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Abstract—Unmanned Aerial Systems have become ubiquitous and 

are now widely used in commercial, consumer, and military 

applications. Their widespread use is due to a combination of their 

low cost, high capability, and ability to perform tasks and go places 

that are not easy or safe for humans. Most UAS platforms are 

dependent on Global Navigation Satellite Systems (GNSS), such as 

the Global Positioning System (GPS), to provide positioning 

information for navigation and flight control. Without reliable GPS 

signals, the flight path cannot be trusted, and flight safety cannot be 

assured. However, GPS is vulnerable to several types of malicious 

attacks, including jamming, spoofing, or physical attacks on the GPS 

constellation itself. Additionally, there are environments in which 

GPS reception is not always possible, a key example being urban 

canyon areas where line-of-site to the GPS satellite constellation 

may be blocked or obscured by large obstacles such as buildings. 

Numerous methods have been proposed for position estimation in 

GPS denied environments. However, these methods have significant 

limitations and typically exhibit poor performance in certain 

environments and scenarios. This paper analyzes the strengths and 

weaknesses of existing alternate positioning methods and describes 

a framework where multiple positioning solutions are jointly 

employed to construct an optimal position estimate. The proposed 

framework aims to reduce computation complexity of and yield good 

positioning performance across a wide variety of environments. 

Keywords—Unmanned Aerial System, Positioning, Navigation, 

GPS-denied Operations 

I. INTRODUCTION 

Unmanned Aerial Systems (UAS) have become ubiquitous 
and are now widely used in commercial, consumer, and military 
applications. Their widespread use is due to a combination of 
their low cost, high capability, and ability to perform tasks that 
are tedious or not safe for humans. Most UAS, particularly those 
used for commercial or Government applications, are dependent 
on Global Navigation Satellite Systems (GNSS), such as the 
Global Positioning System (GPS), to provide positioning 
information for flight control. Without reliable GPS, the flight 
path cannot be trusted and flight safety cannot be assured. 
However, there are several environments in which GPS 
reception is not always possible. Fig. 1 shows six examples of 
GPS-denied scenarios. An example is urban canyon areas where 
line-of-site (LOS) to the GPS satellite constellation may be 
obscured by large obstacles such as buildings. GPS signals are 
also sensitive to radio frequency (RF) intentional or 
unintentional interference. GPS operates on spectrum allocated 
and reserved for its own use. Spectrum utilized by GPS includes 

the L1 carrier operating at 1575.42 MHz while the L2 carrier 
operates at 1227.60 MHz. Newer GPS satellites operate at other 
frequencies, such as the L5 carrier at 1176 MHz. While these 
frequencies are reserved for GPS use, there is always the 
potential that other RF devices could inadvertently emit signals 
in these reserved bands (either due to poor quality or 
malfunctioning hardware components).  GPS signals are 
extremely weak on Earth, often on the order of -130 dBm or 
lower. A relatively low power emitter can interfere, intentionally 
or unintentionally, with proper GPS signal reception. This is 
exacerbated by the fact that commercial GPS receivers use 
widely varying quality of hardware components, which can lead 
to poor performance for some receivers in non-pristine 
electromagnetic environments.  

Commercial GPS signals are not authenticated or protected 
in any way from malicious attacks. The most common attack is 
GPS spoofing, where an attacker broadcasts its own falsified 
GPS signal, leading a receiver to believe it is at a different 
position. This type of attack is made more practical due to the 
low signal strength of the downlink GPS signal, making it easier 
for the malicious attacker’s signal to overwhelm the actual GPS 
signal at the receiver. It is also important to note the ease with 
which a GPS spoofing attack can be delivered [1, 2]. While there 
are many methods for GPS spoofing detection that have been 
proposed in the literature [3], these approaches do not go on to 
provide another alternate forms of positioning. GPS spoofing 
detection is important since the UAS will not be following 
fraudulent position information. However, even if an effective 
GPS spoofing detection algorithm is employed, the UAS can 
find itself in the equivalent of a GPS denied environment and 
the UAS is left without positioning information. 

