base stations) can be observed, then the
UAS can then use reverse triangulation to determine its own
position. Previous research has demonstrated that RSS-based
approaches can provide accurate results [19]. This scenario is
depicted in Fig. 5.

This RSS-based approach is a non-cooperative method in
which the UAS is not actually a user on the terrestrial cellular
network. It is a receive-only capability receiving well-defined
4G/5G signals, and then estimating the UAS position based on
the RSS of these signals. For 4G LTE, we propose the use of
the Primary Synchronization Signal (PSS) and Secondary
Synchronization Signal (SSS), as these are well known and will
convey the identification of the transmitter.

For the case of 5G cellular, we propose the use of the
Downlink Position Reference Signal (DL PRS), which is used
by the 5G network itself in its own positioning protocol.

B. Vision-based Position Estimation

This study employs You Only Look Once (YOLO) due to
its computational efficiency and ability to run in embedded
hardware. YOLO is an object detection algorithm widely used
in the Computer Vision community and is also widely used in
commercial applications, including security and surveillance
applications as well as autonomous vehicles. While there are
many differences across the various versions of YOLO, the
main characteristic that makes the YOLO model different than
many other approaches is that it is a single-stage detector versus
a two-stage detector. The basic object detector architecture is
depicted in Fig. 6 [20].

The input stage in Fig. 6 is the actual input image fed into
the detector. The backbone stage is a multi-layer deep learning
(DL) network that acts to extract features from the input image.
There are numerous backbone architectures that are available

Position Estimate: Point“\
of closest intersection
of all RSS contours

Fig. 5: Position Determination Process using RSS-based Triangulation

Fig. 6: High-Level Architecture of One-stage versus Two-State Detectors [20]

DARKNET-53 [23], among many others. Here, the number in
each generally refers to the number of layers in a convolutional
neural network (CNN). The neck stage connects the backbone
to the head (Dense Prediction stage in Fig. 6) and performs the
function of feature map concatenation from the different layers
of the backbone stage and presents that information as inputs to
the head, which performs the object detection based on those
feature maps. The neck can consist of many different
approaches, including Feature Pyramid Networks (FPN), Path
Aggregation Network (PAN), and Receptive Field Block
(RFB). The head can take the form of YOLO or Single-Shot
Detector (SSD) [24]. In a two-stage detector approach, such as
Faster R-CNN [25], there is an additional sparse detection
stage. Note this last stage is not present in a single-stage
detector.

This study uses the YOLOv4 implementation included as
part of the MATLAB CV Toolbox, and its architecture is shown
in Fig. 7. In this implementation, the backbone uses a DarkNet-
53 architecture that is a 53-layer CNN. The neck employs
Spatial Pyramidal Pooling (SPP) and PAN. The head consists
of three separate YOLOV3 [26] head modules that takes the
feature maps provided by the neck and produces predicted
bounding boxes and confidence scores.

Typical YOLO usage involves the training of YOLO on an
image dataset containing many different objects of different
types (e.g., dogs, bicycles, cars) with that training data labeled
with bounding boxes and descriptive labels for each object type.
The trained algorithm is then used to detect arbitrary objects of
those same types contained within input images (images not
part of the original training dataset). In this study, rather than
detecting specific objects, YOLO is employed to detect a grid
of ground area from an aerial image (e.g., multiple city blocks
vs. a single building). Objects, in this case, are defined by
bounding boxes to reflect an entire geographic grid area and
labeled with the coordinates of the center of the bounding box,
as depicted in Fig. 8.

Fig. 7: YOLOv4 Architecture as Implemented in MATLAB [27]
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Fig. 8: Example of Using Object Definition to Represent Geographic Grid
Coordinates

In this study, the YOLO algorithm is trained with a dataset
that contiguously covers a geographic region, with each image
representing an x by y grid of space within that geographic
region. Ground images taken from the UAS are then fed into
this trained YOLO detector, and a detection represents a match
with one of these grid image objects, thus yielding the GPS
coordinate of the UAS platform.

IV. RESULTS AND DISCUSSION

Fig. 9 shows the relationship between the path loss
estimation error (i.e., the difference between estimated and the
actual path loss between the UAS and the cellular transmitter)
and distance estimation error (i.e., the difference between the
estimated and actual path distance between the UAS and the
cellular transmitter). The subplots in Fig. 9 shows this
relationship for three common cellular frequency bands: 850
MHz (Fig. 9a), 1900 MHz (Fig. 9b), and 27 GHz (Fig. 9¢). The
curves in each subplot of Fig. 9 represent a set of true
propagation losses between the UAS and the -cellular
transmitter, which is directly related to the distance between
them.

Making a worst-case assumption that distance estimation
errors align in the worst possible way (i.e., errors are additive),
these cumulative distance estimation errors will directly equate
to position estimate errors. The results in Fig. 9 shows that
position estimate error increases with increased RF path loss
estimation error, which places a premium on accurate RF
propagation path loss estimation. Note that the results in Fig 9.
assume free space path loss to relate path loss estimation error
to distance error. Overall, across all frequencies it was found
that relatively good positioning can be achieved if the path loss
estimation error is less than or equal to approximately 5 dB. For
path loss estimation errors greater than 5 dB, the distance error
increases, leading to a larger position estimate error. Because
the UAS will generally have LOS conditions to the terrestrial
towers, previous research has shown that the propagation
channel may follow a LOS free-space model [7], which means
that achieving a 5 dB agreement may be possible.