II. PREVIOUS WORK 

Positioning, navigation, and timing (PNT) in GPS-denied 
environments has received significant research interest over the 
past two decades [4]. Consequently, there have been many 
proposed methods for positioning in GPS-denied environments. 
These various proposed methods typically fall into one of six 
categories of approach, as summarized in Fig. 2. Inertial 
Measurement Unit (IMU)-based approaches utilize the onboard 
suite of devices, including accelerometers, gyroscopes, and 
magnetometers, to measure roll, pitch, yaw, velocity, and 
altitude. Additionally, these devices measure changes in 
magnetic and gravitational forces. They can be used to detect 
and track motion such that UAS position relative to starting 
point can be tracked [4]. These approaches are well understood 
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(a) GPS Loss in Urban Canyon (b) GPS Jamming (c) GPS Physical Attack 

 

          

  (d) Unintended Interference  (e) GPS Spoofing  (f) GPS Spoofing with Detection 

Fig. 1: Different Types of GPS-Denied Scenarios

and can provide very accurate initial results. However, their 

accuracy decreases over time due to error accumulation during 

the integration of angular and linear velocity. These errors fall 

into one of three categories: biases, scale-factor errors, and 

misalignment errors. They can be quite large for commercial 

IMU equipment, with significant inaccuracies resulting after as 

little as one minute of use. IMU calibration procedures can 

significantly lower these errors. However, error accumulation 

limits the timeframe during which accurate results can be 

maintained. There is the emergence of the concept of quantum 

accelerometers that would produce negligible error such that 

error accumulations would be insignificant. In this case, IMU-

based positioning and navigation would be sufficient. However, 

quantum accelerometers do not yet exist in a form practical for 

UAS applications.  

Many approaches for positioning and navigation have been 

proposed in literature that rely on the use of landmarks. These 

approaches generally fall into one of two categories: 1) RF 

landmarks and 2) visual landmarks. RF landmark-based 

approaches use existing terrestrial cellular infrastructure for 

position calculation by the UAS [5]. Previous studies have 

shown good accuracy that can be obtained; however, the 

accuracy is dependent on the environment (e.g., rural versus 

urban) and position accuracy is sensitive to interference. Other 

approaches have been proposed where known signal emitters 

are pre-placed along the flight path. This requires a priori 

knowledge of the flight path and requires installation of ground-

based infrastructure. These approaches have been shown to be 

effective and may prove valuable in applications where a UAS 

always performs a fixed flight path. However, they may not be 

practical for generalized UAS operations. 

One potentially viable approach for positioning based on 

RF-based landmarks is the use of signals from the terrestrial 

cellular communications infrastructure [5]. There are two 

fundamental approaches that can be taken: 1) cooperative 

cellular-based positioning, or 2) uncooperative cellular-based 

positioning. In the case of cooperative cellular-based 

positioning, the UAS is equipped with a cellular transceiver and 

a member of the cellular network. In this scenario the UAS 

could receive position via the cellular network using existing 

methods (e.g., in 4G cellular using the LTE Positioning 

Protocol (LPP)). The cooperative approach has been shown to 

yield good results but is sensitive to jamming and interference 

[6]. If this approach became common, the result could be a 

significant number of cellular users at high elevations with 

visibility to many cell towers. This will stress the cellular 

network’s interference model and could negatively impact the 

overall network [7]. In the uncooperative cellular-based 

positioning approach, the UAS is not a user of the cellular 

network (i.e., no onboard cellular transceiver). Rather, the UAS  
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Fig. 2: High-Level Taxonomy of Existing Methods for Positioning in GPS-Denied Environment

is passively observing and using the cellular signals. 

Visual landmark-based approaches use a camera onboard 

the UAS to visually detect natural or manmade landmarks for 

position determination [8, 9]. These approaches are typically 

limited to well-known existing landmarks, or reliant on pre-

placed objects along the flight path, limiting the generalization 

of these approaches. Approaches that rely on the pre-placement 

of landmarks along a pre-planned flight path could prove 

valuable in applications where a UAS flies a fixed, known flight 

path. However, these types of approaches are not practical for 

many UAS applications. Approaches that utilize existing 

landmarks have been shown capable of good results [8]. 

Furthermore, the combination of visual landmark-based 

approaches with IMU-based approaches has also shown 

promising results [10]. In these types of approaches, visual 

recognition provides an accurate dead reckoning that can be 

then used to reset IMU integration errors back to their initial 

state. Within regions dense with visually identifiable 

landmarks, this approach works well [8, 10]. However, in 

regions void of unique landmarks, these approaches can 

perform poorly. 

Star tracker-based approaches utilize onboard optical 

devices that measure the position of stars in the sky to 

determine their position. These approaches are well known and 

established in nautical and space-based positioning and 

navigation and have a long history of working well in low light, 

clear sky scenarios. However, these approaches have limited 

utility in daytime or obstructed views (e.g., cloud cover). 

Several approaches are based on the utilization of other 

satellite systems for the purpose of positioning and navigation. 

These methods fall into one of two categories: 1) the use of 

other GNSS systems, or 2) the use of non-GNSS mega 

constellations. There are other GNSS systems, such as 

GLONASS, Galileo, and BeiDou. Many commercial chipsets 

include receivers for multiple of these GNSS systems. These 

commercial chipsets somewhat mitigate the threat of physical 

GPS attack since it is less likely that all GNSS systems will be 

simultaneously attacked. However, these other GNSS systems, 

like GPS, are susceptible to jamming and spoofing attacks. A 

growing area of research is in the use of non-GNSS satellite 

systems for position determination, such as Starlink, OneWeb, 

OrbComm, and Iridium [11], with particular interest in the use 

of mega-constellation systems such as Starlink [12]. The 

extremely large size of the Starlink constellation and the Low 

Earth Orbit (LEO) nature of the constellation would make a 

physical attack scenario extremely unlikely. However, Starlink 

signals will likely also be susceptible to jamming and/or 

spoofing attacks. 

Simultaneous Localization and Mapping (SLAM) is 

another category for navigation and positioning. SLAM-based 

methods aim to characterize the environment surrounding the 

autonomous vehicle via its onboard sensors and determine the 

vehicle’s position within that environment. Most SLAM 

methods fall within two categories: 1) Light Detection and 

Ranging (LIDAR)-based SLAM [13] and 2) Visual SLAM 

(vSLAM) [14]. These SLAM approaches attempt to detect 

features in the environment, building up a feature map such that 

it can navigate the vehicle’s surroundings. These approaches 

have shown very promising results, but typically are used for 

localized environments and serve the purpose of obstacle 

avoidance or navigation along specific pre-planned paths. They 

typically do not provide absolute positioning (i.e., latitude and 

longitude) for generalized scenarios. 

Generalized vision-based approaches, that can operate on 

general terrain rather than simple landmarks, and that can 

provide absolute positioning (i.e., latitude and longitude) have 

received limited research [15]. In this category of approaches, 

the UAS-based camera observes the ground below. Algorithms 

onboard the UAS then attempt to recognize the terrain to 

determine the UAS position. These approaches have been 

demonstrated to be achievable [15]. However, a major 

limitation of these approaches is their complexity due to the size 
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of image dataset for training and validating the AI algorithms. 