Fig. 9 also shows that the positioning accuracy improves
with higher frequencies. The highest frequency band
considered (27 GHz in Fig. 9c) provides the best positioning
performance and lower cellular bands provide decreased
positioning performance. In the 27 GHz band, most path loss
curves (i.e., distances) between the UAS and the cellular tower
resulted in position estimation errors under 100 m even for a

Upper Bound of Distance Estimation Error as a Function of Path Loss
Estimation Error at 850 MHz
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Fig. 9: Distance Estimation Error as a Function of Path Loss Estimation Error
for non-Cooperative Cellular RF-based Positioning

relatively large path loss estimation error. For the lowest
frequency band considered (850 MHz in Fig. 9a), large path
loss estimation errors resulted in position estimation errors of 1
km or greater, particularly for large distances between the UAS
and the cellular transmitter.

It was found that positioning accuracy worsens with
increased distance to emitters. At larger distances, the position
error is more sensitive to the path loss estimation error. This can
be seen in Fig. 9 by the curves representing lower path loss that
are grouped closely together at low distance error values while
the curves representing higher path loss (e.g., 120 dB) quickly
grows as the path loss estimate error increases. Relatively good
performance can be achieved under the assumed conditions for
distances up to 1 km in most cases, assuming free space path
loss, with significant degradations at distances greater than 1
km. These results suggest that within relatively close distances
to cell towers (< 1 km) and path loss estimation error of <5 dB,
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that positioning accuracy of 100-meter resolution is achievable.
While 100-meter resolution is not sufficient for safe flight, it is
likely sufficient for coarse positioning to direct vision-based
positioning. Even at greater distances or cases of a larger path
loss estimation error, where positioning error will be greater,
the position is likely sufficient to support a coarse positioning
function.

We next investigate the viability of using YOLO for
vision-based positioning. A small training dataset was
constructed consisting of 90 images [28]. These images were
taken from three different types of environments: 1) urban
(downtown Chicago, IL), 2) suburban (University of North
Dakota (UND) campus), and 3) rural (unpopulated desert
region of Arizona). These three image classes attempt to
represent regions with different feature densities (i.e., manmade
or natural landmarks). A total of 30 images were taken for each
of these three regions. Each image was appended with a
bounding box and labeling data consisting of latitude and
longitude corresponding to the center point of the image. All 30
images from each of these three environments were included in
the training dataset. Twelve different images corresponding to
these areas (three from each area) were then drawn from a
different source (Google Earth) to serve as surrogate UAS
camera images and then used as the test dataset. Examples of
these test images for each region is shown in Fig. 10.

These test images were fed into the YOLO detector that
was trained with the 90-image training dataset, with detection
results shown in Table 2. This table shows that a good
performance was observed for urban and suburban cases, with
successful detections with a high confidence (>0.9) for all urban
and suburban test cases. The results for the desert test cases
were mixed. A portion of the desert test cases provided
detection with moderate confidence (>0.7), while several other
desert cases resulted in no detection. False positive detections
were also observed in the desert test images (i.e., images
mistakenly classified as the wrong location). However, even in
the case of mistaken classification, the model still predicted that
the location was in the correct region (i.e., predicted Arizona
desert).

A key driver in the detection with high confidence appears
to directly relate to the number of features present within the
image. Images without distinct feature sets, such as Arizona
Desert 1, exhibited poor performance, more features lead to

— =

Arizona Desert 1

Arizona Desert 2

UND 2

Chicago, IL 2

Fig. 10: Test Images from Urban, Suburban, and Desert Environments

TABLE II. ACHIEVED RESULTS FROM YOLO-BASED VISUAL POSITIONING

Position (Image) Accurate Detection Confidence Level
Chicago 1 Yes 0.97
Chicago 2 Yes 0.99
Chicago 3 Yes 091
Chicago 4 Yes 0.89

UND 1 Yes 0.96
UND 2 Yes 0.99
UND 3 Yes 0.92
UND 4 Yes 0.90
Arizona 1 No N/A
Arizona 2 Yes 0.81
Arizona 3 Yes 0.68
Arizona 4 No N/A

better detection performance. These results are promising for
urban and suburban areas as well as rural areas with geographic
or manmade features (e.g., rivers, roads). The results also
suggest that this approach is not well suited for areas with
monotonic feature space (e.g., desert). In these desert
environments (i.e., low feature density environments), it is
expected that cellular RF-based positioning will yield more
accurate positioning performance than visual methods.

V. CONCLUSIONS AND FUTURE WORK

The use of UAS platforms has become ubiquitous and their
use is expected to increase in the future. UAS platforms are
heavily dependent on GPS for proper and safe operations.
However, GPS is vulnerable to denial and spoofing attacks.
Many alternative positioning solutions have been proposed in
the literature, but all have significant limitations. This study
described a framework where multiple positioning approaches
would be jointly employed. This framework uses of a cellular
RF-aided vision-based approach to positioning that utilizes the
popular YOLO object detection algorithm for aerial landscape
detection for positioning purposes. The results show that
cellular-based RF signals may provide sufficient accuracy for
coarse position estimates. Results also show that visual methods
can provide accurate position estimates in many environments.
Future work would include the evaluation of the proposed
vision-based positioning approach with larger datasets across a
wider set of environments and conditions. Future work would
also mature the framework described in this paper by developing
a confidence weighting factor scheme, as well as the position
estimate combination function.
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