For a single global training dataset that would encompass all 

locations on Earth, an 80-meter resolution would require a 

minimum dataset of 419.9 billion images (assuming a single 

image representing each (latitude, longitude) coordinate 

separated by 80 meters). However, a more realistic dataset for 

80-meter resolution would be approximately 4.2 trillion 

images. This is because the training dataset requires diversity 

to accommodate different scales (i.e., altitudes), different 

rotations and orientations, different environmental conditions 

(e.g., partial occlusions due to cloud cover, shadowing efforts 

due to time of day), and different degradations that may appear 

in the UAS-based imagery (e.g., Additive White Gaussian 

Noise (AWGN), Salt and Pepper Noise, blurring). This 

estimation assumes at least 10 images per coordinate would be 

required to provide sufficient diversity within the training 

dataset. For a globally applicable dataset (i.e., a dataset 

representing all positions on Earth), the relationship between 

estimated training dataset size and achievable spatial resolution 

is depicted in Fig. 3. Even with a very large Graphical 

Processing Unit (GPU) infrastructure to support algorithm 

training, this dataset size is not practical. 

Lastly, several methods in literature propose to mitigate the 

effects of a jammer or spoofer through advanced antenna or 

signal processing techniques to reject the energy of the attacker 

[16-18]. Many of these approaches have shown promising 

results. However, these methods introduce hardware and/or 

processing complexity into the UAS, which makes many of 

these methods impractical for low-cost commercial UAS 

platforms.  

The advantages and disadvantages of these various 

positioning approaches are summarized in Table 1. 

III. PROPOSED APPROACH 

 The proposed framework, depicted in Fig. 4, not only 

incorporates positioning estimates from multiple sources, but 

also uses certain individual position estimates as aids for other 

positioning methods (i.e., to calculate conditional position 

estimates based on information learned from other 

 
 

Fig. 3: Relationship between Training Dataset Size and Achievable Spatial 
Resolution 

sensors/approaches). These position estimates are combined in 

a confidence-based weighting approach to produce an overall 

position estimate. 

 The proposed confidence-based weighting approach is 

intended to address the weaknesses and shortcomings of the 

previously mentioned approaches While a UAS may have 

multiple sensors and positioning methods available to it, not all 

methods are ensured to work well within a given circumstance. 

IMU-based approaches may work well for short flights but have 

lower confidence as time-of-flight increases. Star tracker-based 

approaches may work well during nighttime environments with 

clear skies but will have low confidence during daytime 

operations. RF-based landmark produces good results in some 

environments, but not other environments. The proposed 

framework aims to utilize confidence-based weighting to 

accommodate these performance trends. 

 A key aspect of this framework is a cellular-aided visual 

recognition position determination approach. The goal here is 

to utilize cameras that are likely already onboard the UAS that 

can observe the ground beneath the UAS and then associate that 

observation with a location, all while mitigating the 

complexities of previous approaches. This cellular-aided visual 

recognition approach does not require any pre-placed anchor 

points or a priori information. While previous research has 

demonstrated it is possible to determine position by using 

ground images (i.e., image of the ground directly beneath the 

UAS) [15], these methods suffer from high computational 

complexity and/or require an impractically large onboard image 

library.  

 The proposed cellular-aided visual recognition approach 

mitigates this issue. It is an uncooperative cellular-based 

positioning approach that serves as a coarse position estimation. 

That coarse position is then used to perform region-specific 

vision-based position estimation. Instead of a single vision-

based detection algorithm trained against a global dataset, we 

employ multiple detectors each trained against smaller, more 

tenable regional datasets. Both position estimates, along with 

confidence scores, and along with estimates from other sources 

(e.g., IMU) into a weighted combination function.  

Weighting functions are calculated based on location 

estimates and confidence scores.  

 

        (1) 

 

 
 

Fig. 4: Proposed Framework for Hybrid RF Landmark / Computer Vision 

Positioning 

 

 

   ,  
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TABLE I. STRENGTHS AND WEAKNESSES OF ALTERNATE POSITIONING APPROACHES 

 

Positioning Method Hardware 

Requirement 

Advantages Disadvantages 

GPS GPS receiver • Low Size, Weight, and Power (SWaP) 
hardware 

• Low-cost hardware 

• Good performance in most benign 
environments 

• Vulnerable to spoofing and Denial-of-Service 
(DoS) attacks 

• Poor performance in some environments 

IMU IMU • Good performance for short flight times 

• Utilizes hardware already onboard UAS 

• Error accumulations degrades performance over 
time 

RF Landmark RF receiver • Good performance possible, particularly 
in dense RF environments 

• Some approaches require pre-placed signals along 
flight path 

• Potentially requires additional radio receiver 

• Performance dependent on environment and 

geometry 

Visual Landmark Camera • Good performance possible 

• Minimal hardware requirements 

• Requires pre-placed physical objects along flight 
path 

Star Tracker Star tracker • Good performance in certain conditions • Limited utility in daytime or when night sky 
obscured 

• Requires additional star tracker hardware 

Alternate GNSS GNSS 

receiver 
• Low-cost, low-SWaP hardware, often 

same hardware as GPS receiver 

• Vulnerable to spoofing and DoS attacks 

• Poor performance in some environments 

Mega-Constellation RF receiver • Good performance possible 

• Mega-constellations less vulnerable to 
physical attacks 

• Vulnerable to spoofing and DoS attacks 

• Additional hardware required 

LIDAR SLAM LIDAR 

transceiver 
• Good performance possible 

 

• Expensive hardware 

• Computationally expensive 

• Typical application is regional mapping, not 

absolute position for navigation 

Visual SLAM Camera • Good performance possible 

• Minimal hardware requirements 

• Computationally expensive 

• Typical application is regional mapping, not 
absolute position for navigation 

Receiver-based RF hardware 

(e.g., antenna) 
• Good performance possible • Additional hardware and/or computational 

complexity 

Generalized Vision Camera • Good performance possible 

• Minimal hardware requirements 

• Computational expense for algorithm training 

Finally overall position estimates (latitude and longitude) are 

calculated using the weighting function given by: 

 

                                  (2)

   

 

This paper does not define the weighting function, nor does 

it define the method to calculate confidence scores. Rather, the 

paper focuses on investigating the viability of cellular RF-based 

positioning and CV-based positioning. 

A. Cellular RF-based Course Position Estimation 

The location of all commercial 4G/5G infrastructural 

emitters (i.e., base stations) are publicly known. Thus, it would 

be possible to build an onboard database for positioning 

purposes. Each base station in the cellular network uniquely 

identifies itself over the Radio Access Network (RAN), so a 

mobile receiver will be able to definitively determine whose 

signals it is receiving. Combining that knowledge with a priori 

knowledge of the location of those emitters, the problem to 

solve is given a received signal from a known source, 

estimating the receiver’s location based on characteristics of 

that received signal. In other words, the UAS will know the 

locations of the surrounding base stations (i.e., those within 

range of the UAS), and the UAS will have received signals that 

are attributable to those base stations. The UAS will use that 

information to estimate its own position; the UAS will attempt 

to geolocate itself based on the known signals around it. It is 

interesting to note that this is the opposite of the typical 

geolocation problem. In most geolocation problems, you have 

a network of sensors attempting to determine the location of a 

single emitter. In this case, we have a network of known 

emitters and attempting to calculate the position of the single 

sensor. However, standard geolocation approaches can still be 

applied to this problem. 

 There are numerous geolocation methods that can be used 

to determine location based on received signal attributes, 

including Time Difference of Arrival (TDOA), Frequency 

Difference of Arrival, and Power Difference of Arrival 

(PDOA). These approaches are predicated on the scenario of 

multiple distributed spectrum sensors attempting to locate a 

single emitter by comparing the differences in the versions of 

the same signal independently received at these distributed 

sensor locations. 

 

   ∙  +  ∙  +   ∙ 




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The proposed framework aims to employ a Received 

Signal Strength (RSS)-based approach due to its simplicity. In 

this approach, these known identifiable signals will be received 

with some RSS. Based on that RSS along with the known 

position of the emitters, the UAS would then estimate the 

distance between itself and the known transmitter location. If at 

least three emitters (i.e. base stations) can be observed, then the 

UAS can then use reverse triangulation to determine its own 

position. Previous research has demonstrated that RSS-based 

approaches can provide accurate results [19]. This scenario is 

depicted in Fig. 5. 

This RSS-based approach is a non-cooperative method in 

which the UAS is not actually a user on the terrestrial cellular 

network. It is a receive-only capability receiving well-defined 

4G/5G signals, and then estimating the UAS position based on 

the RSS of these signals. For 4G LTE, we propose the use of 

the Primary Synchronization Signal (PSS) and Secondary 

Synchronization Signal (SSS), as these are well known and will 

convey the identification of the transmitter. 

For the case of 5G cellular, we propose the use of the 

Downlink Position Reference Signal (DL PRS), which is used 

by the 5G network itself in its own positioning protocol. 

B. Vision-based Position Estimation 

This study employs You Only Look Once (YOLO) due to 

its computational efficiency and ability to run in embedded 

hardware. YOLO is an object detection algorithm widely used 

in the Computer Vision community and is also widely used in 

commercial applications, including security and surveillance 

applications as well as autonomous vehicles. While there are 

many differences across the various versions of YOLO, the 

main characteristic that makes the YOLO model different than 

many other approaches is that it is a single-stage detector versus 

a two-stage detector. The basic object detector architecture is 

depicted in Fig. 6 [20]. 

The input stage in Fig. 6 is the actual input image fed into 

the detector. The backbone stage is a multi-layer deep learning 

(DL) network that acts to extract features from the input image. 

There are numerous backbone architectures that are available 

to use, including VGG16 [21], DARKNET-19 [22], 

 
 

Fig. 5: Position Determination Process using RSS-based Triangulation 

 
 

Fig. 6: High-Level Architecture of One-stage versus Two-State Detectors [20] 

 

DARKNET-53 [23], among many others. Here, the number in 

each generally refers to the number of layers in a convolutional 

neural network (CNN). The neck stage connects the backbone 

to the head (Dense Prediction stage in Fig. 6) and performs the 

function of feature map concatenation from the different layers 

of the backbone stage and presents that information as inputs to 

the head, which performs the object detection based on those 

feature maps. The neck can consist of many different 

approaches, including Feature Pyramid Networks (FPN), Path 

Aggregation Network (PAN), and Receptive Field Block 

(RFB). The head can take the form of YOLO or Single-Shot 

Detector (SSD) [24]. In a two-stage detector approach, such as 

Faster R-CNN [25], there is an additional sparse detection 

stage. Note this last stage is not present in a single-stage 

detector.   

This study uses the YOLOv4 implementation included as 

part of the MATLAB CV Toolbox, and its architecture is shown 

in Fig. 7. In this implementation, the backbone uses a DarkNet-

53 architecture that is a 53-layer CNN. The neck employs 

Spatial Pyramidal Pooling (SPP) and PAN. The head consists 

of three separate YOLOv3 [26] head modules that takes the 

feature maps provided by the neck and produces predicted 

bounding boxes and confidence scores. 

Typical YOLO usage involves the training of YOLO on an 

image dataset containing many different objects of different 

types (e.g., dogs, bicycles, cars) with that training data labeled 

with bounding boxes and descriptive labels for each object type. 

The trained algorithm is then used to detect arbitrary objects of 

those same types contained within input images (images not 

part of the original training dataset). In this study, rather than 

detecting specific objects, YOLO is employed to detect a grid 

of ground area from an aerial image (e.g., multiple city blocks 

vs. a single building). Objects, in this case, are defined by 

bounding boxes to reflect an entire geographic grid area and 

labeled with the coordinates of the center of the bounding box, 

as depicted in Fig. 8.  

 
 
Fig. 7: YOLOv4 Architecture as Implemented in MATLAB [27] 
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Fig. 8: Example of Using Object Definition to Represent Geographic Grid 

Coordinates  

 

 In this study, the YOLO algorithm is trained with a dataset 

that contiguously covers a geographic region, with each image 

representing an x by y grid of space within that geographic 

region. Ground images taken from the UAS are then fed into 

this trained YOLO detector, and a detection represents a match 

with one of these grid image objects, thus yielding the GPS 

coordinate of the UAS platform. 

IV. RESULTS AND DISCUSSION  

Fig. 9 shows the relationship between the path loss 

estimation error (i.e., the difference between estimated and the 

actual path loss between the UAS and the cellular transmitter) 

and distance estimation error (i.e., the difference between the 

estimated and actual path distance between the UAS and the 

cellular transmitter). The subplots in Fig. 9 shows this 

relationship for three common cellular frequency bands: 850 

MHz (Fig. 9a), 1900 MHz (Fig. 9b), and 27 GHz (Fig. 9c). The 

curves in each subplot of Fig. 9 represent a set of true 

propagation losses between the UAS and the cellular 

transmitter, which is directly related to the distance between 

them.  

Making a worst-case assumption that distance estimation 

errors align in the worst possible way (i.e., errors are additive), 

these cumulative distance estimation errors will directly equate 

to position estimate errors. The results in Fig. 9 shows that 

position estimate error increases with increased RF path loss 

estimation error, which places a premium on accurate RF 

propagation path loss estimation. Note that the results in Fig 9. 

assume free space path loss to relate path loss estimation error 

to distance error. Overall, across all frequencies it was found 

that relatively good positioning can be achieved if the path loss 

estimation error is less than or equal to approximately 5 dB. For 

path loss estimation errors greater than 5 dB, the distance error 

increases, leading to a larger position estimate error. Because 

the UAS will generally have LOS conditions to the terrestrial 

towers, previous research has shown that the propagation 

channel may follow a LOS free-space model [7], which means 

that achieving a 5 dB agreement may be possible.  

Fig. 9 also shows that the positioning accuracy improves 

with higher frequencies. The highest frequency band 

considered (27 GHz in Fig. 9c) provides the best positioning 

performance and lower cellular bands provide decreased 

positioning performance. In the 27 GHz band, most path loss 

curves (i.e., distances) between the UAS and the cellular tower 

resulted in position estimation errors under 100 m even for a 

   
(a) Position Estimation Error Function for 850 MHz 

 

 
(b) Position Estimation Error Function for 1900 MHz 

 

 
(c) Distance Estimation Error Function for 27 GHz 

 

Fig. 9: Distance Estimation Error as a Function of Path Loss Estimation Error 

for non-Cooperative Cellular RF-based Positioning 
 

relatively large path loss estimation error. For the lowest 

frequency band considered (850 MHz in Fig. 9a), large path 

loss estimation errors resulted in position estimation errors of 1 

km or greater, particularly for large distances between the UAS 

and the cellular transmitter. 

It was found that positioning accuracy worsens with 

increased distance to emitters. At larger distances, the position 

error is more sensitive to the path loss estimation error. This can 

be seen in Fig. 9 by the curves representing lower path loss that 

are grouped closely together at low distance error values while 

the curves representing higher path loss (e.g., 120 dB) quickly 

grows as the path loss estimate error increases. Relatively good 

performance can be achieved under the assumed conditions for 

distances up to 1 km in most cases, assuming free space path 

loss, with significant degradations at distances greater than 1 

km. These results suggest that within relatively close distances 

to cell towers (< 1 km) and path loss estimation error of < 5 dB, 
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that positioning accuracy of 100-meter resolution is achievable. 

While 100-meter resolution is not sufficient for safe flight, it is 

likely sufficient for coarse positioning to direct vision-based 

positioning. Even at greater distances or cases of a larger path 

loss estimation error, where positioning error will be greater, 

the position is likely sufficient to support a coarse positioning 

function. 

We next investigate the viability of using YOLO for 

vision-based positioning. A small training dataset was 

constructed consisting of 90 images [28]. These images were 

taken from three different types of environments: 1) urban 

(downtown Chicago, IL), 2) suburban (University of North 

Dakota (UND) campus), and 3) rural (unpopulated desert 

region of Arizona). These three image classes attempt to 

represent regions with different feature densities (i.e., manmade 

or natural landmarks). A total of 30 images were taken for each 

of these three regions. Each image was appended with a 

bounding box and labeling data consisting of latitude and 

longitude corresponding to the center point of the image. All 30 

images from each of these three environments were included in 

the training dataset. Twelve different images corresponding to 

these areas (three from each area) were then drawn from a 

different source (Google Earth) to serve as surrogate UAS 

camera images and then used as the test dataset. Examples of 

these test images for each region is shown in Fig. 10.  

These test images were fed into the YOLO detector that 

was trained with the 90-image training dataset, with detection 

results shown in Table 2. This table shows that a good 

performance was observed for urban and suburban cases, with 

successful detections with a high confidence (>0.9) for all urban 

and suburban test cases. The results for the desert test cases 

were mixed. A portion of the desert test cases provided 

detection with moderate confidence (>0.7), while several other 

desert cases resulted in no detection. False positive detections 

were also observed in the desert test images (i.e., images 

mistakenly classified as the wrong location). However, even in 

the case of mistaken classification, the model still predicted that 

the location was in the correct region (i.e., predicted Arizona 

desert). 

A key driver in the detection with high confidence appears 

to directly relate to the number of features present within the 

image. Images without distinct feature sets, such as Arizona 

Desert 1, exhibited poor performance, more features lead to 

 
Fig. 10: Test Images from Urban, Suburban, and Desert Environments 

 

TABLE II. ACHIEVED RESULTS FROM YOLO-BASED VISUAL POSITIONING 

Position (Image) Accurate Detection Confidence Level 

Chicago 1 Yes 0.97 

Chicago 2 Yes 0.99 

Chicago 3 Yes 0.91 

Chicago 4 Yes 0.89 

UND 1 Yes 0.96 

UND 2 Yes 0.99 

UND 3 Yes 0.92 

UND 4 Yes 0.90 

Arizona 1 No N/A 

Arizona 2 Yes 0.81 

Arizona 3 Yes 0.68 

Arizona 4 No  N/A 

 

better detection performance. These results are promising for 

urban and suburban areas as well as rural areas with geographic 

or manmade features (e.g., rivers, roads). The results also 

suggest that this approach is not well suited for areas with 

monotonic feature space (e.g., desert). In these desert 

environments (i.e., low feature density environments), it is 

expected that cellular RF-based positioning will yield more 

accurate positioning performance than visual methods. 

V. CONCLUSIONS AND FUTURE WORK 

The use of UAS platforms has become ubiquitous and their 
use is expected to increase in the future. UAS platforms are 
heavily dependent on GPS for proper and safe operations. 
However, GPS is vulnerable to denial and spoofing attacks. 
Many alternative positioning solutions have been proposed in 
the literature, but all have significant limitations. This study 
described a framework where multiple positioning approaches 
would be jointly employed. This framework uses of a cellular 
RF-aided vision-based approach to positioning that utilizes the 
popular YOLO object detection algorithm for aerial landscape 
detection for positioning purposes. The results show that 
cellular-based RF signals may provide sufficient accuracy for 
coarse position estimates. Results also show that visual methods 
can provide accurate position estimates in many environments. 
Future work would include the evaluation of the proposed 
vision-based positioning approach with larger datasets across a 
wider set of environments and conditions. Future work would 
also mature the framework described in this paper by developing 
a confidence weighting factor scheme, as well as the position 
estimate combination function.  
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